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ABSTRACT We present a new method for online selection of the penalty parameter for the alternating
direction method of multipliers (ADMM) algorithm. ADMM is a widely used method for solving a range
of optimization problems, including those that arise in signal and image processing. In its standard form,
ADMM includes a scalar hyperparameter, known as the penalty parameter, which usually has to be tuned
to achieve satisfactory empirical convergence. In this work, we develop a framework for analyzing the
ADMM algorithm applied to a quadratic problem as an affine fixed point iteration. Using this framework,
we develop a new method for automatically tuning the penalty parameter by detecting when it has
become too large or small. We analyze this and several other methods with respect to their theoretical
properties, i.e., robustness to problem transformations, and empirical performance on several optimization
problems. Our proposed algorithm is based on a theoretical framework with clear, explicit assumptions
and approximations, is theoretically covariant/invariant to problem transformations, is simple to implement,

and exhibits competitive empirical performance.

INDEX TERMS convex optimization, ADMM, adaptive ADMM, penalty parameter, parameter selection

l. Introduction

Proximal algorithms are widely used for solving a variety of
optimization problems in signal and image processing [1].
Of these, the alternating direction method of multipliers
(ADMM) [2], [3] is particularly widely used due to its
flexibility in addressing a wide range of problems. The
ADMM algorithm solves optimization problems of the form

argmin f(x) + g(z) st. Ar+Bz=c, ()

x,z
with variables! & € RM, z € RY: vector ¢ € RT;
matrices A € RP*M and B € RP*N; convex functionals
f:RM — Randg: RN — R; and where arg min f denotes
any minimizer of f when the minimizer is not unique. (The
notation used here is based on that of [5].) The ADMM
iterates are

2

(k)
Y 0))

") = arg min f(w)—&—% HAw—i—Bz(k) —c+ =—
x p

IWe only consider real-valued variable here. Problems with complex-
valued variables may be expressed in this form by representing each variable
as a real-valued vector containing its real and imaginary parts, but direct

extension to complex-valued variables is also worthy of exploration [4].

2
y®)

z(k+1) o arg mlng(z)_’_g HAw(kJrl)_’_ BZ—C+7
= p

(3)
y ) = y®) 4 oAz 4 Bz _¢) | 4

where p € R is a positive scalar known as the penalty
parameter, ||-|| denotes the ¢5 norm, and y € RP, known as
the dual variable, > plays the role of the Lagrange multiplier
for the constraint in (1).The iteration (2)-(4) can be shown
to converge to a solution of (1) under a variety of conditions
(see, e.g., [5, §3.2], [6], [7D).

In practice, the rate of convergence of ADMM algorithms
is strongly dependent on the penalty parameter. Unfortu-
nately, other than for a very specific set of problems [8],
[9], [10, Sec. 5], there are no analytic results providing the
optimal parameter choice. While a brute-force search for the
best parameter—running the ADMM algorithm may times

2Note that, while it is common to introduce a scaled dual variable
u = pfly (e.g., [5, §3.1.1]), we retain the unscaled form since it makes
the p dependency explicit and avoids the need for a rescaling of the dual
variable when p is modified during the iterations of the ADMM algorithm.
Appendix A describes how to use the proposed algorithm on the scaled

form.
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with different values of the parameter and keeping the best
result—is straightforward to implement, it is computationally
expensive and impractical for large-scale or real-time prob-
lems. Another solution is to adjust the penalty parameter as
the algorithm is executed, sometimes called online penalty
parameter selection or adaptive ADMM. The ADMM iterates
are the same as those in (2)-(4), but all occurrences of p
are replaced with an iteration-dependent value p(*), and a p
update step

_ ) . , k
p(k—l—l) _ ¢((p(J))m(]+1)7Z(J-l-l),y(ﬂ-‘rl))j:o

). ©

is appended after the dual variable update. This update is
defined in terms of a function ¢ : RxRM xRN¥ xRF x- .. —
R that selects a new penalty parameter based on all current
and past penalty parameters, all current and past variables,
and, implicitly, the problem definition f, g, A, B, and c.

A. Related Work

Several previous works address the problem of selecting
the ADMM penalty parameter. A computationally efficient
method has been proposed for brute-force evaluation over a
large set of penalty parameter values [11], but its efficacy
has only been explored for a very limited class of problems.
Other works [8], [9], [10] have considered penalty param-
eter selection for ADMM applied specifically to quadratic
programs, but these works involve explicit eigenvalue cal-
culations that do not efficiently scale to large problems.
A heuristic method for adapting the penalty parameter on-
line [12] is widely used, but is sensitive to problem scaling,
and can perform very poorly [13], as discussed in Section V.
More recently, the interpretation of ADMM as Douglas-
Rachford splitting (DRS) applied to the dual of (1) (see
e.g. [14]) has been used to translate new step-size selection
methods for DRS into penalty parameter selection methods
for ADMM. The approach of [15], [16], is based on Barzilai-
Borwein spectral step-size selection for DRS, while that of
[17] is based on minimization of an upper bound on the
spectral radius of the DRS iteration matrix. Both of these
methods are discussed further in Section IV. Finally, [18]
uses the dynamical systems approach developed in [19] to
bound the convergence rate of ADMM, and proposes to
select a fixed penalty parameter in advance to minimize
this bound. This method involves technical assumptions that
restrict which problems it can be used on, is complex to
implement (because computing the convergence bound for
each fixed penalty parameter involves searching for a scalar
parameter that makes a certain parametric matrix inequality
feasible), and, at least in the experiments in [18], did not
appear to provide accurate penalty parameter selection for
standard (unrelaxed) ADMM, which we study here.

Our work is particularly inspired by the analysis of
quadratic problems in [8], the concept of rearranging ADMM
into DRS from [15], the discussion of affine fixed points in
[19], the analysis of linear DRS updates in [17], and the good
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empirical performance we observed when we implemented
the method of [17].

B. Contributions and Outline

In this work, we propose a new mathematical framework and
associated method for ADMM penalty parameter selection.
This framework is distinct from previous work in that it
focuses on determining whether the parameter is much too
large or small rather than attempting to directly optimize
it. In addition to motivating our method, our framework
provides a new, unified perspective on previous penalty
parameter selection methods [12], [15], [17]. Our method
has not previously appeared in the literature, is simple to
implement, and has theoretical advantages over each of
the earlier methods. Computational experiments demonstrate
that the proposed method provides competitive performance
in practice across a variety of different problems.

The outline of the paper is as follows. The proposed
framework is developed in Section II, followed by deriva-
tion of the proposed penalty parameter selection method
in Section III. This framework is used to reinterpret the
methods of [12], [15], and [17] in Section IV. The final
theoretical component of the work is presented in Section V,
with a discussion of how each method responds to trans-
formations applied to the optimization problem, which is
key to understanding the limitations of some of the existing
methods. Experimental comparisons on several problems
in are provided in Section VI, and conclusions are drawn
in Section VII.

Il. Penalty Parameter Selection Framework

In this section, we present the new framework for ADMM
penalty parameter selection. The fundamental idea is to
approximate the ADMM iterations locally (i.e., in the region
of the current (*), z(®) and y(*)) as an affine fixed point
iteration y**+Y = H,y® + h for H, € RF*F and
h € RP, where H o depends on the penalty parameter p.
The theory of affine fixed point iteration then allows us to
view penalty parameter selection as selecting p to minimize
the spectral radius of H,,.

A. lteration ony

We show that the ADMM iterations (2)-(4) can be expressed
as an iteration on y alone by recovering  and z from y
at each iteration. This result is known in the literature, e.g.,
[14], [15], [17], but it is usually expressed as applying DRS
to a dual version of problem (1), while our derivation avoids
this complexity. We begin by using results from convex
optimization to rewrite the optimization problem on z (3)
as a function of y.

According to the the first order optimality condition, the
gradient of a smooth function is 0 at its local minima [20,
Theorem 1.2.1]. For nonsmooth problems, a similar condi-
tion holds for the subgradient [20, Theorem 3.1.15]. The
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subgradient with respect to z of the functional in (3) is

(k) ||?
0z <Q(Z) + g HA:c(kH) +Bz—-c+ yT >
(®) ||?
= 029(2) + Vzg ‘ Az* ) L Bz —c+ yT

2

)

(6)

The optimality condition for (3) can therefore be written
as [5, §3.3]

)
p

yh

p
.9(z) + BT (y™ + p(Az* ) + Bz —¢)) .

29(2) + Vzg ‘

Bz — (—Aw(kH) +c—

.9(2) +p <BTBZ - BT <—Aa:(k+1)+c—

0 € 0.9(z)) + BT (y® 4 p(AzH) 4 Bz _¢))

y(k+1)

c 8zg(z(k+1)) + BTy(’H-l) ) @)

We interpret (7) as the optimality condition for a new
optimization problem on z (and for clarity shift the index
from k41 to k), which allows us to express 2(¥) as a function
of y(k)’

2B = G(y®) T

z,

®)
where w € R”. Note that (8) only holds for k& > 1 because
of the index shift.
Taking a similar approach for the x update (2), the
subgradient with respect to x is
)

y®)

p
y““))
P
T T E y®)
— Oaf (@) +p <A Az— A <_Bz< >+c_p>)
= 0o f(2) + A" (y® +p(Az+ BzM —¢)) . 9

The optimality condition for (2) can therefore be written as

0 € 9pf (™)) + AT (y* + p(Az T + BzW —¢))

G+

G(w) = argmin g(z) + (B w)

z

y®)

p

s (f(:n) + g HAw +Bz® ¢y

2
=0 f(x) + Vmg HA:B +Bz"™ —c+

2

Oz f(x) + ng HAm - (—Bz(k) +c—

€ g f(x* 1)) + AT+ | (10)

where we have introduced the notation y to denote the
indicated not-quite-y quantity, which involves z(*) instead
of z(**1) Note that (10) is distinct from the standard dual
optimality condition for & (see (3.9) in [5]) because it holds
for all (*) rather than just the solution * and because it
involves y rather than y. Interpreting (10) as the optimality
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condition for a new optimization problem, we can obtain
) from §*) by using an operation that we denote F,

2 = F(5")  F(w) = argmin f(z) + (Aw) "z,
- (an

where w € RY,
With these definitions in place, we are prepared to rewrite
ADMM as an iteration on y(*) alone. By definition, we have

yFth) = () 4 p(A:B(kJrl) + B2+ _ c) (12)
gt =y 4 p(Azk+) 4 B2 —¢) . (13)
Making use of F' (11) and G (8), we have
y® 4 pBz") — pe = g+ — p Az
= gktD) _ pAF(Q(k'H))
= —pAF)(g"™*Y), a4
and therefore
y " +pBG(y™) — pc = (I — pAF)(g*tY) . (15)
Similarly,
GEHD _ pB20) — 4D _ g (et
— y(k+D) _ pBG(y(k+1))
= -pBG)(y*™Y),  16)
and therefore
gt —pBG(y"W) = (I - pBG)(y**V) . a7

Finally, we express y**1) as a function of y*) by solving
(15) for g**+1) and (17) for y++1),

g = (I pAF)™ ((I+ pBG)(y™) — pe) 18)
y* ) = (I - pBG)™ (z}(’““) - pBG(y(’“))) :

where M ~!(z) for generic function M and vector & denotes
a vector y such that M (y) = =, which may not be unique.
These inverses exist whenever the ADMM iterations (2)-
(4) are well defined because, by the preceding arguments,
ADMM generates sequences {x(®)}, {z(®}, and {y(®}
(and therefore implicitly {g(*)} via the definition in (13))
that satisfy (15) and (17), which are the equations that the
inverses in (18) solve.

Note that while there appear to be two state variables,
§*) is a merely a notational convenience. The iteration can
be written without (*) by substituting the first line of (18)
into the second. Finally, it is worth noting that our derivation
of (18) represents a novel approach to demonstrating the
mathematical equivalence of ADMM and DRS.

B. Affine Fixed Point Iteration

We now analyze a quadratic problem, allowing us to express
ADMM as an affine fixed point iteration, which is a critical
component in the derivation of our penalty parameter selec-
tion rule. While ADMM is not typically used to solve such
quadratic problems, they will act as local approximations of
the actual problems of interest.
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Consider problem (1) with quadratic f and g,

flx) = %mTQ:c +q'xz  g(z)= %ZTRZ +rTz, (19)
where Q € RM*M R ¢ RN*XN g € R™ and r € RV.
To make f and g convex and ensure that the problem has a
solution, we assume @ and R are symmetric positive definite
matrices. This assumption further implies that they cannot
have a nontrivial null space (because, e.g., Qx = 0 implies
T Qx = 0) and are therefore invertible.
Then, by definitions (11) and (8),

Flw)=-Q"'(ATw +q)
Gw)=-R*(BTw+7r),

Since F' and G always appear in (18) as terms AF and BG
respectively, we introduce the notation

F=AQ'AT G=BR'B”

(20)

2y

for the linear parts of AF' and BG respectively, where we
use the blackboard bold notation to clearly differentiate the
matrices F and G from the closely-related functions F' and
G.

We can substitute the first line of (18) into the second and
rearrange to express ADMM as

y M = (T+pG) 7 (T +pF) (T —pG)y ™ +pGy ™) + h
=(I+pG) ™ ((T+pF) (I pG)+pG)y™*)) + h
=(I+pG) " (I+pF) " (I —pG)+ (I +pF)pG)y ™)

+h
= (I+pG) (I +pF) (I+p*FG) y™® + h |

H),

)+
)+

(22)

where H, is a matrix that depends on p and h is a constant
vector that is unimportant for what follows. Note that y does
not appear because it is only a notational convenience and
can be expressed in terms of y.

We now have ADMM expressed as the affine fixed point
iteration

yF+D = pr(k) +h. (23)
We define the fixed point, y*, when it exists, by
v =H,y +h. (24)

It is worth emphasizing that, while H, and h depend on
p, y* does not. The fixed point y* is independent of p
because the iteration (23) is equivalent to ADMM applied to
a quadratic problem with a unique solution. Because ADMM
converges to a solution of this problem [6] and the solution
is unique, it cannot depend on p.

We can now relate the convergence rate of ADMM to the
spectral radius (the magnitude of the eigenvalue with the
largest magnitude) Define the error at iterate k by

e =y _g* (25)
From this definition, (23), and (24) we have

e = H,(y*) + h) — (H,y" +h) = Hye" ) (26)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

and so by induction,
e = H, O (27)

Denote the spectral radius of H, by r(H,). Gelfand’s
formula [21, Theorem 8] states

r(Hp) <[ Hf|F and r(H,) = lim |H %, @28)

which, as noted in [19, §2.2], implies that for any e > O,
there is a k large enough that

le® < (r(H,) + e)* [l . (29)

The convergence rate of the fixed point is therefore deter-
mined by the spectral radius of H,. Note that this bound
implies that 7(H,) < 1 is sufficient for convergence of the
fixed point.

We now derive a further consequence of the affine fixed
point which we use in the next section. The expression for
the error (27) corresponds to a power iteration of H . So,
assuming that the maximal eigenvalue of H, is real,’ as k
grows, e®) converges to a maximal eigenvector of H, [22,
§7.3.1], i.e.,

e®T H ,e®)

Tt r(H)p) (30)

m
k—o0
and

i (k) — (k)
kl;rrgo H,e r(H,)e'"™ . 3D

Therefore, for k sufficiently large and Ak > 0,

y(kHAR) (k) (y* + e(k+Ak)) _ (y* + e(k))
— e(k+AR) _ (k)

— H M) ®
~ (r(Hp)? = 1)e

where the last line follows from €(*) approximately being
a maximal eigenvector of H,. This equation implies that
yF+ak) _ 4(®) s colinear with €*) and is therefore also
approximately a maximal eigenvector of H,.

Let v, denote a maximal eigenvector of H, with corre-
sponding eigenvalue \,. If |[A,| > 1 then (29) implies that
the error would grow with each iteration, so |\,| must be
smaller than one for the fixed point iteration, and therefore
ADMM, to converge. In addition, we expect |\,| to be close
to one because convergence of ADMM typically takes at
least tens of iterations, implying that |\,| = r(H,) in (29)
is usually not much smaller than unity.

(32)

lll. Proposed Penalty Parameter Selection Method

With these results in place, we are prepared to derive
our penalty parameter selection method. Our approach is
motivated by the empirical result (see e.g. [23], [18], [15])
that there is typically a single optimal penalty parameter for
each problem, with convergence degrading as p moves away

3In general, H p may have complex eigenvalues and eigenvectors. In
Section III-B, we argue that when p is far from its optimal value, H, is

approximated by a matrix with real eigenvalues.
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from this value. Here, we derive approximations that explain
this monotone behavior and use them to propose a rule for
selecting a p that is not too far from the optimal value.

While the previous section represents a synthesis of results
from multiple sources, what follows is, to the best of our
knowledge, novel.

A. Dependence of Spectral Radius on Penalty Parameter
In the previous section, we determined that, for a quadratic
problem, the optimal p is the one that minimizes the spectral
radius of the iteration matrix H . Therefore, we would like
to know how the eigenvalues of H, depend on p. For small
quadratic problems, we can form H, explicitly and compute
these eigenvalues directly for a range of p values, but this is
impractical for larger problems. More importantly, though,
since our primary interest is in more general problems,
we would like to be able to determine this dependence
using variables and operators that are not specific to the
quadratic problem so that we can avoid having to explicitly
fit quadratic approximations. Unfortunately, the eigenvalues
of H, vary with p, and the spectral radius can change in
a complex way, as illustrated in Fig. 1. The same figure
suggests that the spectral radius depends much more simply
on p as p moves away from its optimal value: when p is too
large, r(H,) increases monotonically with p; when p is too
small, 7(H,) decreases monotonically with p.

r(Hp) = |\l

0.85 1

0.80 A

0.75 1

0.70 4

0.65 4

T T T T T T T T T
10-1 109
P

FIGURE 1: Spectral radius of the affine iteration matrix for
a sum of quadratics problem (see Section VI-B for details).
The spectral radius is a complex function of p, however
its behavior becomes monotone as p grows small or large
relative to the location of the minimum.

Recalling the definition of the affine iteration matrix
H, (22), we have that for maximal* eigenvector v, with
eigenvalue )\, (assumed to be real, as previously noted),

(I+pG) (I + pF) (I + p°FG)v, = A, ,  (33)

4The following equations actually hold for any eigenvalue/vector pair,
but we are specifically concerned with their consequences for the maximal

one.
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and therefore by premultiplying by v! (I + pF)(I + pG) and
dividing,
vl (I + p°FG)v,
Ao =% 5 .
v (I + p(G +F) + p*FG)v,
If we find the maximal eigenvector at a particular p = pg
and assume that it is not changing too much with p, we have
an approximation of the form
'Ug:) (I + p°FG)v,,
vl (I+p(G+TF)+ p?FG)v,,
which is a rational polynomial in p. We plot two of these
approximations in Fig. 2, which shows excellent agreement
between the approximations and the true spectral radius in
the area around pg.

(34)

A

(35)

Psp0

1.0 '------..
~,
\
\ N\
084 \
\ /
\
0.6 \ /
\ / —_— Al
\ / o
0.4 - \ / pop"/10
\._/ == Ap,10p*
T T MR | MR | MR | MR | RLELLALLY |
103 1072 107! 109 10t 102 103
P

FIGURE 2: Spectral radius of the affine iteration matrix
for a sum of quadratics problem (see Section VI-B for
details) along with the approximation (35) for two different
po values. Each approximation shows excellent agreement
with the spectral radius in the area around py, marked with
a colored dot.

B. Proposed Penalty Parameter Selection Method
The core idea of our penalty parameter selection method,
which we call the spectral radius approximation (SRA)
method, is that, when p gets either much larger or much
smaller than its optimal value, simple, monotone approxima-
tions for the relationship between A, and p hold. We select
p so as to avoid the regimes in which these approximations
hold. To make this practical, the determination of when
the approximations hold should be made using quantities
that can be cheaply computed from the working variables
of ADMM, avoiding explicitly forming large matrices and
computing their eigenvalues. Of the terms v, Fv,, Gv,, and
FGw, that play a role in the previous section, we only know
how to compute v, and Gv, in this way. We now derive
efficient estimates for these terms.

As discussed before, y(F+2F) — () s approximately a
maximal eigenvalue of H,, so v, ~ yFHAR) o (0) TIf we
set Ak = 1, we have

v, =y "D —y®) = p(A2x*HD 4 B2 ) (36)
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which has the benefit of not requiring the storage of past y
values. To compute Gv,, we can substitute the expression
we just derived for v, and use the definitions of G and G.
From (20) we have that

G(u) — G(w) = —R'BT (u — w)
for arbitrary vectors w and w, and therefore
G’Up ~ G(y(k-‘rAk) _ y(k))
_ BR*IBT (y(k+A]€) o y(k:))
= -B(G(y") - G(y))
_B(z(kJrAk) . z(k)) )
Again, it is convenient to use the most recent iterate,
~ —pB(z* ) — () (39)

Case 1: py small. In the case that py is small enough that
oG, ||/1|vp, || < 1, then in the neighborhood of p = po,
it makes sense to approximate (I + pG)v,, with v,,. We
then have’

(37

(38)

pGv,

(I+p(G+TF)+ p’FG)v,, (40)
= ((I + pG) + pF(I + pG)) vy,
~ ((I+ pG) + pF)v,,
= (I+p(F+G))v, 41
so that

(I + p°FG)v,, ~ vy, (42)

Applying this approximation to (35) results in
Appo e AT — U0 Up0 . @)

7 Voo <I+p(G+F))vpo

which is a decreasing function of p.°
Note that applying the same approximation to (33) shows
that A5l is an eigenvalue of the matrix

I+p(G+F), (44)

which is symmetric because ' and G are symmetric. The
eigenvalue Asm;‘ll is therefore real, justifying the assumption
in Section II-B that H, has real eigenvalues.

Case 2: pg large. In the case that pg is large enough that
oG, ||/1|vp, || > 1, then in the neighborhood of p = po,
it makes sense to approximate (I + pG)v,, with pGv,,. We
then have

(I + p(G+F) + p’FG)v,, = ((I+pG) + pF + p*FG)v,,
~ (pG + pF + p*FG)v,,

(P(G+F) + p°FG)v,, ,
(45)

SWhile an additional pGv,,, term could be removed, we do not do so
for symmetry with the next approximation.

By differentiating with respect to p, we know that (43) is a decreasing
function when U?;O
vl vpy = [|vp,l|2 > 0 and F and G are positive semidefinite: We have
uIFu = uTAQATu = (ATu)TQ1(ATwu) > 0 because Q is
symmetric positive definite by assumption, and therefore so is Q1. A

Vpo + 01 p(G+TF)vp, is positive. It is positive because

similar argument holds for G.
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and therefore

(I + p*FG)v,, ~ p’FGu,, . (46)
Applying this approximation to (35) results in
v! pFGv
I poP~ > Vp0 (47)

v1 ((G +F) + pFG)v,, ’

which is an increasing function of p.’
Note that applying the same approximation to (33) shows
that AR is an eigenvalue of the matrix

(G +TF) 4 pFG) ' pFG . (50)

We have numerical evidence that this matrix has real eigen-
values when F and G are positive semidefinite, justifying
the assumption that H, has real eigenvalues made in Sec-
tion II-B, but we have not found a proof that this property
holds.

Proposed method. The proposed method is based on
avoiding either of the previously mentioned cases, i.e., we
want to avoid either

D

Using the expressions we just derived, this is equivalent to
avoiding

Po Po Po poll *
1000 [ < N10Gvpell 0 v, || > [lpGwy, |

(k+1)

(52)

y(k)H < pHB(Z(k-H) _ z(k))H

[

or

pIB("Y — 20| < [ly™ D —y W] (53)

While there are several possible ways to avoid these cases,
we propose to simply select p so that the left and right sides
of these inequality are equal,

o+ — @] = B ), s
giving the rule
(k+1) ||y (kv y(k)H
SRA T Bz —2W)][ 2

An empirical validation of this rule for the quadratic problem
described in Section VI-B is presented in Fig. 3.

It may be surprising that the proposed rule does not
involve x or A. We designed the rule in this way because, as
we have just shown, there is a way to express Gv in terms
of z but there is not (to our knowledge) a symmetrical way
to efficiently express Fov in terms of x, c.f. (8) and (11).

By differentiating with respect to p, we know that (47) is an increasing
function when vg; FGv,, + UZ(] p(G + F)vp, is positive. The term
'UZ;O p(G+TF)v,, is nonnegative because F and G are positive semidefinite.
The term v;O FGw,, is nonnegative because the eigenvector equation (33)

implies that
(1= Xp)T = pApo (G +F) + p*(1 = ApgJFG)vpy =0, (48)
and therefore in the po large case we are currently considering,
(=200 (G +F) + p2(1 = Aoy )FG)wpy ~ 0, (49)

which implies FGv,, is a positive scalar multiple of (G + F)v,,, so
vaOp((G + F)v,, > 0 implies vZOIFGvPU >0.
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FIGURE 3: The spectral radius, the approximations (35),
(43), and (47), and the proposed p for four different pg’s.
When py is far from p* (top two plots), the approximations
are accurate and psgra is close to p*. When pg is close to p*
(bottom two plots), our justification for the approximations
no longer holds, but psgra remains close to p*.
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There are several details to consider when implementing a
complete penalty parameter selection method based on (55).
We postpone these implementation details until Section VI-A
and Algorithm 1.

C. Application to Nonquadratic Problems

Our derivation of the rule (55) was based on analyzing
ADMM for a quadratic problem, but since it only involves
y, B, and z, it is possible, in a computational sense at least,
to apply it to any ADMM algorithm. But is it reasonable
to expect it to work well? The empirical results reported
in Section VI indicate that it does, and previous ADMM
penalty parameter selection methods [15], [17], which are
also based on analysis of a quadratic problem, also report
good empirical performance on general problems.

We believe that these algorithms generalize well be-
cause convex functions can be locally well-approximated by
quadratics. Over a few iterations—and especially when p is
not at its optimal value—the variables « and z do not change
rapidly as a function of k, and therefore ADMM on f and g
is similar to ADMM on a quadratic approximation of f and
g in the local region of ®), () As = and z change over
many iterations, the same argument can be made about the
new neighborhood. For example, the total variation problem
(121) is exactly quadratic in each region where the argument
of the ¢; norm does not change signs. Such iterative, local
approximations are widely used in optimization, e.g., in
Newton and quasi-Newton methods.

IV. New Interpretations of Existing Penalty Parameter
Selection Methods

We now interpret several state-of-the-art ADMM penalty
parameter selection methods from the literature in terms
of the proposed framework. We emphasize that this unified
perspective is distinct from the ones used to originally derive
each method.

A. Residual Balancing Method

Residual balancing (RB) [12] is a straightforward and widely
used (see, e.g. [24], [25], [26], [27], [28], [29]) approach
to ADMM penalty parameter selection. It is based on an
attempt to balance the norms of the primal and dual residuals
at iteration k, which are defined as [5, §3.3]

) = Az® 1 B2 _ ¢ (56)

and

st = pATB(z*) — 2(+=1) (57)
respectively. Because both the primal and dual residual must
be zero for m(k), z(k), and y(k) to be optimal [5, §3.3], and
because increasing p tends to decrease the primal residual at
the expense of increasing the dual residual (and vice-versa
for a decrease in p) the idea is to balance their norms using
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7_incrp(lc) if ||,,,(k+1)H > u”s(kJrl)”
o9 /7955 i g4V > o) |

po

prt = (58)

otherwise ,

for constant 71" 7deer 4 € R,

Translating into the language of our affine fixed point
framework and using the same arguments as in (36) and
(38),

P41 (y(k+1) _ y(k))/p ~v,/p (59

and

st ~ —pAT(va . (60)

We can therefore interpret residual balancing as comparing
|v,|| with p?||ATGuv, ||, whereas our method compares ||v,, ||
with p||Gw,||. The term p?||ATGw,|| does not appear in the
eigenvector expression for the fixed point matrix H,, (33).
However, we can view p?|ATGuo,|| as a rough approxi-
mation of the term p?|FGuv,| = p?|AQ AT Gv,||, with
equality when A and @ are orthogonal matrices. Taking this
perspective, comparing ||v,|| to p?||FGuv,| is an alternative
route to deriving the p small or p large approximations
from Section III-A, and residual balancing may therefore
be viewed as determining whether the p small or p large
approximations hold by approximating p*||FGuv,||.

Our method is distinct from residual balancing because
it uses a different approach to determining when p is too
large or too small. It turns out (see Section V) that the
approximation used by residual balancing has a significant
theoretical disadvantage.

B. Barzilai-Borwein Spectral Method

The Barzilai-Borwein spectral (BBS) penalty parameter se-
lection method [15], [16] involves rewriting ADMM as DRS
applied to the dual of problem (1), rearranging DRS so
that it resembles gradient descent on two variables, applying
the Barzilai-Borwein method to choose the step sizes, and
then translating back into the ADMM problem to select the
penalty parameter p. We now interpret this method within
our framework and explain the differences with the proposed
method in detail.

Our notation  BBS [15]  SRB [17]
19 H G ©. P
A,B,c A,B,b D, E, c
m(k>,z(’“), Uk, Vg u™, v
y*) =Xk —w™
e oY

p(F) (k) tn_1

TABLE 1: Translation between the notation used here and
that of [15] and [17].
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Table 1 presents a list of symbol equivalences between
[15] and our formulation. We can show (see Appendix B)
that the expression of ADMM as DRS on the dual in [15]
results in the same iteration on y that we derived by working
with optimality conditions of the ADMM steps.

The key difference between the BBS method of [15] and
the proposed method lies in (16) in [15], which, translated
to our notation, becomes

AF(y) = ayy +cy BG(y) =a,y+c,, (61)

where af,a, € R and cy,cy € R”. What does this
assumption say about f and ¢? If we assume f and g are
quadratic as in (19), we fulfil the conditions in (61) when
AQ' AT = a;I and BR™' BT = q 1. One simple way
for this to hold is if AAT = axsI, BBT = agl, and
Q and R are themselves scaled identities (Q = agl and
R = arlI) and therefore

AQ_lAT = aQAAT =aqgaal = ayI

and likewise for BR'B7.

Given assumption (16) in [15], our fixed point analysis
provides a new route to derive the BBS selection rule of [15].
Following the quadratic analysis of Section II-B with the
additional assumption from [15], we have

F=asI G =aq4l.

(62)

(63)
It follows that
_ 1+ p*agay
P (14 pag)(1+ pag)
making it feasible to solve for the p that minimizes the

leading constant, which is also equal to the spectral norm
of H,. We have

I, (64)

1+ pPagza,
MO = 5 pan) (1 + pay) ©
d ( ) _ (af + ag)(ﬂ2afag B 1) 7 (66)

dp™" (14 pag)?(1 + pay)?
and therefore the minimum occurs when the numerator is
zero, at
p=(aray)"? (67)
which agrees with [15, Proposition 1].
What remains is to estimate ay and a4. The basic idea is
that if IF is a scaled identity, then, for arbitrary w, we have

wTFw wT Tw

:af :af s (68)

wlw wTw
which provides a way to compute ay by applying F to
any vector w. The challenge is computing this estimate
from quantities that are readily available during the ADMM
iterations. Recall that

AF(y)=-Fy+C
which means that
AF(Q(k)) _ AF(g(k_kO)) = Az — Ap(F—ko)
— —F(g}(k) _ g(k*ko)) . (70)

BG(y)=-Gy+C, (69)
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Thus we can approximate ay using
~ <AAa:(k), Ag(k)>
YT g™, ag®)

where Ag*) = (k) — g(k=AF) and Ax = ) — g(k=4k),
This agrees with the left side of (26) in [15] (note that (26)
defines & = 1/a).

A different estimate of ay (the right side of (26) in [15])
may be obtained using (again for arbitrary w)

(71)

(Fw) Fw a% wT Tw B
wiFw  apwlTw “ 72)
which leads to
AAxF) AAL®
af ~ _< T ) fc > (73)
(AAz®) Agk))
Using the same approach for G gives
BAzF) Ay
ag ~ _< z ) y > (74)
(Ayk), Ay(k)
and
BAzK®) BAz®F)
0y~ AR B (75)

(BAz®F) AyR)y 7
which are the reciprocals of the expressions after (28) in
[1.5]. Substituting our expressions for ay and a4 into (67)
gives

S ¢ a9 [y .
oes (A(Azk)), Agk)) (B(Az(M), Ay™)
In summary, within the framework developed in this paper,

one may view the BBS parameter selection method of [15]
as being based on the minimization of the spectral radius
of the linear fixed point iteration matrix H, defined in
(22) by making the additional assumption that F and G are
(locally in the region around y*) and §*)) scaled identity
matrices. Under this assumption, the dependence of the
spectral radius of H, on p is simple and p may be selected
to minimize the spectral radius of H,. The eigenvalues of
F and G may be estimated by treating y(*+2%) — 4(¥) and
gkt+ak) _ (k) a5 their eigenvectors, which is sensible under
the local scaled identity assumption. This is a distinct view
from that in [15], which is based on selecting a BBS step
for the DRS algorithm and translating it into ADMM terms.
We discuss further implementation details of this method in
Section VI-A.

2
I

(76)

C. Spectral Radius Bound Method
The method of [17], which we refer to as the spectral radius
bound (SRB) method, was derived as a step size selection
method for DRS and then translated into the terminology
of ADMM. The main idea is to minimize an upper bound
on the spectral radius of the affine iteration matrix. We now
discuss the approach in detail.

Table 1 provides a list of symbol equivalences between
[17] and our formulation. It is clear by inspection that the
fixed point mapping H; from (6) in [17] is the same as H,
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defined in (22). Thus [17, Lemma 2.1] (translated into our
notation) states that, for eigenvector v with corresponding
eigenvalue A of H,, and assuming A # 1, we have

1 1 c 1
_ <4/ = < Z
‘A 2’ 4 1+2~2° 77)
where Re((G
c = e(< U?’U>) . (78)

p7Hvl* + pl|Gol?
The SRB method uses the following heuristic to derive a
way to select p from this bound: To force A close to 1/2,
¢/(1 + 2¢) should be as large as possible and therefore ¢
should be as large as possible. For a fixed v, this can be
achieved by setting p = ||v||/||Gv]].

To arrive at an implementable penalty parameter selection
rule, it is heuristically assumed that v = vy, i.e., that y is an
eigenvector of H,. Together with definition Gy = Bz this
assumption results in

w _ ly™|

PsrRB = HBz(k)H :
This is somewhat ad hoc because it is not argued why y
should be an eigenvector of H,, and because it ignores the
dependence of v on p.

Of the approaches considered here, the SRB method [17]
is the most conceptually similar to the proposed method.
Both involve analyzing the spectral radius of the affine
fixed point matrix that arises when ADMM is applied to a
quadratic problem (although [17] does this in a roundabout
way by instead analyzing the DRS algorithm and translating
the results to ADMM). However, where [17] attempts to
minimize the spectral radius by minimizing a bound on it, we
instead approximate the spectral radius and avoid situations
where p is clearly too large or too small. Both of these
approaches involve comparing ||v|| with p||Gv]|, but this
ratio is arrived at via different paths of reasoning. Finally,
while the rules for selecting p are similar, (c.f. (55) and (79))
the proposed rule involves y*+1) — y*) rather than y*)
because we argue that this difference in y values should
approximate a maximal eigenvector of H,. As described
in Section V-B, it turns out that this difference results in a
significant theoretical disadvantage for the SRB method.

(79)

V. Problem Transformations

The notion of problem transformations, originally identified
in [13], provides a useful theoretical tool for comparing
penalty parameter selection methods. The goal of this anal-
ysis is to identify how arbitrary decisions made during
problem formulation, such as the choice of units for «
and z, affect the convergence of ADMM. A good penalty
parameter selection method should be covariant or invariant
to these transformations in the sense that, if it selects the
optimal parameter for one problem, it should also select the
corresponding optimal parameter for a transformed version
of that problem. Here, we extend the scaling transform from
[13] to include an additional degree of freedom in scaling,
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and include an additional transform based on translation of
problem variables, which, to the best of our knowledge, has
not previously been addressed in the literature.

A. Problem Scaling
Consider using ADMM to solve members of a family of
optimization problems of the form

argmin af (yx)+ag(dz) st. BAyx+BBdiz = c, (80)

where the family is parameterized by the scalars «, 3, 7y, and
0. We will refer to the problem with o = f=~v=§ =1
as the unscaled problem, but it is important to emphasize
that there is nothing special about this choice: the primary
point of this analysis is that setting up a problem in ADMM
form involves implicit choices of unknown values for these
scalars, and nor that it is useful to make explicit choices
of these scalars to convert from one problem form to an
equivalent one.

Denoting the solution to the unscaled problem by x*, z*,
the solution to the problem with scaling «, 3, -y, and ¢ is

=25, 81)

which may be verified by noting that o and 8 do not affect
the minimizers of (80) and that v and § simply rescale x and
z. If we denote a particular choice of initialization for the
unscaled problem as z(®, y(©) and p, how can we choose
the initialization for a scaled problem, z(¥, g, and p,
so that the sequences of variables generated by ADMM are
properly scaled, i.e., so that £* = z*) /4 and z(*) =
2(k) /52 The solution is provided by the initialization

20 =20/ g9 =ayV/8  p=ap/8*, (82
which may be verified via induction on the ADMM itera-
tions [13, §III].

If we instead consider the adaptive version of ADMM

where p may change after every iteration, we require p(*) =
ap® /52, which motivates the following definition.

2" =2y

Definition 5.1 (Scaling Covariant):
An ADMM penalty parameter selection method, ¢, is scaling
covariant if

6 ((ar/2, 295 3. 2040 8,0y 5 )

=0
<<pu>ﬁvu+n’zu+mvyu+m>

k
) . (83)
§=0

That is, if a method selects p(*) at iteration k of the unscaled
problem, it should select ozp(k)/ B2 for each corresponding
scaled problem.

Parameter selection methods being scaling covariant is
critical because problem scaling is unavoidable in practice.
For example, for an inverse problem in imaging, the f term
in (1) would typically represent a data fidelity functional
involving a system model and the measurement vector.
Because the measurement vector comes from the detector,

(0%
P
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its scaling is arbitrary, e.g., the manufacturer has converted
a voltage to some physical units; we may convert again
during preprocessing or scale the values to a convenient
range (e.g., from 16-bit integer to floating point between
zero and one). We also have freedom to choose the units
for x, e.g., one group may reconstruct in g/cm® and another
in kg/m3, as long as each implements their system model
in a way that conforms to their choice of units for  and
the measurements. Finally, the units in which we represent
the error are arbitrary, e.g., sum of squares versus mean of
squares. A similar argument can be made for the g term in
(1), which would typically be the result of variable splitting
applied to a regularization functional, g(Ax). Again, the
units of x are arbitrary, as is the implementation of A
(e.g., finite differences may be unscaled, divided by two,
or divided by the physical pixel spacing). The units for the
output of g are similarly arbitrary, but changing them affects
the weighting of the regularization term relative to the data
fidelity. If the relative weighting is assumed fixed, i.e., it is
always properly tuned, the scaling of the output of g is fixed
(hence a single scaling parameter, «, on f and g in (80)
rather than one for each). Finally, similar scaling arguments
may be made for B or c.

B. Problem Translation
In addition to freedom in problem scaling, a problem state-
ment of the form (1) admits freedom in terms of variable
translation. Like scaling, these translations can be seen as
a consequence of choosing units for « and z, e.g., if =
represents temperature, it may be represented in degrees
Celsius or Kelvin.
Consider the problem
arg min f (@ + @0) + g(= + z0)
T,z

st. Az +Bz=c— Axy— Bz, .

(84)

We now show that with proper choice of initialization,
ADMM applied to the translated problem (84) results in a
translated sequence of iterates (and solution) as compared
to the untranslated version. Let &), 2(®) g(#) and p(*)
denote ADMM variables for the translated problem, and
define ¢ = ¢— Axg— Bzy. Assume for purposes of induction
that

20 = o) oy gk =gy 50 = 5 (gs)

We have
~(k) 1 2
P Az +Bz® — 6+ %gm
p
pt) k 1 k ’
=— Azc—i—B(z( )—zo)—c—l—AwO—i—Bzo—&——y( )
2 p(k)
(k) 1 2
=2 ‘A(az +axo) + Bz —c+ Wy(k) (86)
and therefore
gF D) = k4D _ g (87)
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A similar argument can be used to show that &%) = x(*) —
xo implies that 2(F+1) = 2(k+1) _ 2 Setting (0 = 2(©) —
xo and 20 = 2(0 — 2, completes the induction. Finally,
a change of variables shows that if (x*,2*) is a solution
to problem (1), then (x* — xq,2* — zy) is a solution to
the translated problem (84). These relationships motivate the
following definition.

Definition 5.2 (Translation Invariant):
An ADMM penalty parameter selection method, ¢, is trans-
lation invariant if

¢((pm,w(j+1>7z<j+1>,y(j+1)>’“ )

=0
— 4 ((pu), 20D g Z0HD y<j+1>)’“ ) _
j=0
(88)

That is, if a method selects p(*) at iteration k of the
untranslated problem, it should still select p(k’) for each
corresponding translated problem.

C. Effects of Problem Transformations on Parameter
Selection

Penalty parameter selection methods should be both scaling
covariant and translation invariant. If a method is not, then
even if it can select the optimal parameter for one scal-
ing/translation, it will select a suboptimal one for a different
scaling/translation. Stated differently, the resulting conver-
gence performance will be dependent on the arbitrary choices
made during problem specification. We now discuss how
each of the three exiting methods described in Section IV
and the proposed method from Section III perform under
problem transformation.

1) Residual Balancing

As demonstrated in [13], the residual balancing method (Sec-
tion IV-A) is not scaling covariant. For residual balancing
as defined in (58) to satisfy the scaling covariance property
(83), we need the ratio of the norms of the primal and dual
residuals to be scaling invariant. Instead, we have

70 = BAvE® 1 sBoz™ — e
= BAz™ + B=" — ge

= prk) (89)
and
58 = 5 g2y AT B () — (1)
= 7B 329 AT B () — 2(+=1))
= ap®y AT B(2®) — 2=
= ays®) . (90)

Because ||7||/]|5]| # ||r]l/||s]|, the choice of how to change
p from (58) depends on problem scaling.
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The residual balancing method is translation invariant. We
have

70 = Az®) + Bz _¢
= A(:c(k') —xg) + B(z(k) — zo) —c+ Az + Bz
=Az® + Bz _¢

= ¢k 1)
and
5 = _p(0) AT B (50 _ 51
= M) ATB(z®) — z(+=1)
=5 (92)

which means that, if initialized correctly, residual balancing
will choose the same p(*) sequence no matter how a problem
is translated.

2) Barzilai-Borwein Spectral Method
The BBS method (Section IV-B) is scaling covariant because

k) (BAyAZ®) pAyAZH))
ay == (k) Aok 93)
(BAyAZ®) Ag(k)

B{AAZ®) AAx*))

= " (AAz®), Aag® /p) oY
2
_ %a;“ , (95)
and likewise
B? (k
) = —a (96)
[0
Therefore
_ ) (k) —: o«
= (@ a) " = e ©7)

which is the scaling required to make the scaled problem
converge in the same way as the standardized one.

The BBS method is translation invariant because the
expression for p only involves quantities that are differences
between variables at different iterations.

3) Spectral Radius Bound Method
The SRB method (Section IV-C) is scaling covariant because

it sets
I U
18Bs=W [[sB=®]|
which is the scaling required to make the scaled problem

converge in the same way as the standardized one.
The SRB method is not translation invariant, because

g™ _  Jy™
(B0 ~ B -
As a result, we expect that when the SRB method provides

good convergence on one problem, it may not provide good
convergence on a translated version of that problem.

w8l a
g

(98)

o) =

99)

(k)
1 #p

11
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4) Proposed Method

The proposed method (Section III) is scaling covariant
because

p(k)HﬁB(s(i(kH) _ 2(k)>H _ %p(k)HﬁB(z(k“) — z(k))H

[l = g®] §lly @0 —y®]

_ AWB(Y — 20|
- Hy(kJrl) _ ,y(k)H

(100)

As a result, any decision about how to change p based on
this ratio will be the same no matter the problem scaling.

The proposed ratio (Section III) is translation invariant,
because, like the BBS method, it only involves differences
between variables at different iterations.

VI. Computational Experiments

We now describe our experiments comparing the proposed
method to standard, non-adaptive ADMM and three state-
of-the-art adaptive ADMM approaches.

A. Implementation Details for Parameter Selection
Methods

So far, we have focused on describing how various methods
determine what the value of the penalty parameter p should
be, or whether it is currently too large or small. In some of
these cases there is more than one way of constructing a cor-
responding penalty parameter selection algorithm. Because
a comprehensive study of these options is well beyond the
scope of this paper, for each comparison method, we use the
specific algorithm recommended in the paper that proposed
it. We now briefly summarize these methods.

For the residual balancing (RB) method (Section IV-A),
we followed the algorithm described in (58) with 717" = 2,
rdeer = 2 and p = 10 as suggested by [5].

For the Barzilai-Borwein spectral (BBS) method (Sec-
tion IV-B), we followed the algorithm from [15, Algorithm
1] and the code provided by the authors.® This algorithm
involves computing ay and a, as described in (68)-(75),
combining those estimates, and using safeguarding rules that
attempt to discard the estimates when underlying assump-
tions are not met. We used the recommended safeguarding
parameter " = 0.2 and update frequency Ty = 2.

For the spectral radius bound (SRB) method (Sec-
tion IV-C), we followed the algorithm in [17], in which the
current p and psrp (79) are mixed with a decaying weight on
psre- The result is also clipped so that it always falls within
a user-defined range. We used a weight decay schedule of
27k/190 and a range of [10~*,10*] as recommended in [17].

For the proposed spectral radius approximation (SRA)
method, we considered several possible ways to turn the
rule (55) into a penalty parameter selection method. How

often should p be updated? Should p*t1) be set to pé’f;/gl),

(k+1)

set to some combination of p*) and Psra > OF simply be

8 Available from https://github.com/nightldj/admm_release .
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k+1)

moved in the direction of péR A 1 Should the update based on
(k+

PSR Al) take into account that it is expected to be less reliable
when ||pGw,, || & ||v,,||? Should we constrain p*+1) to lie
within some interval determined by prior estimates? How
should the ,oé]f;/gl) = 0 and pgﬁl) = oo cases be handled?
Since a thorough exploration of these options would be a
significant undertaking, we have deferred it to future work,
implementing the simple approach in Algorithm 1. This
algorithm sets p based on the ratio (55) except when it is O or
00, in which case p is multiplied or divided by a fixed scalar
(we used 7" = 7dr — 10). It also only makes adjustments
every few iterations (we used T" = 5). The trade-off in the
choice of 7' is that a large 7' makes the approximations
involved in deriving the SRA rule more accurate (because
they are asymptotic in k), while a small 7" means p is updated
more frequently, which may accelerate convergence.

Algorithm 1: Proposed p selection method
Input: k, p%) | z(k) | z(k+1) (k) o (k+1)
Parameters: T = 5, 7" = rdecr — 1)
Output: p(F+1)
if k modT #1: // update every T steps
| return p(¥)

p e [y =y W,
g+ || B(z*+D) — 2(0)

// (55) numerator

||2 // (55) denominator

ifp=0and ¢g>0: /) pla=0
\ return p(¥) /rdecr

\ return 7" p(k)

ifp=0and ¢=0: /) pla=0/0

| return p(¥)
return p/q

We also compared with not adapting the penalty parame-
ter, i.e., p(k) = p(o), which we refer to as the fixed method.

B. Sum of Quadratics
Our first experiment considered the sum of quadratics prob-
lem

1 1
arg min fa:TQw + qu +-2zTRz + rTz,
T,z 2 2

st. Ax+ Bz=c, (101)

with variables £ € R™ and z € RY; vectors g € RM, r ¢
RY, and ¢ € R?; and matrices Q € RM*M R ¢ RVXN,
A e RPXM apnd B € RPXN,

While one would not typically solve (101) using ADMM,
it represents an important reference experiment due to the
fundamental role of quadratic approximations in the pro-
posed framework (i.e., the approximations used to derive
the framework hold exactly in this case), and because the
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solution can be computed to high precision (aiding in perfor-
mance comparisons) via efficient problem-specific methods.
The ADMM iterations for the quadratic problem are

w(k-‘rl) — _(Q -l—pATA)_l

*)
<q — pAT (o —BzF— yp)) (102)

—~(R+pB"B)™!
T k+1 y(k)
(r - pB (cAa:( ) p)) (103)

y(k-‘rl) — y(k) +p(Aw(k+l) + Bz(k+1) _ C) . (104)
We can find the solution without using ADMM by rewrit-
.1
arg min —w

ing the problem as
T
T|Q 0 q
[ B [f]

st. [A Blw=c,

LO41)

(105)
where w = [a:T zT] " is the concatenation of the original
optimization variables. We now have a quadratic problem
with an affine constraint. Letting ® denote an orthogonal
basis for the null space of [A B} and w denote any vector
such that [A B] wy = ¢, we can instead solve for an
optimal a* using
1 T
arg min §(<I>Q +wo) T H(®a + wp) + Lﬂ (P + wy)
(a4

T

e )

(106)

1
= arg min gaTCI)THCI)a + <<I>T Lﬂ + <I>THw0)
[e 2

where

Q o0
H = {O R} . 107)
The solution to the original problem is then given by
[a;*T z*T]T = ®a* + wy. This approach can be imple-
mented efficiently’ when the number of dimensions is in the
hundreds.

We constructed an instance of problem (101) with M =
15, N = 13, and P = 8; with g, r, A, B, and ¢
generated with random normal entries; and with and @ and
R separately constructed from a product X7 X, where X
had random normal entries to ensure they were symmetric
and positive semidefinite.

To validate our theoretical framework, we formed the
affine iteration matrix H, from (22) and computed its spec-
tral radius numerically for a range of p values. The results
in Figs. 1 and 2 demonstrate that the spectral radius can
change in a complicated way and that the limiting behaviors
developed in Section III-A are remarkably accurate.

We applied each of the five methods described in Sec-
tion VI-A to this problem, with 20 =0, 200 = 0, and

9For example, in Python, by using scipy.linalg.null_space and

scipy.linalg.solve .
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y(® = 0, while varying p(®) logarithmically in the range
1073 to 10% with 5 values per decade. We then repeated
this experiment on a scaled version of (101) with a = 103
and a translated version with the translation zy chosen as a
Gaussian random vector with standard deviation 10.

For this experiment, we quantified the performance of
each method by computing the relative residual between a(*)
and x* at k = 50. (Whether convergence of the variables
or convergence of the functional is more meaningful is
application dependent. In developing these experiments, we
did not observe this choice to affect trends in the results.)

Results are shown in Fig. 4. The results for a fixed penalty
parameter show relative convergence varying by several
orders of magnitude. As expected, if the optimal p is selected
in advance and not adapted online, it leads to excellent con-
vergence. Each of the penalty parameter selection methods
mitigates this effect to some degree, improving convergence
across different initializations of the penalty parameter. The
residual balancing method is better than a fixed parameter
for the basic quadratic problem and the translated version,
but its performance is poor on the scaled problem, which
is in line with the analysis of Section V showing that it is
not scaling covariant. SRB performs well on the basic and
scaled problem, but poorly on the translated one, also in
line with Section V, which shows that it is not translation
invariant. Both BBS and the proposed method are scaling
covariant and translation invariant, but the proposed method
is empirically superior, resulting in better convergence for a
wide range of parameter initializations, which is presumably
because the proposed method uses a more general quadratic
approximation (see Section I'V-B).

C. Basis Pursuit Denoising

Basis pursuit denoising (BPDN) [30], which finds a sparse
representation of a signal or image in a fixed dictionary, is
formulated as

1
argmin§|\Dmfd||§+w||:c||1 , (108)

J(z)

with dictionary matrix D € RE*M variable € RM, fixed
vector d € RX scalar parameter w > 0, and where || - |2
denotes the ¢5 norm, || - ||; denotes the ¢; norm, and J :
RM — R is the functional we aim to minimize. It can be
expressed in the form of an ADMM problem (1) via variable
splitting, resulting in

1
argminiHDa: —d|3+w|zll; st x—2z=0, (109)

which corresponds to

A=1 B=-1I c=0 (110)

13
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FIGURE 4: ADMM penalty parameter methods evaluated in
terms of convergence on sum of quadratics problems. The
RB method is not scaling covariant and the SRB method is
not translation invariant.
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in (1). The ADMM iterations are

(k)
$(k+1) — (DTD+pI)71 (DTd+p <Z(k) _ y))
P
(11)
(1) (k1) y(k)
z = Sw/p x + 7 (112)
y(k+1) _ y(k) + p(a:(’““) _ z(k+1)) , (113)

where S denotes the proximal operator of the ¢; norm, also
referred to as the soft thresholding operator [5, §4.4.3].

For our experiment, we used BPDN to solve the regression
problem involving a diabetes dataset'® that was addressed
in [31] and that was also one of the example problems
considered in [15] (although using the closely-related elastic
net problem rather than BPDN). The dimension of the data
d was K = 442 and the dimension of the sparse code x
was M = 10. We solved the z-update via LU factorization.
We quantified performance by comparing the value of the
objective functional at iteration 50, J (w(50)), to the minimal
functional value obtained by any method when run for 100
total iterations, which we denote J*. Results are shown in
Fig. 5a and discussed in Section VI-H.

D. Robust PCA

Robust principal component analysis (robust PCA) [32] is
a matrix decomposition technique based on solving the
optimization problem

argmin | X || +w|Z];1 st X+Z=D, (114)
X,Z ~————
J(X,Z)

where || - ||« denotes the nuclear norm, D is the matrix to
be decomposed, X is the low-rank component of the data,
and Z is the sparse component of the data. The problem is
already posed in standard ADMM form, with

A=1 B=1 C=D (115)

in (1) (where the vector variables @, z, and ¢ should be
replaced with corresponding matrix variables X, Z, and C
in this case). The ADMM iterations are

Yy (k)
X0 _g, (D e p) (116)
Yy (k)
Z+ =, (D — x (1) p) 117)
y*E) —y®) 4, (D D L z<k+1>) ;o (118)

where T is the scaled proximal operator of the nuclear

norm [33].
Our  experiment addressed the video  back-
ground/foreground separation problem, which is one

of the many applications of this technique, using the
Lankershim Boulevard traffic camera dataset.!! To quantify

10 Available from https://hastie.su.domains/Papers/LARS/ .
1T Available from https://data.transportation.gov/Automobiles/

Next-Generation-Simulation-NGSIM-Program-Lankershi/uv3e-y54k .
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FIGURE 5: ADMM penalty parameter method evaluation. Better methods give a lower relative residual across a wider

range p(0s.

performance, we found a feasible Z by subtracting X
from D, computed the value of the objective functional,
J(X 0 D—X69) and compared it to the best such value
attained by any method after 100 iterations, J*. Results are
shown in Fig. 5b and discussed in Section VI-H.

E. TV Denoising
Total variation (TV) denoising can be expressed as the
optimization problem

1
arg min 3 |l — d||§ +w H\/(Gow)2 + (Gyz)?

)

1

J(x)

(119)
where G and G are gradient operators along the first and
second axis of the image . The ADMM solution to this
problem [34] involves the variable splitting

= (2)=(8)eee

e (120)
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resulting in the ADMM problem

1
arg min 3 |2 —d|3 +w H\/zg + 22
x,z

1
st. z=Gzx, (121)

which corresponds to
A=G B=-1 c=0 (122)

in (1).
The ADMM iterations are

(k)
2 = () GTG +I)™ (d + pG* <z<k> - y>

p
(123)
(k1) (k+1) y"
z = :Rw/p Gz + 7 (124)
B — y®) L (Gl o0 (125)

where R is the block soft-thresholding operator [35, §6.5.1],
applied as in [36].

15
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Our test problem consisted of application of TV denoising
to a Siemens star phantom (generated using the xdesign
package [37]) with Gaussian white noise. Performance was
again quantified in terms of the relative residual J(2(°*) —
J*)/J*. Results are shown in Fig. 5c and discussed in
Section VI-H.

F. ¢,-TV Denoising
The ¢; total variation (TV) denoising problem can be ex-
pressed as

1
arg min 3 |l —d|, +w H\/(G’Om)2 + (Ghz)?

)

1

J(x)
(126)
where G and G'; are defined as above. The ADMM solution

to this problem [38, §2.4.4] involves the variable splitting

z=Gx+ c, (127)
where
20 Go 0
z= z1 G = Gy c= 0 , (128)
) 1 —d
resulting in the ADMM problem
1 2 2
arg min o llz2]l; +w ||/ 2§ + 27
T,z 1
st. z=Gx+ ¢, (129)
which corresponds to
A=G B=-1I (130)
in (1) (with c taking the same role here as in (1)).
The ADMM iterations are
(k)
z*) — (GTG)*GT (z(“ +c— y) (131)
0
(k1) (k)
20 _ Go\ k1) Y
()" 2, (8)a )
(kH1) (k+1) y(k)
22/ :Sl/p €T —d+7 (133)
y P = (0 4 p(Gw(kH) _ k1) c) . (134)

where -+ denotes the matrix pseudoinverse.

Our test problem consisted of application of ¢1-TV de-
noising to a Siemens star phantom (generated using the
xdesign package [37]) with impulse noise. Performance
was again quantified in terms of the relative residual
J(x®9 — J*)/J*. Results are shown in Fig. 5d and dis-
cussed in Section VI-H.

G. Run Times

We compared the run time of the proposed method to the
fixed method (i.e., standard ADMM). Because the proposed
method does not involve expensive computations, we did
not expect to see a large impact on run time. The results
(Table 2) confirm this, with the average (taken over pg) run
time for the proposed method always within 10% of that of
standard ADMM.
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H. Summary

Our results are consistent with prior empirical observa-
tions that penalty parameter selection has a large impact
on convergence. They also show that the performance of
selection methods varies between optimization problems.
For some problems (basis pursuit denoising, Fig. 5a), all
the adaptive methods performed well; on others (robust
PCA, Fig. 5b, scaled or translated quadratics, Fig. 4, and ¢;
denoising, Fig. 5d) there was more than a 10 times difference
in relative residual between the best-performing methods and
the worst. The proposed method provided consistently good
performance across all experiments. The SRB method also
performed well, except in the translated quadratics problem,
in which it was the worst performer, which is consistent
with our theoretical analysis of translation invariance. The
BBS and residual balancing methods usually improved per-
formance over using a fixed parameter, but both methods had
problems where they did not offer much benefit (robust PCA
and ¢1-TV denoising for BBS; scaled quadratics for residual
balancing).

To provide another perspective on these results, we col-
lected the performance of the methods with p(® = 1.0
in Table 3. These numbers represent performance in the
scenario where the user wants to devote no effort to tuning
p. These results show that, while no method provides the
lowest relative residual across all problems, the proposed
method is often the best (5 of 7 problems) and is always
within an order of magnitude of the best. Every other method
performs poorly for at least one problem, not providing a
relative residual within one order of magnitude of the best
other method.

As a different way of measuring robustness, we computed
the median residual across a wide range of p(®) values
(1072 to 103) in Table 4. This approach simulates typical
performance when solving a range of problems, each with
a potentially different optimal p(°). The proposed method is
again the best in 5 of 7 problems and is always within an
order of magnitude of the best.

VII. Conclusions

In this work, we developed a new method for ADMM
parameter selection. This method is based on a theoretical
framework that analyses the convergence of ADMM, when
applied to a quadratic problem, as an affine fixed point
algorithm. While elements of this model are present in prior
works (e.g. [17]), we took a fundamentally new approach to
exploiting it for ADMM parameter selection by approximat-
ing the spectral radius of the iteration matrix for extreme
values of the penalty parameter, rather than attempting to
estimate or bound its complex behavior across the full range
of penalty parameters. Based on this framework, we derived
a new adaptive penalty parameter selection algorithm that
we refer to as the spectral radius approximation (SRA)
method. While our mathematical framework was developed
for quadratic problems, the resulting algorithm does not
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TABLE 2: Run time, mean + standard deviation [s]

method
problem fixed RB BBS SRB proposed
quadratics 2.0e-2 + 2.9e-3 2.2e-2 =+ 3.4e-3 2.2e-2 + 2.8e-3 2.3e-2 + 7.1e-3 2.2e-2 + 4.2e-3
scaled 1.9e-2 + 2.7e-3 2.0e-2 + 2.2e-3 2.2e-2 + 2.6e-3 2.1e-2 =+ 2.8e-3 2.0e-2 + 1.9¢-3
translated 1.9e-2 + 3.1e-3 2.1e-2 + 2.3e-3 2.2e-2 + 3.6e-3 2.0e-2 + 2.2e-3 2.0e-2 + 2.8e-3
robust PCA 34e+1 + 1.4e+0  3.5e+1 + 1.7e+0 3.8e+1 &+ 1.8e+0 3.4e+l £ 1.9e+0  3.5e+1 £ 2.1e+0
BPDN l.4e-1 + 8.2e-2 1.3e-1 =+ 8.2e-3 1.1e-1 + 2.4e-2 1.2e-1 =+ 8.7e-3 1.2e-1 + 9.9¢-3

TV denoising
£1-TV denoising

1.0e+0 + 3.7e-1
1.0e+0 + 8.3e-2

1.1e+0 + 4.4e-2
1.1e+0 + 4.3e-2

1.4e+0 £ 7.0e-2
1.3e+0 + 1.0e-1

1.1e+0 £ 4.9e-2
1.0e+0 + 4.6e-2

1.0e+0 £ 6.2e-2
1.0e+0 £ 7.3e-2

TABLE 3: Relative residual at k& = 50 with p(®) = 1.0

method

problem fixed RB BBS SRB proposed
quadratics 5.13e-4  1.96e-7 2.40e-5 8.6le-9 1.24e-9

scaled 4.11e-1  2.84e-1  3.96e-7 1.62¢e-6 7.56e-9

translated 3.13e-3  4.00e-6  3.26e-5 3.47e-1  2.36e-7
BPDN 1.35e-7  6.73e-8  1.35¢-7  1.35e-7  1.35e-7
robust PCA 1.68e-2  1.79e-3  2.12¢-3  7.36e-5 4.76e-5
TV denoising 7.22e-3  1.58e-3  3.75¢-3  3.51e-4 5.03e-4
£1-TV denoising  5.39e-4  5.39¢-4 7.6le-4 6.93e-4 5.04e-4

TABLE 4: Median relative residual at £ = 50
method

problem fixed RB BBS SRB proposed
quadratics 1.60e-1  2.36e-7 1.46e-5 3.66e-8  3.96e-9

scaled 4.11e-1  2.82e-1 8.73e-7 1.62e-6 2.17e-8

translated 2.35e-1  4.24e-7 5.83e-5 3.47e-1 2.37e-7
BPDN 1.58e-2  1.35e-7 6.73e-8  1.35¢-7  6.73e-8
robust PCA 1.68e-2  1.39¢e-3  2.80e-3  7.39¢-5  4.76e-5
TV denoising 2.02e-2  2.05e-3 2.57e-3 3.5le-4 4.48e-4
£1-TV denoising  2.42e-1  5.14e-4  7.40e-1  7.94e-4 4.31le-4

make explicit use of the quadratic structure and can therefore
be applied to any ADMM problem, which we view as a mak-
ing an implicit iterative local quadratic approximation. The
SRA method is simple to implement and enjoys theoretical
advantages over all prior methods: it is scaling covariant,
while residual balancing [12] is not; it is translation invariant,
while the spectral radius bound method of [17] is not; and
it uses a more general model of the optimization problem
than the Barzilai-Borwein spectral method of [15]. This
framework also allowed us to present new interpretations of
prior methods that provide useful insights into their relative
advantages and disadvantages. Finally, our proposed method
exhibits empirical performance that is competitive with—and
often superior to—state-of-the-art comparison methods.

Appendix A

Scaled Form ADMM

It is often convenient to write ADMM in a scaled form
by making the substitution © = p~'y [5, §3.1.1]. Adaptive
ADMM in the scaled form can be written as

(k) 2
) = arg min f(x) + pT HA:B + Bz —c+ u(k)H

(135)
(k1) : PN 4 ) ®|?
2 :argmmg(z)—i—THAa: +Bz—-c+u H
z
(136)
S (b((p(”’ 2 () () u(j’)lo) (137)
(k1) _ p(k) (k) A (k1) B (k+1)
u = W (U + ( T + z - C)) )
(138)

where we have made the rescaling of the dual variable when
p changes explicit in (138). The proposed method may be
applied in this scaled form by using Algorithm 2 for the
function ¢ in (137).

Algorithm 2: Proposed p selection method (scaled
dual variable version)
Input: k, p) g+ z(k) Z(k+1)
Parameters: T = 5, 7" = rdecr — 10
Output: p(+1)
ifk modT #1:
| return p(¥)
p Hp(k)(Aw(kJrl) + Bzk+D) _ C)H
¢ B - 20)]
ifp=0and¢>0:
| return p(F) /rdecr
ifp>0and ¢q=0:
| return 7" p(%)

ifp=0and ¢=0:
| return p(¥)
return p/q
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Appendix B
Equivalence of Section II-A to DRS on the dual
The equivalent version of our F' (11) and G (8) follow from
(11) in [15]
Azt —c e 0H(—g" V) =
o (—g*)) = AF(g*t)) —c  (139)

and

Bz € 9G(— y* ) =
8@( _ y(k+1)) — BG(y(k+1)) )
Translating the first DRS step ((12) in [15]) gives
—gkth) = _g(k) _ p(AF(Q(k'H)) —c+ BG(y(k)))
gt = (k) 4 p(AF(Q(’“'H)) —c+ BG(y(’“)))
gty — pAF(,g(kJrl)) =y 4+ pBG(y(k)) — pe
gt = (I - pAF)T (y™ + pBG(y™) - pe) , (141)

which matches the first line of (18). Translating the second
DRS step ((13) in [15]) gives

—y(ktD) — (k) _ p(AF(g(k'H)) —c+ BG(y(kH)))
y(k+1) _ y(k) —i—p(AF('g(]Hl)) _ c—|—BG(y(k+1)))
Y B (y D) = g8 4 pAF (5D pe
g+ = (I = pBG)* (y® + pAF (%) — pe) .

(142)
We then use the derivation involving g to express pAF (g)
in terms of ¢ and y:
pAF (g+D) = g+t 4y ®) _ ,BG(y ™)) + pe (143)
and therefore
y " = (I - pBG)* (5" — pBG(y ™)), (144)

which matches the second line of (18). Thus we have shown
that the expression of ADMM as DRS on the dual in [15]
results in the same iteration on y that we derived by working
with optimality conditions of the ADMM steps.

(140)
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