
Deep Neural Network Informed Markov Chain

Monte Carlo Methods

by

Ashlynn Crisp

A STAT 604 Internship Project

Research conducted at Lawrence Livermore National Laboratory
Under the supervision of

Sohail Reddy and Hillary Fairbanks
As part of the Computing Scholars Program

Abstract
In this work, we investigate methods for using deep neural networks for uncertainty quantifi-

cation with application to groundwater flow models. We use Markov chain Monte Carlo methods
to take advantage of observed data and to estimate the uncertainty of the model output. We
test gradient-informed methods using gradients obtained through deep neural networks which
are computationally cheap to use. Results are shown for the Metropolis-adjusted Langevin
Algorithm as well as two algorithms which we introduce based on delayed-acceptance methods.

Fariborz Maseeh Department of Mathematics and Statistics

Portland State University

January 26, 2024

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under contract DE-AC52-07NA27344 (LLNL-TR-857609)

1 Introduction

In subsurface flow modeling, quantifying the uncertainty of model parameters and the corresponding
uncertainly on output quantities is a crucial task for groundwater management. Markov chain Monte
Carlo (MCMC) methods can take advantage of observed data to estimate parameters in a Bayesian
setting. However, MCMC can be slow to converge and produce highly correlated samples when the
dimensions of the parameters is high. Using gradients for the posterior distribution can help sam-
plers explore the parameter space more efficiently, but obtaining gradients can be computationally
challenging.

The goal of this project is to assess the performance of gradient information provided via back-
propagation of deep neural networks (DNNs) in MCMC algorithms. Our application is modeling
groundwater flow where the flux q, pressure u, random permeability field k, and source term f are
related through

∇ · (k(x)∇u(x)) = f(x) in Ω

u(x) = uD(x) on ΓD

k(x)
∂q(x)

∂n
= 0 on ΓN

(1)

with
k−1(x)q(x) = ∇u(x), ∇ · q(x) = f(x)

Here, the uncertain permeability field is k := exp(θ) where θ is modeled as a log-Gaussian
random field with covariance function cov(x, y) := σ2e(−κ||x−y||). Numerical solutions to Equation 1
were performed using NGSolve [8] with quadrilateral 32× 32 mesh assuming a unit square domain.
We represent realizations of θ using the Karhunen–Loève (KL)-expansion given by

θ =

r∑
i=1

√
λiαiΦi(x) (2)

where {Φi}ri=1 are the eigenfunctions and {λi}ri=1 are the eigenvalues of the covariance matrix
of θ and each αi ∼ N (0, 1). We set κ = 0.25, σ2 = 1, and r = 50 in this project. Our quantity of
interest is the flux Q across the outflow boundary Γout defined as

Q =
1

|Γout|

∫
Γout

q(·, ω) · n dS, (3)

where n is the outward unit vector normal to Γout ⊂ ∂D.
We generated synthetic observed pressure data uobs which is the m local average pressure eval-

uations extracted from the field u. Let G : α 7→ θ, H : θ 7→ k, J : k 7→ u, and K : u 7→ uobs. The
generated data is assumed to follow

uobs = F(αobs) + ϵ

where F := K◦J ◦H◦G maps α to u and the ϵ term is additive Gaussian noise which was assumed
to be uncorrelated. For this work, we set m = 9 and the covariance of the error term to be σ2

e = 0.005
so that ϵ ∼ N (0, σ2

eI). Using this observed data, the posterior π for α is given by

π(α|uobs) ∝ L(uobs|α)π0(α)

where L denotes the likelihood distribution and π0 denotes the prior distribution on α. The likeli-
hood is given by

L(uobs|α) = exp

(
− 1

2σ2
e

||F(α)− uobs||2
)

2

(0.
25

, 0
.25

)

(0.
25

, 0
.5)

(0.
25

, 0
.75

)

(0.
5,

0.2
5)

(0.
5,

0.5
)

(0.
5,

0.7
5)

(0.
75

, 0
.25

)

(0.
75

, 0
.5)

(0.
75

, 0
.75

)

0.03

0.02

0.01

0.00

0.01

0.02

Pr
ed

ict
ed

-Tr
ue

 P
re

ss
ur

e
Va

lu
e

DNN Error for Pressure Coordinates

(a) FCNN

(0.
25

, 0
.25

)

(0.
25

, 0
.5)

(0.
25

, 0
.75

)

(0.
5,

0.2
5)

(0.
5,

0.5
)

(0.
5,

0.7
5)

(0.
75

, 0
.25

)

(0.
75

, 0
.5)

(0.
75

, 0
.75

)
0.06

0.04

0.02

0.00

0.02

0.04

Pr
ed

ict
ed

-Tr
ue

 P
re

ss
ur

e
Va

lu
e

DNN Error for Pressure Coordinates

(b) CNN

Figure 1: Neural network accuracies

2 Methods

2.1 Neural Networks

To train the networks, 10,000 samples for α were generated from N(0, I) and the corresponding
values for θ,u, and Q were computed. The generated data is shown in Figures 4 - 7 in the appendix.
Of these 10,000 samples, 8,000 were used for training the networks, and the remaining 2,000 were
used as the validation set.

We used two neural network architectures: a fully connected neural network (FCNN) and a
convolutional neural network (CNN), both developed using TensorFlow [1]. Both networks used
min/max scaling for the input data and predicted the min/max-scaled output. After the training
was complete, a layer was appended to the networks to unnormalize the output. Both networks were
trained with the Adam optimizer [6] and a scheduler to decrease the learning rate as the epochs
progressed. All weights were initialized using the Xavier normal method.

The first network was a fully connected neural network (FCNN) mappingα directly to u, avoiding
the KL-expansion completely. The benefit of this approach is that the eigenfunctions need not be
stored (from the original training data) nor recalculated which can be computationally expensive
for finely resolved meshes. This network had one hidden layer consisting of 5,000 nodes and a
ReLU activation function. The hidden layer was followed by the output layer which predicted the
9 u values and did not have an activation function applied. From the 9 pressure values, a custom
layer to compute the log likelihood was appended after training to obtain a map from α to the log
likelihood so that the backpropagation could be done in one step. The FCNN used minibatching
with a batch size of 32 and was trained for 700 epochs.

The second network was a convolutional neural network (CNN) to map between θ and u. This
network used stored KL-expansions eigenmodes to map between α and θ using Equation 2. The
CNN had two convolutional layers which each used the ReLU activation function. The convolutional
layers were followed by 2 dense layers which also had ReLU activation. The output layer was a fully-
connected layer without activation. Similarly to the FCNN, the CNN had a custom analytical layer
to compute the log likelihood appended after training. The CNN used a batch size of 64 and was
trained for 300 epochs.

3

2.2 Markov Chain Monte Carlo

We used the Metropolis-Hastings (MH) and preconditioned Crank-Nicolson (pCN) algorithms as our
baseline MCMC results since neither methods require gradient information. The MH algorithm [3] is
a very common and versatile algorithm which can be applied with any prior distribution. The pCN
algorithm is popular since it is an efficient algorithm for sampling in high dimensions [4], however,
it has constraints on the prior which limits the application of this algorithm to certain problems.
The MH and pCN algorithms we used are summarized in Algorithms 1 and 2.

Algorithm 1: Random Walk Metropolis-Hastings

Pick starting value for chain α0. For i = 1, 2, . . . , N :
• Step 1: Given αi, compute proposal as

α′ = αi + ϵi

where ϵi ∼ N (0, σ2I) and σ2 is tuned based on the acceptance rate.

• Step 2: Compute the acceptance ratio

ρ = min

(
1,

π(α′|uobs)

π(αi|uobs)

)
• Step 3: Sample t ∼ Unif(0, 1). Set αi+1 according to

αi+1 =

{
α′ if t ≤ ρ

αi otherwise

We introduce two MCMC algorithms which were used to test the accuracy of the DNN gradients.
The Metropolis-Adjusted Langevin Algorithm (MALA) includes gradients of the target distribution
in the proposal and acceptance steps. The MALA algorithm using a DNN is included in Algorithm
3. However, since the DNNs will only provide a prediction of the evaluation of the target density,
and therefore gradients corresponding to this prediction, we add an additional stage to MALA which
checks the proposals using only the exact posterior distribution. The first method we propose which
includes this step is hierarchical MALA (HMALA), defined in Algorithm 4, which is similar to the
two-stage MALA algorithm proposed in [5]. This method simply replaces the true evaluation of the
target density and the gradients with those provided by the DNN, and if a proposal is accepted by
the DNN, it is then passed to the PDE level to be checked with a Metropolis step.

The second method, provided in Algorithm 5, includes a bias correction stage like the one pro-
posed in [7]. The motivation is to correct for bias from the DNNs when predicting the log posterior
and in turn also correct the gradients. Since we expect the bias to depend on where the proposal
is in the parameter space, we aim to only use local bias information in the correction. To achieve
this, only the bias from the previous accepted proposal is used for the correction stage. In bias-
corrected HMALA, the DNN stage filters the proposals using the bias-corrected log posterior and
corresponding gradient information. If the proposal passes the DNN stage, it is then evaluated on
the PDE level. Additionally, MALA with gradients given by forward finite difference was run as a
comparison to the MALA chains that use DNN gradients. We also tested the infMALA algorithm
provided in [2] which is a mix of the pCN and MALA algorithms.

We tested three priors. The first was placing a N (αobs, 0.01 ∗ I) prior on α to observe the
behavior of the methods when the prior is heavily weighted around the observed data. The second
prior was N (0, I), which was a natural choice since this is the distribution that α is sampled from.

4

Algorithm 2: Preconditioned Crank-Nicolson

Pick starting value for chain α0. For i = 1, 2, . . . , N :
• Step 1: Given αi, compute proposal as

α′ =
√
1− β2αi + βξi

where ξi is a sample from the prior distribution π0 = N (0,Σ) for some covariance
matrix Σ. The step size parameter β is tuned based on the acceptance rate.

• Step 2: Compute acceptance ratio ρ where

ρ = min

(
1,

L(uobs|α′)

L(uobs|αi)

)
• Step 3: Sample t ∼ Unif(0, 1). Set αi+1 according to

αi+1 =

{
α′ if t ≤ ρ

αi otherwise

Algorithm 3: Metropolis-Adjusted Langevin Algorithm (MALA)

Pick starting value for chain α0. For i = 1, 2, . . . , N :
• Step 1: Given αi, compute proposal as

α′ = αi +
τ

2
∇ log π(αi|uobs) +

√
τξi

where ξi ∼ N (0, I)

• Step 2: Compute the acceptance probability ρ where

ρ = min

(
1,

q(αi|α′)π(α′|uobs)

q(α′|αi)π(αi|uobs)

)
and

q(α′,α) ∝ exp

(
−
||α′ −αi − τ

2∇ log π(αi|uobs)||2

2τ

)
• Step 3: Sample t ∼ Unif(0, 1). Set αi+1 according to

αi+1 =

{
α′ if t ≤ ρ

αi otherwise

Note that replacing π with the DNN posterior π∗ in this algorithm produces a DNN MALA
chain with gradients ∇ log π∗(αi) provided through DNN backpropagation.

5

Algorithm 4: Hierarchical Metropolis-Adjusted Langevin Algorithm (HMALA)

Pick starting value for chain α0. For i = 1, 2, . . . , N :
• Step 1: Given αi, compute proposal as

α′ = αi +
τ

2
∇ log π∗(αi|uobs) +

√
τξi

where ξi ∼ N (0, I) and π∗ is the DNN-obtained posterior

• Step 2: Compute acceptance probability ρ∗ using π∗

ρ∗ = min

(
1,

q∗(αi|α′)π∗(α′|uobs)

q∗(α′|αi)π∗(αi|uobs)

)
where

q∗(α′,α) ∝ exp

(
−
||α′ −αi − τ

2∇ log π∗(αi|uobs)||2

2τ

)
• Step 3: Sample t ∼ Unif(0, 1). Set α̂i+1 according to

α̂i+1 =

{
α′ if t ≤ ρ∗

αi otherwise

• Step 4: If the proposal α′ is rejected in Step 3, set αi+1 = αi and return to Step 1.

• Step 5: Compute acceptance ratio ρ using π:

ρ = min

(
1,

π(α′|uobs)

π(αi|uobs)

)
• Step 6 Sample s ∼ Unif(0, 1). Set αi+1 according to

αi+1 =

{
α̂′ if s ≤ ρ

αi otherwise

6

Algorithm 5: Bias-corrected Hierarchical Metropolis-Adjusted Langevin Algorithm (bias-
MALA)

Pick starting value for chain α0. Initialize µbias,0 = 0 and Σbias,0 = O9,9. For
i = 1, 2, . . . , N :

• Step 1: Given αi, compute proposal as

α′ = αi +
τ

2
∇ log πbias(αi|uobs) +

√
τξi

with ξi ∼ N (0, I) and

πbias(αi|uobs) ∝ L̂bias(uobs|αi)π0(αi)

where L̂bias(uobs|αi) is defined as

exp

(
−1

2

(
F̂(αi) + µbias,i−1 − uobs

)T

(Σbias,i−1 +Σe)
−1

(
F̂(αi) + µbias,i−1 − uobs

))
and F̂ is the DNN.

• Step 2: Compute acceptance probability ρbias

ρbias = min

(
1,

qbias(αi|α′)πbias(α
′|uobs)

qbias(α′|αi)πbias(αi|uobs)

)
where

qbias(α
′,α) ∝ exp

(
−
||α′ −αi − τ

2∇ log πbias(αi|uobs)||2

2τ

)
• Step 3: Sample t ∼ Unif(0, 1). Set α̂i+1 according to

α̂i+1 =

{
α′ if t ≤ ρbias

αi otherwise

• Step 4: If α′ is rejected in Step 3, set αi+1 = αi.
Otherwise, compute acceptance ratio ρ

ρ = min

(
1,

π(α′|uobs)

π(αi|uobs)

)
• Step 5: Sample s ∼ Unif(0, 1). Set αi+1 according to

αi+1 =

{
α̂′ if s ≤ ρ

αi otherwise

• Step 6: If α′ is accepted, update µbias,i+1 = F(α′)− F̂(α′) and

Σbias,i+1 = µbias,i+1µ
T
bias,i+1

7

The last prior was a Uniform(-2.5,2.5) to provide a noninformative prior that had wide enough
support to include all the αobs components.

The integrated autocorrelation time (IACT) was used to estimate the average number of itera-
tions needed to obtain an independent sample of Q. The IACT (τ̂Q) is given by

τ̂Q = 1 + 2

M∑
τ=1

ρ̂Q(τ)

where

ρ̂Q(τ) =
1

N − τ

N−τ∑
i=1

(Q(i) − µ̂Q)(Q
(i+τ) − µ̂Q)

σ̂2
Q

with µ̂Q and σ̂2
Q being the sample mean and variance of {Q(i)}Ni=1. Each MCMC algorithm was

started from the same place α0 which was sampled from N (αobs, 0.01∗I). The IACT was calculated
with the last 5,000 Q samples from each chain with a maximum lag of 500.

3 Results

3.1 Neural Networks

The accuracy of the FCNN and CNN for predicting u and the log likelihood is shown in Figures
1 and 8. Both networks perform well at predicting the pressure values at the nine coordinates of
interest, with the FCNN being slightly more accurate. This results in a mean squared error for
predicting the log likelihood from the FCNN and CNN of 0.195 and 0.447 respectively.

3.2 Gradients

Figure 2 shows the accuracy of the gradients obtained through the FCNN. For each of the three priors,
100 samples of α were selected uniformly from both the HMALA FCNN and MALA FD chains.
The gradients of the log posterior using the FCNN are compared to the gradients obtained through
central finite difference using a step size of 1e-6. Heatmaps of the error for each α component are
shown in Figure 9 and Figure 10 in the appendix. The FCNN does well at estimating the gradients
for α samples using the normal prior, with slightly less accuracy for the samples which have the
uniform prior.

3.3 Markov chain Monte Carlo

The mean, variance, IACT, and acceptance rate for each of the MCMC methods are included in
Table 1. The lowest IACT for all priors was given by pCN with the CNN. Finite difference MALA
provided the second lowest IACT for the normal priors but had a high IACT with the uniform prior.
The bias-corrected chains required more time to sample due to the likelihood correction. For that
step, the gradients of α are needed for each of the 9 points of interest, so the backpropagation step
takes longer. Additionally, HMALA and bias-corrected MALA produced estimates for the first α
component α1 and Q which were further from the FD MALA estimates than just using the FCNN
for MALA. That is, the FCNN alone without an additional filtering or correction step gave closer
estimates to the MALA FD chains. As shown in Figure 11, the posterior density of Q using only
the FCNN matches that from FD closely, particularly for the normal prior.

8

N (αobs, 0.01 ∗ I)
IACT Accept. rate E[α1] V[α1] E[Q] V[Q] E[∥Q−Qobs∥] Time (min.)

MH PDE 267 0.291 1.627 0.012 4.652 0.248 0.381 7.0
HMALA FCNN 117 0.705 1.618 0.004 4.595 0.073 0.213 7.5
biasMALA CNN 614 0.705 1.623 0.003 4.610 0.046 0.170 90.6
MALA FD 6 0.676 1.623 0.011 4.623 0.195 0.354 NA

N (0, I)

IACT Accept. rate E[α1] V[α1] E[Q] V[Q] E[∥Q−Qobs∥] Time (min.)

MH PDE 155 0.256 0.269 1.279 2.237 7.357 3.192 6.9
pCN PDE 12 0.266 0.037 1.031 1.641 3.645 3.299 7.1
pcn FCNN 12 0.263 0.038 1.026 1.643 3.619 3.297 7.7
pcn CNN 5 0.269 0.020 0.978 1.571 3.078 3.305 8.4
MALA FCNN 163 0.569 0.038 1.248 1.818 5.497 3.371 5.0
HMALA FCNN 197 0.682 -0.016 0.533 1.243 0.804 3.390 7.2
infMALA FCNN 371 0.653 -0.095 0.325 1.062 0.426 3.553 6.2
biasMALA FCNN 570 0.740 0.042 0.692 1.383 1.101 3.253 37.2
MALA FD 10 0.645 0.065 0.949 1.625 3.436 3.278 282.3

Uniform(−2.5, 2.5)

IACT Accept. rate E[α1] V[α1] E[Q] V[Q] E[∥Q−Qobs∥] Time (min.)

MH PDE 573 0.251 0.355 2.226 2.943 8.628 3.081 7.0
MALA FCNN 652 0.580 -0.104 1.208 1.492 2.165 3.277 5.2
HMALA FCNN 519 0.608 0.639 1.832 3.548 10.660 3.053 5.9
biasMALA FCNN 862 0.617 0.853 1.788 2.658 8.631 3.253 44.9
MALA FD 684 0.567 -0.111 1.449 1.822 5.978 3.538 318.9

Table 1: Results from MCMC runs using 3 priors. The E[α1] and V[α1] columns denote the expected
value and variance of the first component of the α vector. The time column is only a rough indicator
of sampling duration. Due to burnin differences, each chain had 10,000 to 13,000 iterations, and the
FD chains were run on a different system and used multiple cores.

9

Finite Difference

F
C
N
N

(a) α samples from MALA FCNN
with normal prior

Finite Difference

F
C
N
N

(b) α samples from finite difference
MALA with normal prior

Finite Difference

F
C
N
N

(c) α samples from MALA FCNN
with uniform prior

Finite Difference

F
C
N
N

(d) α samples from finite difference
MALA with uniform prior

Figure 2: Comparison of gradients obtained through finite difference and DNNs. Each component
of the 100 α samples are shown in each plot.

0 10 20 30 40
Q

0.0

0.1

0.2

0.3

0.4

0.5

De
ns

ity

pCN PDE
MH PDE
MALA FCNN
MALA FD

(a) N (0, I) prior

2 0 2 4 6 8 10 12
Q

0.0

0.1

0.2

0.3

0.4

0.5

De
ns

ity

MH PDE
MALA FCNN
MALA FD

(b) Uniform(-2.5,2.5) prior

Figure 3: Posterior density estimates for Q

10

4 Summary

This project tested the use of a multilayer perceptron and convolutional neural network to obtain
the gradients for a few gradient-informed MCMC methods. Both networks did well at predicting the
likelihood and providing gradient estimates. It is important to note that the FCNN did not use the
KL-expansion and mapped directly from α samples to u estimates. This makes the FCNN useful
for problems where the KL-expansion cannot be easily computed.

We used the integrated autocorrelation time to measure the efficiency of the MCMC methods,
and MALA chains using finite difference gradients (FD MALA) were obtained to compare with the
results from the DNNs. Due to the high cost of calculating finite difference gradients, we found
pCN to be the best method since it has a similarly low IACT to FD MALA and is quick to run. In
terms of the expected value for Q, MALA FCNN gave similar results to MALA FD at a fraction of
the run time. However, MALA FCNN comes with a much higher IACT cost than MALA FD for
the normal prior. Additionally, for this problem setup, we saw no benefit to adding a filtering or
bias correction step to the MALA algorithms (HMALA and biasMALA), where the DNN makes the
proposal which is later checked by the true acceptance ratio calculated from the PDE solver.

It is important to note that this was an easy problem for pCN and MH to handle; there were no
issues with convergence for these methods which are not gradient informed. However, given a more
difficult target distribution to sample from, there may be more benefit to using MALA. In addition,
the pCN algorithm is only applicable to cases where the prior distribution is multivariate normal with
mean 0. In the cases were the posterior distribution is more difficult for MCMC to efficiently sample
or where the prior distribution does not meet the requirements for pCN, the gradient information
provided through the DNNs may be useful.

The success of the DNNs in this project opens up possibilities for other applications of the DNN
gradients. They were successful in this project for predicting the posterior distribution and providing
sufficiently accurate gradients, and using them in Hamiltonian Monte Carlo might provide efficient
parameter space exploration with a low IACT value. Finally, these DNN methods may be useful as
a course level approximation as part of a multilevel MCMC framework.

11

References

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-
fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Ku-
nal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:
Large-scale machine learning on heterogeneous systems, 2015. Software available from tensor-
flow.org.

[2] Alexandros Beskos, Mark Girolami, Shiwei Lan, Patrick E Farrell, and Andrew M Stuart. Ge-
ometric mcmc for infinite-dimensional inverse problems. Journal of Computational Physics,
335:327–351, 2017.

[3] Siddhartha Chib and Edward Greenberg. Understanding the metropolis-hastings algorithm. The
american statistician, 49(4):327–335, 1995.

[4] Simon L Cotter, Gareth O Roberts, Andrew M Stuart, and David White. Mcmc methods for
functions: modifying old algorithms to make them faster. 2013.

[5] Paul Dostert, Yalchin Efendiev, Thomas Y Hou, and Wuan Luo. Coarse-gradient langevin
algorithms for dynamic data integration and uncertainty quantification. Journal of computational
physics, 217(1):123–142, 2006.

[6] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[7] Mikkel B Lykkegaard, Tim J Dodwell, and David Moxey. Accelerating uncertainty quantification
of groundwater flow modelling using a deep neural network proxy. Computer Methods in Applied
Mechanics and Engineering, 383:113895, 2021.

[8] Joachim Schöberl et al. Netgen/ngsolve. Software hosted at https://ngsolve.org, 2017.

12

Appendix

Data

0 5 10 15 20 25 30
Q

0

100

200

300

400

500

600

700

800
Co

un
t

Training Data Q Samples

Figure 4: Q samples from generated data

13

0 20

0

10

20

30
0 20 0 20

1.50

1.25

1.00

0.75

Examples of realizations

Figure 5: Examples of θ from generated data

0 20

0

10

20

30
0 20 0 20

0.8
0.6
0.4
0.2

Examples of pressure realizations

Figure 6: Examples of u fields from generated data

14

0.8 0.6
0

200

400

(0.25, 0.25)

0.8 0.6

(0.25, 0.5)

0.8 0.6

(0.25, 0.75)

0.75 0.50 0.25
0

200

400

(0.5, 0.25)

0.75 0.50 0.25

(0.5, 0.5)

0.75 0.50 0.25

(0.5, 0.75)

0.4 0.2
0

200

400

(0.75, 0.25)

0.4 0.2

(0.75, 0.5)

0.4 0.2

(0.75, 0.75)

Distribution of pressure by coordinate pair

Fr
eq

ue
nc

y

Figure 7: Distribution of pressure values at 9 coordinates of interest from data.

15

Neural Networks

60 50 40 30 20 10 0
True log likelihood

60

50

40

30

20

10

0

Pr
ed

ict
ed

 lo
g

lik
el

ih
oo

d

DNN Log Likelihood Error

(a) FCNN log likelihood accuracy

60 50 40 30 20 10 0
True log likelihood

60

50

40

30

20

10

0

Pr
ed

ict
ed

 lo
g

lik
el

ih
oo

d

DNN Log Likelihood Error

(b) CNN log likelihood accuracy

1.0 0.8 0.6 0.4 0.2 0.0
True pressure

1.0

0.8

0.6

0.4

0.2

0.0

Pr
ed

ict
ed

 p
re

ss
ur

e

Predicted vs True Pressure Values over 9 Coords

(c) FCNN pressure accuracy

1.0 0.8 0.6 0.4 0.2 0.0
True pressure

1.0

0.8

0.6

0.4

0.2

0.0
Pr

ed
ict

ed
 p

re
ss

ur
e

Predicted vs True Pressure Values over 9 Coords

(d) CNN pressure accuracy

Figure 8

16

Gradients

0 20 40 60 80
Sample

0

10

20

30

40

 c
om

po
ne

nt
s

0.4

0.2

0.0

0.2

0.4
DNN-FD Gradients

(a) α samples from MALA FCNN with Normal prior

0 20 40 60 80
Sample

0

10

20

30

40

 c
om

po
ne

nt
s

0.4

0.2

0.0

0.2

0.4

0.6

DNN-FD Gradients

(b)α samples from finite difference MALA with Normal prior

Figure 9: Difference between DNN and finite different gradients for 100 α samples.

17

0 20 40 60 80
Sample

0

10

20

30

40

 c
om

po
ne

nt
s

0.5

0.0

0.5

1.0

1.5

DNN-FD Gradients

(a) α samples from MALA FCNN with uniform prior

0 20 40 60 80
Sample

0

10

20

30

40

 c
om

po
ne

nt
s

0.5

0.0

0.5

1.0

1.5

DNN-FD Gradients

(b) α samples from finite difference MALA with uniform
prior

Figure 10: Difference between DNN and finite different gradients for 100 α samples.

18

Markov chain Monte Carlo

0 10 20 30 40
Q

0.0

0.1

0.2

0.3

0.4

0.5

De
ns

ity

MALA FCNN
MALA FD

(a) N (0, I) prior

0 2 4 6 8 10 12
Q

0.0

0.1

0.2

0.3

0.4

0.5

De
ns

ity

MALA FCNN
MALA FD

(b) Uniform(-2.5,2.5) prior

Figure 11: Posterior density estimates using FD and FCNN MALA

19

