

1 **Title page**

2 Names of the authors: Claire Perhach^{1,2}, Jarom Chamberlain¹, Nathan Rood¹, Ethan Hamilton¹,
3 and Michael F. Simpson¹

4 Title: Chlorination of Uranium Metal in Molten NaCl-CaCl₂ via Bubbling HCl

5 Affiliation(s) and address(es) of the author(s):

6 ¹University of Utah Department of Materials Science & Engineering, Salt Lake City, UT, USA

7 ²California Institute of Technology Department of Chemistry and Chemical Engineering,
8 Pasadena, CA, USA

9 E-mail address of the corresponding author: cperhach@caltech.edu

Chlorination of Uranium Metal in Molten NaCl-CaCl₂ via Bubbling HCl

Claire Perhach, Jarom Chamberlain, Nathan Rood, Ethan Hamilton, and Michael F. Simpson

13 University of Utah, Department of Materials Science & Engineering, Salt Lake City, UT, USA

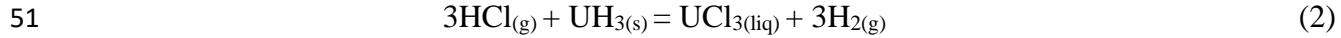
Abstract

16 Molten chloride salt fast reactors (MCFRs) will require UCl_3 dissolved in molten salt mixtures as
17 fuel for nuclear fission. For infusing the salt with UCl_3 , bubbling HCl into $\text{NaCl}-\text{CaCl}_2$ in contact
18 with U metal was investigated. The reaction was run up to 9 hr and yielded U concentration up to
19 0.652 wt%. Open circuit potential between a W electrode and Ag/AgCl reference electrode yielded
20 a potential consistent with uranium existing as U(III) in the salt. This demonstrates that HCl can
21 be a very effective chlorinating agent to infuse MCFR fuel with UCl_3 starting from U metal.

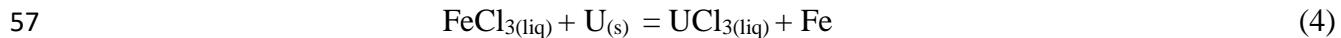
Keywords

23 Molten salt reactors, Uranium(III) chloride, NaCl-CaCl₂ eutectic salt, HCl gas

Introduction


25 The molten chloride fast reactor (MCFR) is a molten salt reactor concept that is currently being
26 developed by several nuclear reactor companies (TerraPower/Southern Company, Moltex, and

27 Elysium Industries) for commercialization. MCFRs are designed to use molten chloride salt
28 containing UCl_3 as a liquid nuclear fuel which circulates in a loop that includes a reactor core and
29 one or more heat exchangers [1]. Because such nuclear reactors would be a low-carbon energy
30 source and safer than conventional light water reactors, a great deal of investment has been made
31 in MCFR technology by both governments and the private sector [2]. Historically, there has never
32 existed nuclear reactors designed to use uranium in chloride form, however. Thus, there is no
33 industrial source of uranium chloride or process for its production at scale. Idaho National
34 Laboratory (INL) currently operates two engineering-scale electrorefiners for treatment of
35 Experimental Breeder Reactor-II (EBR-II), but INL either produces its own UCl_3 via reaction of
36 CdCl_2 with U metal or obtains it from Argonne National Laboratory. The cadmium chloride-based
37 reaction is shown below (Equation 1).



39 The problem with forming UCl_3 from reaction with CdCl_2 is that it results in accumulation of a
40 liquid cadmium pool below the electrorefiner salt pool. Cadmium is both toxic and volatile at the
41 electrorefining temperature (500°C). In a remote operating environment such as a nuclear material
42 processing hot cell, separation of molten metal below a pool of molten salt is extremely difficult
43 to accomplish. A similar reaction to make UCl_3 has been reported using ZnCl_2 as the chlorinating
44 agent [3]. Zinc is non-hazardous, but it also forms a liquid metal pool. A more convenient approach
45 is needed for remote processing. At the time of the writing of this paper, there is no known
46 industrial source of UCl_3 that could be utilized to chlorinate U from the metal state that would be
47 compatible with using spent fuel as the starting material.


49 It has long been known that the following reaction will form UCl_3 starting with U metal or after
50 converting the U metal to uranium hydride as shown in Equation 2 [4].

52 Recently, this reaction was tested from 250 to 400°C by our research group, and it was reported
53 that it can be difficult to achieve high selectivity for UCl_3 rather than UCl_4 or UO_2 [5]. Meanwhile,
54 we also reported the successful synthesis of UCl_3 with high selectivity for U(III) in NaCl - CaCl_2
55 via U metal oxidation with FeCl_2 or FeCl_3 [6]. The presumed reactions are given below.

58 The downside of using FeCl_2 or FeCl_3 is that, similar to reactions with CdCl_2 and ZnCl_2 , it forms
59 Fe metal solid particles that must be separated from the salt. Magnetic separation may be effective
60 but has not been proven effective. It seems like a natural logical progression to pose the question
61 of whether reaction (2) (involving U metal instead of UH_3) can be performed directly in the molten
62 salt. The advantages of such an approach include eliminating remote handling of solids and
63 favoring UCl_3 over UCl_4 via use of U metal as a redox buffer (see Equation 5).

65 A scalable process is needed to generate UCl_3 in situ either from virgin materials or from waste
66 salt produced by an MCFR. Consider how such waste salt could be recycled. In the first stage of
67 a hypothetical process, UCl_3 from waste salt can be recovered as U metal on a cathode after

68 electrowinning or galvanic reduction [7]. Next, the uranium-free salt could be dechlorinated via
69 ion exchanged with H-Y zeolite [8]. This reaction (Equation 6) off-gases HCl while immobilizing
70 the cations from the salt waste into a zeolite matrix that can then be sintered into a ceramic waste
71 form [9].

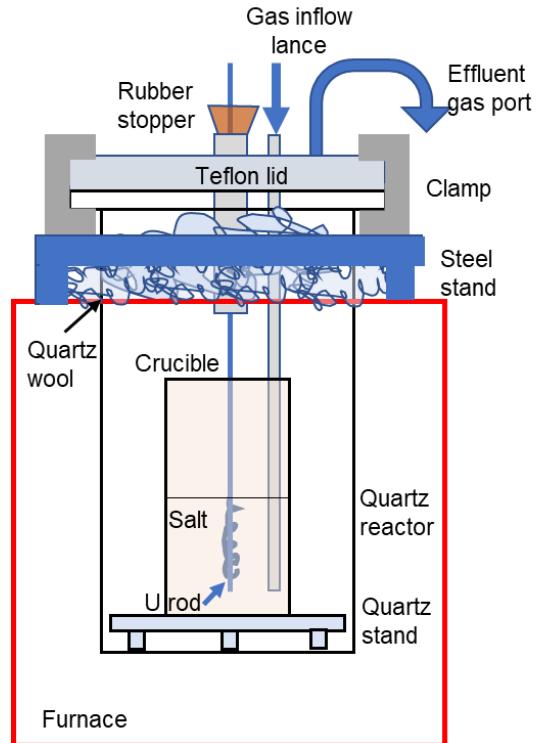
73 The final step of this hypothetical process for recycling U from MCFR step would be to
74 rechlorinate the recovered U metal and allow it to partition back into the salt. This would
75 accomplish the goal of keeping U (and TRU) in the salt and out of the waste stream from the
76 MCFR. Thus, the feasibility of Equation 2 being performed directly in the molten salt is potentially
77 of great importance. This paper reports feasibility study of this reaction.

78

79

Experimental

80


Materials and Equipment

81 NaCl (99%, Sigma Aldrich, anhydrous), CaCl₂ (99.5% Alfa Aesar, hydrated), HCl gas (5.038 ±
82 2%, AirGas), and a uranium rod (760 mm length x 21 mm diameter, depleted uranium) were all
83 used as received. 60 g of equimolar NaCl-CaCl₂ was purified by removal of water and hydroxide
84 contaminants using thermal dehydration and hydrochlorination. CaCl₂•2H₂O and NaCl salt were
85 transferred to an alumina crucible and put under vacuum in a gas-tight quartz reactor as it heated
86 up. The effluent gas flowed through a dry ice trap to protect the vacuum from water. The salt was
87 heated to 200°C at a rate of 300°C/hr under vacuum, held at this temperature for an hour, and then

88 heated to 600°C at the same rate with ultra-high purity Ar (UHP, AirGas) flowing into the reactor
89 through an N₂ factory-calibrated thermal mass flow controller (MKS, GM50A013502SMM020)
90 at 100 cc/min at ambient pressure and temperature. The mass flow controller automatically
91 corrects for the use of Ar instead of N₂ by applying a gas correction value of 1.36. At this
92 temperature, the eutectic NaCl-CaCl₂ is molten, and 160 cc/min of 5 vol% HCl balanced with Ar
93 was bubbled into the salt until the reaction stopped as determined by the titration of the effluent
94 gas using a Titroline 7000 auto-titrator in pH-stat mode with a pH=10.0 starting solution.

95 Methods and Analysis

96 The experimental setup for U chlorination is essentially the same as the salt purification (Fig. 1),
97 so U chlorination was started immediately after the conclusion of the salt purification while the
98 salt was maintained at temperature in the molten state. The U rod was wrapped tight enough to
99 prevent slippage in stainless steel wire (0.041 gauge, Malin Co.), and the opposite end of the wire
100 was threaded through a rubber stopper so that it would be suspended from the lid in the crucible
101 of salt. Once the stopper was secured, 160 cc/min of 5 vol% HCl gas was bubbled into the salt
102 adjacent to the rod. Each experiment was run for 6-9 hours with salt samples taken intermittently
103 using a threaded rod as a dipstick and a continuous titration of the effluent gas using an autotitrator.

104

105

Fig. 1 Experimental set up for the U chlorination

106 In one of the experiments, the effluent gas was also routed through a quadrupole mass spectrometer
107 (Pfeiffer Vacuum QMS, QME 220) to analyze the concentration of H₂ gas. After the desired
108 amount of time, the input gas lance was raised out of the salt while 25 cc/min of UHP Ar flowed
109 into the reactor to prevent atmospheric water from contaminating the salt, the rod was removed,
110 and the furnace was set to cool down at 30°C/hr. Once at room temperature, the crucible was
111 transferred into a glove box where it was reheated to 600°C, and the open circuit potential (OCP)
112 was measured using an Ag/AgCl reference electrode (RE) and a tungsten working electrode (WE)
113 submerged in the salt and connected to a potentiostat (Autolab PGSTAT302N) to measure the
114 equilibrium potential of the salt.

115

Journal of Radioanalytical and Nuclear Chemistry

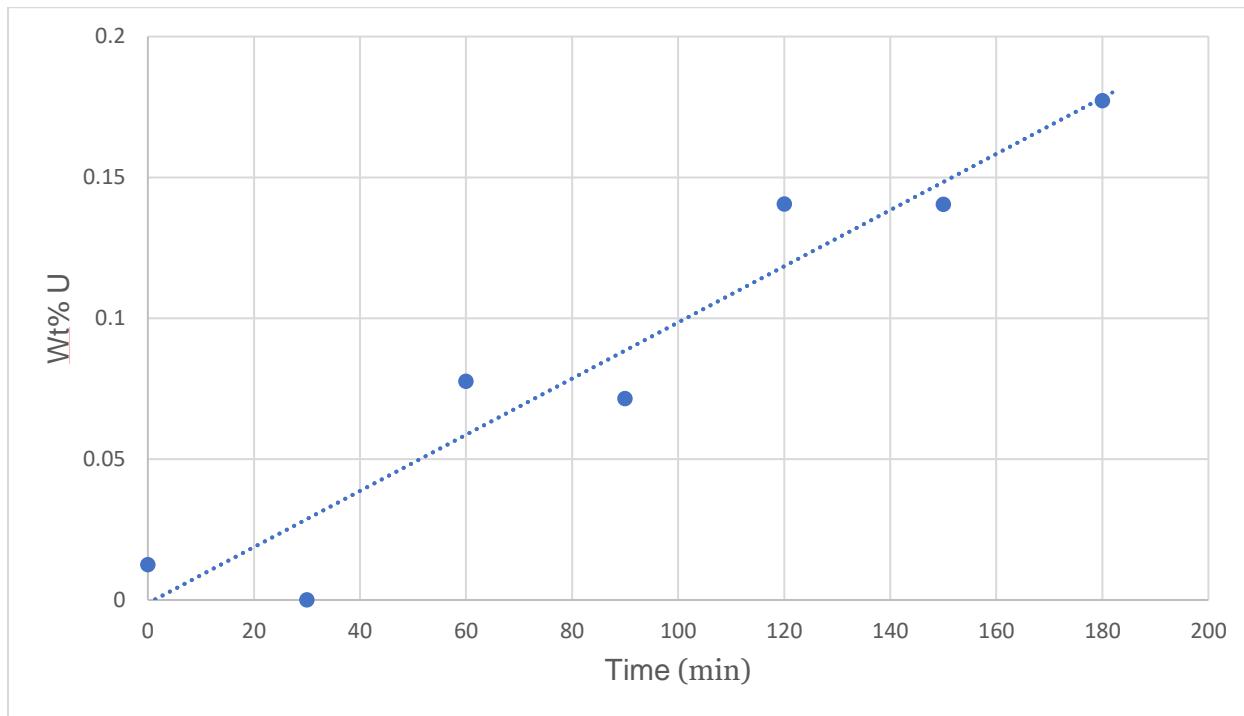
116 Each of the dipstick salt samples was dissolved using 2% nitric acid (HNO_3 , 68.5%, Fisher
117 Chemical) for inductively coupled plasma mass spectrometry (ICP-MS) ^{238}U concentration
118 measurements (Agilent 7900 ICP-MS).

119

120 **Results and Discussion**

121 **Test #1: 3-hour chlorination**

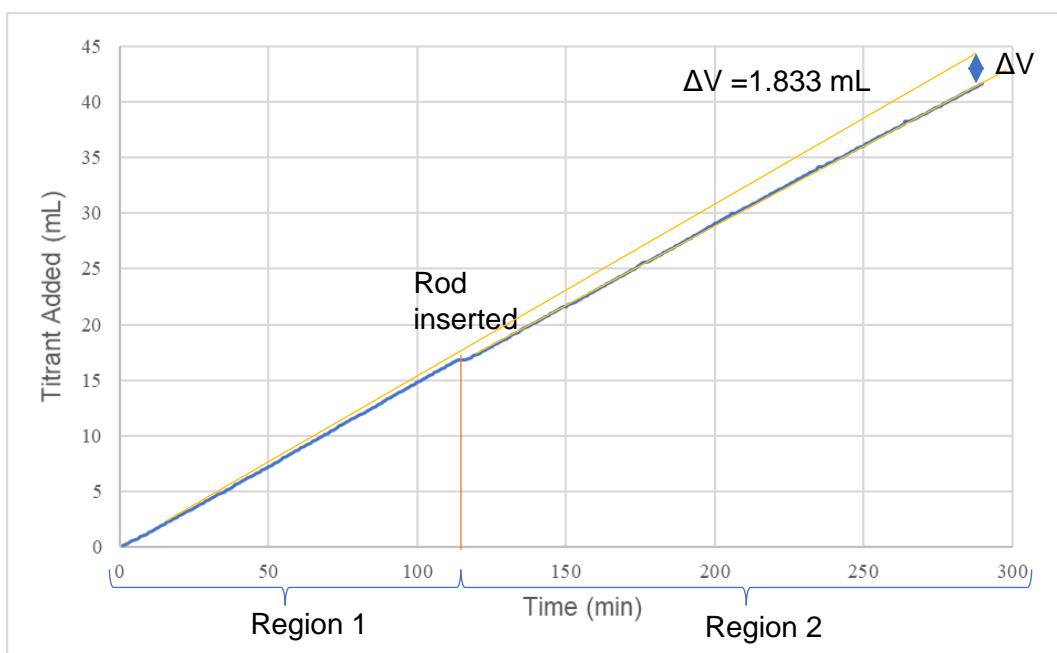
122 Two separate experiments were run with metallic U immersed in molten NaCl-CaCl_2 in which
123 HCl gas was bubbled. The objective was to measure U concentration in the salt as a function of
124 time in addition to determining the selectivity for UCl_3 rather than UCl_4 considering the following
125 two reactions (Equations 7 and 8) as possible.


128 Total reaction time was the only variable that changed between the two experiments. Masses,
129 concentrations, and flowrates were held constant. Experiment #1 involved reaction for 3 hours.
130 The first indication of successfully synthesizing UCl_3 is the color change in the salt samples from
131 bright white to lavender to wine red as shown in Fig. 2.

132

133 **Fig. 2** The salt samples taken during Test #1 displayed chronologically according to chlorination
134 time from left to right

135 Each salt sample taken during experiment #1 was analyzed using ICP-MS and the results are
136 plotted against time in Figure 3. The trendline has a slope that corresponds to 1.51×10^{-4} mol U/hr).
137 HCl flowed into the reactor at a rate of 0.03 mol/hr which would theoretically generate 0.01 mol
138 U/hr according to Eq. (1). Thus, the HCl flow is not the limiting factor in UCl₃ production. The
139 final average ²³⁸U concentration for experiment #1 as measured by ICP-MS was 0.184 wt.% U
140 after 3 hours of chlorination.



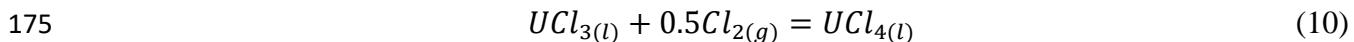
141

142 **Fig. 3** U concentration in molten NaCl-CaCl₂ as a function of time of reaction with HCl for Test
143 #1 measured via ICP-MS.

144 The HCl flow out of the reactor was directed into the autotitrator cell, where it was reacted
145 continuously with NaOH solution to keep the pH at 10.0. Fig. 4 shows the cumulative volume of
146 NaOH titrant added over time for the duration of the experiment, including the salt purification
147 stage. Region 1 (0-110 minutes) is the calibration stage where 160 cc/min of 5% HCl flows directly
148 into the autotitrator through the bypass. After the rod is inserted, the slope decreases slightly as
149 some of the HCl is consumed by the reaction in Region 2 (110-290 minutes). The ΔV of the titrant
150 relates to how much of the HCl was consumed by the reaction. From the difference in the
151 extrapolated volume of titrant and actual volume of titrant shown in Figure 4, it was calculated
152 that 1.83 ml of titrant was added solely for the purpose of chlorinating U metal. This corresponds
153 to 0.24 wt% U in the salt, roughly consistent to what was measured via ICP-MS. A third

154 approach to measuring the amount of U chlorinated involved measuring the change in mass of the
155 U wire from Experiment #1. Based on that measurement, it was calculated that the salt contained
156 0.25 wt% U after Experiment #1. Thus, the ICP-MS, titrator, and mass changes all were consistent
157 in confirming partitioning of U into the salt and the concentrations were within a tight range (0.18
158 to 0.25 wt%). These results are summarized in Table 1.

160 **Fig. 4** Titration data for the 3-hour U chlorination trial (Test #1)


161 The ΔV between the calibration slope and chlorination slope was 1.833 mL of 1.0 M NaOH titrant.
162 This translates into a predicted 0.00183 moles of HCl reacting with the U rod resulting in 0.652
163 wt.% U in the 60 g of base salt.

164

165 The stabilized OCP value was used to analyze the activity ratio of UCl_4 to UCl_3 according to the
166 Nernst Equation.

167
$$E_{eq} = E_{UCl4}^o + \frac{RT}{F} \ln \left(\frac{a_{UCl4}}{a_{UCl3}} \right) \quad (9)$$

168 where E_{eq} is the measured value, E_{UCl4}^o is the standard reduction potential of UCl_4 to UCl_3 , R is
 169 the gas constant, T is the temperature in K, F is Faraday's constant, a_{UCl4} is the activity of UCl_4 ,
 170 and a_{UCl3} is the activity coefficient of UCl_3 . E_{UCl4}^o was calculated using free energy data from HSC
 171 Chemistry in addition to reference correlations reported by Yang and Hudson [10] to be -0.332V
 172 vs. Ag/AgCl (100%) at 600°C. This is based on a free energy of reaction of -99.3 kJ/mole for the
 173 following reaction (10). Note the uranium chlorides are specified to be supercooled liquids, which
 174 seems reasonable given that they are dissolved in molten salt.

176 The correction between a Cl^-/Cl_2 reference electrode and 100% AgCl/Ag was calculated to be
 177 +0.697 V. In other words, the potential versus AgCl/Ag is 0.697 V higher than the potential versus
 178 Cl_2/Cl^- , based on a correlation derived from the paper by Yang and Hudson [10].

179 The open circuit potential (OCP) of the salt produced from Test #1 was measured using a W
 180 working electrode (WE) and a pure Ag/AgCl/mullite reference electrode (RE). The stabilized OCP
 181 value was measured to be -1.064 V which translates to a ratio activity of UCl_4 to activity of UCl_3
 182 of 5.9×10^{-5} using Eq. (9). Because the ratio is so small, there was essentially no UCl_4 synthesized.
 183 The lack of UCl_4 makes this process a viable industrial choice because of its selectivity.

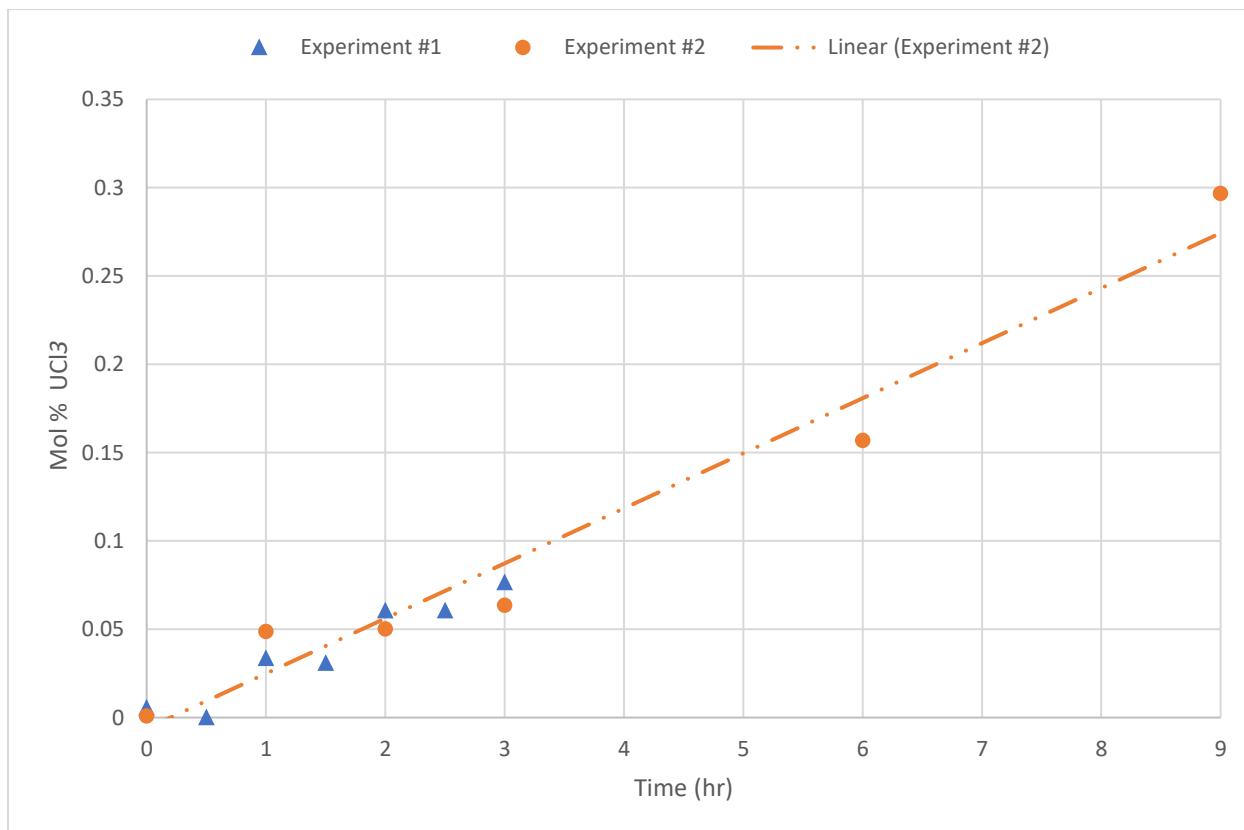
184

185

186

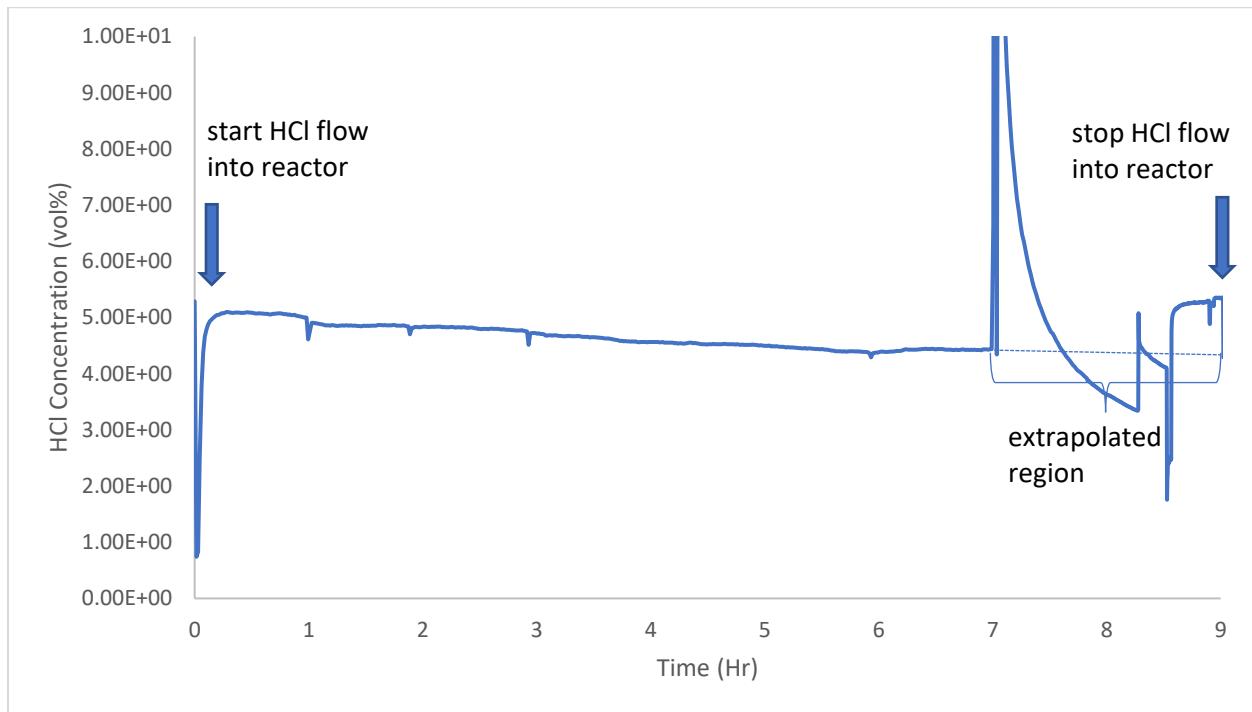
187 Test #2: 9-hour trial

188 Like Test #1, the salt gradually darkened throughout the second test resulting in the dark wine-red
189 sample shown in Fig. 5. Unlike the 3-hour trial, the uranium rod lost significant mass, especially
190 at the surface of the salt as shown in Fig. 6. The rod became so thin that it broke into two parts
191 when it was removed from the stainless-steel wrapping. Interestingly, the thinnest part of the rod
192 was closest to the surface of the molten salt. The lance was lowered to the bottom of the crucible
193 then raised slightly, but the U rod was lowered all the way to the bottom. This slight difference
194 prevents the gas from interacting with the bottom of rod because gas rises and never interacts with
195 the bottom portion of the rod.


197 **Fig. 5** Salt sample after 9 hours of U chlorination in Test #2.

198

200 **Fig. 6** Uranium rod after 9 hours of chlorination in Test #2.


201 Fig. 7 shows the concentration of U in the salt for Test #2 that continued for 9 hrs. The U
202 concentration data from Experiment #1 is overlaid on the plot, showing a consistent rate of increase
203 for the two experiments. The linear fit equates to a rate of increase of 0.0688 wt.% U/hr. Note that
204 in both experiments the U metal was also present in excess, and its surface area probably did not
205 change appreciably. So, the consistent linear increase seems reasonable with a constant rate of
206 reaction that could be limited by mass transfer of HCl to the surface of the U metal rod.

207
208 **Fig. 7** U concentration in molten NaCl-CaCl₂ as a function of time of reaction with HCl for Tests
209 1 and 2 measured via ICP-MS.

210 The autotitrator did not save the data from this experiment, so the titration results cannot be
211 compared with those from Test #1. However, the effluent gas from Test #2 was sampled and
212 analyzed using a quadrupole mass spectrometer (QMS) to measure concentrations of hydrogen,
213 argon, and HCl throughout Test #2. When the feed HCl gas mixture was bypassed around the
214 chlorination reactor, the QMS read an HCl concentration of 5.20%. Figure 8 shows the HCl
215 concentration in the gas as the flow was switched from bypass to go through the reactor at t = 0
216 hr. Right as the valves were switched there was a downward spike in HCl concentration. At this
217 time, the U rod was inserted into the salt. At about the 7-hour mark shown in Figure 7, the QMS
218 control valve was constricted in an effort to obtain a better reading. This caused the detector current
219 to drop and concentration reading to spike. For the last two hours of the experiment, the HCl
220 concentration trends appeared erratic. Assuming the concentration data measured prior to turning
221 the QMS sampling valve is representative of the feed for the whole duration of the experiment, it
222 can be seen that a relatively small percentage of the HCl reacted throughout the experiment. Prior
223 to changing the sampling valve at the 7 hr mark, the HCl concentration was measured to be 4.4
224 vol%, which corresponds to a 16.5% conversion at that time. Changing the sampling valve caused
225 disruption in the effluent HCl concentration measurement, so the concentration data line was
226 extrapolated linearly from 7 to 9 hr as shown in Figure 8. The concentration curve was then
227 integrated over the whole 9-hour experiment, and it was calculated that 5.73% of the total HCl that
228 flowed into the system reacted. Thus, the unreacted HCl should be recycled in an industrial
229 implementation of this process.

230

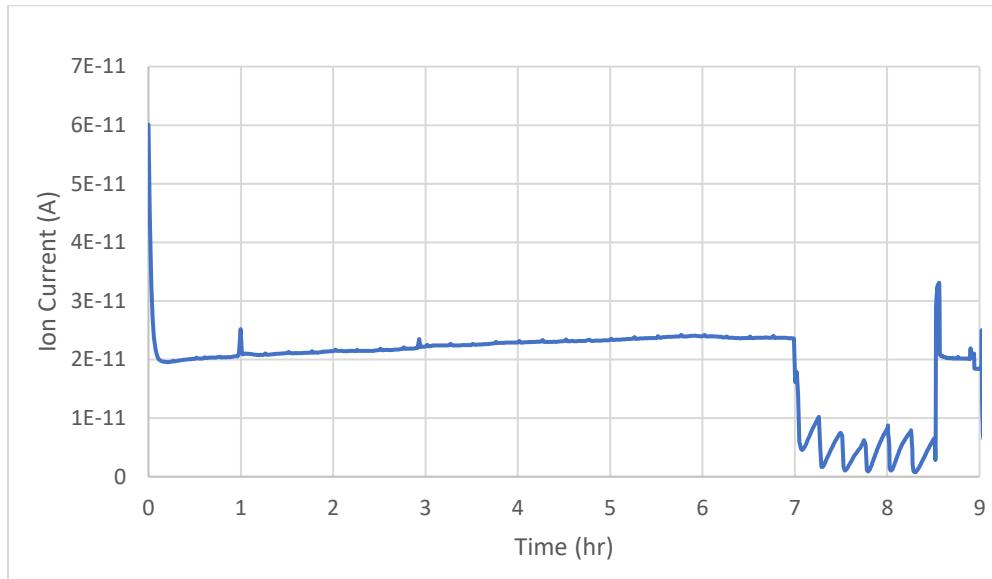
231

232 **Fig. 8** Effluent HCl concentration (vol%) in Test #2 as measured by QMS.

233 The above HCl conversion calculation translates to 0.0115 moles of HCl consumed in the reaction
234 assuming the 160 cc/min flow rate is 5.20% HCl (from the baseline reading). According to Eq.
235 (1), UCl_3 is produced at a 1:3 stoichiometric ratio to HCl, so the predicted wt.% of U in 60 g of
236 salt is 1.52 wt%. The actual measured value by ICP-MS was 0.65 wt%. The difference could be
237 attributed to factors such as HCl leakage from the reactor and/or reaction/corrosion with other
238 materials in the reactor.

239 Table 1 summarizes the wt.% U calculations for the three sources of data: change in rod mass,
240 QMS results, and ICP-MS results after each of the two experiments reported here. Note that for
241 each experiment, the different measurement methods yielded concentration within a factor of two

242 or smaller. All measurements were consistent with the objective of partitioning U into the molten
243 salt phase, and increased reaction time resulted in increased U concentration.


244

245 **Table 1.** Summary of wt.% U in salt as measured by various methods for Tests 1 and 2.

Data Source	Weight % U After Test # 1	Weight % U After Test #2
ICP-MS	0.18%	0.65%
ΔV Titrant	0.24%	nm
QMS	nm	1.52%
Change in rod mass	0.25%	0.89%

246

247 In agreement with Equation 2, the QMS did report ion current for H₂. But the QMS had not been
248 calibrated for H₂, making it impossible to report concentration data for H₂. QMS ion current for
249 H₂ is given in Figure 9.

251 **Fig. 9** QMS ion current of H_2 during Test #2.

252

253 The OCP of the salt after Test #2 stabilized at a value of -0.836 V versus Ag/AgCl which results
254 in an activity ratio of UCl_4 to UCl_3 of 1.2×10^{-3} using Eq. (9). This indicates that again UCl_3 is the
255 dominant uranium chloride formed in this reaction, though a relatively higher amount of UCl_4 is
256 present after the longer duration run.

257

258 **Conclusions**

259 Uranium trichloride can be synthesized from uranium metal and hydrochloric gas while submerged
260 in molten salt at 873 K. Starting with a depleted uranium rod submerged in equimolar NaCl - CaCl_2 ,
261 160 cc/min of 5% HCl gas was bubbled into the salt and reacted to produce 0.63 wt.% U in the
262 form of UCl_3 dissolved in the base salt. The reaction produces H_2 , supportive of a direct

263 chlorination mechanism. With U metal remaining in contact with the salt, the $\text{UCl}_3/\text{UCl}_4$ ratio is
264 extremely low (1.2×10^{-3} to 5.9×10^{-5}) as measured using an electrochemical open circuit potential
265 measurement. The limiting step for this reaction may be diffusion in the salt phase or mass transfer
266 to the U metal surface. Further study is needed to understand the kinetics of the reaction. But
267 proven feasibility has been shown. This process has benefits over other synthesis methods for its
268 simple hands-off set up and could be implemented into an actinide recycle scheme for a molten
269 chloride fast reactor.

270

271 References

272 1. He L, Xia S, Zhou X, Chen J, Liu G, Zou Y, Yan R (2020) Th – U cycle performance
273 analysis based on molten chloride salt and molten fluoride salt fast reactors. Nucl Sci
274 Tech 31(8):1–13

275 2. Brown, NR (2021) Engineering demonstration reactors: A stepping stone on the path to
276 deployment of advanced nuclear energy in the United States. Energy 121750

277 3. Gha-Young Kim, Tack-Jin Kim, Junhyuk Jang, Hee-Chul Eun, Sung-Jai Lee (2018)
278 Synthesis of uranium trichloride salt using ZnCl_2 . Journal of Radioanalytical and Nuclear
279 Chemistry 318:2173–2176

280 4. J.J. Katz and E. Rabinowitch, *The Chemistry of Uranium. Part 1: The Element, Its Binary*
281 *and Related Compounds*, McGraw-Hill, 1951.

282 5. D. Ethan Hamilton and M.F. Simpson (2021) Synthesis of UCl_3 by Hydrochlorination of
283 U Metal, Transactions of the American Nuclear Society 124: 226-229

Journal of Radioanalytical and Nuclear Chemistry

284 6. Zhang, Huan, Matthew L. Newton, D. Ethan Hamilton, and Michael F. Simpson (2021)

285 High temperature UCl₃ synthesis in molten salt mixtures via reaction of U metal with

286 iron chlorides. *Journal of Radioanalytical and Nuclear Chemistry* 1-8.

287 7. Prashant Bagri, Joshua Ong, Chao Zhang, Michael F. Simpson (2018) Optimization of

288 UCl₃ and MgCl₂ separation from molten LiCl-KCl eutectic salt via galvanic drawdown

289 with sacrificial Gd anode. *Journal of Nuclear Materials* 505 (2018) 149e158

290 8. Manish S. Wasnik, Tanner C. Livingston, Krista Carlson, and Michael F. Simpson.

291 (2019) Kinetics of Dechlorination of Molten Chloride Salt Using Protonated Ultrastable

292 Y Zeolite. *Industrial & Engineering Chemistry Research* 2019 58 (33), 15142-15150

293 DOI: 10.1021/acs.iecr.9b02577

294 9. L. Gardner, M. Wasnik, B. Riley, S. Chong, M. Simpson, K. Carlson; "Synthesis and

295 Characterization of Sintered H-Y Zeolite-Derived Waste Forms for Dehalogenated

296 Electrefiner Salt;" *Ceramics International*, 46 (2020) 17707-17716.

297 10. L. Yang, R. G. Hudson, "Some Investigations of the Ag/AgCl in LiCl-KCl Eutectic

298 Reference Electrode", *Journal of The Electrochemical Society*, 106, (1959), 986.