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Motivation

* U holdup has impacts on several aspects of operation:
— Worker dose
— Criticality safety
— Safeguards
— Outage planning " Colimate Nl detector

* Generalized Geometry Holdup (GGH) currently estimates U mass
within a high uncertainty band (£ 50%)

 This method seeks to improve this uncertainty via quantitative
Compton imaging

2 Image from the PANDA manual [1]



GeGI™ Detector

* Double-sided Strip Detector (DSSD)
— High Purity Germanium (HPGe)
— 16 strips on either side
— 4.5 cm radius, 1.1 cm thickness for active detector volume

« Strip hits contain information on:
— Interaction energies
— Interaction positions

» Sub-strip localization enabled via transient signals

GeGI™ Image taken from [2]



Angular Uncertainty

Compton Cone

Compton Imaging

Cone Angle

First Interaction

- Compton imaging requires:
— Compton cone origin, axis, and angle

* Angular uncertainty is inherent
* Cone origin and axis defined off first two interaction positions
* Angle is given by Compton scatter equation (below)

« Angular uncertainty derived from energy and position uncertainty
contributions (in appendix)
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Compton Imaging for U Holdup
Characterization vs Coded Aperture Imaging

Advantages Disadvantages

 Canimage in 4n * Poor sensitivity

- Can image high-energy photons from — Requires full energy deposition and at least
238| two interactions

- Less impacted by attenuation * Poor emission rate
" / — 238 has associated 0.842% emission

— Self-attenuation | probability at 1001 keV
— Environmental attenuation — Requires long count time

— Lower signal-background ratio
* Low angular resolution
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Developing an Image

 Point-cloud-based source environment
— Points in space represent possible sources
— Points have associated energy spectra ~ Sample cones drawn in example environment.

* Once a Compton cone is generated, counts can then be attributed to
points in the point cloud
— Counts depends on angular separation between point and Compton cone

» Counts from several Compton cones comprise an image
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Iterative Analysis

* For first iteration, perform simple back-projection (SBP) of Compton
events
— Generate initial count image

* For next iteration, distribute counts per cone according to previous
count image
— Previous image serves to “weight” points
— Points with more counts get attributed more in following iterations

» Cease iteration when counts/mass in ROI stabilizes




Mass Estimations

* U point mass derived using point intensities (counts) at photopeak
(1001 keV): ,

p
M = C
p ( ) emp
t*BR*SA*Rp* 1 —fo4)Q 40t
* M, = Point mass, I,, = Point intensity, t = measurement time, BR = Branching Ratio,

SK = Specific Activity, R, = Detector response, fs, = Self-attenuation fraction,
Qg4e: = Detector solid angle, C,,,,, = empirical correction factor

» Response is a function of imaging efficiency and localization efficiency

- This analysis currently requires a constant, empirical factor (see
above) to accurately estimate mass
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Measurement/Analysis Setup

* Depleted uranium (DU) sources placed 1 m in front of detector
— Density, thickness, and mass of DU known beforehand!?!

* Point cloud initialized as 100,000 points placed uniformly on unit
sphere (1 m radius)
» Source region-of-interest ROI chosen as 45° cone In front of detector

« Empirical correction evaluated such that mass calculated for 300 g

2381 source is accurate Tm
GeG|™ | DU Sample
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Results

 Corrected results agree well with reference DU source masses
— Uncertainties within roughly £10%

 Percent difference increases with decreasing DU mass
— Indicative of background influence
Estimated 233U

Percent Difference (%)

Mass (9)
301.74 301.74 N/A (reference)
213.09 213.88 -0.37
171.90 167.16 2.84
118.65 116.03 2.26
66.19 60.35 9.68




Method Weaknesses and Assumptions

» Empirical correction factor is significant

— Roughly an order of magnitude (~8.9x)
— Background assumed small in analysis (contributor correction factor)

— Underlying physics obscured

» Accurate response characterization required to reduce correction
factor
— Provides physical justification for mass estimation

* Assumes self-attenuation known beforehand
— Influence accounted for here based on density and thickness of source

» Cross pattern present in images




In-Progress Response Characterization

- Use known lab sources to characterize response

* For each lab source:
— Calculate counts in source region
— Subtract background

— Calculate efficiency
» Known source-detector geometry and source activity

* Develop efficiency energy curve via several lab sources

 Use efficiency at 1001 keV to calibrate detector response
— Analysis dependent on chosen source ROI
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Sources of Error

» Counting statistics on DU data (Significant)
— Background is significant

 Error in response estimation (Moderate)
— Estimation of lab source activity
— Counting statistics for lab sources
— Energy-based response

* Localization efficiency (Moderate)
— Lowers effective counting statistics in source region

» Uncertainties in detector-source geometry (Small)




Conclusions

* Point-cloud-based imaging method developed to localize and quantify
238 with Compton imaging

* With corrections, mass of reference DU samples evaluated accurately

* Improved response characterization required to reduce or eliminate
correction factor

* New analysis improves characterization of:
— Background
— Response
— Localization efficiency




Appendix (Angular Uncertainty Equations)
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