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ABSTRACT: Optical sensors and chemometric models were leveraged for the quantification of 
uranium(VI) (0–100 µg∙mL−1), europium (0–150 µg∙mL−1), samarium (0–250 µg∙mL−1), 
praseodymium (0–350 µg∙mL−1), neodymium (0–1,000 µg∙mL−1), and HNO3 (2–4 M) with 
varying corrosion product (iron, nickel, and chromium) levels using laser fluorescence, Raman 
scattering, and ultraviolet–visible–near-infrared absorption spectra. In this article, an efficient 
approach to develop and evaluate tens of thousands of partial least squares regression (PLSR) 
models, built from fused optical spectra or multimodal acquisitions, is discussed. Each PLSR 
model was optimized with unique preprocessing combinations and features selected using genetic 
algorithm filters. The 7-factor D-optimal design training set contained just 55 samples to minimize 
the number of samples. The performance of PLSR models was evaluated using an automated latent 
variable selection script. PLS1 regression models tailored to each species outperformed a global 
PLS2 model. PLS1 models built using fused spectra data and a multimodal (i.e., analyzed 
separately) approach yielded similar information, resulting in a percent root mean square error of 
prediction values of 0.9%–5.7% for the seven factors. The optical techniques and the data 
processing strategies established in this study allow for the direct analysis of numerous species 
without measuring luminescence lifetimes or reliance on a standard addition approach, making it 
optimal for near real-time, in situ measurements. Nuclear reactor modeling helped bound training 
set conditions and identified elemental ratios of lanthanide fission products to characterize burnup 
of irradiated nuclear fuel. Leveraging fluorescence, spectrophotometry, experimental design, and 
chemometrics can enable the remote quantification and characterization of complex systems with 
numerous species, monitor system performance, help identify the source of materials, and enable 
rapid high-throughput experiments in a variety of industrial processes and fundamental studies.  
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INTRODUCTION
Optical sensors and chemometrics have gained popularity for in-line process monitoring and can 

be deployed remotely using fiber-optic cables for rapid, in situ analysis in harsh radiological 
environments.1–3 Although multivariate analysis is a powerful option for quantification, one 
drawback is the dependence on large datasets, which are representative of the process. This is 
reasonable in many nonradiological environments, where such techniques were originally 
implemented.4 Developing efficient methods to train chemometric models with as few samples as 
possible is imperative for processing in harsh/restrictive environments and where radioactive 
materials can be in short supply.5–7 Design of experiments can be used to reduce the training set 
size while maintaining or improving prediction performance but are often limited to only two or 
three variables.8,9 The designed approach must be extended to include numerous factors and test 
the limits for describing real-world systems. 

In complex nuclear fuel cycle separation schemes, numerous corrosion product (CP) and fission 
product (FP) species are present amid the primary analytes, often including uranium, plutonium, 
nitric acid (HNO3), and nitrate (NO3

−).10,11 CPs typically include common transition metals (e.g., 
iron, nickel, chromium), and FPs include lanthanides (e.g., cerium, praseodymium, neodymium, 
samarium, europium, and gadolinium), metals (e.g., zirconium, ruthenium, cesium, strontium) and 
nonmetals (e.g., bromine, iodine).12,13 Various forms of optical spectroscopy can be used for the 
quantification of process solutions, each with unique benefits and drawbacks. For example, the 
lanthanide elements praseodymium(III) and neodymium(III) have relatively high molar extinction 
coefficients (~10 cm−1·M−1), whereas europium(III) and samarium(III) have much lower 
extinction coefficients but efficient visible photoluminescence properties.14 Therefore, the greatest 
utility could be achieved when multiple techniques are deployed simultaneously.15 

Spectrophotometry, or ultraviolet–visible–near-infrared (UV-Vis-NIR) absorption 
spectroscopy, and photoluminescence spectroscopy are highly sensitive to many transition metals, 
lanthanides, and actinides.16,17 Combining steady-state laser-induced fluorescence spectroscopy 
(LIFS) and chemometrics can yield quantitative results using a charge-coupled device to increase 
the timeliness of data collection instead of single-channel photomultiplier tubes, which are often 
used for time-resolved data.18 Recent work demonstrated that it is possible to quantify fluorescent 
species like uranium(VI) directly in HNO3 process media using ensemble learning techniques.19

The system must be trained such that the chemometric models can account for complicating 
effects of CPs, including fluorescence quenching and self-absorption. One common supervised 
technique is called partial least squares regression (PLSR).20,21 Individual PLSR models can be 
built for multimodal (MM) datasets that span different types of sensors or ones with values of 
various scales and distributions fused into a global features space.15 Data fusion methods combine 
information from multiple sources, which can enhance the spectral analysis.22 Low-level and mid-
level data fusion methods refer to the concatenation of all the raw data or extracted features of the 
raw data, respectively.23 High-level fusion occurs when results are fused from individual models. 
Data fusion strategies, as opposed to separate MM strategies, have been used to improve prediction 
performance. 

This study demonstrates how optical techniques, including LIFS, Stokes Raman scattering, and 
UV-Vis-NIR spectrophotometry techniques; design of experiments; and chemometrics can be 
harnessed together for the accurate quantification of multiple chemical species. The developed 



methodology is widely applicable in many fields.11,15,22,23,25 This work highlights the following: 
(1) sensor fusion and MM data were compared to quantify uranium(VI) and multiple lanthanides 
[samarium(III), europium(III), praseodymium(III) and neodymium(III)] in the milligram-per-liter 
range with varying HNO3 and CP levels; (2) the D-optimal sample selection method was extended 
to a seven analyte system; and (3) nuclear reactor modeling was applied to identify ratios of 
lanthanide FPs for use as burnup indicators. This work addresses the challenges of modeling 
numerous species and presents a novel approach for advanced monitoring applications.   

METHODS
All chemicals were commercially obtained and used as received unless otherwise stated. 

Concentrated HNO3 (70%) was purchased from Sigma-Aldrich. A certified 10,000 µg⋅mL−1 
uranium (238U, depleted) standard was purchased from SPEX CertiPrep. Certified 10,000 µg⋅mL−1 
inductively coupled plasma–optical emission spectroscopy standard solutions in 5% HNO3 for 
each analyte were purchased from Inorganic Ventures. Samples were prepared using deionized 
(DI) water with MilliporeSigma Milli-Q purity (18.2 MΩ∙cm at 25°C).
Sample preparation and design

Calibration and validation samples contained uranium(VI) (0–100 µg∙mL−1), europium (0–
150 µg∙mL−1), samarium (0–250 µg∙mL−1), praseodymium (0–350 µg∙mL−1), neodymium 
(µg∙mL−1) and HNO3 (2–4 M) with varying CP (iron, nickel, and chromium) levels and were 
chosen to cover the anticipated solution conditions. Lanthanide concentrations were based on 
multiple UO2 burnup and decay simulations (Figure S1). The discrete corrosion concentration 
levels were 0, 2,000, and 4,000 ppm, which were divided as 25% Cr, 25% Ni, and 50% Fe. This 
relative ratio of CP concentrations approximates the expected abundance of each species in real 
samples, where the source is generally stainless steel.12 Training set samples were selected by a 
D-optimal using Design-Expert (v.11.0.5.0) by Stat-Ease, Inc., which included 55 samples as 42 
required model and 13 lack-of-fit (LOF) points (Table S1). The validation set comprised 16 
samples with acid/corrosion levels selected by additional D-optimal designs (Tables S2/S3). 
Additional details on the designs are provided in the Supporting Information. 

Samples were prepared in individual 2 mL plastic microcentrifuge tubes (VWR Scientific, 525-
1160) with volumetric pipettes and gravimetrically measured using a Mettler Toledo model XS204 
balance with an accuracy of ±0.0001 g. A fluorometer flow cuvette, purchased from Starna 
(83.2.2F-Q-10/Z15) with a 10 × 2 mm optical pathlength, was used for each measurement to ensure 
consistent optical quality. Sample solutions were injected using a Fluid Metering, Inc. FMI pump 
with 1/16 in. tubing at a rate of approximately 1 mL∙min−1. 
Optical spectroscopy

Spectra were collected using iHR320 (Horiba Scientific), QEPro, and NIRQuest (Ocean Insight) 
spectrometers. Light sources consisted of a continuous-wave LBX 405 nm laser (Oxxius) and a 
stabilized broadband (360–2600 nm) light source (Thorlabs). Optical measurements were 
performed in triplicate at a constant temperature of 22.5 °C ± 0.1 °C. The spectrophotometers were 
referenced to DI water. Raman/fluorescence spectra were processed using LabSpec 6 software 
(Horiba Scientific), and absorption spectra were processed using OceanView software (Ocean 
Insight). Full details of instrument configurations are provided in the Supporting Information.  



A measurement fusion (low-level) strategy was evaluated in this work. LIFS/Raman spectra 
were scaled by dividing each point by the maximum Raman water band intensity. Absorption 
spectra were normalized by dividing by the maximum absorption value to scale the intensities to 
one. UV-Vis and NIR absorption spectra were stitched (i.e., appended) near 910 nm, where the 
data was referenced to zero prior to analysis (Figure S2).
Multivariate analysis and preprocessing

PLSR was used to correlate spectral features to analyte concentrations to develop predictive 
models. Cross validation (CV) was used to determine the optimal number of latent variables (LVs) 
to include in the model. The best number of LVs was chosen by the last LV to show a significant 
difference in the model-explained variance. PLSR models can be built with one or multiple Y 
variables (PLS1 and PLS2, respectively). PLS2 models tend to account for covariance or 
multicollinearity between species represented in the spectral dataset. However, PLS1 models can 
be tailored to the spectral features of each species, which may require unique combinations of 
preprocessing and feature selection strategies.18 This study evaluated PLS1 and PLS2 models with 
LV selection performed two ways. First, each model was constructed using an automated LV 
selection script, which determined the optimal number of LVs based on prediction error.20 The 
second approached used the traditional rule of thumb assumption that the number of LVs should 
be equal to the number of factors in the design space (i.e., 7 LVs).   

Spectral data were preprocessed prior to modeling. The preprocessing steps included scatter 
correction (standard normal variate [SNV]), noise/baseline correction (Savitsky–Golay filter 
[SG]), and/or mean centering (MC).18 Details for the various 576 preprocessing combinations 
evaluated are provided in the Supporting Information. Trimming spectral data reduces the 
dimensionality by removing features that impede PLSR model correlations. A genetic algorithm 
(GA) was used for feature selection based on previous work.18,26 The selected regions included in 
the chemometric model varied based on each analyte. All regression models and data 
preprocessing were completed in Python 3 using modules from the Scikit Learn.27 

Statistical comparison
Model performance was evaluated using calibration, CV, and validation metrics. The primary 

statistics used to evaluate prediction performance was the root mean square error of the calibration, 
CV, and prediction (RMSEC, RMSECV, and RMSEP, respectively). PLSR model prediction 
performance testing on samples not included in the training set is important because the RMSECV 
is only an estimate, especially when using a designed sample matrix.5,8 RMSE values were 
calculated using Equation 1:

𝑅𝑀𝑆𝐸 = ∑𝑛
𝑖=1 (𝑦𝑖 ― 𝑦𝑖)2

𝑛
,#(1)

where 𝑦𝑖 is the predicted concentration, yi is the measured concentration, and n is the number of 
samples. RMSEP% was calculated by dividing the RMSEP by the median of each respective 
analyte concentration range. PLSR models were optimized by minimizing the RMSEP. Prediction 
performance is strong when RMSEP% < 5%, satisfactory when RMSEP% ≤ 5%–10%, and 
indicative when RMSEP% ≤ 10%–15%.9  



Fission product ingrowth modeling in nuclear fuel 
The models were applied to evaluate a persistent challenge: that of FP ingrowth in nuclear fuel 

simulated for different reactors and fuel enrichments. Ratios of FPs change depending on the level 
of 235U and 239Pu fission during the fuel operation. The ratios reveal information on the fuel burnup, 
operating length, and attractiveness of the spent fuel for nuclear nonproliferation. The simulation 
of the FP ingrowth in nuclear fuel was modeled for a natural, 5%, and 20% enriched UO2 fuel 
sample irradiated in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory 
(Figure S2). The HFIR reactor was chosen because fuel samples are currently being irradiated as 
part of an active research effort into intentional forensics concepts for nuclear fuels.25 Details 
pertaining to Monte Carlo N-Particle and SCALE software simulations of FP ingrowth during 
reactor burnup are provided in the Supporting Information.28

RESULTS AND DISCUSSION
Optical spectra

Combining absorption, florescence, and Raman spectral features and simultaneous chemometric 
analysis can be highly useful for characterizing and monitoring various chemical species in 
multiple fields.15,19,22,23,29 The absorption, fluorescence, and Raman spectra of the chemical species 
characterized in this study are shown in Figure 1 with labeled dominant fluorescence emissions 
and absorption peaks. Molecular species such as the free uranyl ion (UO2

2+) and uranyl nitrate 
complexes (UO2(NO3)n

(2−n)+, n = 1 or 2) can be quantified by LIFS.19 The samarium(III) emission 
spectrum consists of four bands near 563, 596, 643, and 720 nm, corresponding to the 4G5/2→6H5/2, 
6H7/2, 6H9/2, and 6H11/2 transitions (Figure 1a).18 The europium(III) spectrum consists of five peaks 
from the first excited 5D0 state to the 7F0–4 Stark levels. 

Although the 4f orbitals of the lanthanides are shielded by the filled 5s and 5p shells, optical 
transitions with electric dipole character are sensitive to the coordination environment.14 The 
absorption spectra of praseodymium(III) and neodymium(III) are shown in Figure 1b. Each species 
is described by several absorption bands, with maximum molar extinction coefficients near 10 
M−1·cm−1. Neodymium(III) absorption bands originate from the ground state 4I9/2. The peak near 
580 nm is one of the most intense neodymium(III) peaks and corresponds to the 4I9/2→4G5/2 
hypersensitive electronic transition, which is sensitive to the local symmetry and coordination 
environment.30 The broad absorption peaks near 600 and 400 nm correspond to the CPs. These 
peaks are mainly prescribed to chromium(III) ions in solution.31 NIR absorption water bands with 
negative absorbance values were observed at 960 and 1,200 nm. These regions are sensitive to 
various ionic species (e.g., H+ and NO3

−) and temperature.8,9 



Figure 1. (a) Laser fluorescence spectra (λex = 405 nm) of aqueous solutions and (b) absorption 
spectra aqueous solutions. The samples correspond to designed spectra (see Table S1). 

In addition to emission peaks, the spectra contained Stokes Raman scattering features. The 
Raman NO3

− symmetric N–O stretch corresponding to the strongest Raman active nitrate peak ν1 
(~1,048 cm−1) was identified near 421 nm. The Raman O–H vibrational stretching region (broad 
peak 455–475 nm) is sensitive to the presence of cations, anions, ionic strength, and temperature. 
This band consists of several overlapping bands attributed to various H2O and O–H (free and 
bound).20 

The fluorescence signal intensity is dependent on many phenomena and physical parameters.10,11 
Many species found in reprocessing solutions and HNO3 absorb light in the UV region, which is 
below the 405 nm excitation source used in this study.10,12 Self-absorption refers to absorption of 
the excitation source and/or the emission signals from the sample itself. Thus, using a 405 nm 
excitation source minimizes self-absorption effects compared with lasers having wavelengths 
<405 nm.  

There was evidence for self-absorption and/or uranium(VI) quenching with increased corrosion 
levels (Figure S3). The overall O–H band intensity and peak area decreased slightly with 
increasing levels of CPs because of absorption of the incident laser (405 nm) and absorption of the 
emission signal intensity. The uranyl emission intensity changed more significantly than that of 



samarium(III) and europium(III). Uranium(VI)’s emission intensity was reduced by 15% in the 
sample highlighted in Figure S3. This reduction is likely a combination of self-absorption effects 
and quenching caused by iron(III) ions.11 Lanthanide emission intensity appeared to be less 
dependent on the presence of CPs in the sample. The absorption bands and emission peaks 
overlapped extensively, rendering univariate analysis ineffective. Thus, the spectra were modeled 
with multivariate chemometrics to account for the overlapping and covarying spectral features.  

Fused PLSR models with preprocessing combinations  

Numerous preprocessing combinations and spectral features were evaluated for PLSR models 
built from fused spectra (Figure S2) and multimodal data using an automated Python script (see 
Supporting Information for preprocessing techniques).18 This approach first tested all 
preprocessing combinations then applied a genetic algorithm (GA) for feature selection. PLS1 and 
PLS2 models were evaluated. An overview of the model development workflow is shown in Figure 
2.  

Figure 2. Schematic of data processing workflow for comparing fused and multimodal datasets.

The standardization between comparisons was the best prediction performance (i.e., the lowest 
achievable RMSEP). Other methods for standardization could include picking one preprocessing 
combination at random and forcing it upon each model. However, this option would effectively 
bootstrap the models because one preprocessing combination may be inherently more suitable for 



one set of data over the other. Fused and nonfused spectra are unique; therefore, optimizing the 
regression of each set of spectra with different preprocessing methods was expected. 

The PLS1 models leveraged unique preprocessing combinations for each species (Table 1). The 
PLS2 model selected one preprocessing combination representing the lowest average of all 
predicted RMSEP values (Table S4). PLSR models with the lowest RMSEP% values are shown in 
Table 1. PLS1 models were generated using the first 20 samples (20T) in the D-optimal design, 
which did not include any CPs (i.e., iron, nickel, and chromium) (Table S1). Using these PLSR 
models to predict samples in the validation set tested the model’s predictive capability on samples 
outside of the trained conditions. The performance of this model was compared with that of the 
PLS1 models built using the entire D-optimal set with 55 samples (55T) to determine how 
important it is to include corrosion species in the model and whether models can perform well 
without including these species.32 Finally, a PLS2 model was built using one preprocessing 
combination with the entire D-optimal set (55T) to compare with PLS1 models.  

The average RMSEP%, excluding corrosion levels for the PLS1 models from the 20T and 55T 
sets, was 11.4% and 5.2%, respectively; the 55T set model reached a satisfactory level of 
prediction performance. Including corrosion levels, the PLS1 and PLS2 models for the 55T set 
had an average RMSEP% value of 4.7% and 8.1%, respectively. Applying unique preprocessing 
schemes and PLS1 models tailored for each analyte reduced the average RMSEP% by 42%. The 
top preprocessing methods for each PLS1 model were different because each spectrum consisted 
of unique peak widths and scattering features. Uranium(VI) was the only analyte to consistently 
use SNV for the 20T and 55T sets. The SNV method standardizes the spectra by subtracting the 
mean of each spectrum and dividing by the standard deviation, which likely minimized the effects 
of CP–related self-absorption and quenching effects. Models built without preprocessing did not 
perform as well (data not shown here). 
Multimodal PLSR models with preprocessing

PLS1 models were built using the absorption or the laser fluorescence data separately to compare 
an MM approach with the fused approach discussed in the previous section. Unique data 
preprocessing strategies were selected for each variable using the same method applied to the fused 
dataset (Figure 2). These combinations were unique relative to the fused approach (Table 1) in the 
20T set. For example, MC was applied to the fused samarium(III) spectral dataset but not to the 
MM dataset. Additionally, the SNV for uranium(VI) was applied to the fused spectra dataset but 
not to the MM 55T dataset. 
Table 1. RMSEP and preprocessing combinations for fused and MM datasets.

Pr Nd Sm Eu U HNO3 CPs
LVs 5 5 10 5 5 10 —

RMSEP 15.3 11.4 13 3.57 7.84 0.243 —
RMSEP% 8.7 2.3 10.4 7.1 15.7 24.3 —

20
T 

Fu
se

d

PP* 0,1,7,37,0 0,2,5,33,0 0,0,1,61,0 1,0,5,57,1 1,0,3,45,1 0,1,5,61,0 —
LVs 5 9 5 9 10 10 10

RMSEP 8.01 8.41 3.23 3.06 4.08 0.082 0.018
RMSEP% 4.6 1.7 2.6 6.1 8.2 8.2 1.8

55
T 

Fu
se

d

PP* 0,2,5,29,0 0,1,5,37,0 0,1,3,61,0 0,0,3,53,1 1,0,3,49,1 0,0,7,9,0 0,1,3,53,0



LVs 5 7 10 5 5 8 —
RMSEP 8.9 8.4 7.5 4 5.8 0.085 —

RMSEP% 5.1 1.7 6 8.1 11.7 8.5 —
PP* 0,2,3,13,0 0,1,5,29,0 0,0,1,21,1 1,0,1,61,1 1,0,3,13,1 0,0,1,5,0 —20

T 
M

M

Data type Abs. Abs. LIFS LIFS LIFS Abs. 
LVs 5 5 8 7 8 8 9

RMSEP 7.2 8.6 2.9 3.5 3.1 0.072 0.012
RMSEP% 4.1 1.7 2.3 7.1 6.1 7.2 1.2

PP* 0,1,7,45,0 0,1,3,29,0 0,0,1,61,0 0,1,3,61,0 0,0,3,61,1 0,0,1,41,1 0,1,5,61,055
T 

M
M

Data type Abs. Abs. LIFS LIFS LIFS Abs. Abs.
*Values in the PP row correspond to preprocessing: SNV (0=no, 1=yes); SG: derivative order (X), polynomial order 
(Y), and smoothing points (Z); and MC (0 = no, 1 = yes). Abs. stands for absorbance. **The PLS2 fused model was 
built using 7 LVs and the following preprocessing combination (1,2,7,41,0).

Praseodymium(III), neodymium(III), HNO3, and corrosion levels were best measured using 
absorption spectra, and uranium(VI), samarium(III) and europium(III) were best modeled using 
the LIFS spectra. For example, the RMSEP% value using the 55T set for uranium(VI) based on 
absorption data was 34%. The LIFS model resulted in a RMSEP% value of 6.1%, which was very 
near the target of 5%. RMSEP% values for HNO3 based on absorption NIR water bands were 
slightly lower than HNO3 predictions based solely on the Raman water band. This difference could 
relate to the NIR band intensity not being altered by self-absorption effects. Information on the 
PLS regression coefficients for the top models for each analyte is provided in Figure S5.
PLSR models with feature selection

Spectral data can be trimmed to include only the regions that contribute to the regression model. 
This process can include manually trimming the spectra to include obvious peaks corresponding 
to relevant species and omitting regions with low signal intensity. This trimming can improve 
model performance by allowing the model to focus on regions of high correlations to the response 
matrix and ignore low-correlation regions. Feature selection is best applied to spectral data after 
preprocessing because features are altered by transformations or even lost (e.g., SG edge effects).  

A GA was applied to the spectra after preprocessing to select the most important features in the 
spectra to improve the regression analysis. The RMSEP% values for most GA-filtered PLS1 
models built from fused and MM datasets were substantially lower (Table 2). For the fused dataset, 
the RMSEP% was lowered by an average of 49.2% for the 20T PLS1 models and 26.9% for the 
55T PLS1 models. The average fused dataset RMSEP% values were reduced to 5.1% and 3.9%, 
respectively. For the MM dataset, the RMSEP% values lowered on average by 13.1% (20T) and 
19.8% (55T). This smaller reduction compared with the fused data is likely because irrelevant 
regions were already excluded from the spectra by analyzing one data source at a time.  
Table 2. PLS1 model results with RMSEP% and percent change compared with preprocessing-
only models after applying the GA filters*

20T Pr Nd Sm Eu U HNO3 CPs
RMSEP% fused 1.9 1.5 2.3 7.1 9.9 8.3 —

% change −78.8 −33.9 −78.3 −1.23 −36.9 −66.1 —



RMSEP% MM 4.3 1.6 3.3 7.5 11.6 8.2 —
% change −14.7 −8.06 −45.5 −6.91 −0.07 −0.0342 —

55T Pr Nd Sm Eu U HNO3 CPs
RMSEP% fused 2.3 1.3 1.8 4.8 7.9 5.6 0.92

% change −49.3 −23.4 −32.1 −21.4 −3.80 −31.5 −48.1
RMSEP% MM 3.7 1.4 1.6 5.1 5.7 5.5 0.86

% change −9.29 −20.1 −31.7 −27.4 −6.93 −23.2 −29.0
*Models were built using the top fused and MM models. The models with the lowest RMSEP% values are 
bolded/underlined. 

Overall, the GA provided a spectral filter that improved the regression analysis and lowered 
RMSEP% values to either satisfactory or strong prediction levels for each species. For all species 
other than the praseodymium(III) in the fused dataset, the PLS1 models built from the training set 
of 55 samples resulted in lowered RMSEP% values. Figure 3 shows parity plots for predicted 
analyte concentrations compared with reference values for the top PLS1 models generated from 
the 55T set. In general, the predicted values for each species were close to the 1:1 line, which 
indicated highly accurate measurements. The uranium(VI) predictions had the largest spread 
around the 1:1 line; it had the largest RMSEP% value. These differences in uranium(VI) 
predictions were not correlated to corrosion levels. As an additional test, the slope and intercept of 
the parity plots were compared with their ideal values of 1 and 0 using an elliptical joint confidence 
region (EJCR).33 All EJCR at 95% confidence contained the theoretical coordinates, ensuring the 
models were statistically accurate (more information in the Supporting Information).



Figure 3. Parity plots for the top models’ predictions of each analyte normalized to the highest 
concentration in the studied range compared with the 1:1 line. 

It is up to the analyst to decide how many LVs are included in PLSR models, often limiting the 
number of models considered due to time constraints, which may inhibit prediction performance. 
This work used an automated LV selection script to test tens of thousands of PLSR models. 
However, in some cases, it chose LVs that appeared too unnecessarily high or low and LVs that 
were somewhat inconsistent between species. For example, the 20T PLSR model for 
samarium(III) selected ten LVs and the 55T set for samarium(III) choose five LVs. This could be 
a result of oscillations in RMSE that cannot be accounted by simple mathematics. Picking the 
optimal number of LVs is up to the user, and if too few are included, some of the explained variance 
in the system may not be accounted for; if too many are included, then the model can overfit noise. 
There are differing opinions on LV selection. Therefore, PLSR models were also built assuming a 
rule of thumb 7 LVs—one for each species. Prediction performance was similar to the automated 
LV selection script (details can be found in the Supporting Information). 

The similarities between low-level fused and MM PLS1 model prediction performance indicated 
that a mid-level (e.g., feature fusion) method would not significantly improve the performance of 
the fusion approach.23 The GA filters resulted in a mid-level fusion strategy option for the fused 
spectra because it chose features from multiple data sources for each analyte. However, including 



features from each data source simultaneously did not significantly outperform PLS1 models built 
using independent sources, likely because most spectral features for the analytes were primarily 
observed with one technique or the other. Although Raman O–H water band and NIR features both 
contained information relevant to measuring acid concentration, the NIR features alone performed 
better than the fused model (see filter in Figure S6). Future work could compare the models 
described in this work, for the analysis of analytes measured by LIFS, to a high-level fusion 
approach, which fuses the results from individual models and additional regression techniques 
(e.g., ridge regression, random forest).  
Predicting lanthanide ratios

The developed approach could be applied in the remote analysis of chemical process streams in 
real applications for the nuclear field. To articulate this application, the validation set was selected 
using concentrations derived from nuclear reactors modeling (Figure S1). Nuclear criticality 
safety, waste storage, treatment, fuel qualification, and nuclear code validation depend on precise 
elemental and isotopic measurements of irradiated nuclear fuel. The composition of the fuel post 
irradiation depends on the fuel properties, positioning within a reactor, power levels, irradiation 
duration, and many other conditions. Multicollector inductively coupled plasma–mass 
spectrometry or thermal ionization mass spectrometry are often used to monitor burnup (e.g., 
148Nd) compared with residual uranium and plutonium concentrations.24 These methods typically 
require high-pressure ion chromatographic separations to measure the concentration and isotopic 
composition of neodymium, plutonium, and uranium. 

The optical techniques used in this work are not sensitive to isotopic information and could 
provide elemental information useful for deconvoluting complicated inductively coupled plasma–
mass spectrometry data owing to isobaric interferences without requiring separations. 
Additionally, the ratios between the lanthanide FPs are sample volume independent and could be 
used as a signature, in conjunction with some process knowledge, to help determine fuel type, 
reactor type, operating cycle length, plutonium attractiveness in the spent fuel, and burnup 
characteristics. Two example lanthanide ratios are shown in Figure 4. Additional examples are 
shown in Figure S4. 



Figure 4. Reference, predicted, and modeled ratios for (a) praseodymium/neodymium and 
(b) praseodymium/samarium. 

The error bars in the predicted values are approximated as the ±RMSEP values for each analyte, 
and the error in reference values were derived from standard error propagation calculation (see 
Supporting Information). The praseodymium/neodymium ratio is relatively constant until many 
days after irradiation. However, the praseodymium/samarium ratios are unique, and this technique 
has sufficient accuracy to measure the difference between natural, 5%, and 20% enriched UO2 fuel 
types. The praseodymium/samarium ratio is unique for different fuel types because uranium 
enrichment affects the ratio of 235U and 239Pu in the fuel, and these isotopes have unique FP yields, 
making it possible to track the level of 235U enrichment. The real-time feedback within radiological 
facilities such as hot cells could provide rapid comparisons with simulations and codes. These data 
would be particularly useful in research applications in which a large phase space exists to be 
explored, namely where many unknowns are held constant, and many experiments are desired. 

CONCLUSIONS
This work combined design of experiments, chemometrics, nuclear reactor modeling, an 

automated latent variable selection script, and sensor fusion approaches to optimize multivariate 



regression models for near-real-time monitoring of numerous chemical species in complex 
environments. The work identified lanthanide FP ratios with nuclear reactor modeling indicative 
of nuclear fuel burnup characteristics and demonstrated a predictive model for quantification. A 
D-optimal design training set minimized the training set size, time, and resource consumption for 
a 7-factor design space. Including species representing CPs directly in the calibration set improved 
prediction performance. However, depending on the application, satisfactory PLSR models were 
still developed without including these variables when appropriate feature selection and 
preprocessing combinations were applied. The fused dataset performed similarly to the MM 
dataset. Analyzing optical spectra using both methods should be considered, but no clear 
advantages to low-level sensor fusion were observed in this work. The methodology addresses 
how to efficiently optimize chemometric models with multiple sensors and numerous species 
which can be leveraged by numerous fields characterizing complex processes. This work 
represents a significant step toward deploying optical sensors for monitoring complex chemical 
processing in harsh chemical environments. 
Supporting Information. These files are available free of charge: extended instrument settings, 
statistical methods, design of experiments, and multivariate analysis sections and FP ingrowth 
simulation, spectra, and additional experimental results (Microsoft Word). 
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