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• Introduction and motivation
• Correlated electron materials

• Theoretical approaches to strongly correlated 
materials
• First-principles dynamical mean-field theory 

(DMFT) framework
• Applications to f-electron correlation effects

• Summary and outlook
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In what ways matter can become ordered

• Landau paradigm

• Beyond Landau paradigm

Crystals Magnets Superconductors

Quantum Hall States Quantum Spin Liquids

Topological 
Insulators

e



• Superconductivity in close proximity to AF magnetism.
• Ground state in different phases can be tuned by control parameters. 

Emergent phenomena from strong correlations

Strongly Correlation Meets with Topology in Quantum Materials



s-orbital

d-orbitals

p-orbitals

f-orbitals



Quantum materials matter (plethora degrees of freedom & functionality) 

Weyl 
semimetals

Topological 
insulators/metals
/superconductors

Majorana 
fermions

Superconductor
s

Quantum 
liquids

• Emergent phenomena and test ground of fundamental physics

Topology Entanglement Many-body 
interactions

Spin-orbit 
interactions

Quantum 
correlations 
fluctuations

• Interesting physics

Superconducting 
Maglev trains

• Emerging technologies (extreme tunability)
Energy Qubits Quantum sensors Nuclear Technology



In the Beginning, a Theory for Everything
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• Since M>>me, the lattice degrees of freedom can be treated 
adiabatically within the Oppenheimer approximation.

• Even so, electron degrees of freedom are still highly 
entangled. It is a hard problem and a direct/exact solution is 
impossible!

J. R. Oppenheimer

Electronic Structure Theory



• It maps the many-body problem onto an auxiliary independent-particle problem. These 
independent particles are Kohn-Sham particles. 
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W. Kohn

• The LDA-based theory are successful for many s- and p-electron ordinary materials (including 
ground state energies and bandstructure).

vxc[n(r)]

vxc[n(r),∇n(r)]

LDA

GGA

Jacob ladder [Perdew, MRS 
38, No. 9 (2013)]  

Density functional theory for ground state properties



• Energy bands narrow as wave 
function overlap is reduced

• At some critical value of reduced 
overlap, electronic correlation 
causes states to localize rather than 
to narrow further

• Near the critical region, the LDA 
fails severely to describe Metal-
Mott Insulator transition (e.g., 
La2CuO4, Cr-doped V2O3, and NiO)

Bonding d-electron

Non-bonding d-electron

Hallmark of Strongly Correlated Electrons is the Narrow Band Phenomena



Cartoon taken from sketchplanations.com

Electronic Structure Theory

LDA

Dromedary

[Weakly interacting systems] LDA+U

Bactrian

[Antiferromagnetic Mott insulator]

How to describe 
the transition 
between two 
phenomena?



Spectral density evolves as the ratio of the Hubbard 
repulsion U to the bandwidth W in a one-band 
Hubbard model. [Kotliar and Vollhardt, Physics  
Today (2004)]

Mott insulator

U / W

Metal 

N. F. Mott

DMFT Captures the Metal-Mott Insulator Transition
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NCA,QMC,
IPT, HI, … DMFT

• LDA: Local density approximation; DMFT: Dynamical Mean-Field 
Theory)
• G (Green’s function) and Σ (self-energy) are frequency dependent, capture 
the temporal quantum fluctuations.

Method: Density Functional theory + Many-Body Approach

Kotliar et al., RMP (2006)

> 5-decades of numerical 
techniques to quantum 
impurity problem

• Quantum Monte 
Caro

• Diagrammatic 
perturbation

• Exact diagonalization
• Gutzwiller 

wavefunction
• …



Periodic Table

Atomic Pu: 5f67s2
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Pu has many anomalous physical properties

Pu: Most complex metal in the periodic table



large mass 
enhancement

volume &
lattice, bulk
modulus  

no magnetic order

How to stitch all pieces of puzzle together?

spectral properties

• Leverage LANL 
strategy of integrating 
theory and experiment



Theoretical challenge to understanding of d-Pu properties

Volume expansion Nonmagnetism Spectral properties

Conventional 
GGA1 ✗ ✓ ✗
Magnetic GGA2 ✓ ✗ ✗
LDA+U3 ✓ ✗ ✗
Mixed level model4 ✓ ✓ ✓
Around mean field 
LDA+U5 ✓ ✓ ✗
LDA+DMFT6-8 ✓ ✓ ✓
1 Soderlind et al, PRB 50, 7291 (1994); 2 Soderlind et al., PRB 70, 144103 (2004); 3 Bouchet et 
al., JPCM 12, 1723 (2000); 4 Eriksson et al., J. J. Alloys and Comp. 287, 379 (2000); 5 Shick et 
al., Europhys. Lett. 69, 588 (2005); 6 Savrasov et al., Nature 410, 793 (2001); 7 Shim et al., 
Nature 446, 513 (2007); 8J.-X. Zhu et al., PRB 76, 24518 (2007).  

Central to the prediction from the LDA+DMFT: nonmagnetism (no static long- range order) 
originates from the Kondo screening.

Recent development: S. Rudin, J. Nucl. Mater. 570, 153954 (2022) – Non-collinear 3Q spin structure 



• Best agreement with the photoemission spectroscopy data taken at LANL

• Non-integer Pu-5f occupancy impacts understanding of magnetism in δ-Pu

JXZ et al., Phys. Rev. B 76, 24518 (2007) 

Theory resolves the valence issue of Pu-5f electron in δ-phase (Validation) 

Photoemission spectroscopy (PES)
-5/2



Theory predicts site-selective electronic correlations in α-Pu metal (Prediction)

JXZ et al., Nature Communications 4, 2644 (2013) 

• Uncovers the “invidualism” of electronic correlations of Pu 
atom in α-structure

• Demonstrates the close structure-function relationship
• Paves the way to explore the entire phase diagram of Pu



v A spin resonance energy at around 80 meV as detected by Inelastic Neutron 
Scattering, sets an effective quantum fluctuation energy scale – fingerprinting the 
missing magnetism. 

M. Janoschek, JXZ, et al., Sci. Adv. 1, e1500188  (2015) 

Valence-fluctuating ground state of plutonium

Track valence-fluctuating ground state in δ-phase of Pu metal (Validation)



Fermi surface topology of d-Pu (Prediction) 

Roxanne Tutchton, JXZ,  Phys. Rev. B 101, 245156 (2020)
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• Correlation induced FS volume expansion
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• DFT+DMFT results are in qualitative agreement with the PES measurement
• Kondo physics picture seems also supported by the transport measurements.
• Strongly correlated of U-5f electrons play an important role in driving the metallic behavior 

and superconductivity

DFT+DMFT Band Structure of Topological Superconductor UTe2

band25 (e) band23 (h)

JXZ et al., in preparation



• Kondo resonance peak is clearly observed
→ Substantial f-c hybridization
• Kondo resonance peak does not change 

upon exfoliation
• CeSiI monolayer can be a 2D vdW heavy 

fermion system

DFT+DMFT prediction of van der Waals of heavy-fermion CeSiI

Jang, JXZ et al., npj 2D Mater. Appl. 6, 80 (2023)



DFT+DMFT Band Structure in Quasi-1D CeIr3B2

Jang et al., Phys. Rev. B 107, 205116 (2023)

• The spectral weight is re-distributed and bands are 
incoherent at T=290 K

• Electron correlation renormalized bands now enables an 
optical transition at around 70 meV



Summary

• An introduction to strongly correlated electron materials has been reviewed 
and its challenge to modern condensed matter physics has been highlighted.

• We have also reviewed the methodology of the DMFT to the correlated 
electrons. As a showcase, we have applied this technique to study elemental 
Pu solids and other f-electron systems
ØWe have elucidated the role of correlation-driven Kondo coherence in 

spectral properties of Pu.
ØWe have also demonstrated the correlation-driven insulator to metal 

transition in UTe2, a counter example of Metal insulator transition in 
transition metal oxides.

ØHeavy-fermion behavior in low-dimensional systems. 



• Accelerate first-principles quantum many-body 
approaches – computationally cost. 
Ø Explore exascale to speed up the algorithms 

(massively parallelized, GPU)
Ø Explore ML/AI to train the dynamical self-energy 

corrections to bypass the brutal force simulations.
Ø Explore quantum computing in hybrid quantum-

classical algorithms to improve and out-perform 
classical calculations

Outlook – Future challenges and opportunities

• Give a unified and complete description of 
phase transformation of elemental Pu. 

• Understand the mechanism of impurity/defect 
induced stabilization of d-Pu.

• Dynamical phases of actinide under extreme 
conditions. 

Finite temperature and strong 
correlation enabled ab initio  
molecular dynamics.

• Unravel the topological 
superconductivity and exotic 
magnetism in f-electron materials.

• Discovery of strong correlated 
materials for sensing and energy.

Security and stockpile stewardship mission Energy and quantum 
information/computing

• Experimental validation
• LANL Material Property Database (w/ automation?)
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• Kondo insulators a direct consequence of electronic correlations

• Hybridization between the 
localized state and conduction 
electrons

• Chemical potential is located 
inside the hybridization gap

• Kondo insulators potentially 
topological

Kondo insulators



Heavy fermion systems

5f fermions

Kondo coupling vs. RKKY

Courtesy of Sarah Grefe

• With SOC,  topology and interplay?



Co-design approach to f-electron quantum materials

LANL HPC-Institutional Computing

Controlled 
synthesis/fabrication
(CINT/MPA-Q)

Electronic Structure 
Theory/Simulation
(T)

Characteriztion 
(CINT/MPA-Q/NHMFL)


