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 Introduction and motivation
 Correlated electron materials

 Theoretical approaches to strongly correlated
materials
 First-principles dynamical mean-field theory
(DMFT) framework

« Applications to f~electron correlation effects

 Summary and outlook
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In what ways matter can become ordered

* Landau paradigm

Crystals Magnets Superconductors

 Beyond Landau paradigm

Topological
Insulators
Quantum Hall States Quantum Spin Liquids
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Strongly Correlation Meets with Topology in Quantum Materials

Emergent phenomena from strong correlations
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* Superconductivity in close proximity to AF magnetism.
* Ground state in different phases can be tuned by control parameters.
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Quantum materials matter (plethora degrees of freedom & functionality)

* Interesting physics

* Emergent phenomena and test ground of fundamental physics

* Emerging technologies (extreme tunability)

Energy Qubits Quantum sensors Nuclear Technology

b, - e

Superconducting
Maglev trains



Electronic Structure Theory

In the Beginning, a Theory for Everything
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 Since M>>m,, the lattice degrees of freedom can be treated
adiabatically within the Oppenheimer approximation.

* Even so, electron degrees of freedom are still highly
entangled. It 1s a hard problem and a direct/exact solution is
impossible!

J. R. Oppenheimer



Density functional theory for ground state properties

* [t maps the many-body problem onto an auxiliary independent-particle problem. These

independent particles are Kohn-Sham particles.
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Jacob ladder [Perdew, MRS
38, No. 9 (2013)]

* The LDA-based theory are successful for many s- and p-electron ordinary materials (including

ground state energies and bandstructure).



Hallmark of Strongly Correlated Electrons 1s the Narrow Band Phenomena

* Energy bands narrow as wave
. . electrons
function overlap 1s reduced

-

>

* At some critical value of reduced
overlap, electronic correlation
causes states to localize rather than
to narrow further

Bonding d-electron

* Near the critical region, the LDA ‘
fails severely to describe Metal- |

Mott Insulator transition (e.g.,
La,CuQO,, Cr-doped V,0;, and N10)

Non-bonding d-electron



Electronic Structure Theory

LDA [Weakly interacting systems] LDA+U [Antiferromagnetic Mott insulator]

Dromedary Bactrian

Cartoon taken from sketchplanations.com



DMFT Captures the Metal-Mott Insulator Transition
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Spectral density evolves as the ratio of the Hubbard
repulsion U to the bandwidth /' in a one-band
Hubbard model. [Kotliar and Vollhardt, Physics
Today (2004)]



Method: Density Functional theory + Many-Body Approach
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* LDA: Local density approximation; DMFT: Dynamical Mean-Field
Theory)

* G (Green’s function) and X (self-energy) are frequency dependent, capture
the temporal quantum fluctuations.

> 5-decades of numerical
techniques to quantum
impurity problem

* Quantum Monte
Caro

* Diagrammatic
perturbation

* Exact diagonalization

* Gutzwiller
wavefunction

Kotliar et al., RMP (2006)



Pu: Most complex metal in the periodic table
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Pu has many anomalous physical properties



How to stitch all pieces of puzzle together?

large mass
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Theoretical challenge to understanding of 0-Pu properties

Volume expansion Nonmagnetism Spectral properties

Conventional

GGA! X 4 X

Magnetic GGA? / X X

LDA+U3 / X X

Mixed level model* / / /

Around mean field

LDA+U> / / X
LDA+DMFT¢8 / / /

I'Soderlind et al, PRB 50, 7291 (1994); 2 Soderlind et al., PRB 70, 144103 (2004); * Bouchet et
al., JPCM 12, 1723 (2000); * Eriksson et al., J. J. Alloys and Comp. 287, 379 (2000); > Shick et
al., Europhys. Lett. 69, 588 (2005); ¢ Savrasov et al., Nature 410, 793 (2001); 7 Shim et al.,
Nature 446, 513 (2007); 8J.-X. Zhu et al., PRB 76, 24518 (2007).

Recent development: S. Rudin, J. Nucl. Mater. 570, 153954 (2022) — Non-collinear 3Q spin structure

Central to the prediction from the LDA+DMFT: nonmagnetism (no static long- range order)
originates from the Kondo screening.



Theory resolves the valence 1ssue of Pu-5f electron 1n o-phase (Validation)
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Theory predicts site-selective electronic correlations in a-Pu metal (Prediction)
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* Uncovers the “invidualism™ of electronic correlations of Pu
atom 1n o-structure

* Demonstrates the close structure-function relationship

* Paves the way to explore the entire phase diagram of Pu

JXZ et al., Nature Communications 4, 2644 (2013)



Track valence-fluctuating ground state in o-phase of Pu metal (Validation)

Valence-fluctuating ground state of plutonium
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% A spin resonance energy at around 80 meV as detected by Inelastic Neutron
Scattering, sets an effective quantum fluctuation energy scale — fingerprinting the
missing magnetism.

L)

M. Janoschek, JXZ, et al., Sci. Adv. 1, €1500188 (2015)
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Fermi surface topology of 6-Pu (Prediction)
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Roxanne Tutchton, JXZ, Phys. Rev. B 101, 245156 (2020)



DFT+DMEFT Band Structure of Topological Superconductor UTe,

band25 (e) band23 (h)
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N
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« DFT+DMFT results are in qualitative agreement with the PES measurement
« Kondo physics picture seems also supported by the transport measurements.
« Strongly correlated of U-5f electrons play an important role in driving the metallic behavior

and superconductivity |
JXZ et al., in preparation



DFT+DMFT prediction of van der Waals of heavy-fermion CeSil
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DFT+DMFT Band Structure in Quasi-1D Celr;B,
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 Electron correlation renormalized bands now enables an
optical transition at around 70 meV
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w (eV) Jang et al., Phys. Rev. B 107, 205116 (2023)



Anntroduction to strongly correlated electron materials has been reviewed
and 1ts challenge to modern condensed matter physics has been highlighted.

We have also reviewed the methodology of the DMFT to the correlated

electrons. As a showcase, we have applied this technique to study elemental
Pu solids and other f-electron systems

> We have elucidated the role of correlation-driven Kondo coherence in
spectral properties of Pu.

> We have also demonstrated the correlation-driven insulator to metal

transition in UTe,, a counter example of Metal insulator transition in
transition metal oxides.

»Heavy-fermion behavior in low-dimensional systems.



Outlook — Future challenges and opportunities

Security and stockpile stewardship mission

Energy and quantum
information/computing

» Give a unified and complete description of
phase transformation of elemental Pu.

« Understand the mechanism of impurity/defect
induced stabilization of 5-Pu.

« Dynamical phases of actinide under extreme
conditions.

« Accelerate first-principles quantum many-body
approaches — computationally cost.
» Explore exascale to speed up the algorithms
(massively parallelized, GPU)

« Unravel the topological
superconductivity and exotic
magnetism in f-electron materials.

» Discovery of strong correlated
materials for sensing and energy.

Finite temperature and strong

— correlation enabled ab initio

molecular dynamics.

Material
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ﬂ\itial DFT solution

pDFI‘

A 4

» Explore ML/AI to train the dynamical self-energy
- corrections to bypass the brutal force simulations.
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€ Pix

»

Compute DMFT
Hamiltonian

» Explore quantum computing in hybrid quantum-
classical algorithms to improve and out-perform

Repeat DFT using

~
Compute electron

density pDMFT )

- classical calculations

)
|

/Solve self-consistency

equations

Impurity model
with bath
parameters Vg, €;

DMFT

Green’s function
G(i wy)

Solve impurity problem
on quantum computer

4

\density pDMFr
Experimental validation
LANL Material Property Database (w/ automation?)

)

Classical computation

Quantum computation
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Kondo insulators

Kondo insulators a direct consequence of electronic correlations

Hybridization between the
localized state and conduction
electrons

Chemical potential is located
inside the hybridization gap

Kondo insulators potentially
topological

€

conduction band

localized states
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Heavy fermion systems
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Co-design approach to f-electron quantum materials

£
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