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Abstract

It was recently suggested that the reported anomalies in Rj, and R, can be
interpreted as the effect of a heavy vector boson that couples to quarks and
is universally decoupled from leptoﬁs. We examine how an extra gauge boson
with this property can arise from superstring derived models. In a specific
three generation model we show that the U(1) g— 1, symmetry combines with the
horizontal flavor symmetries to form a universal leptophobic U(1) symmetry.
In our model there is an enhancement of the color gauge group from twisted
sectors. The enhancement occurs after the breaking of the unifying gauge
symmetry by “Wilson lines”. The leptophobic U(1) symmetry then becomes a

- generator of the color SU(4) gauge group. We examine how similar symmetries

may appear in other string models without the enhancement. We propose that
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if the current LEP anomalies persist it may be evidence for a certain class of

un—unified superstring models.
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Over the past few years LEP, SLC and the Tevatron experiments provided impres-
sive confirmation of the Standard Model of particle physics and its gauge symmetry
structure. Recently, however, there has been accumulating evidence at LEP that in-
dicates deviation from the Standard Model predictions in the hadronic partial width
at the Z-boson peak [1], which is commonly referred to as the R, — R, crisis.

It was recently suggested by several groups [2] that the discrepancy between the
predicted and measured values for the decay of the Z-boson to b and c—quarks could
be explained by an additional heavy gauge boson that couples to quarks but is uni-
versally decoupled from leptons. If this interpretation of the data is correct it will
have profound implication on attempts to understand the origin of the gauge and
matter structure of the Standard Model. It might for example invalidate the tradi-
tional approaches to embed the Standard Model in a simple Grand Unified Group as
those in their nature unify the interactions between quarks and leptons.

In superstring models one also traditionally starts with an underlying unifying
gauge group which is then broken to the Standard Model by using string and field
theoretic symmetry breaking mechanisms. However, as the rank of the gauge group
in string models is larger than those which are used in Grand Unified Theories,
one can contemplate the possibility that a particular combination of the additional
U(1) generators in the four dimensional Cartan subalgebra will combine to form a
leptophobic U(1). Moreover, in a generic level one string model, massless states
that produce the Standard Model representations, in general, must be charged with
respect to additional U(1) or discrete symmetries. As the assignment of charges to the
quarks and lepton depend on the specific compactification, it is difficult to envision
how a generic compactification will produce the universal charge assignment which
is needed. Furthermore, the charges of the quarks and leptons under the additional
U(1) symmetries of the four dimensional gauge group depend on specific patterns
of symmetry breaking in the string models. Therefore, if such a leptophobic U(1)
symmetry is produced it might be a peculiar accident of a particular string model or

perhaps of a class of string models.

In this paper, we examine how a leptophobic U(1) can arise from superstring




derived models. The leptophobia of the U(1) symmetry is obtained by combining the
U(1)p_r generator with a combination of the flavor U(1) symmetries. We present an
explicit superstring derived model which gives rise to a universal leptophobic U(1)
symmetry. The leptophobic U(1l) symmetry is obtained in a class of superstring
derived standard-like models [3] due to a combination of the U(1)_; symmetry,
which is embedded in SO(10), plus a combination of additional U(1) symmetries.
These additional U(1) symmetries compensate the lepton number in U(1)p-; and
the resulting U(1) therefore becomes a gauged baryon number. In the specific model
that we study in some detail the gauge symmetry is enhanced due to gauge bosons
from twisted sectors. The color SU(3) gauge group is enhanced to SU(4), and U(1)p
is the U(1) in the decomposition SU(4)c — SU(3)c x U(1)g. Due to a symmetry
between the three chiral generation, we argue that leptophobic U(1) symmetries
may in fact be common in this class of superstring compactification, without further
enhancement of the gauge group.

The superstring models that we discuss are constructed in the free fermionic
formulation [4]. In this formulation a model is constructed by choosing a consistent
set of boundary condition basis vectors. The basis vectors, bz, span a finite additive
group = = Y. ngby where ny = 0,---, N, — 1. The physical massless states in the
Hilbert space of a given sector o € =, are obtained by acting on the vacuum with
bosonic énd fermionic operators and by applying the generalized GSO projections.
The U(1) charges, Q(f), with respect to the unbroken Cartan generators of the four
dimensional gauge group, which are in one to one correspondence with the U(1)

currents f*f for each complex fermion f, are given by:

Q) = 3a(f) + F(f), (1)

where a(f) is the boundary condition of the world—sheet fermion f in the sector
and F,(f) is a fermion number operator counting each mode of f once (and if f is
complex, f* minus once). For periodic fermions, a(f) = 1, the vacuum is a spinor
in order to represent the Clifford algebra of the corresponding zero modes. For each
periodic complex fermion f there are two degenerate vacua |+),|—) , annihilated by

the zero modes fy and f* and with fermion numbers F(f) = 0, —1, respectively.




The realistic models in the free fermionic formulation are generated by a basis of
boundary condition vectors for all world-sheet fermions [5, 3, 6, 7, 8, 9, 10]. The basis
is constructed in two stages. The first stage consist of the NAHE set [5, 3], which
is a set of five boundary condition basis vectors, {1,S,b,,bs,b3}. The gauge group
after the NAHE set is SO(10) x SO(6)* x Eg with N = 1 space—time supersymmetry.
The vector S is the supersymmetry generator and the superpartners of the states
from a given sector o are obtained from the sector S + «. The space-time vector
bosons that generate the gauge group arise ffom the Neveu-Schwarz sector and from
the sector 1 + by + by + bs. The Neveu-Schwarz sector produces the generators of
SO(10) x SO(6)% x SO(16). The sector 1 + b; + by + by produces the spinorial 128
of SO(16) and completes the hidden gauge group to Es. The vectors &;, bo and
bs produce 48 spinorial 16 of SO(10), sixteen from each sector by, by and b3. The
vacuum of these sectors contains eight periodic fermions. Five of those periodic
fermions produce the charges under the SO(10) group, while the remaining three
periodic fermions generate charges with respect to the flavor symmetries. Each of
the sectors by, by and b3 is charged with respect to a different set of flavor quantum
numbers, SO(6);23.

The NAHE set divides the 44 right-moving and 20 left-moving real internal
fermions in the following way: 1*® are complex and produce the observable SO(10)
symmetry; ¢8 are complex and produce the hidden Es gauge group; {7, 7%},
{7, 42, @58}, {#®, @ *} give rise to the three horizontal SO(6) symmetrives. The
left-moving {y,w} states are divided into, {y>®}, {y*? w>%}, {w**}. The left-
moving x'2, x3, x° states carry the supersymmetry charges. Each sector by, by and
bs carries periodic boundary conditions under (¢*|¢>%) and one of the three groups:
Oxazs {73 81558, ), (xae, {y2, wS1g12@58}, 72), (xse, {wh " 4|@t 4}, 7%).

The division of the internal fermions is a reflection of the underlying Z; x Z; orb-
ifold compactification [11]. The Neveu—-Schwarz sector corresponds to the untwisted
secfor, and the sectors by, by and b3 correspond to the three twisted sectors of the

Za X Z, orbifold models. At this level there is a discrete S3 permutation symmetry

between the three sectors by, b and b3. This permutation symmetry arises due to the




symmetry of the NAHE set and may be essential for the universality of the lepto-.
phobic U(1) symmetry. Because of the underlying Z, x Z, orbifold compactification,
each of the chiral generations from the sectors b, b, and b3 is charged with respect
to a different set of flavor charges. _

The second stage of the basis construction consist of adding three additional
basis vectors to the NAHE set. The three additional basis vectors correspond to
“Wilson lines” in the orbifold formulation. Three additional vectors are needed to
reduce the number of generations to three, one from each sector b;, by and b3. One
specific example is given in table 1. The choice of boundary conditions to the set of
real internal fermions {y,w|y, @} ° determines the low energy properties, like the

‘number of generations, Higgs doublet—triplet splitting and Yukawa couplings.

The final gauge group arises as follows. The NS sector produces the generators of -
SUB)exSU2) xU(1)exUQ) xU(1)123xU(1)asex SUB)x SO4) xU(1) g x
U(1)7g9. The SO(10) symmetry is broken to SU(3)¢ x U(1)e x SU(2); x U(1).*,

where
3
Ul)e =TUQB)c = Qc=> Q@@),
=1

Ul =TU@2) = Q.= i@(’ll-fi)- (2)

i=a
The flavor SO(6)® symmetries are broken to U(1)**" with (n = 0,---,6). The first
three, denoted by U(1),,, arise from the world-sheet currents 777" (j = 1,2,3).
These three U(1) symmetries are present in all the three generation free fermionic
models which use the NAHE set. Additional horizontal U(1) symmetries, denoted
by U(1)-; (j = 4,5,...), arise by pairing two real fermions from the sets {y "},
{7*?,&>%}, and {@'*}. The final observable gauge group depends on the number
of such pairings. In the model of table 1 there are three such pairings, 737%, 7'@®
and @?@*, which generate three additional U(1) symmetries, denoted by U(1)

74,5,6°

It is important to note that the existence of these three additional U(1) currents is

correlated with a superstringy doublet-triplet splitting mechanism [12]. Due to these

*U(l)e = 3U(1)p-r and U(1)p =2U(1)7s, -




extra U(1) symmetries the color triplets from the NS sector are projected out of the
spectrum by the GSO projections while the electroweak doublets remain in the light
spectrum. The remaining U(1) generators are
Ul)gy =TUQB)y = Qu= ZT:SQ(éz) (3)
and U (1)7.8.9, which arise from the world-sheet currents ¢'¢!", ¢*¢*", #34%", respec-
tively. The sector 1 + &, + by + b3 produces the representations (3,2)_s & (3,2)s
and 2_3 @ 23 of SU(3) x SU(2), x U(1)ss and SU(2), x U(1)ss respectively, where
S’U(Z)r x SU(2), are the two SU(2)’s in the isomorphism SO(4) ~ SU(2), x SU(2),.
Thus, the Ey symmetry reduces to SU(5) x SU(3) x U(1)?. The U(1)’s in SU(5) and
SU(3) are given by U(1)ps = —3U;+3Us+Upy —3Us and U(1)p3 = U+ Us +Upy + Uy
respectively. The remaining U(1) symmetries in the hidden sector, U(1)» and U(1)y,
correspond to the world—sheet currents ¢'¢!” — $8@%" and —2¢7¢7" + pL!" + 4424 +
%9 respectively, where summation on j = 5,---,7 is implied.
For some choices of the additional basis vectors that extend the NAHE set, there
may exist a combination
X =nq0+nghB+ nyy (4)

for which X - X; =0 and Xg-Xr # 0. Such a combination may produce additional
spéce—time vector bosons, depending on the choice of GSO phases. In the model of
table 1 additional space-time vector bosons are obtained from the sector 1 + o + 27

[10]. The model of table 1 differs from the model of Ref. [10] by a change of a GSO

c(:)=—-1—>c<z)=+l | (5)

In the model of table 1, the sector 1 + a + 2v produces six additional space-time

phase

vector bosons, which are triplets of SU(3)¢ and carry U(1) charges. One combination

of the U(1) symmetries
| 1
U(l)B = §UC - (U1'4 + U"'s + UTG) - Un (6)

is the U(1) generator of the enhanced color SU(4) symmetry. The six space-time

vector bosons from the sector 1 + o + 27 complete the adjoint representation of the




gauge group. The remaining orthogonal U(1) combinations are

Uoo =Uc+ %Uw,

Uy =Us—Us,

Uy =Us+Us - 2Us,

Upm =Uc+ g(U4 + Us + Us) — 3Ur. (7)

The full massless spectrum now transforms under the final gauge group, SU(4)¢ X
SU2)xU)erxU)pxU(1)123xU 1)y xU(1)y xU(1)7w xU(1)s. The weak hyper-
charge is given by U(1)y = 1/3U(1)¢r +1/2U(1) .. The Neveu-Schwarz sector gives,
in addition to the graviton, dilaton, antisymmetric sector and spin 1 gauge bosons,
three pairs of electroweak doublets, three pairs of SO(10) singlets with U(1);23
charges and three singlets of the entire four dimensional gauge group. The sector
S + by + by + a + B produces two pairs of electroweak doublets and four pairs of
SO(10) singlets with U(1); 23 charges. The quantum numbers of the massless states
from these two sectors are the same as those that are given in Ref. [10].

The states from the sectors b; ® 1 + o +2v (j = 1,2, 3) produce the three light
generations. The states from these sectors and their decomposition under the entire
gauge group are shown in table 2. The leptons are singlets of the color SU(4) gauge
group and the U(1)p symmetry, Eq. 6 becomes the gauged leptophobic U(1) sym-
metry. The remaining massless states and their quantum numbers are given in table
2.

We observe that the leptophobia of the U(1)p symmetry is obtained from a com-
bination of U(1)p_y, plus the three flavor symmetries U(1),,,,. The Q¢ charges of
the leptons from each of the sectors by 23 are canceled by their charges under the
flavor symmetries U(1),, . Miraculously, the charges of the leptons under the flavor
U(1) symmetries are such that the cancelation occurs for all the leptons, in all the
sectors. Thus, the leptophobic U(1) symmetry is generation blind.

The massless spectrum of the string model contains three anomalous U(1) symme-
tries: TrU; = 24, TrU,; = 24, TrU; = 24. Of the three anomalous U(1)s, two can be

rotated by an orthogonal transformation. One combination remains anomalous and




is uniquely given by: Uy = k3;{TrU(1);]U(1);, where j runs over all the anomalous
U(1)s. The “anomalous” U(1), is broken by the Dine-Seiberg-Witten mechanism
(13] in which some states in the massless string spectrum obtain nonvanishing VEVs
that cancel the anomalous U(1) D-term equation. Thus, the leptophobic U(1)p
symmetry is anomaly free under the entire string spectrum and can be left unbroken
down to low energies.

We now examine whether similar leptophobic symmetries can arise in similar
superstring models. The model of Ref. [10] differs from the model of table 1 by a
change of a GSO projection coefficient. In this model, two massless gauge boson from
the sector 1 + o + 27 enhance one of the U(1) combinations to SU(2)custodial- The
full massless spectrum and symmetries is given in Ref. [10]. However, this phase
change does not modify the charges of the states from the sectors b; 3 under the
flavor symmetries U(1),, ;. Thus, the same combination of U(1)¢ plus the flavor
symmetries U(1),,,, is a leptophobic U(1) symmetry. In this model the color SU(3)
group 1s not enhanced.

Next, we examine the massless spectrum of the model of Ref. [8]. The boundary
condition basis vectors and the entire massless spectrum are given in Ref. [8]. The
gauge boson from the NS sector are the same. The gauge group, however, is not
enhancéd. The sectors b; 23 produce the three chiral generations, which are charged
under the same flavor symmetries. The charges, however, under the flavor symmetries
differ from the charges in table 1. For example, examining the charges of the states

from the sector b,

(7 +ui)1p0l00t

(@2 + NL)100.-100 +

(L)1003.00+ (@)100-100 (8)
we observe that e} and L have like-sign charges under U,,. Since they carry opposite

sign charges under U(1)¢, U,, cannot be used to cancel the B — L charge for both of
these states. Since, they carry like-sign charges also under U(1),, a leptophobic U(1)

cannot be made from these U(1) symmetries. It also ought to be mentioned that in




this model the flavor symmetries U,, , ; are anomalous. Therefore, their combination
with U(1)¢ is not anomaly free and must be broken. Thus, the existence of a universal
leptophobic U(1) in the previous model is nontrivial.

Next, we comment on the charges under the horizontal symmetries in the model
of Ref. [6]. This model contains as well similar horizontal flavor symmetries U(1)y, ;¢-
Examining the charges of the chiral generations under these symmetries we observe
that in this case the combination U(1)c + 3U(1)4 — 3U(1)s — 3U (1) could serve as
a leptophobic U(1) symmetry. This combination cancels the U(1)p_ charge of the
charged and doublet leptons from the sectors b; 3 3. Interestingly, the charges of the
right handed neutrinos do not vanish under this symmetry. However, in this case
[6] the combination U(1)s + U(1)s is not anomaly free and therefore cannot be a
good leptophobic U(1) symmetry. By changing a GSO projection coefficient we may
change the sign of the charges under these symmetries, which will flip the sign of the
combination. However, this is not likely to help in this model as it might also change
the sign of the anomaly. '

One possible interpretation of the R, and R, anomalies at LEP is the existence
of an additional Z’ which is universally decoupled from leptons. In this paper we
examined how such leptophobic U(1) symmetries may arise from superstring de-
rived models. We showed in a specific toy model that the U(1)_1 gauge symmetry
can combine with the horizontal flavor symmetries to produce a leptophobic U (1)
symmetry. The leptophobic U(1) combination is universal and anomaly free. The
appearance of such a symmetry seems to be nontrivial. It would be of further in-
terest to examine whether other combinations of the flavor symmetries can produce
universal leptophobic symmetries. It would be also be of interest to examine whether
leptophobic U(1) symmetries can arise in other classes of superstring derived models
[14, 15]. In the class of free fermionic models that we studied in this paper, the univer-
sality of the leptophobic U(1) symmetry is closely related to the underlying Z, x Z,
orbifold structure, which is exhibited in the NAHE set. Due to this underlying struc-
ture each one of the chiral generations is charged with respect to an orthogonal set

of flavor quantum numbers. This property enabled a combination of the flavor U(1)




symmetries to cancel the U(1)p—. charge of the leptons from each sector separately,
thus creating the universal leptophobic symmetry. It is also interesting to note that
the appearance of a leptophobic symmetry may be correlated with proton stability
in the models that we examined in some detail. In this class of models proton decay
from states at the massless string level is forbidden [12]. Finally, if the LEP anoma-
lies persist and the Z’ interpretation is verified in future experiments, this discovery
will indicate the existence of some structure which is beyond the Standard Model
and may be beyond the simple scenarios of unification. Thus, such a discovery may
be the first strong experimental evidence in favor of superstring unification, in which
such additional symmetries are abundant and well motivated. It is of course impor-
tant to examine in specific models whether such a leptophobic Z’, which is obtained
from a superstring model, can define a realistic low energy scenario. Such work is in -
progress.

It is a pleasure to thank Claudio Coriano and Pierre Ramond for valuable dis-
cussions. This work was supported in part by DOE Grant No. DE-FG-0586 ER40272
and by CICYT under contract AEN94-0936.
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Table 1: A three generation SU(4) x SU(2) x U(1) model. The choice of generalized
GSO coefficients is: c(a,bﬂfﬁ) = —-c(f) = —c(g) = —c(f) = c(‘l’) = —c(a"’ﬂ) =

-1 (j = 1,2,3), with the others specified by modular invariance and space-time

supersyminetry.
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Table 3: Extra massless states and their quantum numbers in the model of Table 1.




F | SEC |SU@)ecxSUQ2)L | Qe Qr @1 Q Qs Qo Qs |SUB)yxSUQRB)r| Qo Qs
L | 1+b+ (1,2) -1 0 - o o -1 -2 (1,1) L o0
Sr | a+2y (1,1) 1 1 -3 0 0 3 3 (1,1) -2 0
Sz (1,1) 1 -1 -2 o o L 1 (1,1) % 0
Is | 1+bt (1,2) -1 0 0 - o0 3 -3 (1,1) 1% 0
Sg | a+2y (1,1) 1 1 0 -3 0 -3 2 (1,1) ¥ 0
Ss (1,1) 1 -1 o0 - o -3 1 (1,1) =
lg |1+ b3+ (1,2) -1 0 0 0 -3 0 1 (1,1) 2 0
Se | a+2y (1,1) i1 1 0 0 -3 0 -1 (1,1) -2 0
So (1,1) 1 -1 0 0 - 0 -1 (1,1) -2 0
Sio | 1+s+ (1,1) -2 0 0 0 -1 -1 (1,1) ~3 0
S | a+2y (1,1) -2 0 0 0 0 1 1 (1,1) &0

Table 4: (Cont.) Extra massless states and their quantum numbers in the model of

Table 1.




