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INTRODUCTION AND OVERVIEW 
Rapid advances in energy applications require new theory and computational models to 
provide guidance for interpretation of experimental results and mechanistic 
understanding. New theory development is necessary to treat systems of increasing 
complexity, size, and relevance to real applications. Functional transition metal 
compounds, including molecules, clusters, nanoparticles, surfaces, and solids, provide 
particular promise for magnetic, optical, and catalytic applications. However, such 
systems can be exceptionally challenging to model. To make progress in understanding 
and designing transition metal compounds for energy applications, theory must be able 
to simulate such systems in complex environments, as well as simulate the spectra of 
such complex systems to provide direct connections with experiment. Leveraging the 
independent expertise of the team’s members, this project aimed to make inroads to the 
theoretical and computational challenges associated with studying transition metal 
compounds, their reaction chemistry, photophysics and photochemistry, and response to 
spectroscopic interrogation. 
 
The project was organized into three themes, each involving multiple PIs and their 
research groups. Theme 1 centered on the development of efficient ground and excited 
state models. Theme 2 sought new methods for treating charge transfer within complex 
environments. Theme 3 focused on improved methods and theory for simulating non-
destructive ultrafast spectroscopies. Importantly, this project supported synergistic 
scientific efforts involving five groups working in chemical computation and theory that 
span a broad range of sub-specialties within the field. The project initiated a Center for 
Chemical Computation and Theory (ccCAT) at UC Merced, which has led to broader 
synergistic scientific research between PIs and their groups. 
 
CONCLUSIONS 
Progress was made in all three aims of the project. Theme 1 resulted in the development, 
validation, and benchmarking of new models for studying open-shell systems. More 
specifically, the work from Theme 1 yielded a new so-called spin-flip approach to the 
GW/Bethe-Salpeter model and implementation, taking advantage of a similar structure of 
the equations to (linear response) time-dependent density functional theory (TDDFT). 
Critical issues of spin contamination and convergence with number of states in the Bethe-
Salpeter method have been assessed. Another model explored for studying excited 
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states builds on the ∆-self-consistent-field approach. Specifically, we have implemented 
a projection-based initial maximum overlap method (PIMOM) approach that significantly 
improves the robustness of such models. A spin-projection model has been incorporated 
with PIMOM and the results show that this is an excellent model for studying energies, 
geometries, and vibrational frequencies of electronic excited state for molecular systems. 
Theme 2 aimed to develop new models for effective treatment of charge transfer in 
complex environments. The team reported a reliable and computationally efficient 
protocol to assign partial atomic charges of water molecules in condensed phases based 
on quantum chemistry calculations and described initial applications. Theme 3 advanced 
new methods for simulating and understanding nonlinear spectroscopies. Specifically, the 
team developed new approaches that minimize the number of cost of full quantum 
chemistry calculations needed to accurately simulate nonlinear spectroscopic signatures. 
Finally, this award provided support that encouraged and enhanced synergy and 
collaboration through a number of intentional efforts to build community among the 
project’s research groups. These efforts included a bi-annual one-day ccCAT retreat, bi-
weekly student/postdoc run Joint Computational and Theory Club (JCTC) meetings, 
jointly mentored students and post-docs, and frequent multi-PI/postdoc/student meetings. 
Such coordinated effort strongly supported the goals of this project and prepared the team 
for future research efforts relevant to the CTC Program and other BES/DOE initiatives. 
Taken together, the project yielded several advancements that will support expanded 
application spaces for studies involving functional transition metal systems, including 
those in complex environments. 
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