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Implementation and parallelization of additive turbulent decomposition is described
for the small-scale incompressible Navier-Stokes equations in 3-D generalized coordinates
applied to the problem of turbulent jet flow. It is shown that the method is capable of
producing high-resolution local results, and that it exhibits a high degree of paralleliz-
ability. Results are presented for both distributed- and shared-memory architectures, and
speedups are essentially linear with number of processors in both cases.

1. INTRODUCTION

Turbulent flows have been investigated both theoretically and experimentally for over
a century, but in recent years the wide availability of supercomputers has spurred interest
in numerical techniques. However most of the currently used computational methods
have deficiencies and limitations. The drawbacks of modeling approaches like mixing
length and «-¢ are well known, see for example [3]. Subgrid-scale modeling continues to
be a weak part of the large eddy simulation (LES) technique (cf. Ferziger[l]), even when
dynamic subgrid-scale models (Germano et al. [2]) are used. Direct numerical simulation
(DNS) of turbulent flows is restricted to flows with low Reynolds numbers (Re) because

~ of limitations of computing hardware; thus simulation of flow problems of engineering

interest (Re > 10°) is not presently feasible (see Reynolds [9]). Moreover, DNS has a
limited scope for parallelization which means that it cannot fully utilize the opportunities
offered by massively parallel processors (MPPs) which present the only hope of solving
realistic turbulent flow problems in the near future.

The technique used for turbulent flow calculations in the present research is the additive
turbulent decomposition (ATD) first proposed by McDonough et al. [7] and developed by
McDonough and Bywater [4,5] in the context of Burgers’ equation, and by Yang and
McDonough [10} for the 2-D Navier-Stokes (N.-S.) equations. The algorithmic structure
of ATD is similar to LES; but it uses unaveraged equations, and hence there is no closure
problem. Like DNS, it maintains full consistency with the N.-S. equations. Moreover,
ATD is designed to fully exploit the architecture of the MPPs and offers the possibility of
both fine- and coarse-grained parallelization. The work presented here represents the first
study of ATD in three space dimensions, and parallelization thereof. The results indicate
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that theoretical speedups predicted in McDonough and Wang [6] and verified there with
one-dimensional calculations are, in fact, achievable in three dimensions. In particular, it
is shown in [6] that if linear speedups can be achieved on the three main parallelization
levels of ATD (see Figure 2), then effective run times in turbulence simulations can be
reduced to at most O(Re*?) from the usual O(Re®); our preliminary results indicate that
required linear speedups are possible.

2. ADDITIVE TURBULENT DECOMPOSITION

2.1. Procedure
To demonstrate the details of the ATD algorithm it will be applied to the viscous,
incompressible N.-S. equations which are given in vector form as:

V.-U-=0, (1)

1
Ui+U-VU = -VP+ 5 AU. 2)

The above equations are non-dimensional where U is the velocity vector scaled with
respect to Up, a characteristic velocity scale, and P is pressure non-dimensionalized by
pUZ (p is density). Re is Reynolds number defined as UpL/v where L is a length scale,
and v is kinematic viscosity. The gradient operator and the Laplacian are denoted by V
and A respectively. The subscript ¢ denotes the time derivative in the transport equation.

The dependent variables are split into a large-scale (U, P) and a small-scale (U*, P*)
as follows:

U=U+U" and P=P+ P

The large-scale quantities can be viewed as the first few modes in a Fourier representation
of the total quantity, and the small-scale quantities are the series remainders consisting of
high mode numbers. The split quantities are then substituted into the governing equations
which take the form:

V- (U+U*=0, (3)
U +U)+U+U")-VU+U")=-V(P+ P+ %A(ff +U"). (4)

The governing equations are now additively decomposed (in a manner analogous to
operator splitting schemes) into large-scale and small-scale equations:

V.-U=0,
_ _ _ 1 - (large-scale) (5)
U:+(U+U") - VU = —VP+E;AU,
V.U =0,

_ 1 (small-scale) (6)
U+ (U +U") - VU* = —~VP" + —AU".

Re

It is clear from equations (5-6) that there are enough equations for the number of un-
knowns; that is, there is no closure problem. The decomposition is not unique, but the
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Figure 1. Domain decomposition employed in ATD

given form retains the structure of the N.-S. equations except for the additional cross-
terms, e.g. (U - VU"), which arises from decomposition of the nonlinear term of the
original equation. The cross-terms also maintain coupling between the scales. Although
at present the ATD algorithm is implemented with this two-level splitting, it could con-
ceivably involve multi-level decomposition.

It should be noted that the consistency of the split equations with the N.-S. equations
implies Galilean invariance. Also, realizability is automatically achieved because turbulent
fluctuating quantities are calculated directly. The splitting also imparts the flexibility
of using different numerical methods on each scale. Typically, finite difference (or finite

- volume) schemes are used for the large-scale which usually does not require high resolution,

and Galerkin/spectral methods are used on the small-scale.

2.2. Parallelizability of ATD

Figure 1 shows a typical small-scale subdomain around a large-scale grid point. The
small-scale equations are solved locally within this subdomain. The wide scope for par-
allelization in ATD is inherent in this spatial domain decomposition. Since there is a
small-scale subdomain corresponding to each large-scale grid point, the small-scale solves
can be parallelized easily.

Using a spectral method on the small scale converts the partial differential equations
(PDEs) into a system of 1%*-order ordinary differential equations (ODEs). The evaluation
of the right-hand side (RHS) of these ODEs at a given time level depends only on data
from a previous time level. Hence within each small-scale solve the evaluation of the
Galerkin ODE RHSs can be parallelized at each time step. Parallelization can be further
implemented within each RHS evaluation to calculate the nonlinear convolutions and the
cross-terms. Figure 2 shows these different levels of parallelization possible in ATD.
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Figure 2. Levels of parallelization in ATD

3. PRESENT RESEARCH

At present the solution of only the small-scale equations is being attempted using
parameterized inputs from the large-scale. This is a three-dimensional calculation in
generalized coordinates. The large-scale is computed via a commercial CFD code.

The small-scale equations are solved using the Fourier-Galerkin spectral method de-
scribed by Orszag [8]. In this technique the dependent variables are expressed as truncated
triple Fourier series using complex exponential basis functions as

N
U™(&,t) = Zl: aj(t) exp(iay - §), (7)

where U™ is now the small-scale contravariant velocity vector, I is the vector of mode
indices, IN represents the maximum number of Fourier modes in each direction, § is
the position vector in generalized coordinates with origin at the large-scale grid point,
a;(t) is the vector of time-dependent complex Fourier coefficients and a; is the vector of
wavenumbers which are scaled based on the large-scale grid spacing.

The Fourier representations of the dependent variables are then substituted into the
governing equations, and the necessary operations are performed. Taking Galerkin inner
products gives the spectral projection of the equations which are now a system of 13%-order
ODE:s in the time-dependent Fourier coefficients:

dal

=t = fla, D). ®)




The function f is a notation to denote a rather complicated right-hand side vector. It
should be noted that the Fourier coefficients of the small-scale solution depend explicitly
on the large-scale solution U. This system of ODE initial value problems in the Fourier co-
efficients is integrated forward in time using Heun’s method, an explicit 2*4-order Runge-
Kutta scheme. Once the Fourier coefficients are known at a given time, the dependent
variables can always be calculated using the Fourier series representation of equation (7).

4. RESULTS & DISCUSSION

4.1. Flow specifics & problem parameters

The particular flow problem under consideration is a three—dlmensmnal turbulent jet.
The flow is incompressible and the fluid has constant properties close to those of air:
p = 1.0kg/m? and p = 1 x 10~ Ns/m®. The jet diameter of 10 mm. is the reference
length, and the total axial length of the domain is 760 mm. The jet velocity at the inlet
is 5.0 m/s giving an inlet Re = 5 x 10*. The large-scale solution is obtained from a finite
volume commercial CFD code on a rather coarse 13 x 14 x 81 grid.

Figure 3 displays an instantaneous spatial slice of the large-scale solution (velocity
vectors and pressure) and the location of the small-scale subdomain. The subdomain has
a small radial offset, and its axial position is halfway between the inlet and outlet. This
gives a non-dimensional axial location of 38, which is well beyond the potential flow core
and in the region of fully-developed turbulence. Adequate resolution on the small-scale
was obtained by IN = (7,7,7) Fourier modes. The choice of the small-scale time step was
dictated by the stiffness of the problem and the explicit nature of the solution method; it
was set to 2 x 1078 sec. to maintain stability.

2. Turbulence calculations

The main motivation for the present research is to obtain highly resolved small-scale
turbulent solutions. For this purpose the code was allowed to perform time integrations
for relatively long times corresponding, approximately, to the large-scale time scale. Fig-

ure 4 shows the time series of the circumferential component of small-scale velocity at a
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subdomain -

Figure 3. Large-scale flowfield and location of small-scale domain
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Figure 4. Time series of small-scale velocity

location in the center of the small-scale subdomain. The time series shows strong residual
periodicity with a time scale of about 2 ms. This is probably to be expected in a region
where the jet profile is self-similar. Moreover, these fluctuations are truly small scale
having magnitudes of order 10™* compared with O(1) for the large-scale velocity. This
demonstrates the high degree of spatial and temporal resolution achievable with ATD.

4.3. Parallelization results

A broad, coarse-grained parallelization of the ODE right-hand side evaluations was
implemented. The code was allowed to integrate the solution forward in time for fifty
small-scale time steps. Figure 5 shows the speedups obtained on a distributed-memory
Convex-HP MetaSystem consisting of 8 processors running PVM. Parallelization was
also implemented using compiler directives on a 24 processor shared-memory Convex-HP
Exemplar SPP-1000. The corresponding speedup results are shown in Figure 6.

The data partitioning used to divide the computational load among different processors
is very effective for both machines. This is evident from the balanced CPU load on the
parallel threads as shown in Figure 7. The CPU time required to solve the problem using
8 processors was about 300 sec. on the MetaSystem and about 120 sec. on the Exemplar.
Thus the code runs much faster under the shared-memory paradigm, and this is despite
the fact that the processors on the Exemplar currently have a slightly lower clock speed.

It can be seen that the speedups achieved with multiple processors scale essentially
linearly with the number of processors. It should be recalled from Figure 2 that par-
allelization can be implemented at levels both above and below the present one. This
implies that with the availability of true MPPs (O(10%) processors, or more) the ATD
algorithm can perform full three-dimensional turbulence simulations in physically realistic
situations involving generalized coordinates, at Re at least as high as 10°.
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Figure 7. CPU load balance on parallel threads (Profile generated for 8 processors on
Convex-HP Exemplar)

5. SUMMARY & CONCLUSIONS

This is the first implementation of the ATD algorithm in three space dimensions. The
two main (theoretically expected) features of ATD are its parallelizability and its ability
to produce highly resolved solutions; both are demonstrated in the present results.
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Parallelization in ATD can be implemented at several different levels which can be
nested. Parallelization speedups scale essentially linearly with number of processors for
an intermediate (and thus more difficult to parallelize) level. This implies that high Re
three-dimensional turbulence simulations are possible on MPPs.

The present code parallelizes well under both shared-memory and distributed-memory
paradigms. Programming is much easier under shared memory using a few compiler direc-
tives than under distributed memory which requires learning a message passing language.
The execution times are also much less under shared memory, even with somewhat slower
processors. We conclude from this that, despite a rather widespread early fear of shared-
memory architectures, they can perform at least as well as distributed-memory machines.
We believe this makes them the obvious choice for future MPP architectures due to their
ease of use.
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