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Abstract 

Spiking Neural Networks (SNNs) are brain-inspired computing models incorporating unique temporal 
dynamics and event-driven processing. Rich dynamics in both space and time offer great challenges and 
opportunities for efficient processing of sparse spatiotemporal data compared with conventional 
artificial neural networks (ANNs).   

Under this context, the goal of this project is to develop spiking neural network based neuromorphic 
computing to enable energy-efficient real-time learning and processing of spatiotemporal data. This 
report summarizes the key results on network architecture design, training methods, and SNN hardware 
acceleration achieved under this project, demonstrating the promise of spiking neural networks.  

 

1. Project Objectives 

The overall objective of this work to develop a spike-based analog neuromorphic computing framework 
to enable energy-efficient real-time learning and processing of spatiotemporal data to accelerate 
scientific discovery.  

Broadly speaking, we attempt to address the following research challenges and needs:  

1) Spiking neural network (SNN) architecture of computation:  neurally-inspired SNN models are often 
hand tuned for specific tasks; Lack of unifying SNN architectures hampers the application of 
neuromorphic computing to diverse domains including scientific discovery; 

2) High-performance training: existing SNN training algorithms such as biologically-plausible spike-timing 
dependent plasticity, which lack a globally-defined learning objective, are unable to deliver competitive 
performance for challenging learning tasks. 

3) Energy-efficient high-performance SNN hardware accelerators: in addition to overcoming the 
challenges in 1) and 2), it is desirable to develop highly efficient hardware accelerators to expedite 
spike-based workloads.  
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2. Main Findings of the Project 

In the context of the above objectives, the research team has had developed a sequence of techniques, 
centering around the following key aspects. 

2.1 Recurrent SNN compute fabrics and network architectures 

It is instrumental to design recurrent fabrics that can be replicated for building large SNNs with good 
performance. This will avoid designing recurrent SNNs with randomly generated connectivity patterns, a 
current ad-hoc practice that does not guarantee good performance. Such fabrics shall possess high 
spatiotemporal computing power, be small in size, and inter-fabric connections shall be made in a 
structured manner to mitigate training difficulties. 

Towards this end, first, we propose a new type of RSNNs called Skip-Connected Self-Recurrent SNNs (ScSr-
SNNs) [1], as shown in Fig. 1.  Recurrence in ScSr-SNNs is introduced in a stereotyped manner by adding 
self-recurrent connections to spiking neurons. In some sense, here the basic recurrent fabric consists of a 
simple spiking neuron with a self-recurrent connection to itself. In terms of inter-fabric connectivity, we 
use feedforward connections to wire up multiple layers each consisting of a set of the basic self-recurrent 
fabrics. The SNNs with self-recurrent connections can realize recurrent behaviors similar to those of more 
complex RSNNs while the error gradients can be more straightforwardly calculated due to the mostly 
feedforward nature of the network. The network dynamics is enriched by skip connections between 
nonadjacent layers.  

 

Fig. 1.  Skip-Connected Self-Recurrent SNNs (ScSr-SNN). 

Based on challenging speech, neuromorphic speech, and neuromorphic image datasets, the proposed 
ScSr-SNNs have been shown to outperform other types of recurrent SNNs reported before, for example 
on the widely used DVS-guesture recognition dataset as shown in Table 1.  
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Table 1: SNN model acurracies of several different models trained over the neuromorphic video dataset 
DVS-Gesture.  

Second, we further propose a novel recurrent structure called the Laterally-Inhibited Self-Recurrent Unit 
(LISR), which consists of one excitatory neuron with a self-recurrent connection wired together with an 
inhibitory neuron through excitatory and inhibitory synapses [2]. The self-recurrent connection of the 
excitatory neuron mitigates the information loss caused by the firing-and-resetting mechanism and 
maintains the long-term neuronal memory. The lateral inhibition from the inhibitory neuron to the 
corresponding excitatory neuron, on the one hand, adjusts the firing activity of the latter. On the other 
hand, it plays as a forget gate to clear the memory of the excitatory neuron. The LISR units can be 
leveraged to realize recurrent SNNs as illustrated in Fig. 2.  

 

Fig. 2. Recurrent SNNs based upon the proposed LISR units.  

The excellent performance of the proposed LISR has been reported in [2].  

 

 

Method Network Performance
TrueNorth[6] CNN-based 16 layers 91.77%

Slayer[7] CNN-based 8 layers 93.64%
RNN[8] CNN-based 92.01%
LSTM[8] CNN-based 93.75%
SNN[3] CNN-based 8 layers 93.40%

ScSr-SNN) CNN-based 8 layers 95.49%
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2.2 High-Accuracy SNN Training Algorithms 

For training the proposed Skip-Connected Self-Recurrent SNNs (ScSr-SNNs), we propose a new 
backpropagation (BP) method called backpropagated intrinsic plasticity (BIP) to further boost the 
performance of ScSr-SNNs by training intrinsic model parameters [1]. Unlike standard intrinsic plasticity 
rules that adjust the neuron’s intrinsic parameters according to neuronal activity, the proposed BIP 
method optimizes intrinsic parameters based on the backpropagated error gradient of a well-defined 
global loss function in addition to synaptic weight training. By comprehensive benchmarking, the 
proposed ScSr-SNNs can boost performance by up to 2.85% compared with other types of RSNNs trained 
by state-of-the-art BP methods.  

 

Furthermore, we adapted a BP method developed recently by our team to specifically train recurrent 
SNNs based on the proposed LISR unit, which improves learning performance significantly by up to 9.26% 
over feedforward SNNs with similar computational costs on a set of speech and image datasets [2]. 

 

2.3 SNN Training Methods with Reduced Complexity for Deployment on Neuromorphic 
Hardware 

While promising backpropagation (BP) methods have been developed for SNNs, they tend to be either 
not biologically plausible or to be computationally complex.  We study two biologically plausible 
alternatives to backpropagation while retaining high temporal precision for SNN training. These two 
methods, namely TSSL-DFA and TSSL-KP, are extensions to direct feedback alignment (DFA) and a method 
by Kollen-Pollack (KP), respectively.  

TSSL-KP and TSSL-DFA are for SNN training and incorporate recent BP-based gradient computation 
techniques and additional simplifications [3], as illustrated in Fig. 3.  

 

Fig. 3 Proposed low-complexity SNN training methods TSSL-KP and TSSL-DFA. 
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 We show that both methods can near the accuracy of a state-of the-art BP method while maintaining 
biological plausibility, and in the case of TSSL-DFA greatly reducing the complexity of the required 
feedback algorithms. We assess the complexity of these algorithms to show their usefulness under 
neuromorphic hardware [3].   

2.4 Efficient Systolic-Array SNN Hardware Accelerator Architecture  

Spiking Neural Networks (SNNs) are brain-inspired computing models incorporating unique temporal 
dynamics and event-driven processing. Rich dynamics in both space and time offer great challenges and 
opportunities for efficient processing of sparse spatiotemporal data compared with conventional artificial 
neural networks (ANNs). Specifically, the additional overheads for handling the added temporal 
dimension limit the computational capabilities of neuromorphic accelerators. Iterative processing at every 
time-point with sparse inputs in a temporally sequential manner not only degrades the utilization of the 
systolic array but also intensifies data movement. 

We propose a novel technique and architecture, called parallel time batching (PTB), that significantly 
improve utilization and data movement while efficiently handling temporal sparsity of SNNs on systolic 
arrays. As illustrated in Fig. 4, unlike time-sequential processing in conventional SNN accelerators, we pack 
multiple time points into a single time window (TW) and process the computations induced by active 
synaptic inputs falling under several TWs in parallel, leading to the proposed parallel time batching. It 
allows weight reuse across multiple time points and enhances the utilization of the systolic array with 
reduced idling of processing elements, overcoming the irregularity of sparse firing activities. We optimize 
the granularity of time-domain processing, i.e., the TW size, which significantly impacts the data reuse 
and utilization. We further boost the utilization efficiency by simultaneously scheduling non-overlapping 
sparse spiking activities onto the array.  

 

Fig. 4. Proposed Parallel Time Batching (PTB) Architecture for spiking neural networks. 

 PTB
• Assigns firing activities in a TW to PEs
• Process multiple time batches with a 

temporal granularity defined by TW size

Time stride(TS): Full range of time points
Time window(TW): One TW packs the firing activity of one 
(active) synaptic neuron over multiple time points.
Time batch(TB): basic unit of workload assignable to a PE. 
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As shown in Fig. 5, the proposed architectures offer a unifying solution for general spiking neural 
networks with commonly exhibited temporal sparsity, a key challenge in hardware acceleration, 
delivering 248X energy-delay product (EDP) improvement on average compared to an SNN baseline for 
accelerating various networks. Compared to ANN based accelerators, our approach improves EDP by 
47X on the CIFAR10 dataset. 

 

Fig. 5 Improvements on energy dissipation and latency of the Batching (PTB) architecture on three 
SNN models. 

 

3. Summary and Ongoing and Future Work 

Biologically-inspired neuromorphic computing provides exciting opportunities for advancing the field of 
machine learning and computing.  

While demonstrating the promise of neuromorphic computing via development of several novel 
network architectures, training methods, and dedicated hardware in this project, our ongoing and 
future work will explore several research fronts. We will explore automated spiking neural architecture 
search, specifically for optimizing the network architecture of complex recurrent SNNs [9]. We will also 
tap into the promise of emerging large spiking transformer models, which can be widely adopted to 
process language, video, and other types of spatiotemporal data, by developing efficient quantization 
methods, aiming at dramatically reducing the computation and storage overheads of such large SNN 
models [10].  

 

 

DVS-Gesture
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Alexnet

248X energy-delay product (EDP) improvement 
over  a baseline systolic array architecture
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