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Abstract

Spiking Neural Networks (SNNs) are brain-inspired computing models incorporating unique temporal
dynamics and event-driven processing. Rich dynamics in both space and time offer great challenges and
opportunities for efficient processing of sparse spatiotemporal data compared with conventional
artificial neural networks (ANNs).

Under this context, the goal of this project is to develop spiking neural network based neuromorphic
computing to enable energy-efficient real-time learning and processing of spatiotemporal data. This
report summarizes the key results on network architecture design, training methods, and SNN hardware
acceleration achieved under this project, demonstrating the promise of spiking neural networks.

1. Project Objectives

The overall objective of this work to develop a spike-based analog neuromorphic computing framework
to enable energy-efficient real-time learning and processing of spatiotemporal data to accelerate
scientific discovery.

Broadly speaking, we attempt to address the following research challenges and needs:

1) Spiking neural network (SNN) architecture of computation: neurally-inspired SNN models are often
hand tuned for specific tasks; Lack of unifying SNN architectures hampers the application of
neuromorphic computing to diverse domains including scientific discovery;

2) High-performance training: existing SNN training algorithms such as biologically-plausible spike-timing
dependent plasticity, which lack a globally-defined learning objective, are unable to deliver competitive
performance for challenging learning tasks.

3) Energy-efficient high-performance SNN hardware accelerators: in addition to overcoming the
challenges in 1) and 2), it is desirable to develop highly efficient hardware accelerators to expedite
spike-based workloads.
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2. Main Findings of the Project

In the context of the above objectives, the research team has had developed a sequence of techniques,
centering around the following key aspects.

2.1 Recurrent SNN compute fabrics and network architectures

It is instrumental to design recurrent fabrics that can be replicated for building large SNNs with good
performance. This will avoid designing recurrent SNNs with randomly generated connectivity patterns, a
current ad-hoc practice that does not guarantee good performance. Such fabrics shall possess high
spatiotemporal computing power, be small in size, and inter-fabric connections shall be made in a
structured manner to mitigate training difficulties.

Towards this end, first, we propose a new type of RSNNs called Skip-Connected Self-Recurrent SNNs (ScSr-
SNNs) [1], as shown in Fig. 1. Recurrence in ScSr-SNNs is introduced in a stereotyped manner by adding
self-recurrent connections to spiking neurons. In some sense, here the basic recurrent fabric consists of a
simple spiking neuron with a self-recurrent connection to itself. In terms of inter-fabric connectivity, we
use feedforward connections to wire up multiple layers each consisting of a set of the basic self-recurrent
fabrics. The SNNs with self-recurrent connections can realize recurrent behaviors similar to those of more
complex RSNNs while the error gradients can be more straightforwardly calculated due to the mostly
feedforward nature of the network. The network dynamics is enriched by skip connections between
nonadjacent layers.
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Fig. 1. Skip-Connected Self-Recurrent SNNs (ScSr-SNN).

Based on challenging speech, neuromorphic speech, and neuromorphic image datasets, the proposed
ScSr-SNNs have been shown to outperform other types of recurrent SNNs reported before, for example
on the widely used DVS-guesture recognition dataset as shown in Table 1.
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TrueNorth® CNN-based 16 layers 91.77%
Slayer!”! CNN-based 8 layers 93.64%
RNNCE CNN-based 92.01%
LSTMIE CNN-based 93.75%
SNNE! CNN-based 8 layers 93.40%
ScSr-SNN) CNN-based 8 layers 95.49%

Table 1: SNN model acurracies of several different models trained over the neuromorphic video dataset
DVS-Gesture.

Second, we further propose a novel recurrent structure called the Laterally-Inhibited Self-Recurrent Unit
(LISR), which consists of one excitatory neuron with a self-recurrent connection wired together with an
inhibitory neuron through excitatory and inhibitory synapses [2]. The self-recurrent connection of the
excitatory neuron mitigates the information loss caused by the firing-and-resetting mechanism and
maintains the long-term neuronal memory. The lateral inhibition from the inhibitory neuron to the
corresponding excitatory neuron, on the one hand, adjusts the firing activity of the latter. On the other
hand, it plays as a forget gate to clear the memory of the excitatory neuron. The LISR units can be
leveraged to realize recurrent SNNs as illustrated in Fig. 2.
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Fig. 2. Recurrent SNNs based upon the proposed LISR units.

The excellent performance of the proposed LISR has been reported in [2].

3|Page



2.2 High-Accuracy SNN Training Algorithms

For training the proposed Skip-Connected Self-Recurrent SNNs (ScSr-SNNs), we propose a new
backpropagation (BP) method called backpropagated intrinsic plasticity (BIP) to further boost the
performance of ScSr-SNNs by training intrinsic model parameters [1]. Unlike standard intrinsic plasticity
rules that adjust the neuron’s intrinsic parameters according to neuronal activity, the proposed BIP
method optimizes intrinsic parameters based on the backpropagated error gradient of a well-defined
global loss function in addition to synaptic weight training. By comprehensive benchmarking, the
proposed ScSr-SNNs can boost performance by up to 2.85% compared with other types of RSNNs trained
by state-of-the-art BP methods.

Furthermore, we adapted a BP method developed recently by our team to specifically train recurrent
SNNs based on the proposed LISR unit, which improves learning performance significantly by up to 9.26%
over feedforward SNNs with similar computational costs on a set of speech and image datasets [2].

2.3 SNN Training Methods with Reduced Complexity for Deployment on Neuromorphic
Hardware

While promising backpropagation (BP) methods have been developed for SNNs, they tend to be either
not biologically plausible or to be computationally complex. We study two biologically plausible
alternatives to backpropagation while retaining high temporal precision for SNN training. These two
methods, namely TSSL-DFA and TSSL-KP, are extensions to direct feedback alignment (DFA) and a method
by Kollen-Pollack (KP), respectively.

TSSL-KP and TSSL-DFA are for SNN training and incorporate recent BP-based gradient computation
techniques and additional simplifications [3], as illustrated in Fig. 3.
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Fig. 3 Proposed low-complexity SNN training methods TSSL-KP and TSSL-DFA.
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We show that both methods can near the accuracy of a state-of the-art BP method while maintaining
biological plausibility, and in the case of TSSL-DFA greatly reducing the complexity of the required
feedback algorithms. We assess the complexity of these algorithms to show their usefulness under
neuromorphic hardware [3].

2.4 Efficient Systolic-Array SNN Hardware Accelerator Architecture

Spiking Neural Networks (SNNs) are brain-inspired computing models incorporating unique temporal
dynamics and event-driven processing. Rich dynamics in both space and time offer great challenges and
opportunities for efficient processing of sparse spatiotemporal data compared with conventional artificial
neural networks (ANNs). Specifically, the additional overheads for handling the added temporal
dimension limit the computational capabilities of neuromorphic accelerators. Iterative processing at every
time-point with sparse inputs in a temporally sequential manner not only degrades the utilization of the
systolic array but also intensifies data movement.

We propose a novel technique and architecture, called parallel time batching (PTB), that significantly
improve utilization and data movement while efficiently handling temporal sparsity of SNNs on systolic
arrays. As illustrated in Fig. 4, unlike time-sequential processing in conventional SNN accelerators, we pack
multiple time points into a single time window (TW) and process the computations induced by active
synaptic inputs falling under several TWs in parallel, leading to the proposed parallel time batching. It
allows weight reuse across multiple time points and enhances the utilization of the systolic array with
reduced idling of processing elements, overcoming the irregularity of sparse firing activities. We optimize
the granularity of time-domain processing, i.e., the TW size, which significantly impacts the data reuse
and utilization. We further boost the utilization efficiency by simultaneously scheduling non-overlapping
sparse spiking activities onto the array.
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Fig. 4. Proposed Parallel Time Batching (PTB) Architecture for spiking neural networks.
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As shown in Fig. 5, the proposed architectures offer a unifying solution for general spiking neural
networks with commonly exhibited temporal sparsity, a key challenge in hardware acceleration,
delivering 248X energy-delay product (EDP) improvement on average compared to an SNN baseline for
accelerating various networks. Compared to ANN based accelerators, our approach improves EDP by
47X on the CIFAR10 dataset.
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Fig. 5 Improvements on energy dissipation and latency of the Batching (PTB) architecture on three
SNN models.

3. Summary and Ongoing and Future Work

Biologically-inspired neuromorphic computing provides exciting opportunities for advancing the field of
machine learning and computing.

While demonstrating the promise of neuromorphic computing via development of several novel
network architectures, training methods, and dedicated hardware in this project, our ongoing and
future work will explore several research fronts. We will explore automated spiking neural architecture
search, specifically for optimizing the network architecture of complex recurrent SNNs [9]. We will also
tap into the promise of emerging large spiking transformer models, which can be widely adopted to
process language, video, and other types of spatiotemporal data, by developing efficient quantization
methods, aiming at dramatically reducing the computation and storage overheads of such large SNN

models [10].
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