
 
Abstract1— Peak reduction is an important concern that can 

help reduce the growing stress on distribution grid and allow to 
defer investments in new capacity. However, the growing concern 
for customer privacy and comfort may impact the performance of 
load control for residential devices. Water heaters represent a 
convenient way of reducing peak due to their ability to store 
thermal energy for future use. In this paper, we developed a 
methodology to help utilities gain more insight with respect to the 
impact of load control efforts for shaving peak with no necessary 
information about the water heaters except the device status 
(on/off). To this end, we use a fleet of water heaters in a controlled 
residential neighborhood in Atlanta, GA. Our findings show that 
convergence in device status can serve as a proxy for peak shifting 
during hours of the evening peak. 

Index Terms—Demand response, smart grid, peak reduction, 
water heater, synchronization

I.INTRODUCTION

eak shifting is one of the emerging tools that utilities use to 
avoid peak charges or to defer infrastructure investments. 
The recent changes in load control have brought into the 

spotlight a few considerations which were not a concern in 
traditional load management approaches. One is the tradeoff 
between shedding load and maintaining user comfort [1]-[3]. 
This has given rise to demand flexibility as opposed to direct load 
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control. Instead of sending a signal to connect or disconnect, the 
approach allows sending a utility signal such as price [4]-[5] as a 
part of the device cost function. This way the device on/off status 
will be based on its economic and comfort. The second is a 
growing concern for customer privacy [6]-[7]. There is 
evidence among the utilities that residential customers may be 
unwilling to disclose detailed information about their use of air 
conditioning or water, for a concern that this will reveal 
information about their intraday routines. Finally, there is a 
growing awareness of the communication and computation 
requirements which can be very large for a large fleet of devices 
[8]. These considerations affect the utility’s visibility into the 
fleet of controllable devices and the controllability of devices.

This study makes investigates the impact of demand flexibility 
with only the power consumed by the load. To address this issue 
of lack of information, we leveraged the concept of 
controllability of devices, a property which is unobservable. 
More controllable devices show a larger change of kW load 
during hours of more intensive control and the hours 
immediately following it. They also show a greater change in 
the operating status. Even if a utility cannot say with confidence 
that the occurred change in total load of a given house is due to 
optimization efforts. There may be a way to assess the extent of 
device responsiveness by looking at the operating status. If the 
convergence in operating status is positively correlated with 
change in load, device status convergence can be used as a 
proxy for estimating peak shifting. 

The rest of this study is organized as follows. Section II 
discusses the experimental setup, optimization approach, and 
data collection. Section III presents the results. Section IV 
offers the conclusion and discusses further research. 

II. BACKGROUND OF THE NEIGHBORHOOD 

A. Hardware and price signal control approach
The data used for this research was collected in an occupied 

residential neighborhood in Atlanta, GA. The neighborhood 
consists of 46 townhomes, each equipped with API controlled 
devices that include a water heater, an HVAC system, a rooftop 
PV system, and two residential batteries. Identical water heaters 
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were installed across all the homes in the neighborhood and 
they are capable of operating based on a heat pump, a resistance 
coil, or both. Each water heater is connected to a neighborhood 
model predictive controller which optimizes load of the water 
heater according to the objective function presented in Eq. 1.

𝑚𝑖𝑛
𝑡=0

𝜌𝑐
𝑡  𝑃𝑤ℎ

𝑡 + 𝑊𝑚𝑜𝑑𝑒
𝑡=0

𝐶ℎ𝑔𝑚𝑜𝑑𝑒
𝑡 (1)

Where 𝜌𝑐
𝑡 is the electricity cost at time t, 𝑃𝑤ℎ

𝑡  is the active 
power consumed at time t, which is calculated as a sum of heat 
pump power and the power of the heating element as shown in 
the equation below. 

𝑃𝑤ℎ
𝑡 = 𝑂𝑛𝑡 ℎ𝑒𝑎𝑡𝑤ℎ + 𝑂𝑛𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝑡  ℎ𝑒𝑎𝑡𝑒𝑙𝑒𝑚𝑒𝑛𝑡 (2)

ℎ𝑒𝑎𝑡𝑤ℎ is power consumed by the heat pump, 𝑂𝑛𝑡 is a binary 
variable and takes the value of 1 if the heat pump is switched 
on and 0 if the heat pump is switched off. ℎ𝑒𝑎𝑡𝑒𝑙𝑒𝑚𝑒𝑛𝑡 is the 
power of the heating element, and 𝑂𝑛𝑡 takes the value of 1 if 
the heating element is switched on. 𝑊𝑚𝑜𝑑𝑒 is weight associated 
with changing water heater mode, 𝐶ℎ𝑔𝑚𝑜𝑑𝑒

𝑡  is a binary variable 
that takes the value of 1 when the water heater changes the 
mode. The optimization takes several operational and comfort 
constraints which are not reviewed here in detail. More 
information about the model and optimization of water heaters 
can be found in [9].

The important part of the optimization procedure is that 
behavior of water heaters is indirectly controlled through the 
price signal. The utility operating the neighborhood formulates 
a price signal based on its peak preferences and distributes it to 
all devices in the neighborhood.

From the price graph in Fig. 1, we can observe that the price 
is not the same throughout the day. There are areas of higher 
prices which are expected devices to shed load and lower prices 
which are expected to encourage preheating of water. For the 
Atlanta neighborhood, the utility has full visibility of the 
current operation of water heaters through API data and a 
submetering system. We use this information to inform our data 
analysis and validate the research results.

Fig. 1. Hourly price signal over the two weeks of control

B. Experimental Setup and Data Collection
We validate the proposed approach through the use of 

historical data from October-December 2022, excluding 
October 31. The data was collected for weekdays during the 
hours of optimization, from 5 am to 10 pm. 

In order to address the questions discussed in Section I, we 
first try to establish the relationship between peak and device 
synchronization for a smaller period of time. To do so, we 
collected data on load during four weeks in September and 
October 2022. All water heaters in the testbed have the same 
technical characteristics. Therefore, the next step was to find 
weeks with comparable homeowner routines to develop the 
control and idle counterfactuals. We identified two weeks of 
idle water heater behavior in the second half of September as 
described in Table I. 

TABLE I
CHARACTERISTICS OF WATER HEATER INSTANCES 

INSTANCE DATE DESCRIPTION

1 2022/10/24-2022/11/04
5 am - 10 pm

Control period optimization hours 
(weekdays only)

2 2022/10/24-2022/11/05
10 pm - 12 am

Control period after the 
optimization (weekdays only)

3 2022/09/19-2022/09/30
5 am - 10 pm

Idle period optimization 
counterfactual (weekdays only)

4 2022/09/19-2022/10/01
10 pm - 12 am

Idle period after the optimization 
counterfactual (weekdays only)

Further, a series of changes in experiments did not allow us 
to use the period immediately following the idle weeks. 
However, we were able to find two consecutive weeks with no 
changes in the experiment or data collection procedures in 
October. While the idle week and control week are about a 
month apart, the average water heater load increased by only 
about 80 W between the idle and control periods. This allows 
us to use the selected weeks for further analysis. The selected 
idle and control periods were used to analyze the controllability 
of the fleet during morning, day, and evening hours. The 
findings are summarized in Section III. 

C. Methodology
In this research, we adopted Ward clustering algorithm to 

examine the extent of synchronization among the water heaters 
across townhomes [10], [11]. The Ward algorithm initially 
assigns an individual position to every observation and then 
merges the closes clusters into higher tier clusters until all 
observations are merged into one group. The distance between 
two clusters is found according to Eq. 3. 

𝑑(𝑢,𝑣) =  |𝑣| + |𝑠|
𝑇 𝑑(𝑣,𝑠)2 +

|𝑣| + |𝑡|
𝑇 𝑑(𝑣,𝑡)2 ―

|𝑣|
𝑇 𝑑(𝑠,𝑡)2 (3)

Where 𝑑(𝑢,𝑣) is the distance between two clusters 𝑢 and 𝑣. It 
is an iterative algorithm, for each iteration two clusters 𝑠 and 𝑡 
are merged to form a cluster 𝑢 each iteration. 𝑣 is an unused 
cluster. The distance between two largest clusters shows the 
degree of homogeneity in data and is used to estimate the 
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similarity behavior of water heaters.
The load data received from the vendor API for the time 

period mentioned in Table I is preprocessed through the 
following steps. The first step incudes resampling the water 
heaters data into 10-minute intervals. The original data is 
sampled every 5 minutes. If an observation is not logged at 
exactly 10-minute distance, the sampling takes the closest 
observation before the timestamp. The second step is to convert 
W values of instantaneous load into binary values (0 or 1). This 
allows to avoid one of the main shortcomings of the Ward 
method, namely its edge susceptance. The preprocessed data is 
later inputted to Ward’s clustering method. 

III.RESULTS AND DISCUSSION

As a first step, we review the intraday load behavior and the 
extent of synchronization in the fleet. We compare the control 
and idle periods to see if the peak shifting efforts resulted in 
load change. The effect of the peak shifting is illustrated in Fig. 
2. The control effort resulted in a shift of peak from peak 
evening hours to later evening. While the total average load 
increased between idle and control weeks, the comparison of 
demeaned data allows to evaluate the peak shaving result. 
During hours 18 and 19 which were main hours of interest, total 
load decreased by 0.4 and 0.8 kW.

a)                                                 b)

  

Fig. 2. Average hourly water heater load in the neighborhood 
during (a) idle period and (b) control period. To preserve the 
visibility of the evening peak, the data is presented from 3 am 
to 2 am rather than from hours 0 to 23.
                             
Control effort affects the operating status of the devices. For 
instance, intensive water heater operation results in more 
devices being switched on. This, in turn, would result in the 
convergence of device operating patterns, defined as 
synchronization. This is confirmed by reviewing the extent of 
convergence of devices per hour of the day, shown in Fig. 3. 
Fig.3. shows that hours with lower cluster distance or higher 
convergence in water heater operation patterns correspond to 
the hours during or after the morning or evening peak. The 
intervals in the middle indicate the lower load periods of 11 am 
– 6 pm. Further, the convergence is observed during both idle 
and control weeks, indicating that some of the peak is probably 

natural.

   
Fig. 3. Sum of distances to nearest cluster centers for the Idle 
and Control periods. To preserve the visibility of the evening 
peak, the data is presented from 3 am to 2 am rather than from 
hour 0 to 23.

The figure shows that hours with lower cluster distance or 
higher convergence in water heater operation patterns 
correspond to the hours during or after the morning or evening 
peak. The intervals in the middle indicate the lower load periods 
of 11 am – 6 pm. Further, the convergence is observed during 
both idle and control weeks, indicating that some of the peak is 
probably natural.

As a next step, we attempt to analyze the joint distribution of 
load peak and the extent of convergence of device operation. 
We use the entire control period from the late October until 
Christmas of 2022. There were 1436 hourly observations in the 
sample. This constitutes 92% of the total 1548 control hours 
between October 20 and December 22. The overall results are 
presented in Fig. 4. 

Fig. 4. Joint distribution of average load per device and Ward 
distance for control hours in October – December 2022.

The results cannot be used for least squares analysis because 
they do not have the independent identically distribute nature. 
But we can still conclude that there is a correlation between the 
two series of data, with the correlation of the main group of 
observations -0.466. The number drops to -0.445 when the three 
data points highlighted in gray are merged with the rest of the 
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dataset. This supports the idea that the two variables may be 
directly dependent on one another or dependent on a third 
unobserved variable, which we defined as controllability.

The analysis of the results is made more difficult by the 
hardware. The water heaters can operate with different 
configurations. Depending on whether they use the heat pump, 
the resistance coil, or a combination of the two, their 
instantaneous load can be below 1 kW or above 5 kW. As a 
result, we expect the findings to be of approximate nature. 
Using water heaters with constant operating power could 
produce more accurate results. We design an artificial scenario 
when all nonzero load instances are set equal to 800 W. This 
would produce the results which are biased up on the horizontal 
axis because more hours are needed to reheat water in the 800 
W mode compared to 5300 W mode. However, this reduces the 
variance along the vertical axis, as illustrated in Fig. 5.

The results were found to be comparable to those found in 
the analysis of actual observations. The correlation between the 
two series of data was found to be -0.449 for the main sample 
and -0.437 for the sample which includes the outliers 
highlighted in gray.

Further we investigated how the distribution changes 
between morning peak, day hours, and evening peak. The 
summary of hourly distributions is provided in Fig. 6.

Fig. 5. Joint distribution of the average load per device 
calculated based on replacement values of 800 W and Ward 
distance for control hours in October – December 2022.

Intraday findings shows that there is strong and consistent 
correlation for late evening hours, indicating that the load and 
device controllability are indeed interrelated. The correlation 
between the two values for hour 22 is -0.628. The coefficient 
declines to -0.384 for hour 23, probably because some of the 
water heaters already stop reheating water and connect or 
disconnect more sporadically, causing an increase in Ward 
distance between devices.

   

   

   

Fig. 6. Joint distribution of average load per device and Ward distance for the indicated control hours in October – December 2022 
(note: hour 13 from 1 pm to 2 pm was skipped due to space constraints).
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The correlation almost disappears during day hours, in line 
with the lower load control effort. The optimization pattern 
from 11 am until about 5 pm does not show any pronounced 
effort to shift load. The price signal levels are rather similar 
through those hours, which probably results in a variety of load 
values, as well as a varying operating patterns. We do expect 
more correlation between Ward distance and average load 
during the afternoon hours when price signal pressure grows. 
However, both the load and the operating patterns preserve the 
high variability already seen during early afternoon, probably 
as a results of varying homeowner behaviors.

Morning hours show a rather unexpected pattern. While price 
signal is designed to incentivize lower load during hour 7 with 
a rebound at hour 8, this is not reflected in the observations. By 
contrast, the effect is visible during the two subsequent hours. 
The price signal is increasing for hours 9, 10, 11. But the load 
behavior changes only for hours 9 and 10, which is not 
consistent with the overall trend observed for other hours. At 
this point we do not have a consistent explanation for such 
behavior. While it is possible that homeowner routines also 
affect the morning hours, the change in price signal on a narrow 
interval of hour 8 should be able to provide sufficient control 
incentives for all types of homeowner profiles.

IV.CONCLUSIONS 

In this study, we attempted to find an approach which would 
help utilities to have a better understanding of the impact of the 
control decisions and price signal for a specific device, even if 
they have very little visibility into the load detail. In this study, 
we found that there is a positive correlation between the 
convergence in operating status of devices and the change in 
load volume. Further, we were able to find that this correlation 
is present for the evening peak, as expected. It is not present for 
the afternoon interval, which was not of interest to the utility, 
which was also in line with the expected operation. Contrary to 
our expectations, we do not find significant correlation for early 
morning hours. These hours were of interest to the utility, which 
resulted in more active change of price signal. However, the 
convergence only started being visible during later morning 
hours. This can be an evidence of role of water usage to the 
impact of control on fleet of water heaters.

More research is needed to understand why the morning peak 
does not behave in the same way as evening peak. Such research 
could potentially include a more detailed analysis of individual 
device or homeowner routines. It could also require a larger 
sample of devices or dedicated experimental verification with a 
more aggressive price signal approach. More research would 
also be necessary to statistically verify the proposed approach 
on a large sample of devices.
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