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Abstract — Peak reduction is an important concern that can
help reduce the growing stress on distribution grid and allow to
defer investments in new capacity. However, the growing concern
for customer privacy and comfort may impact the performance of
load control for residential devices. Water heaters represent a
convenient way of reducing peak due to their ability to store
thermal energy for future use. In this paper, we developed a
methodology to help utilities gain more insight with respect to the
impact of load control efforts for shaving peak with no necessary
information about the water heaters except the device status
(on/off). To this end, we use a fleet of water heaters in a controlled
residential neighborhood in Atlanta, GA. Our findings show that
convergence in device status can serve as a proxy for peak shifting
during hours of the evening peak.

Index Terms—Demand response, smart grid, peak reduction,
water heater, synchronization

LINTRODUCTION

eak shifting is one of the emerging tools that utilities use to
avoid peak charges or to defer infrastructure investments.
The recent changes in load control have brought into the
spotlight a few considerations which were not a concern in
traditional load management approaches. One is the tradeoff
between shedding load and maintaining user comfort [1]-[3].
This has given rise to demand flexibility as opposed to direct load
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control. Instead of sending a signal to connect or disconnect, the
approach allows sending a utility signal such as price [4]-[5] as a
part of the device cost function. This way the device on/off status
will be based on its economic and comfort. The second is a
growing concern for customer privacy [6]-[7]. There is
evidence among the utilities that residential customers may be
unwilling to disclose detailed information about their use of air
conditioning or water, for a concern that this will reveal
information about their intraday routines. Finally, there is a
growing awareness of the communication and computation
requirements which can be very large for a large fleet of devices
[8]. These considerations affect the utility’s visibility into the
fleet of controllable devices and the controllability of devices.

This study makes investigates the impact of demand flexibility
with only the power consumed by the load. To address this issue
of lack of information, we leveraged the concept of
controllability of devices, a property which is unobservable.
More controllable devices show a larger change of kW load
during hours of more intensive control and the hours
immediately following it. They also show a greater change in
the operating status. Even if a utility cannot say with confidence
that the occurred change in total load of a given house is due to
optimization efforts. There may be a way to assess the extent of
device responsiveness by looking at the operating status. If the
convergence in operating status is positively correlated with
change in load, device status convergence can be used as a
proxy for estimating peak shifting.

The rest of this study is organized as follows. Section II
discusses the experimental setup, optimization approach, and
data collection. Section III presents the results. Section IV
offers the conclusion and discusses further research.

II. BACKGROUND OF THE NEIGHBORHOOD

A. Hardware and price signal control approach

The data used for this research was collected in an occupied
residential neighborhood in Atlanta, GA. The neighborhood
consists of 46 townhomes, each equipped with API controlled
devices that include a water heater, an HVAC system, a rooftop
PV system, and two residential batteries. Identical water heaters
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were installed across all the homes in the neighborhood and
they are capable of operating based on a heat pump, a resistance
coil, or both. Each water heater is connected to a neighborhood
model predictive controller which optimizes load of the water
heater according to the objective function presented in Eq. 1.
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Where pf is the electricity cost at time t, Py is the active
power consumed at time t, which is calculated as a sum of heat
pump power and the power of the heating element as shown in
the equation below.

PY¥h = On, heat,,, + OnS™™ heat yioment 2)

heat,,, is power consumed by the heat pump, On is a binary
variable and takes the value of 1 if the heat pump is switched
on and 0 if the heat pump is switched off. heateiement is the
power of the heating element, and On; takes the value of 1 if

the heating element is switched on. Winoqe is weight associated

with changing water heater mode, C hgo%€ is a binary variable

that takes the value of 1 when the water heater changes the
mode. The optimization takes several operational and comfort
constraints which are not reviewed here in detail. More
information about the model and optimization of water heaters
can be found in [9].

The important part of the optimization procedure is that
behavior of water heaters is indirectly controlled through the
price signal. The utility operating the neighborhood formulates
a price signal based on its peak preferences and distributes it to
all devices in the neighborhood.

From the price graph in Fig. 1, we can observe that the price
is not the same throughout the day. There are areas of higher
prices which are expected devices to shed load and lower prices
which are expected to encourage preheating of water. For the
Atlanta neighborhood, the utility has full visibility of the
current operation of water heaters through API data and a
submetering system. We use this information to inform our data
analysis and validate the research results.
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Fig. 1. Hourly price signal over the two weeks of control

B.  Experimental Setup and Data Collection

We validate the proposed approach through the use of
historical data from October-December 2022, excluding
October 31. The data was collected for weekdays during the
hours of optimization, from 5 am to 10 pm.

In order to address the questions discussed in Section I, we
first try to establish the relationship between peak and device
synchronization for a smaller period of time. To do so, we
collected data on load during four weeks in September and
October 2022. All water heaters in the testbed have the same
technical characteristics. Therefore, the next step was to find
weeks with comparable homeowner routines to develop the
control and idle counterfactuals. We identified two weeks of
idle water heater behavior in the second half of September as
described in Table 1.

TABLEI
CHARACTERISTICS OF WATER HEATER INSTANCES
INSTANCE DATE DESCRIPTION
1 2022/10/24-2022/11/04 Control period optimization hours
Sam - 10 pm (weekdays only)
2 2022/10/24-2022/11/05 Control period after the
10 pm - 12 am optimization (weekdays only)
3 2022/09/19-2022/09/30 Idle period optimization
Sam - 10 pm counterfactual (weekdays only)
4 2022/09/19-2022/10/01 Idle period after the optimization
10 pm - 12 am counterfactual (weekdays only)

Further, a series of changes in experiments did not allow us
to use the period immediately following the idle weeks.
However, we were able to find two consecutive weeks with no
changes in the experiment or data collection procedures in
October. While the idle week and control week are about a
month apart, the average water heater load increased by only
about 80 W between the idle and control periods. This allows
us to use the selected weeks for further analysis. The selected
idle and control periods were used to analyze the controllability
of the fleet during morning, day, and evening hours. The
findings are summarized in Section III.

C. Methodology

In this research, we adopted Ward clustering algorithm to
examine the extent of synchronization among the water heaters
across townhomes [10], [11]. The Ward algorithm initially
assigns an individual position to every observation and then
merges the closes clusters into higher tier clusters until all
observations are merged into one group. The distance between
two clusters is found according to Eq. 3.
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Where d(u,v) is the distance between two clusters u and v. It
is an iterative algorithm, for each iteration two clusters s and ¢
are merged to form a cluster u each iteration. v is an unused
cluster. The distance between two largest clusters shows the
degree of homogeneity in data and is used to estimate the



similarity behavior of water heaters.

The load data received from the vendor API for the time
period mentioned in Table I is preprocessed through the
following steps. The first step incudes resampling the water
heaters data into 10-minute intervals. The original data is
sampled every 5 minutes. If an observation is not logged at
exactly 10-minute distance, the sampling takes the closest
observation before the timestamp. The second step is to convert
W values of instantaneous load into binary values (0 or 1). This
allows to avoid one of the main shortcomings of the Ward
method, namely its edge susceptance. The preprocessed data is
later inputted to Ward’s clustering method.

ITII.RESULTS AND DISCUSSION

As a first step, we review the intraday load behavior and the
extent of synchronization in the fleet. We compare the control
and idle periods to see if the peak shifting efforts resulted in
load change. The effect of the peak shifting is illustrated in Fig.
2. The control effort resulted in a shift of peak from peak
evening hours to later evening. While the total average load
increased between idle and control weeks, the comparison of
demeaned data allows to evaluate the peak shaving result.
During hours 18 and 19 which were main hours of interest, total
load decreased by 0.4 and 0.8 kW.
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Fig. 2. Average hourly water heater load in the neighborhood
during (a) idle period and (b) control period. To preserve the
visibility of the evening peak, the data is presented from 3 am
to 2 am rather than from hours 0 to 23.

Control effort affects the operating status of the devices. For
instance, intensive water heater operation results in more
devices being switched on. This, in turn, would result in the
convergence of device operating patterns, defined as
synchronization. This is confirmed by reviewing the extent of
convergence of devices per hour of the day, shown in Fig. 3.
Fig.3. shows that hours with lower cluster distance or higher
convergence in water heater operation patterns correspond to
the hours during or after the morning or evening peak. The
intervals in the middle indicate the lower load periods of 11 am
— 6 pm. Further, the convergence is observed during both idle
and control weeks, indicating that some of the peak is probably

natural.
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Fig. 3. Sum of distances to nearest cluster centers for the Idle
and Control periods. To preserve the visibility of the evening
peak, the data is presented from 3 am to 2 am rather than from
hour 0 to 23.

The figure shows that hours with lower cluster distance or
higher convergence in water heater operation patterns
correspond to the hours during or after the morning or evening
peak. The intervals in the middle indicate the lower load periods
of 11 am — 6 pm. Further, the convergence is observed during
both idle and control weeks, indicating that some of the peak is
probably natural.

As a next step, we attempt to analyze the joint distribution of
load peak and the extent of convergence of device operation.
We use the entire control period from the late October until
Christmas of 2022. There were 1436 hourly observations in the
sample. This constitutes 92% of the total 1548 control hours
between October 20 and December 22. The overall results are
presented in Fig. 4.
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Fig. 4. Joint distribution of average load per device and Ward
distance for control hours in October — December 2022.

The results cannot be used for least squares analysis because
they do not have the independent identically distribute nature.
But we can still conclude that there is a correlation between the
two series of data, with the correlation of the main group of
observations -0.466. The number drops to -0.445 when the three
data points highlighted in gray are merged with the rest of the



dataset. This supports the idea that the two variables may be
directly dependent on one another or dependent on a third
unobserved variable, which we defined as controllability.

The analysis of the results is made more difficult by the
hardware. The water heaters can operate with different
configurations. Depending on whether they use the heat pump,
the resistance coil, or a combination of the two, their
instantaneous load can be below 1 kW or above 5 kW. As a
result, we expect the findings to be of approximate nature.
Using water heaters with constant operating power could
produce more accurate results. We design an artificial scenario
when all nonzero load instances are set equal to 800 W. This
would produce the results which are biased up on the horizontal
axis because more hours are needed to reheat water in the 800
W mode compared to 5300 W mode. However, this reduces the
variance along the vertical axis, as illustrated in Fig. 5.

The results were found to be comparable to those found in
the analysis of actual observations. The correlation between the
two series of data was found to be -0.449 for the main sample
and -0.437 for the sample which includes the outliers
highlighted in gray.

Further we investigated how the distribution changes
between morning peak, day hours, and evening peak. The
summary of hourly distributions is provided in Fig. 6.
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Fig. 5. Joint distribution of the average load per device
calculated based on replacement values of 800 W and Ward
distance for control hours in October — December 2022.

Intraday findings shows that there is strong and consistent
correlation for late evening hours, indicating that the load and
device controllability are indeed interrelated. The correlation
between the two values for hour 22 is -0.628. The coefficient
declines to -0.384 for hour 23, probably because some of the
water heaters already stop reheating water and connect or
disconnect more sporadically, causing an increase in Ward
distance between devices.
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Fig. 6. Joint distribution of average load per device and Ward distance for the indicated control hours in October — December 2022
(note: hour 13 from 1 pm to 2 pm was skipped due to space constraints).



The correlation almost disappears during day hours, in line
with the lower load control effort. The optimization pattern
from 11 am until about 5 pm does not show any pronounced
effort to shift load. The price signal levels are rather similar
through those hours, which probably results in a variety of load
values, as well as a varying operating patterns. We do expect
more correlation between Ward distance and average load
during the afternoon hours when price signal pressure grows.
However, both the load and the operating patterns preserve the
high variability already seen during early afternoon, probably
as a results of varying homeowner behaviors.

Morning hours show a rather unexpected pattern. While price
signal is designed to incentivize lower load during hour 7 with
a rebound at hour 8§, this is not reflected in the observations. By
contrast, the effect is visible during the two subsequent hours.
The price signal is increasing for hours 9, 10, 11. But the load
behavior changes only for hours 9 and 10, which is not
consistent with the overall trend observed for other hours. At
this point we do not have a consistent explanation for such
behavior. While it is possible that homeowner routines also
affect the morning hours, the change in price signal on a narrow
interval of hour 8 should be able to provide sufficient control
incentives for all types of homeowner profiles.

IV.CONCLUSIONS

In this study, we attempted to find an approach which would
help utilities to have a better understanding of the impact of the
control decisions and price signal for a specific device, even if
they have very little visibility into the load detail. In this study,
we found that there is a positive correlation between the
convergence in operating status of devices and the change in
load volume. Further, we were able to find that this correlation
is present for the evening peak, as expected. It is not present for
the afternoon interval, which was not of interest to the utility,
which was also in line with the expected operation. Contrary to
our expectations, we do not find significant correlation for early
morning hours. These hours were of interest to the utility, which
resulted in more active change of price signal. However, the
convergence only started being visible during later morning
hours. This can be an evidence of role of water usage to the
impact of control on fleet of water heaters.

More research is needed to understand why the morning peak
does not behave in the same way as evening peak. Such research
could potentially include a more detailed analysis of individual
device or homeowner routines. It could also require a larger
sample of devices or dedicated experimental verification with a
more aggressive price signal approach. More research would
also be necessary to statistically verify the proposed approach
on a large sample of devices.
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