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Abstract—Several electromagnetic transient (EMT) dynamic
modeling methods are available to model systems like photo-
voltaic (PV) plants, wind power plants, variable-speed drives,
among others. The methods include: (a) physics-based models
and (b) data-driven models. The physics-based dynamic models
may include high-fidelity switched system model and average-
value model that both require the control algorithms included in
the models. However, manufacturers typically prefer to provide
black-box models to avoid disclosing proprietary. One of the
solutions to prevent disclosing control algorithms is the use of
data-driven dynamic EMT models of PV systems. In this paper,
data-driven dynamic EMT model based on artificial intelligence
(AI) algorithms are presented. The AI algorithms evaluated in-
clude convolutional neural networks, recurrent neural networks,
and nonlinear auto-regressive exogenous model. Automation in
generating data and training these models is also discussed in
this paper. The results generated by the best AI algorithms have
been observed to be greater than 95% accurate.

Index Terms—PV Plant, AI, Surrogate Model, Automation,
EMT

I. INTRODUCTION

In the recent times, there is a recognition to perform
electromagnetic transient (EMT) simulations for larger power
grids with more detailed equipment models [1], [2]. To sim-
ulate power grids with equipments in EMT simulators, EMT
simulation models that are either physics-based or data-driven
are needed. These models need to be comprehensively tested
and the process to generate these models is being standardized
(by North American Electric Reliability Corporation [NERC])
for example). Physics-based EMT models of equipment (like
high-voltage direct current [HVdc], photovoltaic [PV] power
plants, extreme fast electric vehicle chargers [xFC], industrial
drives, etc.) can be high-fidelity detailed switched system mod-
els [3]–[7], average-value models [7], [8], and other reduced-
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order models [9]. Data-driven EMT models of equipment can
include system identification in transfer functions in frequency
domain (linear models) [10], Hammerstein Wiener model
(non-linear model) [11], artificial neural network model (non-
linear model) [12], polytopic black-box model [13], and a
combination of one or more techniques [14]. A review of
different data-driven and physics-based models has been per-
formed on microgrids with comparison between different data-
driven models shown [15] and on power electronic converters
in power grids [7]. Moreover, data-driven EMT models have
been used for intelligent predictions to identify bad data read
from sensors in power electronics [16].

While the preference is for high-fidelity switched system
models in EMT simulations to understand the interactions
between equipment (like a PV plant) and power grid, data-
driven models may be utilized where it is challenging to get
access to high-fidelity switched system model. In this paper,
different data-driven artificial intelligence (AI) models are
evaluated for modeling a PV system. The AI-based models
include convolutional neural networks (CNNs), recurrent neu-
ral networks (RNNs), and nonlinear auto-regressive exogenous
model (NARX). These AI models are evaluated to identify
the algorithms that show promise for data-driven modeling of
power electronics systems like PV power plants. Automation
in the process to generate these models is also discussed in
the paper.

II. PV POWER PLANT

A typical PV power plant is shown in [4]. The plant con-
sists with a power transformer, distribution lines, distribution
transformers, inverters (with their filters), and PV arrays. There
are in the range of hundreds of lines, transformers, inverters
(with their filters), and PV arrays in a large PV power plant.
A PV system comprises of a single distribution transformer
that may connect to multiple inverters with their filters in the
low voltage side of the transformer.

The control system of the PV power plant typically consists
of the power plant controller (PPC) that sends active and
reactive power dispatch commands to the inverter controllers
and receives information on measured active and reactive
power along with voltage and frequency at the terminal of
the PV power plant. The inverter controller controls the active
and reactive power at the inverter terminals based on the
dispatch commands received from PPC and regulates the



internal variables (like ac-side currents, dc-side current, dc-
side voltage, among others).

III. AI MODELS

Different AI model are evaluated in this section for evaluat-
ing the dynamics of a PV system. They include CNN, RNN,
and NARX.

A. Training Dataset

The data required in the AI-based models for comparing the
different algorithms include the single-phase ac-side voltages
at the inverter terminals, the PV power generated, and the
corresponding single-phase ac-side currents at the inverter
terminals. In this research, this dataset is generated from the
simulation in PSCAD of the high-fidelity switched system
dynamic EMT model [4] that includes a single PV system that
connects to a distribution line. The distribution line connects
to a controlled voltage source at the other end. The voltage
and frequency of the controlled voltage source are varied to
provide data for grid events where voltage and frequency
variations are observable. The voltage variation may happen
when there are unbalanced line-line faults and three-phase
faults in the ac grid. The frequency variation may happen
when there is a loss of generation in the ac grid. The sampling
frequency considered while generating this dataset is 50µs.
This dataset is used to train the AI models and compare their
performance.

B. NARX Model

A NARX model consisting of layers processing current
and previous time-step inputs and outputs from the model
is considered for representing the dynamics of a PV system.
The NARX model with two layers is shown in Fig. 1. The
model shown in the figure is a series-parallel architecture, with
inputs and previous time-step outputs being fed in as inputs
to the model. The outcome of the model is the current time-
step output. The parameters like number of previous time-step
inputs, number of previous time-step outputs, and number of
layers can be varied to improve the accuracy of the model.

C. CNN Model

A CNN model consisting of convolutions, dropouts, trans-
pose of convolution, and max pooling is considered for rep-
resenting the dynamics of a PV system. Each layer consists
of multiple neurons with activation functions. An example
CNN model is shown in Fig. 2. The activation functions
considered are rectified linear unit (RELU) and tanh functions.
The parameters like type of layer (convolution, transpose of
convolution, max pooling, dropouts, etc.) and its parameters,
activation function, number of layers, and number of neurons
in each layer can be varied to improve the accuracy of the
model.
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Fig. 1. NARX model.

D. RNN Model

An RNN model consisting of present layers and history
layer is considered for representing the dynamics of a PV
system. Each layer consists of multiple neurons with activation
functions. The history layer uses the data from the previous
time-step to update the input to the neuron in the current
time-step. An example implementation of the RNN model is
shown in Fig. 3. The activation functions considered are RELU
and tanh functions. The parameters like number of layers,
number of history layers, number of neurons in each layer,
and activation function can be varied to improve the accuracy
of the model.

E. Training & Comparison

The AI models, CNN and RNN, are trained in Python based
on the training dataset. Based on variations in the number of
layers from 2 to 4 and the corresponding associated parameters
in the CNN model, it was identified that the best results
were obtained from a 3-layer model. The 3 layers consist of
50 filters convolution with RELU activation function, 1 filter
transpose of convolution with tanh activation function, and
max pooling, respectively. There are a total of 1, 101 trainable
parameters. Similarly, varying the number of layers from 2
to 3 and the corresponding parameters in the RNN model, it
was identified that the best results were obtained from a 2-
layer model. The 2 layers consist of 20 neurons with RELU
activation function and 1 neuron with tanh activation function,
respectively. There are a total of 482 trainable parameters.

 

Fig. 2. CNN model.



Fig. 3. Typical RNN model.

The NARX model is trained in MATLAB based on the
same training dataset. The training yields the best results
with 1 previous time-step input, 1 previous time-step output,
and 3 layers. However, there were challenges observed with
the closed-loop NARX implementation as the validation test
results were not very similar to the validation datasets. While
open-loop NARX in estimation problems have shown good
replication (e.g., [16]), closed-loop NARX that can be used
in EMT dynamic model development appears to have chal-
lenges with initialization. In estimation problems, the historical
measured data can be used as previous time-step output that
are fed as inputs to the NARX model in open-loop. In the
closed-loop NARX model, the output of the NARX model
from the previous time-step is fed as an input. This makes
it more challenging to achieve convergence and introduces
initialization problems.

From the trained models, it has been observed that the RNN
model imposes the least computational burden while providing
very good similarity to the test data.
IV. AUTOMATION OF GENERATING & TESTING AI-BASED

MODEL

Based on the comparison discussed in the previous section,
in this section, the RNN algorithm is considered to develop
the EMT dynamic model of a PV system. The overview of
the automation performed to generate the RNN-based model
and integrate with the EMT model of the rest of the power
grid is automated and can be implemented by a single click
of a Python script.

A. Data Generation

The dataset needed to train the RNN model is generated
from the simulation in PSCAD of the same high-fidelity
switched system EMT dynamic model explained in Sec-
tion III-A. In additiona to varying the voltage magnitude and
frequency of the controlled voltage source, the PV power
generation is varied at each voltage and frequency to generate
a comprehensive dataset. Another important parameter in the
dataset generation is the sampling frequency required for the
dataset.

The dataset generation process has been fine-tuned after
multiple iterations of the type of data, sampling frequency
of data captured, and operating conditions at which data

is generated have been tried and tested. Finally, the data
required to train the RNN model include the three-phase ac-
side voltages at the PV system terminals, the PV active and
reactive powers generated, and the three-phase ac-side currents
at the PV system terminals. The dataset finally generated is
sampled at 50µs. This dataset is generated at 7 different PV
power generation set points and at each generation set point,
3 different distribution grid voltage magnitude and 2 different
distribution voltage frequencies are considered. A total of
140, 000 data points is generated.

The process to generate the dataset is automated through
Python scripting and the generated data is processed to inputs
and outputs needed to train each RNN model.

B. Training

Once the dataset is generated from PSCAD, it is used to
train an RNN model in Python. The number of layers, number
of neurons in each layer (and correspondingly the weights
and biases), type of activation function, the number of his-
tory layers, and input-output combinations are the parameters
available in the RNN model to tune. Multiple training runs are
completed on the generated dataset to fine-tune the parameters
that result in the best fit of the available data to the RNN
model.

Initially, a single RNN model is considered for a PV system.
The single RNN model is trained using input data of three-
phase ac-side voltages at inverter terminals and PV active
and reactive powers generated. The output data is the three-
phase ac-side currents. The RNN model generated uses three
layers, 10 neurons in the hidden layer and 3 neurons in
the output layer, RELU and tanh activation functions in the
hidden layer and output layer, respectively, and 1 history layer.
However, the output did not match well once the training was
completed. Hence, the output data was reduced to single-phase
ac-side current, while the input data remained the same to
train a single RNN model. That is, a total of 3 RNN models
is required to generate the three-phase ac-side currents as
outputs. The RNN model’s parameters were varied and finally,
a 3-layer RNN model with 10, 3, and 1 neurons in the multiple
hidden and output layers produced the best fit to the available
dataset. The RNN model uses RELU, tanh, and tanh activation
functions, respectively, in the 3 layers. It also uses 1 history
layer.

The process to train the RNN model, extract parameters
(gains, biases) from the trained RNN model, and store the ex-
tracted parameters in the file system is completely automated
in Python.

C. C Code Development

A general-purpose RNN model is developed in C code that
takes gains and biases as inputs. A sample RNN model is
shown in Fig. 3 to indicate the structure of the model that is
implemented in C code. The code implemented in C represents
only one time-step (or, equivalently, one set of RNN layers in
Fig. 3). This C code is callable from PSCAD with gains and
biases sent from PSCAD.
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Fig. 4. Comparison of the active power from the PV system through simu-
lation of RNN-based EMT dynamic model (Pac) and high-fidelity switched
system EMT dynamic model (P1Labc) for two different PV systems: (a) PV
system-1, (b) PV system-2.

D. PSCAD-C AI-Based Model

The RNN models representing a single PV system are
integrated with the rest of the circuit in PSCAD. The RNN
models feed the three-phase currents to the circuit and take in
the measured three-phase voltages from the circuit along with
the active/reactive power references from the PPC as inputs.
This interaction between the RNN model in C code and the
circuit that the RNN model connects to is implemented in a
Fortran script within PSCAD.

The Fortran script in PSCAD, first, calls a C code that
extracts the parameters of the trained RNN models for the
three phases of a PV system from the file system. The
measured three-phase voltages from the PSCAD circuit and
the active/reactive power references from the PPC are sent to
the Fortran scripts at inputs that can be used in the three RNN
models. These inputs are normalized and biases are removed.
Then, the Fortran script calls the three RNN models in C
codes and passes the inputs to generate the single-phase ac-
side current from each RNN model. The generated three-phase
ac-side currents from the three RNN models are fed from the
Fortran script to the circuit implemented in PSCAD.

V. INTEGRATION OF AI-BASED MODEL TO PV
DISTRIBUTION GRID

The AI-based PV (photovoltaic) plant model was integrated
with the developed distribution grid model in PSCAD, and the

response of the PV plant, along with the current power plant
controller, was analyzed.

The training process for the advanced photovoltaic (PV)
model of the generic PV plant has faced challenges in fully
capturing the transient behavior of the high-fidelity PV model.
As a result, when integrating the AI-based PV model into the
distribution grid, the system becomes unstable. This instability
may arise from a mismatch in dynamics. The distribution grid
model, being a damped system, may have a slower response
compared to the AI-based model, which is undamped and
respond instantly to changes in its input. The damping in
the distribution grid model may cause it to exhibit oscillatory
behavior, especially if it is underdamped. If the AI-based PV
model does not account for this behavior and reacts only to the
instantaneous value of its input, it might generate outputs that
exacerbate the oscillations, leading to instability. Additionally,
since the integrated PV model is AI-based and hasn’t been
trained with a dataset coming from the complete PV plant
system with distribution grid model, it might not be able
to handle the dynamics introduced by the damping in the
distribution grid model when they are connected.

Several possible solutions to address the instability have
been proposed, including: tuning the damping in the distribu-
tion grid model; designing extra control for integrating the AI-
based PV model with the distribution grid model; and modify-
ing the AI-based PV model. The simplest method, which has
been adopted, involves incorporating some form of damping or
feedback control into the AI-based PV model to help stabilize
the loop. Thus, additional capacitance was incorporated at
the bus of each PV cell location. A thorough investigation
was conducted by sweeping the added capacitance at each
location and identifying the minimum additional capacitance
required to minimize the total reactive power for the PV
plant. By leveraging this minimum additional capacitance,
the advanced generic PV model can achieve stability and
reliable performance. The additional capacitance may affect
the reactive power of the PV plant, but the active power
command can still be perfectly tracked.

VI. SIMULATION RESULTS

A. Comparison between RNN-based EMT dynamic model and
the high-fidelity switched system EMT dynamic model for the
same PV systems

For two different real PV systems in the field, a compar-
ison between the simulation results of the RNN-based EMT
dynamic model and the high-fidelity switched system EMT
dynamic model for the same PV systems is shown in Fig. 4.
From the figure, it may be observed that the simulation results
from the RNN-based EMT dynamic model closely match the
simulation results from the high-fidelity switched system EMT
dynamic model for both the PV systems. The automation in
generating and testing the RNN-based EMT dynamic model
is helpful when different PV systems are being considered.
From the comparison, the accuracy observed in the RNN-
based EMT dynamic model is greater than 95%. The speed-
up in simulation of RNN-based EMT dynamic model of the



Fig. 5. Simulation results for the integrated AI-based PV system with
distribution grid: (a) Grid Lower voltage side voltage, (b) Grid lower voltage
side active power.

PV system is compared with the simulation of the baseline
EMT dynamic model of the same PV system in PSCAD. The
baseline EMT dynamic model of the PV system utilizes the
library components in PSCAD. A speed-up of the order of up
to 100x is observed in a single PV system.

B. Integrate the AI-based PV system with distribution grid

The simulation results for the complete PV plant with power
transformer (230kV/34.5kV), distribution grid, and AI-based
PV system is presented in Fig. 5. The dispatch command
for the active power is set at 200MW. As illustrated in Fig.
5 (a), the grid-size voltage at the lower side of the power
transformer exhibits stable results with the integration of the
additional capacitance. Additionally, Fig. 5 (b) demonstrates
that the active power consistently tracks its reference value.

VII. CONCLUSIONS

In this paper, three different AI-based models (RNN, CNN,
and NARX) were developed to represent the EMT dynamics
of PV systems. Upon evaluation under different operating
conditions, it has been identified that the RNN-based models
present the best representation of the EMT dynamic of a PV
system. A fully automated process to develop the RNN-based
EMT dynamic model of PV systems and test them is presented
in the paper. The simulation results from the RNN-based EMT
dynamic models of two different PV systems, as compared to
the corresponding high-fidelity switched system EMT dynamic
model of the PV system, has shown a high degree of accuracy
and a speed-up of up to 100x.
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