

1 Screening for Lipids From Marine Microalgae Using Nile Red

2
3 Zackary I. Johnson, Robert R. Bidigare, Sara K. Blinebry, Susan L. Brown, John J. Cullen, Sarah E.
4 Loftus, Donald G. Redalje, Courtney Swink, Benjamin A. S. Van Mooy

5
6
7 Uncopied edited / accepted version.

8
9 Final version:

10
11 Johnson ZI, Bidigare RR, Blinebry SK, Brown SL, Cullen JJ, Loftus SE, Redalje DG, Swink C, Van Mooy BAS
12 (2017). Screening for Lipids From Marine Microalgae Using Nile Red. In: Lee SY (ed). *Consequences of*
13 *Microbial Interactions with Hydrocarbons, Oils, and Lipids: Production of Fuels and Chemicals*. Springer
14 International Publishing: Cham. pp 1-22. https://doi.org/10.1007/978-3-319-31421-1_382-1

15

16
17

18
19
20
21
22
2324 Screening for lipids from marine microalgae using Nile Red
25
26
2728 Zackary I. Johnson^{a*}, Robert R. Bidigare^b, Sara K. Blinebry^a, Susan L. Brown^b, John J. Cullen^c, Sarah
29 E. Loftus^a, Donald G. Redalje^d, Courtney Swink^a, Benjamin A. S. Van Mooy^e
3031 ^aMarine Laboratory, Nicholas School of the Environment, and Biology Department, Duke
32 University, 135 Duke Marine Lab Rd., Beaufort, North Carolina 28516 USA
3334 ^bSchool of Ocean and Earth Science and Technology, University of Hawaii, 1960 East-West Rd.,
35 Honolulu, Hawaii 96822 USA
3637 ^cDepartment of Oceanography, Dalhousie University, Halifax, Nova Scotia, B3H 4J1, Canada
3839 ^dDepartment of Marine Science, The University of Southern Mississippi, 1020 Balch Boulevard,
40 Stennis Space Center, Mississippi 39529 USA
4142 ^eDepartment of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution,
43 Woods Hole, Massachusetts 02543, USA
44
4546 *Corresponding Author: Zackary Johnson, Tel.: 1-252-504-7543
47 Email Address: zij@duke.edu (ZIJ)
4849 Robert R. Bidigare: bidigare@hawaii.edu
50 Sara K. Blinebry: sara.blinebry@duke.edu
51 Susan L. Brown: sbrown@apps.soest.hawaii.edu
52 John J. Cullen: john.cullen@dal.ca
53 Sarah E. Loftus: sarah.loftus@duke.edu
54 Donald G. Redalje: donald.redlage@usm.edu
55 Courtney Swink: courtney.swink@duke.edu
56 Benjamin A. S. Van Mooy: bvanmooy@whoi.edu
5758 Submitted to **Handbook of Hydrocarbon and Lipid Microbiology Series**
59
60

61 **Abstract**

62
63 The fluorescent stain Nile Red has been used extensively for the quantification of lipids in
64 phytoplankton, including microalgae, because it preferentially stains neutral lipids and it is
65 economical and sensitive to use for screening purposes. Although its basic application has not
66 changed for several decades, recent improvements have been made to improve its utility across
67 applications. Here we describe additional refinements in its application and interpretation as a high-
68 throughput method for the rapid quantification of neutral lipids in liquid cultures of marine
69 phytoplankton. Specifically we address (1) inter-species comparisons, (2) fluorescence excitation and
70 emission wavelengths and (3) the time-course of the Nile Red signal in the context of using bulk or
71 cell-specific fluorescence to quantify neutral lipids of live or preserved cells. We show that with
72 proper caution in its interpretation across species and physiological states that the quantity of lipid in
73 hundreds of small volume samples can be reliably assessed daily using a refined Nile Red protocol.

74

75 **Key Words**

76 Nile Red (9-diethylamino-5H-benzo[α]phenoxyazine-5-one); Fluorescent probe; Neutral lipids;
77 Microalgae; Phytoplankton; High-throughput screen

78

79 **Abbreviations**

80 DAG, diacylglycerol; MGDG, monogalactosyl diacylglycerol; DGDG, digalactosyl diacylglycerol;
81 SQDG, sulfoquinovosyl diacylglycerol; PG, phosphatidylglycerol; PE, phosphatidylethanolamine;
82 PC, phosphatidylcholine; DGTS, diacylglycerol-N-trimethylhomoserine; DGTA, 1,2-diacylglyceryl-
83 O-2'-(hydroxymethyl)-(N,N,N-trimethyl)- β -alanine; DGCC, 1,2-diacylglyceryl-3-(O-
84 carboxyhydroxymethylcholine); TAG, triacylglycerol.

85

86
87

88 **1. Introduction**

89 Along with proteins, carbohydrates and nucleic acids, lipids represent one of the four major
90 biochemical components of cells and the ratio of these components varies widely among cell types,
91 taxa and physiological state. In particular, the lipid composition of **phytoplankton**, including
92 **microalgae**, is strongly sensitive to nutritional status (Marchetti et al. 2010; Shifrin and Chisholm
93 1980) and has been shown to vary greatly among different species of phytoplankton including
94 microalgae (Ben-Amotz et al. 1985; Shifrin and Chisholm 1981). In addition to such basic research
95 characterizing the quantity and classes of lipids, recently there is renewed interest in lipids from
96 microalgae because of potential biotechnological uses; fast growth rates, lack of cellulosic cell wall in
97 most species, and high lipid content make microalgae a top candidate for the production of **biofuels**
98 and other bioproducts (DOE 2016; Gordon and Polle 2007; Greene et al. 2016; Huntley et al. 2015;
99 Walsh et al. 2016; Williams and Laurens 2010). Towards this goal, rapid but accurate lipid
100 quantification of microalgae is required (1) to identify which strains have the most desirable lipid
101 profiles, (2) to identify the growth conditions that optimize the production of lipids and (3) to
102 develop microalgae strains through genetic modifications that increase lipid production (Greenwell
103 et al. 2009; Mcbrewster et al. 2009).

104

105 Direct extraction of total lipids is most commonly done with either the Folch method (Folch
106 et al. 1957) using an 8:4:3 CHCl₃:MeOH:H₂O solvent mixture or the refined Bligh and Dyer method
107 (Bligh and Dyer 1959) using a 1:1:0.8 CHCl₃:MeOH:H₂O solvent mixture to extract lipids from cells
108 (or tissue). Both of these classic methods, which require the harvesting of dilute cells from their
109 growth liquid medium via filtration or centrifugation, rely on solvent phase separation of the lipids;
110 the organic (lower) phase is removed and concentrated by evaporation, leaving behind lipids. Total
111 lipids may then be determined by gravimetry. While this approach is generally robust and has been

112 used for more than 50 years, but it is not compatible with screening efforts involving large numbers
113 of samples because of processing time involved with extraction. Further, relatively large volumes
114 (i.e. mass) of samples are required for quantification by gravimetry because the basis of the
115 measurements is mass difference between a sample and blank, and is therefore limited by the
116 precision of the balance. If specific lipid classes are of interest, other expensive and time consuming
117 chromatography (gas, high pressure liquid, thin layer, etc.), nuclear magnetic resonance, or mass
118 spectrometry based methods are required (Choi et al. 1993; Gurr and James 1980; Harvey 1991;
119 Holčapek et al. 2003).

120

121 Lipid-specific stains have been developed and offer an alternative to extraction based
122 protocols because they require neither large amounts of material nor solvent extractions. Nile Red
123 (9-diethylamino-5H-benzo[α]phenoxyazine-5-one) (Greenspan et al. 1985), LipidToxTM
124 (InvitrogenTM) and 4,4-difluoro-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-indacene-2,6-disulfonic
125 acid, disodium salt (BODIPY[®] 492/515 disulfonate InvitrogenTM) are common fluorescent stains
126 used to characterize and quantify lipids in cells. Nile Red, which was originally developed as a
127 modification of Nile Blue, has an intense fluorescence signal and has been used as an economical
128 method to quantify the abundance and location of lipids in different cell types since its introduction
129 30 years ago (Greenspan et al. 1985). Because microalgae are naturally fluorescent, modifications by
130 Cooksey (Cooksey et al. 1987) broadened its general applicability for microalgae. Specifically,
131 fluorescence is quantitatively related to lipid content and highly correlated with both gravimetrically
132 determined total- and neutral lipids. This method has been further refined for the purposes of
133 screening microalgae in small volumes (Chen et al. 2009; Elsey et al. 2007), however as its
134 application has grown, additional uncertainties have been raised (Natunen et al. 2014; Rumin et al.
135 2015). Specifically, although the fluorescence intensity has been reported to increase in bound

136 versus free Nile Red (Cooksey et al. 1987; Greenspan et al. 1985; Pick and Rachutin-Zalomin 2012),
137 there have been no reports documenting the relative excitation and emission spectra of bound and
138 free Nile Red in aqueous phase even though this information is essential in selecting the proper
139 wavelengths and optimizing fluorescence detection in the presence of a strong background
140 fluorescence signal of phytoplankton. Also, recent advances in molecular level lipid class
141 quantification allow a comprehensive comparison between Nile Red quantification and more
142 laborious, but detailed solvent-based extraction protocols across different phytoplankton strains
143 (Chen et al. 2009). Finally, recent reports show the importance of temporal variability of the Nile
144 Red signal for intact model microalgae and their plasma membrane or lipid globules, suggesting a
145 role of physiology and potentially taxonomy in modulating the Nile Red signal (Pick and Rachutin-
146 Zalomin 2012). These considerations lead to a reassessment of the application and interpretation of
147 the Nile Red technique for the rapid quantification of lipids in low biomass samples of
148 phytoplankton reported here.

149

150 **2. Materials and Methods**

151

152 *2.1 Cultivation and storage of phytoplankton samples*

153 **Marine phytoplankton** cultures were grown in 40 mL Pyrex culture tubes or polystyrene
154 tissue culture flasks using modified f/2 or H medium (Andersen 2005; Guillard and Ryther 1962)
155 (100 μ M NO_3^- , 36.3 μ M PO_4^{3-} , 250 μ M SiOH_4 (that was neutralized to pH = 7.0 prior to addition to
156 medium (Mclachlan 1973)), f/20 metals, 0.2 g L⁻¹ sodium bicarbonate). Cultures were grown at
157 30°C under high light (photosynthetically active radiation \sim 550 μ mol quanta m⁻² sec⁻¹) provided by
158 cool-white fluorescent bulbs with a 14:10 h light:dark cycle. Additional marine phytoplankton
159 cultures for lipid class experiments were grown in standard f/2 medium in 2 L Pyrex bottles

160 aseptically bubbled with air and stirred with a magnetic stir bar. These cultures were grown in the
161 laboratory window using natural sunlight and at ambient laboratory temperatures of $\sim 25^{\circ}\text{C}$.
162 Phytoplankton cultures did not exceed 3 mM C biomass. The strains used in this part of the study
163 were obtained from the University of Hawaii culture collection and represent a range of taxa and
164 species that include: *Opephora* sp. C003, *Opephora* sp. C010, *Nanofrustulum* sp. C015, *Desmochloris* sp.
165 C046, *Bacillariophyta* sp. C077, *Skeletonema* sp. C129, *Nitzschia* sp. C315, *Staurosira* sp. C323, *Chlorella*
166 sp. C596, *Chlorella* sp. 599, *Thalassiosira* sp. C-D, *Chaetoceros* sp. MT16, *Chaetoceros* Ch60.

167

168 Cultures for **flow cytometry** were grown in 40 mL Pyrex tubes in a growth medium that
169 consisted of Artificial Seawater (Goldman and McCarthy 1978; McLachlan 1973) with modified f/2
170 nutrients (100 μM NH_4 , 36 μM PO_4 , 106 μM SiOH_4 , 1 mM TAPS, f/20 metals, f/2 vitamins).

171 Cultures were grown at $25 \pm 0.2^{\circ}\text{C}$ with $\sim 350 \mu\text{mol}$ quanta $\text{m}^{-2} \text{s}^{-1}$ provided by cool-white
172 fluorescent bulbs with a 14:10 h light:dark cycle. Three strains of marine phytoplankton including
173 *Staurosira* sp. C323, *Chlorella* sp. C596 and one strain isolated from samples provided by the Sahara
174 Forest Project in Qatar and identified as *Navicula* sp. based on microscopy observation. For all
175 experiments, phytoplankton strains were harvested at different stages of their growth phase (e.g.
176 exponential, early stationary, late stationary) to obtain populations that were in different stages of
177 nutrition-stress, physiology and carbon allocation and therefore different lipid content (Bittar et al.
178 2013).

179

180 “Live” samples for Nile Red lipids were measured within 1 h after sub-sampling from
181 culture flasks. “Frozen” samples of 2 mL culture were immediately frozen at either -80°C or -196°C
182 in cryovials (VWR # 16001-102) until later analysis, typically within 1 week. No difference was
183 detected between frozen storage at different temperatures. Longer term storage (up to a month)

184 also did not influence the results. “Preserved” samples were treated similarly to “Frozen”, except
185 the preservative glutaraldehyde (Tousimis #1057A) was added (0.125% final concentration) (Vaulot
186 et al. 1989).

187

188 *2.2 Nile Red solutions*

189 **Nile Red** (9-diethylamino-5*H*-benzo[α]phenoxyazine-5-one) (Sigma # N2013) was dissolved
190 (1 mg mL⁻¹) in either acetone or dimethyl sulfoxide (DMSO) (Greenspan and Fowler 1985;
191 Greenspan et al. 1985; Rumin et al. 2015). Nile Red stock solutions were stored in air-tight Pyrex
192 tubes at room temperature in the dark and made fresh weekly.

193

194 *2.3 Nile Red Determined Lipids using Microplate Reader*

195 Nile Red solution (1 mg mL⁻¹) was added to phytoplankton cultures, final concentration 10
196 μ g Nile Red mL⁻¹, and thoroughly vortexed. Higher concentrations (up to 30 μ g Nile Red mL⁻¹) did
197 not significantly modify the signal. In pilot studies, the choice of solvent (acetone or DMSO) did
198 not affect the magnitude or variability of the signal. Treated samples were placed into a black 96-
199 well microplate (VWR #82050-728) (300 μ L each well) and fluorescence quantified using a Synergy
200 4 multimode **microplate reader** equipped with a Xenon flash lamp. Fluorescence was measured
201 every 5 min for a total of 30 min. For each microplate well, the peak fluorescence signal over this 30
202 min time period was used as the reported signal. Fluorescence was excited at 540 \pm 12.5 nm
203 (Synergy part #7082249) and emission measured at 590 \pm 10 nm (Synergy part #7082225). To
204 account for non-specific fluorescence, Nile Red signals were corrected by subtracting a medium
205 blank with Nile Red and then subtracting the difference between the phytoplankton with solvent
206 (with no Nile Red) and medium with solvent. Fluorescence excitation and emission spectra were

207 measured similarly except that excitation or emission was provided and measured in dual
208 monochromator mode with 5 nm resolution.

209

210 To account for potential machine and stain variability, a secondary solid standard plate
211 (Synergy part # 7092092) was run weekly to ensure machine stability. Nile Red stain efficiency and
212 stability was verified with each microplate analysis using a standard solution made from Chemically
213 Defined Lipid Concentrate (Invitrogen # 11905-031) preserved with 0.125% glutaraldehyde and
214 stored in cryovials at -196°C (in liquid nitrogen) until each standard vial was sacrificed.

215

216 *2.4 Total Lipids*

217 Samples for lipid analysis (50–100 mL) were collected by filtration onto combusted 47-mm
218 glass fiber filters (nominal porosity of 0.7 μm) and gently rinsed thrice with 0.5 M ammonium
219 formate to remove external salts (Zhu and Lee 1997). Samples were stored at -80°C prior to express
220 mail shipping on dry ice to the University of Hawaii. Upon arrival, samples were stored at -80°C
221 until further analysis. Prior to extraction, the frozen sample filters were freeze-dried overnight using
222 a bench top Labconco lyophilization unit, set at -40°C and a vacuum of at least 0.06 mbar for a
223 minimum of 12 hr. The samples were freeze-dried to eliminate the water barrier and allow organic
224 extraction solvents to permeate the sample matrix during the following accelerated solvent
225 extraction. A microscale analytical approach was developed for the determination of total lipid
226 concentration as only small amounts of microalgae were available for analysis. The lipid extraction
227 procedure is based on that described by [Bligh and Dyer](#) (Bligh and Dyer 1959). Total lipid
228 concentrations are determined via gravimetric analysis following extraction using a [DIONEX](#) ASE
229 200 system and HPLC-grade solvents (VWR International). The ASE 200 flow-through solvent
230 extraction system allows rapid extraction of up to 24 solid or semisolid organic matter samples using

231 11-mL stainless-steel extraction cells with independent control of temperature and pressure using
232 organic or aqueous solvents. The sample extract and solvent mixture of each cell were pumped into
233 pre-cleaned 40-mL glass extraction vials. The total lipid content of each sample was calculated by
234 weighing the glass extraction vials before and after the accelerated solvent extraction.

235

236 The following steps were carried out in preparation for extraction. The pre-cleaned and
237 uncapped extraction vials were equilibrated for 30 min in a rack using a timer. Following the
238 equilibration, the vials were weighed on a five-place analytical balance (Mettler Toledo, XS105DU).
239 The weight value (g) was recorded as pre-weight to 0.01 mg. Internal and external calibration was
240 carried out daily. The DIONEX extraction cells were cleaned using a programmed cleaning cycle
241 (pre-heat = 0 min, heat = 5 min, N₂ pressure = 1500 psi, temperature = 60°C, static time = 0 min,
242 flush % = 5, purge = 20 sec, cycle = 1, and solvents = 35% chloroform and 65% methanol. The 11-
243 mL DIONEX extraction cells were lined with 19.88 mm DIONEX cellulose filters. The folded (in-
244 half) sample filters were transferred individually in each cell with the crease facing the inside wall of
245 the DIONEX cell. To ensure even contact of the sample material with the extracting solvents, the
246 folded filters were carefully opened with forceps. Once the filter was positioned in the cell, Ottawa
247 sand (20-30 mesh) was poured into the void volume up to 1-2 mm under the rim of the cell.
248 Dispersing with an inert material allows increased permeation of the sample matrix, prevents sample
249 adhesion and compaction and hence maximizes extraction efficiency. For each set (24 cells) we ran
250 three combusted 47-mm GFF filters as blanks in non-sequential order. For the lipid extraction,
251 DIONEX instrument settings were as follows: pre-heat = 0 min, heat = 5 min, N₂ pressure = 1500
252 psi, temperature = 60°C, static time = 5 min, flush % = 20, purge = 60 sec, cycle = 2, and solvents
253 = 35% chloroform and 65% methanol.

254

255 Following the accelerated solvent extraction, the glass vials containing the sample extract
256 were loaded in a Genevac EZ-2 evaporator for 1.75 hr at 40°C using the 'low BP mixture' setting to
257 evaporate the contents of the pre-weighed extraction cells under vacuum to dryness, and then placed
258 in a rack uncapped for a 30 min equilibration time. For gravimetric "total lipid" analysis, the weight
259 of the dry residue in the collection vials was used to calculate the amount of lipids in the original
260 sample. The average blank value was subtracted from the final weight. For storage and further
261 analysis the dried lipid material was re-dissolved in 2 mL dichloromethane (HPLC-grade, Fisher
262 Scientific) and transferred into 4-mL glass vials. One mL of dichloromethane was added twice to
263 each sample and then sonicated for 30 sec, for a final volume of 2 mL. Once all samples were
264 transferred into the 4-mL storage vials, they were purged with nitrogen gas for 10 sec and closed
265 with Teflon caps. Each vial was sealed with Teflon tape and stored at -80°C until further analysis.

266

267 The precision of the method was determined in triplicate on two different days by extracting
268 a 47-mm GF/F filter plus 0 (blank), 10, 20, 30, 40 and 50 mg of dried Chlorella (SOLGAR #K-
269 1250, broken cell-wall dietary supplement) in triplicate using the procedure described above. Blank
270 values were subtracted and the two data sets were combined. The extraction efficiency was linear
271 ($R^2 = 0.987$) over this range of dry weights, and yielded a mean and SD of 17.4 ± 1.4 weight percent
272 (WT %) total lipids ($CV = 8.0\%$). This value is not statistically different ($P > 0.05$) from that ($15.9 \pm$
273 0.4 WT% total lipids) determined for Chlorella samples run in parallel using a Folch et al. (1957)
274 validated (Des Moines, IA; www.eurofins.com/) DIONEX macroscale protocol that requires an
275 individual sample size of ~500 mg.

276 *2.5 Neutral lipids*

277 Neutral lipids in the lipid extracts (see above) were determined by high-performance liquid
278 chromatography (HPLC) coupled with evaporative light scattering detection (ELSD) using a

modified version of the Silversand and Haux (1997) procedure (Silversand and Haux 1997). Lipid extracts (50 μ L) were injected onto an Agilent Technologies 1200 HPLC system (left and right column temperatures: 30 $^{\circ}$ C, flow rate: 1 mL min⁻¹) equipped with a Supelguard LC-DIOL guard column (4 x 20 mm, 5 μ m particle size), a Supelguard LC-DIOL analytical column (4 x 250 mm, 5 μ m particle size), and a Varian 385-LC ELSD (evaporator temperature: 35 $^{\circ}$ C, nebulizer temperature: 35 $^{\circ}$ C, N2 flow rate = 1.5 SLM). A binary solvent system was employed for the separation of neutral lipids: eluent A (hexane:acetic acid, 99:1, v:v) and eluent B (hexane:2-propanol:acetic acid, 84:15:1, v:v:v). The following solvent gradient program was used for analyte separation: t = 0 min (100% A), t = 6 min (30% A, 70% B), t = 7 min (100% B), t = 9 min (100% B), t = 11 min (100% A), and t = 14 min (100% A). Eluting peaks were identified by comparing their retention times (R_t, min) with those of standards obtained from Sigma-Aldrich: monoolein, 1,2-diolein, 1,3-diolein, and triolein mix (1787-1AMP, certified reference material) and cholesterol (C8667). Neutral lipids were quantified by peak area (EZChrom Elite software) and expressed as percentage of total peak area. Triacylglycerols (TAGs) were quantified using C18:1 TAG (triolein, Sigma-Aldrich, T7140) as a reference standard over a concentration working range of 0.48 - 2.86 μ g injection⁻¹. The on-site precision for this method (2.1% RSD; n = 30, over > 15 days) was established using a diatom reference material (Staurosira sp.) prepared in 1-g quantities by High-Purity Standards (Charleston, SC; www.hghpuritystandards.com/).

297

298 *2.6 Lipids Classes*

299 Twelve samples were selected for molecular-level lipid analyses by HPLC mass spectrometry
300 (HPLC/MS). Lipids were extracted from phytoplankton filtered onto glass fiber filters (VWR,
301 Grade 691) which were extracted using a modified Bligh and Dyer solvent extraction protocol (Bligh
302 and Dyer 1959). Briefly, filters were immersed in dichloromethane, methanol, and phosphate-

303 buffered saline (PBS) in a ratio of 10:20:8, sonicated for 15 min, and let to stand overnight under
304 nitrogen at -20°C. The next day, dichloromethane and water were added in a ratio of 10:10; samples
305 were centrifuged for 10 minutes, and the organic phase was removed and concentrated as the total
306 lipid extract; this step was repeated twice more. Phosphatidylethanolamine-N-(2,4-dinitrophenyl)
307 (DNP-PE; Avanti Polar Lipids) and triheptadecenoic (17:1/17:1/17:1, NuCheckPrep) were added
308 as internal standards at the first step of the extraction.

309

310 Total lipid extracts were analyzed for polar-diacylglyceride lipids (polar-DAGs) by using
311 HPLC/electrospray ionization mass spectrometry (HPLC/ESI-MS) as described by Sturt et al.
312 (2004), Van Mooy et al. (2006, 2009) and Levitan et al. (2015) on an Agilent 1100 HPLC and
313 Thermo LCQ Deca XP ion trap MS (Levitan et al. 2015; Sturt et al. 2004; Van Mooy et al. 2009;
314 Van Mooy et al. 2006). The molecular ion chromatograms were extracted for each individual IP-
315 DAG species at their appropriate retention time, integrated, and applied to external standard curves.
316 The standard curves were composed of triplicate measurements at four concentrations of the
317 following IP-DAGs: the recovery standard, DNP-PE; PG, PE, and PC, which were obtained from
318 Avanti Polar Lipids Inc; MGDG and DGDG, which were obtained from Matreya, LLC; SQDG and
319 DGTS, which were isolated from phosphorus-starved cultures of *Synechococcus* WH8102 (kindly
320 provided by E.A. Webb, University of Southern California) and *Chaetoceros gracilis* (kindly provided by
321 S. Dyhrman, WHOI), respectively, by using preparative HPLC (Van Mooy et al. 2009); DGTS was
322 applied as the standard for DGTA and DGCC (Van Mooy et al. 2009), since none of the betaine
323 lipids are commercially available.

324

325 Total extracts were analyzed for TAGs and DAGs by using reversed-phase non-aqueous
326 HPLC/atmospheric pressure chemical ionization mass spectrometry (NARP-HPLC/APCI-MS) on

327 an Agilent 1200 HPLC and Agilent 1200 single quadrupole MS. We identified 31 distinct TAGs by
328 their $[M+H]^+$ and $[M+H-ROOCH]^+$ mass spectra using previously described identification
329 protocols (Holčapek et al. 2003; Holčapek et al. 2005). External standard curves were composed of
330 triplicate measurements of the following TAGs at five concentrations: trihexadecenoin
331 (16:1/16:1/16:1), triheptadecenoin (17:1/17:1/17:1; recovery standard), trioctadecenoin
332 (18:1/18:1/18:1), trioctadecatrienoin (18:3/18:3/18:3), and trieicosapentaenoin (20:5/20:5/20:5).
333 Response factors for the TAG standards were linearly regressed against both retention time ($r^2 =$
334 0.94) and equivalent carbon number (ECN = acyl carbon atoms-2(acyl double bonds); $r^2 = 0.91$).
335 Response factors for unknown TAGs were calculated from the regression against retention time,
336 and then used to determine the concentrations of the unknown TAGs. DAGs were observed in a
337 few samples, and these were quantified as TAGs.

338

339 *2.7 Microscopy*

340 Phytoplankton cultures for lipid observation and localization were placed in flat bottom 24 place cell
341 wells (Becton Dickinson # 351147). Nile Red solution (0.1 mg mL^{-1}) in acetone was added to
342 cultures for a final concentration of $1 \mu\text{g Nile Red mL}^{-1}$. Cultures were allowed to stain for $\sim 5 \text{ min}$
343 before observation. Cells were viewed with a 100 W epifluorescence Olympus IX71 inverted
344 microscope, and pictures were acquired with a MacroFire digital camera and PictureFrame 2.3
345 software. Cells were initially viewed with a filter set typical for chlorophyll observation (excitation
346 (ex) 460-490 nm, dichroic mirror = 500 nm, emission (em) $>520 \text{ nm}$) in which lipid bodies stained a
347 bright yellowish-green in contrast to the red autofluorescence of the chlorophyll. Several other
348 combinations of excitation and emission filters were examined, designed to target both neutral and
349 polar Nile Red stained lipid bodies. For comparison with the microplate method, cultures were

350 viewed with a similar filter combination (ex. 546 ± 13 nm, DM = 560 nm, em. 585 ± 20 nm) and
351 yellow fluorescing neutral lipid bodies accounted for the majority of the signal in most strains.

352

353 *2.8 Flow cytometry*

354 Cellular Nile Red fluorescence was quantified with a FACSCalibur **flow cytometer** using
355 argon-ion laser excitation at 488 nm and an emission wavelength of 585 ± 42 nm (FL2 channel) as
356 previously described (Bittar et al. 2013; Johnson et al. 2010). Both live and preserved samples were
357 measured. Preserved samples were stored at -80 °C and measured within two days of the live
358 samples. Samples for flow cytometry were stained with Nile Red to a final concentration of $6 \mu\text{g L}^{-1}$
359 and vortexed, then kept in the dark. Aliquots were taken from the sample and measured with the
360 flow cytometer at 5-minute intervals from 0 to 30 minutes, with the sample vortexed before each
361 interval. Fluorescent microspheres (Fluoresbrite Microspheres, Polysciences, Inc.) were added as
362 internal fluorescence standards. Measurement duration lasted an average of 40 seconds. Unstained
363 cells were also used to check that no background fluorescence occurred in the same range as Nile
364 Red fluorescence. When comparing microplate reader and flow cytometer results directly, flow
365 cytometrically determined cell concentrations and Nile Red fluorescence per cell were multiplied to
366 calculate the total fluorescence of a given culture and compared to bulk estimates from the
367 microplate reader.

368

369

370 **3. Results**

371 The Nile Red stain was initially examined using qualitative analyses to determine the
372 localization of the staining within lipid-containing marine microalgal cells. Using a broad excitation
373 and emission filter set for chlorophyll *a* fluorescence optimized for visual inspection, cells that are

374 large and have defined organelles and cellular bodies show that the majority of Nile Red
375 fluorescence occurs in defined regions of the cells (e.g. Figure 1A). This specificity of staining is also
376 apparent when using excitation and emission filters that have been optimized for neutral lipid (i.e.
377 TAGs) bound Nile Red fluorescence detection (Figure 1B). Cells that were too small to observe
378 specific sub-cellular features using standard transmission microscopy did not show any specific
379 regions of staining, but still stained and fluoresced similarly. When viewed with the appropriate
380 filter sets, the sub-cellular patterns of staining of Nile Red were nearly identical to the patterns
381 observed with other commercially available lipid stains that target neutral lipids such as LipidToxTM
382 and BODIPY[®] and are consistent with specific staining of lipid vesicle within the cells.

383

384 To determine the influence of non-specific fluorescence in high-salt aqueous phase (i.e.
385 saltwater medium) across wavelengths, excitation and emission spectra were measured for a variety
386 of microalgae cultures and medium controls in the presence and absence of the Nile Red stain
387 (Figure 2). Excitation spectra (with emission measured at 590 nm, the peak of triacylglyceride-
388 bound fluorescence) of stained microalgae show a significant excitation peak at 530 nm while
389 unstained cells and stained and unstained medium controls are all 3 orders of magnitude below this
390 signal (Figure 2 top panel) demonstrating that the contribution of non-specific fluorescence is not
391 dependent on the excitation wavelength. Emission spectra (with excitation provided at 545 nm) of
392 stained microalgae have broad peaks at 660 nm (Figure 2 middle panel) that are substantially longer
393 the 590 nm peak expected for pure Nile Red bound-triacylglyceride (Invitrogen). But unlike
394 excitation spectra, emission spectra of the stained medium (i.e. no cells) control also have a
395 significant broad peak at ~660 nm. Further, unstained microalgae have a minor fluorescence peak at
396 ~680 nm that corresponds to the presence of chlorophyll *a* (Jeffrey et al. 1997) while unstained
397 medium does not have any significant emission fluorescence. Taken together, the excitation spectra

398 corrected for the presence of natural (i.e. unstained) fluorescence and non-specific fluorescence (i.e.
399 Nile Red stained medium) are essentially identical to the raw Nile Red-stained cell cultures (Figure 2
400 bottom panel) and have one major excitation peak at 530 nm. However, correcting for Nile Red
401 stained medium and, to a lesser degree natural fluorescence of microalgae, significantly changes the
402 dominant peak of the emission wavelength spectra to ~590 nm. This wavelength is significantly
403 lower than the raw Nile Red emission peak wavelength at ~660 nm, but has the least interference
404 from non-specific Nile Red fluorescence; it also more closely matches the emission peak of Nile Red
405 bound to triacylglycerides. Thus, previous reports that show emission maxima at wavelengths >600
406 nm could be influenced by the presence of significant background fluorescence of Nile Red (i.e.
407 unbound stain) in the aqueous phase (Cooksey et al. 1987) and potentially misinterpreted to indicate
408 high levels of phospholipids, which has ~50-75 nm red-shifted excitation and emission peaks for
409 Nile Red. This may be of particular importance when using marine microalgae because of the
410 presence of high levels of salt in the medium. Based on the peak-corrected excitation and emission
411 wavelengths, the availability of filters for microplate readers and the desire to target neutral lipids
412 (i.e. triacylglycerides), an excitation of 540 ± 12.5 nm and emission of 590 ± 10 nm were used for
413 further plate reader based assays.

414

415 Others have reported significant variability in the fluorescence signal of Nile Red as a
416 function of time (Chen et al. 2009; Cooksey et al. 1987; Natunen et al. 2014) and therefore
417 fluorescence is routinely measured over the course of 30 min or more (Chen et al. 2009; Elsey et al.
418 2007). The dynamics of these changes are variable and influenced by multiple factors including
419 microalgae taxa, physiological conditions, and composition of extracted lipids that together result in
420 fluorescence maxima from 0 to >30 min after the addition of Nile Red (e.g. Fig 3). For the majority
421 (78%) of more than 500 assays representing numerous strains, physiological conditions and

422 presumably cellular biochemical composition, there is a **time delay** between the addition of Nile Red
423 and the fluorescence maximum (Fig 3). The subsequent decreases over time were not due to the
424 decay associated with the measurement process (i.e. photobleaching) as the decrease was
425 independent of the number of times Nile Red fluorescence was quantified during the time course.
426 To further investigate these temporal patterns, we compared standard time-course measurements
427 from bulk estimates (i.e. microplate reader based, e.g. Figure 3) to integrated cell-specific Nile Red
428 fluorescence (i.e. flow cytometry) (Figure 4) for both fresh and preserved samples. Although some
429 differences exist in the relative fluorescence between methods as well as in the timing of the
430 fluorescence maxima, perhaps due to differences in the temporal precision, overall bulk and cell-
431 specific techniques show similar trends suggesting that the bulk signals are quantifying cellular
432 properties (and not medium or other non-specific extracellular binding artifacts).

433

434 While the bulk and cell-specific approaches show similar temporal trends, there are notable
435 differences between some of the live and preserved samples, which can be different between the
436 strains. For example, live *Chlorella* had fluorescence maxima near time zero, whereas preserved
437 *Chlorella* had fluorescence maxima that were more stable in the first 15 min (Figure 4). *Chlorella* also
438 had the greatest temporal dynamics (specifically for fresh samples), which are driven in part by two
439 populations of cells (stained and unstained) that begin to emerge after 5 min (Figure 4). Preserving
440 the cells prevented formation of two distinct populations, dramatically reducing these temporal
441 dynamics. Conversely, *Staurosira* was relatively constant over the time course, regardless of
442 treatment and did not have multiple populations. Finally, *Navicula* also had substantial temporal
443 dynamics that were greatly reduced when the cells were preserved. However, unlike for *Chlorella*, the
444 patterns for *Navicula* are not driven by heterogeneous cellular responses (i.e. multiple populations),
445 but rather consistent increases and decreases among the cells (Fig 5). Thus, temporal dynamics

446 observed for bulk Nile Red signals can be manifest by both changes in population frequencies (i.e.
447 either stained or unstained such as with *Chlorella*) or from changes in the relative efficiency of the
448 stain such as with *Navicula*.

449

450 We compared our refined Nile Red protocol that monitors the temporal dynamics, which
451 includes monitoring the temporal dynamics and selecting wavelengths optimized for detection, to a
452 recently developed high precision technique for quantifying lipid classes. As expected, an individual
453 strain grown under a variety of environmental conditions and sampled at different points in the
454 growth curve to maximize the biochemical heterogeneity, had substantial variability in its relative
455 total and TAG lipid contents (Figure 5). Moreover, Nile Red fluorescence was highly correlated
456 with both total and TAG lipid content ($r = 0.94$, $n = 32$, $p < 0.01$; $r = 0.97$, $n = 32$, $p < 0.01$,
457 respectively). This relationship was investigated across numerous strains and showed that Nile Red
458 fluorescence is positively correlated with total cellular lipids quantified by gravimetry (Figure 6), but
459 with reduced fidelity ($r = 0.76$, $n = 57$, $p < 0.01$) compared to the relationship for an individual
460 strain. Similarly, Nile Red fluorescence across strains are most strongly correlated with the TAG
461 lipids ($r = 0.84$, $n = 57$, $p < 0.01$). However, Nile Red lipids were poorly correlated ($r = 0.45$, $n =$
462 57 , $p < 0.01$) with the non-TAG lipids suggesting that the increased variability across species in the
463 Nile Red – total lipids relationship was due, in part, to differences in these non-TAG lipids.

464

465 This relationship was investigated in more detail by quantifying the molecular lipid classes of
466 selected strains (Table 1). As expected, the concentration of the various specific lipid classes varies
467 widely, but is mostly dominated by TAGs (Table 2). In general, Nile Red fluorescence is most
468 highly correlated with the most abundant TAG classes including 16:1/16:1/20:5, 14:0/16:1/20:5,
469 16:1/16:0/20:5, 16:1/16:1/16:1, 16:1/16:1/14:0, 16:0/18:0/20:4, 16:1/16:0/16:1 and

470 16:0/16:1/14:0. Another abundant TAG (16:0/16:1/16:0) is not strongly correlated with Nile Red
471 (but this low correlation is driven by one point and would otherwise be >0.85). Other polar and
472 non-polar **diacylglycerols** (DAGs) are also not significantly correlated with Nile Red fluorescence.
473 Nile Red fluorescence measured on live, frozen or preserved samples generally showed the same
474 correlations with the various lipid classes and there were no statistically significant differences
475 between the treatments as an ensemble, even though there are differences among some of the
476 molecular lipid classes. Summing the specific lipid classes into major categories of polar-DAGs,
477 non-polar DAGs, TAGs or total gravimetric lipids and comparing to Nile Red fluorescence shows
478 similar patterns to the larger data set using higher throughput approaches (Figure 6). Overall there
479 are no statistically significant differences between Nile Red fluorescence and major lipid classes for
480 samples that were live, frozen or preserved (Table 2). In summary, Nile Red fluorescence is most
481 strongly correlated with TAGs and less strongly correlated with other lipid components, and is in
482 bulk unaffected by common sample preservation methods.

483

484 **4. Discussion**

485 Here we show that non-specific binding of the Nile Red stain can lead to substantial
486 fluorescence emission at longer wavelengths. In particular, in a high ionic strength water matrix
487 (such as the **saltwater** used here or standard laboratory cell buffers like phosphate buffer saline) the
488 majority of the fluorescence emission signal above 600 nm is from unbound Nile Red and therefore
489 not quantitative for lipids. Proper selection of wavelengths for lipid quantification (i.e. neutral vs.
490 polar), or consideration of blanks and background corrections are essential.

491

492 Upon Nile Red addition to microalgae suspensions, the fluorescence intensity generally
493 increased over time to a maximum and then decreased (Fig 3B) – most (65%) of the temporal peaks

494 in Nile Red fluorescence occurred between 5 and 25 min with an additional 22% at time zero.
495 These temporal patterns occur with both live and dead (frozen or preserved) for bulk suspensions or
496 cell-specific metrics (Fig 4). However, for some strains these dynamics are modified (or attenuated)
497 by preservation suggesting that the temporal patterns are related to a combination of active and
498 passive cellular processes (Figure 4). While the preservation of microalgae prior to dye addition
499 does not dramatically affect the interpretation of bulk Nile Red fluorescence for major lipid class
500 contents (e.g. Tables 1 and 2), cell-specific results can be impacted (e.g. Figure 4 – *Chlorella sp.*)
501 highlighting the importance of maintaining observations over a period of time and monitoring for
502 population heterogeneity. (In microtiter plates used here, cell settling will not affect the fluorescence
503 intensity since all contents of each well are equally quantified, regardless of their position within the
504 cell well.) Others have observed this temporal variability (Pick and Rachutin-Zalgin 2012)
505 including bi-modal peaks (Elsey et al. 2007) (which we did not observe) and shown that it can be
506 driven by a combination of biotic (e.g. active dye pumping) and abiotic factors (e.g. diffusion; dye-
507 dye or dye-matrix interactions). Beyond the specific mechanisms responsible for this temporal
508 variability, for practical purposes much of this variability can be reduced by preserving the cells and
509 monitoring fluorescence intensity over time, without the need for lipid separation via density
510 gradients or solvent extraction (Pick and Rachutin-Zalgin 2012).

511

512 Regardless of the wavelength pair used to visualize fluorescence, the majority of the Nile
513 Red signal originates from specific sub-cellular locations (namely the **lipid vesicles**) of the microalgae
514 (Figure 1). These **lipid vacuoles**, which are essentially 100% lipid, are comprised of specific types of
515 lipids, and in most strains Nile Red is targeting these lipids more strongly than other common
516 cellular lipids such as membrane associated lipids (phospholipids, glycolipids and sterols) or other
517 structural features. Cells that have been subject to various disruptions including freeze/thaw or

518 ultrasonic disruptions can show different staining patterns suggesting that this localization can be
519 altered by compromising sub-cellular membranes or by altering the fluidity permeability and binding
520 sites for Nile Red (Dempster and Sommerfeld 1998). This is evident in some differences among the
521 live, frozen and preserved samples in specific molecular classes of lipid (Table 1). Nevertheless, the
522 overall bulk Nile Red – lipid class relationship holds regardless of treatment (Table 2).

523

524 Consistent with the localization of stain within the cell, the Nile Red signal is most highly
525 correlated with neutral lipids and specifically TAGs within the cell (Tables 1 and 2). These lipid
526 classes are the dominant energy storage lipids within the cell. Other major structural lipids which are
527 present such as the **polar glycolipids**, are not well-quantified by Nile Red, making the stain a good
528 candidate for targeting the neutral lipids without significant interference from other potentially
529 abundant lipids. Using this approach there is a robust relationship between Nile Red fluorescence
530 and neutral lipids for a given strain (Figure 5). While this relationship is less strong across strains,
531 due to differences in cell lipid composition (Table 1) and other biological factors (e.g. Figure 4), Nile
532 Red is still sufficiently robust to identify taxa with elevated TAGs without the need to optimize
533 solvents or additives (Natunen et al. 2014). In turn, the conditions that optimize neutral lipids in
534 these candidate strains can then be more precisely defined because of the robust intraspecific Nile
535 Red-neutral lipid correlation. The Nile Red method to quantify neutral lipids in microalgae in
536 solution provides a rapid screening tool for comparing the lipid quantity of hundreds of samples in a
537 day. Because of the low volume (<300 μ L per assay well) and biomass requirements (< 3 mM C),
538 numerous cell lines can be assayed in small volume microtiter plates. Moreover, the same cell lines
539 can be grown under a factorial of environmental conditions (temperature, light, growth medium,
540 etc.) that cause variation to identify conditions that optimize lipid profiles (Bittar et al. 2013). This
541 screening approach may be of particular use in comparing or developing (through genetic

542 modification by either random or targeted mutagenesis) microalgae strains for next generation
543 biofuels where neutral lipids (i.e. TAGs) are of particular interest and where there is great potential
544 for increasing lipid production through changes in environmental conditions or strain modification
545 (Doe 2016; Georgianna and Mayfield 2012; Williams and Laurens 2010).

546

547 **5. Research Needs**

548 Nile Red has been used to quantify cellular lipids for ~30 years (Greenspan et al. 1985) and
549 improvements over time have increased its utility for specific types of cell lines including microalgae
550 (Chen et al. 2009; Cooksey et al. 1987; Elsey et al. 2007). Yet because of its increased use in the
551 screening for lipids of collections of microalgae, additional refinements in protocols and
552 interpretation may be necessary for broader application. In particular, the differences observed
553 between the microalgae strains (e.g. Figure 4) point to additional areas where protocols can be
554 refined to overcome the likely fundamental differences in biology. Comparing the responses of
555 other lipid binding stains (e.g. BODIPY, LipidTox) to Nile Red in the context of temporal,
556 live/dead and strain to strain variability may provide insight into the mechanisms of these varied
557 responses. Finding solutions or work-arounds to these challenges will further enhance the utility of
558 Nile Red as a tool for screening marine microalgae for lipids.

559

560 **Acknowledgements**

561 The authors acknowledge valuable contributions to design of this experiment and critical
562 reading of a prior version of the manuscript by Mark Huntley and Ian Archibald. The authors also
563 thank anonymous reviewers and editors for helpful comments. This work was funded in part by US
564 DOE #DE-EE0007091 and US NSF OCE#14-16665 to ZIJ.

565

566 **References**

567 Andersen, R. A. 2005. Algal culturing techniques. Elsevier/Academic Press.

568 Ben-Amotz, A., T. G. Tornabene, and W. H. Thomas. 1985. Chemical profile of selected species of
569 microalgae with emphasis on lipids. *J. Phycol.* **21**: 72-81.

570 Bittar, T. B., L. R. Sassano, B. J. Wheeler, S. L. Brown, W. P. Cochlan, and Z. I. Johnson. 2013.
571 Carbon allocation under light and nitrogen resource gradients in two model marine
572 phytoplankton. *J. Phycol.* **49**: 523–535.

573 Bligh, E., and W. Dyer. 1959. A rapid method of total lipid extraction and purification. *Canadian*
574 *Journal of Biochemistry and Physiology* **37**: 911-917.

575 Chen, W., C. Zhang, L. Song, M. Sommerfeld, and Q. Hu. 2009. A high throughput Nile red
576 method for quantitative measurement of neutral lipids in microalgae. *J. Microbiol. Methods*
577 **77**: 41-47.

578 Choi, G. T., M. Casu, and W. A. Gibbons. 1993. N.m.r. lipid profiles of cells, tissues and body
579 fluids. Neutral, non-acidic and acidic phospholipid analysis of Bond Elut chromatographic
580 fractions. *Biochem. J.* **290**: 717-721.

581 Cooksey, K. E., J. B. Guckert, S. A. Williams, and P. R. Callis. 1987. Fluorometric determination of
582 the neutral lipid content of microalgal cells using Nile Red. *J. Microbiol. Methods* **6**: 333-
583 345.

584 Dempster, T. A., and M. R. Sommerfeld. 1998. Effects of Environmental Conditions On Growth
585 and Lipid Accumulation in *Nitzschia Communis* (Bacillariophyceae). *J. Phycol.* **34**: 712-721.

586 Doe. 2016. National Algal Biofuels Technology Review. U.S. Department of Energy, Office of
587 Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

588 Elsey, D., D. Jameson, B. Raleigh, and M. J. Cooney. 2007. Fluorescent measurement of microalgal
589 neutral lipids. *J. Microbiol. Methods* **68**: 639-642.

590 Folch, J., M. Lees, and G. Sloane Stanley. 1957. A simple method for the isolation and purification
591 of total lipides from animal tissues. *Journal of Biological Chemistry* **226**: 497-509.

592 Georgianna, D. R., and S. P. Mayfield. 2012. Exploiting diversity and synthetic biology for the
593 production of algal biofuels. *Nature* **488**: 329-335.

594 Goldman, J. C., and J. J. McCarthy. 1978. Steady state growth and ammonium uptake of a fast-
595 growing marine diatom. *Limnol. Oceanogr.* **23**: 695-703.

596 Gordon, J., and J. Polle. 2007. Ultrahigh bioproduction from algae. *Applied Microbiology and*
597 *Biotechnology* **76**: 969-975.

598 Greene, C. and others 2016. Marine microalgae: Climate, energy, and food security from the sea.
599 *Oceanography* **29**: 10-15.

600 Greenspan, P., and S. D. Fowler. 1985. Spectrofluorometric studies of the lipid probe, nile red.
601 *Journal of Lipid Research* **26**: 781-789.

602 Greenspan, P., E. P. Mayer, and S. D. Fowler. 1985. Nile Red - a selective fluorescent stain for
603 intracellular lipid droplets. *J. Cell Biol.* **100**: 965-973.

604 Greenwell, H. C., L. M. L. Laurens, R. J. Shields, R. W. Lovitt, and K. J. Flynn. 2009. Placing
605 microalgae on the biofuels priority list: a review of the technological challenges. *Journal of*
606 *The Royal Society Interface*: 1-24.

607 Guillard, R. R. L., and J. H. Ryther. 1962. Studies of Marine Planktonic Diatoms I. *Cyclotella Nana*
608 Hustedt, and *Detonula Confervacea* (Cleve) Gran. *Canadian Journal of Microbiology* **8**: 229-
609 239.

610 Gurr, M. I., and A. T. James. 1980. *Lipid Biochemistry, An Introduction*, 3rd ed. ed. Chapman and
611 Hall.

612 Harvey, J. D. 1991. Identification by gas chromatography and mass spectrometry of lipids from the
613 rat Harderian gland. *Journal of Chromatography* **565**: 27-34.

614 Holčapek, M., P. Jandera, P. Zderadička, and L. Hrubá. 2003. Characterization of triacylglycerol and
615 diacylglycerol composition of plant oils using high-performance liquid chromatography-
616 atmospheric pressure chemical ionization mass spectrometry. *Journal of Chromatography A*
617 **1010:** 195-215.

618 Holčapek, M., M. Lísa, P. Jandera, and N. Kabátová. 2005. Quantitation of triacylglycerols in plant
619 oils using HPLC with APCI-MS, evaporative light-scattering, and UV detection. *Journal of*
620 *Separation Science* **28:** 1315-1333.

621 Huntley, M. E. and others 2015. Demonstrated large-scale production of marine microalgae for fuels
622 and feed. *Algal Research* **10:** 249-265.

623 Invitrogen. [http://www.lifetechnologies.com/us/en/home/life-science/cell-analysis/labeling-
624 chemistry/fluorescence-spectraviewer.html](http://www.lifetechnologies.com/us/en/home/life-science/cell-analysis/labeling-chemistry/fluorescence-spectraviewer.html).

625 Jeffrey, S. W., R. F. C. Mantoura, and S. W. Wright [eds.]. 1997. Phytoplankton pigments in
626 oceanography. UNESCO.

627 Johnson, Z. I. and others 2010. The effects of iron- and light-limitation on phytoplankton
628 communities of deep chlorophyll maxima of the Western Pacific Ocean. *J. Mar. Res.* **68:** 1-
629 26.

630 Levitan, O. and others 2015. Remodeling of intermediate metabolism in the diatom *Phaeodactylum*
631 *tricornutum* under nitrogen stress. *Proc. Natl. Acad. Sci. U. S. A.* **112:** 412-417.

632 Marchetti, A. and others 2010. Iron and silic acid effects on phytoplankton productivity, diversity
633 and chemical composition in the central equatorial Pacific Ocean. *Limnol. Oceanogr.* **55:** 11-
634 29.

635 Mcbrewster, J., F. P. Miller, and A. F. Vandome [eds.]. 2009. *Algae fuel*. Alphascript Publishing.

636 McLachlan, J. 1973. Growth media-marine, p. 22-51. *In* J. R. Stein [ed.], *Handbook of Phycological*
637 *Methods - Culturing Methods and Growth Measurements*. Cambridge University Press.

638 Natunen, K., J. Seppälä, D. Schwenk, H. Rischer, K. Spilling, and T. Tamminen. 2014. Nile Red
639 staining of phytoplankton neutral lipids: species-specific fluorescence kinetics in various
640 solvents. *Journal of Applied Phycology*: 1-8.

641 Pick, U., and T. Rachutin-Zalogin. 2012. Kinetic anomalies in the interactions of Nile red with
642 microalgae. *J. Microbiol. Methods* **88**: 189-196.

643 Rumin, J. and others 2015. The use of fluorescent Nile red and BODIPY for lipid measurement in
644 microalgae. *Biotechnology for Biofuels* **8**: 42.

645 Shifrin, N. S., and S. W. Chisholm. 1980. Phytoplankton Lipids: Environmental influences on
646 production and possible commercial applications, p. 627-645. *In* G. Shelef and C.J. Soeder
647 [eds.], *Algae Biomass*. Elsevier.

648 ---. 1981. Phytoplankton lipids - interspecific differences and effects of nitrate, silicate and light-dark
649 cycles. *J. Phycol.* **17**: 374-384.

650 Silversand, C., and C. Haux. 1997. Improved high-performance liquid chromatographic method for
651 the separation and quantification of lipid classes: application to fish lipids. *Journal of*
652 *Chromatography B: Biomedical Sciences and Applications* **703**: 7-14.

653 Sturt, H. F., R. E. Summons, K. Smith, M. Elvert, and K.-U. Hinrichs. 2004. Intact polar membrane
654 lipids in prokaryotes and sediments deciphered by high-performance liquid
655 chromatography/electrospray ionization multistage mass spectrometry - new biomarkers for
656 biogeochemistry and microbial ecology. *Rapid Communications in Mass Spectrometry* **18**:
657 617-628.

658 Van Mooy, B. a. S. and others 2009. Phytoplankton in the ocean use non-phosphorus lipids in
659 response to phosphorus scarcity. *Nature* **458**: 69-72.

660 Van Mooy, B. a. S., G. Rocap, H. F. Fredricks, C. T. Evans, and A. H. Devol. 2006. Sulfolipids
661 dramatically decrease phosphorus demand by picocyanobacteria in oligotrophic marine
662 environments. *PNAS* **103**: 8607-8612.

663 Vaulot, D., C. Courties, and F. Partensky. 1989. A simple method to preserve oceanic phytoplankton
664 for flow cytometric analyses. *Cytometry* **10**: 629-635.

665 Walsh, M. J. and others 2016. Algal food and fuel coproduction can mitigate greenhouse gas
666 emissions while improving land and water-use efficiency. *Environmental Research Letters*
667 **11**: 114006.

668 Williams, P. J. L. B., and L. M. L. Laurens. 2010. Microalgae as biodiesel & biomass feedstocks:
669 Review & analysis of the biochemistry, energetics & economics. *Energy & Environmental
670 Science* **3**: 554-590.

671 Zhu, C. J., and Y. K. Lee. 1997. Determination of biomass dry weight of marine microalgae. *Journal
672 of Applied Phycology* **9**: 189-194.

673

674

675

676 Figure Legends:

677

678 Fig 1: Localization of Nile Red stain in microalgae. (A) Epifluorescence image using typical
679 chlorophyll filter set. Yellow bodies are stained lipid droplets and red hue is chlorophyll (auto)
680 fluorescence. (B) Epifluorescence image using narrow excitation and emission filters targeting
681 bound neutral lipid fluorescence and optimized for microscopy. Note the localization of the stain in
682 both images to the lipid droplets.

683

684 Figure 2. Representative excitation and emission spectra of control and Nile Red stained medium
685 and cells. Top panel: excitation spectra (emission 590 nm) with stained cells (black solid), unstained
686 cells control (black dotted), stained medium control (red solid) and unstained medium control (red
687 dotted). Middle panel: emission spectra (excitation 545 nm) (lines as top panel). Bottom panel:
688 excitation (blue line) and emission (green line) spectra corrected for natural fluorescence of cells and
689 medium and non-specific binding.

690

691 Figure 3: (A) Representative temporal variability in the Nile Red fluorescence for microalgae. Error
692 bars (standard error, $n = 24$) are smaller than the symbols. (B) Fraction of observations ($n = 515$,
693 triplicate analyses) across different strains or physiological conditions with Nile Red fluorescence
694 maxima at a given time point.

695

696 Figure 4: Temporal variability of fluorescence per cell (left column), mean cellular fluorescence
697 (middle column) or microplate reader (bulk) (right column) with live (upper row) or preserved
698 (lower row) cells for *Chlorella* sp. C596 (top box), *Staurosira* sp. C323 (middle box), and *Navicula* sp.

699 SFP (lower box). Each curve is normalized to its maximum value. Histograms represent composite
700 population values. Means and standard error bars are for $n \geq 9$ technical replicates.

701

702 Figure 5: Relationship between Nile Red fluorescence vs. Total Lipids and TAGs for *Desmodesmus sp.*
703 C046.

704

705 Figure 6: Relationships between Nile Red fluorescence and total, non-TAGs and TAGs lipids for a
706 range of microalgae taxa poised at different physiological states.

707 **Table 1:** Correlation between Nile Red fluorescence and molecular lipid classes. Statistically
 708 significant correlations (n=5, p < 0.05) are in bold.

709
710

Lipid Class		% Total ^a	CV (%)	r-live	r-frozen	r-preserved
Polar -DAGs						
Glycolipids						
	MGDG	5.6	145	0.10	0.26	0.47
	SQDG	2.6	54	0.00	0.00	0.24
	DGDG	1.8	117	0.32	0.96	0.72
Phospholipids						
	PC	2.0	137	0.46	0.96	0.71
	PG	1.4	91	0.36	0.74	0.36
	PE	0.5	88	0.22	0.39	0.00
Betaine Lipids						
	DGCC	1.1	129	0.77	0.97	0.73
	DGTS	0.1	129	0.69	0.61	0.79
	DGTA	0.1	183	0.66	0.56	0.74
Non-Polar DAGs						
	20:0/20:0	0.6	224	0.14	n/a	n/a
	20:1/20:1	0.3	139	0.41	0.48	0.20
TAGs						
	16:1/16:0/16:1	9.7	79	0.93	0.95	0.98
	16:0/16:1/16:0	8.0	70	0.48	0.36	0.76
	16:1/16:1/14:0	7.4	132	0.90	0.97	0.75
	16:0/16:1/14:0	7.0	111	0.89	0.98	0.77
	16:1/16:0/20:5	4.3	77	0.97	0.99	0.85
	16:1/16:1/16:1	4.3	117	0.87	0.99	0.82
	16:0/18:2/20:4	4.2	136	0.84	0.97	0.74
	14:0/16:1/20:5	3.9	145	0.92	0.96	0.73
	16:1/16:1/20:5	3.8	130	0.95	0.98	0.77
	Unidentified TAGs	3.0	193	0.86	0.97	0.73
	16:1/16:1/20:4	2.1	121	0.85	0.99	0.80
	16:1/14:0/20:4	1.8	136	0.73	0.97	0.73
	16:0/16:0/20:5	1.3	63	0.45	0.57	0.76
	16:0/16:1/20:4	0.8	150	0.22	0.30	0.17
	16:0/16:0/20:4	0.6	94	0.35	0.30	0.71
	18:2/18:2/18:3	0.5	121	0.92	0.97	0.76
	14:0/14:0/18:2 + 14:0/14:0/17:1	0.5	147	0.92	0.97	0.74
	16:0/14:0/20:5	0.4	174	0.73	0.91	0.62
	18:3/16:0/16:1	0.4	176	0.87	0.99	0.84
	18:1/16:0/16:1	0.3	105	0.98	0.96	0.98
	20:4/16:0/20:4	0.2	120	0.00	0.39	0.00
	20:5/16:0/20:5	0.1	159	0.57	0.51	0.50
	17:1/17:0/14:0	0.1	154	0.14	0.10	0.39
	18:0/16:0/16:1	0.1	224	0.00	0.10	0.39
	16:0/16:0/16:0	0.1	224	0.00	0.10	0.39

711
712
713
714

^a Percent of lipid class normalized to gravimetrically measured lipids, averaged across strains and replicates.

715 **Table 2:** Correlation between Nile Red fluorescence and lipid class totals for five microalgae strains.

716 Statistically significant correlations (n=5, p < 0.05) are in bold.

717

Lipid Class	% Total	CV (%)	r-live	r-frozen	r-preserved
Polar -DAGs	15.1	110	0.24	0.60	0.24
Non-polar DAGs	0.3	139	0.41	0.48	0.20
TAGs	65.1	95	0.97	0.99	0.88
Gravimetric Lipids	100.0	58	0.95	0.99	0.87

718