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1 | INTRODUCTION

Summary

While heterogeneous computing has emerged as a dominant trend in current and future High-
Performance Computing (HPC) systems, it is also widely recognized that this shift has led
to increased software complexity due to a proliferation of programming systems for differ-
ent heterogeneous processors. One such example is the Heterogeneous-Compute Interface for
Portability from AMD (HIP), which is composed of a C Runtime APl and C++ Kernel Language.
Many HPC applications will likely use HIP on future exascale systems (e.g., Frontier and El
Capitan), but HIP currently only targets AMD and NVIDIA processors. This limitation creates chal-
lenges for users who would also like to run their applications on exascale systems based on other
architectures (e.g., Aurora, which is based on Intel hardware) that are currently not targeted by
HIP.

In this paper, we introduce the design and implementation of HIPLZ, a compiler and runtime
system that uses the Intel Level Zero API to support HIP on Intel GPU architectures. We dis-
cuss the design of HIPLZ, derived from HIPCL (an implementation of HIP on top of OpenCL), and
portability issues that occur from using the Level Zero runtime as a backend. We evaluate our
implementation by running several performance benchmarks and mini-apps written in HIP on
Intel architectures using HIPLZ. Our results show that this approach provides competitive perfor-
mance relative to Intel's OpenCL implementations on Intel Gen9 and UHD Graphics 770 GPUs,
while providing good coverage of features needed by HPC applications. Overall, this approach is

a promising demonstration of enabling performance portability for exascale systems.

KEYWORDS:
HPC, HIP, Parallel Programming Model, Runtime

Modern High Performance Computing (HPC) has been defined as an era of extreme heterogeneity where an increasing number of accelerators

support SIMD parallelism, spatial computing, or domain specific architectures. This is especially true as we move toward exascale, where the

majority of pre-exascale and exascale systems are accelerator-based. For example, 7 of the top 10 systems in the Top 500 for November 2021

are GPU-based™. Recently, NVIDIA systems were the dominant accelerator which applications would target, but several next-generation systems

will be based on accelerators from different vendors: Aurora and SuperMUC-NG Phase Il, with Intel GPUs?% and Frontier, El Capitan, and LUMI

with AMD GPUs#2878, Each vendor generally develops its own programming model and implementation which is optimized for its hardware.

This design poses a challenge for application developers who wish to create portable code for multiple systems. Often this programming model

heterogeneity results in application developers or library (e.g. Tensorflow2, PyTorch2®)developers maintaining multiple branches of code in each

different vendor-specific programming model, which increases code complexity and developer time requirements.
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Heterogeneous-Compute Interface for Portability (HIP) from AMD is one example of such a programming system that targets AMD and NVIDIA
architectures. In this paper, we introduce HIPLZ: a compilation and runtime system that supports HIP via Intel's Level Zero (L0) runtime using
the fat binary model for supporting multiple architectures and SPIR-V as an intermediate language (IL). To the best of our knowledge, HIPLZ is
the first effort that bridges HIP to LO which is the primary low level application programming interface (API) for Intel hardware. Since LO is the
fundamental software interface to Intel GPU and other hardware acceleration facilities, HIPLZ aims at evaluating a LO based HIP implementation
regarding performance and productivity.

In this paper, we present the following contributions:

1. The prototype of HIPLZ, a library that allows applications using the HIP API to run on devices that support Intel Level Zero and OpenCL
drivers. The source code is located at: https:/github.com/jz10/anl-gt-gpu .

2. Atest suite that covers the major functionality of HIP and that uses it as the validation of HIPLZ.

3. An evaluation of test coverage and code performance of HIPLZ on two Intel GPUs: Gen9 and UHD Graphics 770. Our results show that
HIPLZ supports the complete execution of 88% of tested applications and demonstrates performance parity with HIPCL and OpenCL for

memory- and FLOP-focused benchmarks.

The paper is organized as follows: Section[2|gives background information about the HIP programming model, intermediate representation and
the Intel LO runtime. The details of the design and implementation are presented in Section Sectiondiscusses testing HIPLZ and evaluates the

performance of HIPLZ. The related works are discussed in Section and SectionE]concIudes this paper.

2 | BACKGROUND

2.1 | Heterogeneous-compute Interface for Portability (HIP)

HIP2Zjs 3 C++ 14 Runtime APl and kernel language that is derived from cuDAL3 and that allows developers to create portable applications for AMD
and NVIDIA GPUs from a single source code. It supports advanced C++ programming language features including templates, C++11 lambdas, and
many other features. HIP is designed for portability with direct CUDA mode, so it supports automatically converting HIP API calls to CUDA. AMD also

provides a tool called hipify# that can automatically convert CUDA codes to HIP with limited programmer effort.

2.2 | Standard Portable Intermediate Representation (SPIR-V) and Fat Binary

SPIR-V22lis an industry open standard intermediate language (IL) for shader and kernel language compilers used for expressing parallel computation
and GPU-based graphics. SPIR-V provides a common IL to developers for building computing kernels without needing to directly expose source
code. This IL allows shipping compiled kernels in binary format while remaining portable on multiple hardware implementations.

The fat binary can be either IL or machine code binary. In the IL case, the fat binary model integrates base device code (kernel functions) into
the host side executable binary via intermediate languages, and uses vendor APIs (driver compiler) to apply just-in-time compilation on kernel

functions during runtime. SPIR-V and NVIDIA PTX are typical examples of IL used in fat binary.

2.3 | OpenCL and HIPCL

0penCL1¢is a widely used, open standard for programming heterogeneous platforms, and is supported by most of the major accelerator vendors,
including NVIDIA, AMD, Xilinx, ARM, and Intel. OpenCL is often used as a backend for higher level programming languages and APIs such as
OpenMP, but is also used directly by some applications.

HIPCLZ is an open-source compilation and runtime system that allows running HIP programs on OpenCL platforms with sufficient capabilities.
HIPCL relies on SPIR-V as a target IL (i.e. fat binary embedded in ELF binary) and implements the HIP API on top of OpenCL calls.

2.4 | Level Zero Runtime

Intel Level Zero (L0)2¥is a specification which is part of the Intel oneAPI suite which is composed of SYCL-based speciﬁcationE]and set of APIs and
tools targeting CPU, GPU and FPGA devices (see Figure. The Intel L0 implementation provides a low-level library for interacting with accelerator

1sycL181? provides heterogeneous programming related classes and lambdas in C++ language.
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Figure 1 The Level Zero Runtime in Intel's oneAPI Framework (image source: https:/spec.oneapi.io/level-zero/latest/core/INTRO.html , Graphic
courtesy of Intel Corporation).

devices and brings flexibility through the support of a broad set of language features, e.g. unified shared memory, synchronization primitives, and
device function pointers. The aim of the L0 APl is to provide a system level programming interface that easily allows higher level runtime APIs and
libraries to target heterogeneous hardware. This is why we selected it for HIPLZ. The features of the L0 API include, but are not limited to: device
partitioning, instrumentation, debugging, power managements, frequency control, and hardware diagnostics. The L0 specification does not define

an intermediate representation for kernel language, but relies on SPIR-V as an IL.

3 | DESIGN AND IMPLEMENTATION

3.1 | Design Goal

The main design goal of HIPLZ is to connect the Intel LO runtime to the HIP programming model, thus enabling applications written using HIP to

run on GPU devices driven by L0. Based on a survey of HPC application needs, we focused on supporting the following HIP features in HIPLZ:

e streams, including the command execution and callbacks (Section [34);

memory management, including host, device, shared memory, and texture memory (Section ;

kernel and module management (Section|[3.6);

device management (Section[3.7);
e inter-operation with other parallel programming systems like Intel's DPC++ (Sectionm;
e hipGraph related functionalities, including graph construction, launch, destroy and graph node creation (Section|3.10).

We ended up implementing 142 functions in HIPLZ out of 153 total HIP functions at the time he first version of HIPLZ was released. HIP now has

343 functions and the unincluded functions are mainly for graph operations.
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Figure 2 The compilation workflow for HIPLZ.

3.2 | The compilation system

The workflow for the compilation of a HIP program by HIPLZ is shown in Fig.|2| The HIPLZ compilation workflow is based on that of HIPCL, which
is a HIP-compatible compiler frontend based on the LLVM/Clang compiler.

The HIPLZ compiler translates HIP source code to two parts of LLVM intermediate representation : host IR and device IR. The host part is
processed via the legacy LLVM x86 backend to produce an x86 binary, and the device part is processed via the LLVM SPIR-V backend to produce
SPIR-V IR. The x86 binary and the SPIR-V IR are then linked together to make an x86 executable binary (or shared library) that is embedded with
SPIR-V (a fat binary).

physical device

device abstraction, memory objects management, command queue/list management, module, synchronous
objects

Modules Memory Synchronization

. . dependence between
kernel function device memory, cache commands and sync
management and shared memory between host/device

kernels unify fences events
shared
memory

Figure 3 The organization of Intel Level Zero runtime.
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3.3 | Runtime System

Before getting into the details of HIP feature support, here we introduce the basic structure of Lo. Figure|§|presents the organization of L0 APIs
and objects in a top-down manner. On the top level, each Driver interacts with a collection of heterogeneous computing devices that share a
given software stack. A physical device is presented as a Device that is associated with a Context that provides an interface for managing memory,
modules, synchronization objects, command lists and queues. L0’s memory management covers hosts, devices, shared memory, and image samplers.

The L0 API is very similar to OpenCL’s, especially in terms of the device data abstraction, execution model, and event driven synchronization.
However, LO is at lower level and many features that are available in OpenCL are left to the application developer to implement. Such features
include (but are not limited to) reference counting to handle object lifetime, callbacks on events’ state change, or host kernel enqueuing. HIPLZ
wraps L0 data structures in C++ classes in an object-oriented manner, similar to OpenCL’s C++ bindings. The reference relation among the classes

(the same as in LO) is shown in Figure@
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Figure 4 The HIPLZ class organization.

Table[T]gives some details about the functional correspondence of similar objects for the different programming models we will use in the next
sections HIP, HIPLZ, LO, OpenCL, and SYCL. The HIPLZ compiler translates a HIP object to its corresponding data structure in HIPLZ as in the first
two columns in Table[d]

Table 1 Functional correspondence among HIP, HIPLZ, L0, OpenCL, and SYCL objects.

HIP HIPLZ LO OpenCL SYCL
hipDevice LZDevice ze_device_t cl_device_id sycl::device
hipContext LZContext | ze_context_t cl_context sycl::context
hipStream LZQueue ze_queue_t cl_command_queue sycl::queue

ze_commandlist_t

hipModule LZModule ze_module_t cl_program sycl::program
hipFunction LZKernel ze_kernel_t cl_kernel sycl: :kernel
hipTextureObject | LZTexture | ze_image_t cl_image sycl::image

ze_sampler_t cl_sampler sycl: :sampler
hipGraph_t LZGraph ze_command_list cl_command_buffer

3.4 | Streams

A stream in HIP is presented as a sequence of tasks (e.g. kernels, memory copies, events) that execute in FIFO order. The tasks being executed
in different streams are allowed to overlap and share device resources. Three types of streams exist in HIP, the default stream (or NULL stream),
blocking streams, and non-blocking streams. The default stream is used to execute tasks (kernel launching and data transfers) that are not explicitly
associated with any other stream. A blocking stream is synchronous, meaning that all operations submitted to the stream are guaranteed to
complete in the order they were submitted. Both blocking and non-blocking streams can be created by the application programmer explicitly, and
each differs in how they synchronize with the default stream. Tasks in the default stream will wait for all tasks previously submitted to blocking
streams to be completed before executing. Similarly, tasks in blocking streams will wait for all tasks previously submitted to the default stream to
be completed before executing. Non-blocking streams do not synchronize with the default stream. Based on the specification introduced above,
the tasks located in different streams may be executed out of order or concurrently.
To be able to implement HIP streams with L0, L0 offers two possible modes of execution to dispatch tasks to a device.

e A command buffer abstraction (named command list), that will aggregate a series of tasks, and that can later be submitted to a command

queue. The driver is free to optimize the execution of the command lists based on the synchronization expressed by the programmer;

e A low latency dispatch (named immediate command list) that will execute tasks as soon as they are ready (dependencies met) and able to
be executed (available resources).

In HIPLZ, streams are implemented via LZQueue objects that wrap L0’s immediate command lists (see Figurea)). This mode of execution is better
suited to implement the FIFO behavior of HIP streams. Synchronization considerations are still important to ensure barriers between tasks within
streams as well as to correctly implement the HIP default stream semantics and synchronization. Nonetheless, using the immediate command list
greatly reduces the overhead of managing individual command lists that would need to be submitted to command queues and which would need
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Figure 5 a. The basic HIPLZ Command List and Command Queue (image source: https:/spec.oneapi.io/level-zero/latest/core/INTRO.html, Graphic
courtesy of Intel Corporation, CCS refers to command streamer and CE refers to computing engine); b. The event order for executing callback

to be freed or recycled once the tasks they contain have finished executing. This technique eliminates the need for dedicated event tracking for
each command list, irrespective of synchronization with other streams, and it also reduces the latency between task submission and execution.

The commands executed by the streams include: kernel functions, memory copy operations, host callbacks, and HIP event operations. The
synchronization among different streams is supported via LO events and their wait and signal APIs. The event object in a command list acts as
either a barrier or signal, so two tasks running on different streams can use events to synchronize their executions.

Stream Synchronization Example: We use the host callback implementation as an example of how synchronization between and within streams
in HIPLZ is implemented with LO. Figure b) presents the workflow of host callback registration and invocation in HIPLZ. The callback function
pointer is registered by the callback registration API, and a synchronization scheme is set up to program the callback using L0 events. This imple-
mentation of host callbacks requires a three point synchronization scheme. For each callback three L0 events are created, here called reg event,
exec event and final event. Three synchronization primitives are added to the L0 immediate command list: a barrier that will signal the reg
event once it is reached, a barrier that will wait for the exec event to be signaled by the host, and lastly a signal to final event signifying that
the synchronization is complete and that the events can be freed (or recycled). In parallel, the event (host) monitor thread waits on reg event to

be signaled, executes the callback, signals callback termination via exec event and waits on final event before releasing the resources.

3.5 | Memory management

HIPLZ supports several HIP memory management APIs, including hipMalloc, hipMemcpy, hipMemcpyAsync, and hipFree. Users can specify the
allocation site, i.e. host memory, device memory or shared memory. Shared memory is based on the underlying GPU's support, and its reference is
presented as a raw pointer that can be referred on both the host and device side. As mentioned in Section@ in LO the memory copy operation
is implemented as a command that is queued on the command list and is executed via command queue.

HIP texture objects are special memory objects, and their support is similar to texture objects in CUDA; that is, the texture object is a first-class
C++ object and can be passed as an argument just as if it is a pointer. HIPLZ provides hipCreateTextureObject and hipDestroyTextureObject
to allocate and free texture objects.

The texture object is composed as an image buffer and a sampler object that operates on an image buffer. Since the image and sampler are
defined as separate objects in LO (i.e. ze_image_t and ze_sampler_t), we create the texture object as a C struct, as shown in Listing

The ze_image_t and ze_sampler_t created via the LO API are raw pointer values, thus they can be stored as intptr_t values. The actual
texture operations are performed on reinterpreted structure fields, as shown in lines 6-9 of Listingm where a 2 dimensional texture of floating

point values is sampled at coordinates x and y. This scheme relies on implementation specific behaviors of the Intel driver compiler.

Listing 1: HIP Texture Object Examples

typedef struct hipTextureObject_s {
intptr_t image;
intptr_t sampler;

} hipTextureObject_st, xhipTextureObject_t;

return read_imagef(
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__builtin_astype (texObj—>image, read_only image2d_t),
__builtin_astype (texObj—>sampler, sampler_t),
(float2)(x, y)).x;

3.6 | Kernel and module management

HIP defines three different attributes for functions: __host device__, and __global__. A __host__ decorated function is a function that is

to be executed on the host, and functions without decorators will be considered host functions. A __device__ function will be callable from the
device, and this decorator can be combined with __host__ to obtain a function that can execute on both the device and the host. A __global__
decorated function or kernel is callable from the host. The HIPLZ compiler translates the kernel and device functions to SPIR-V IL, and they
are translated to device binary via vendor compiler during runtime. Each kernel function is wrapped into a LZKernel object and managed by a
LZProgram object that presents the L0 module. The kernel launch is based on the L0 API and issues a command to the immediate command list.
HIPLZ also supports device global variables that are used for exchanging values between kernels and host code. Device global variables are

supported in SPIR-V, and they can be interacted with from the host using L0. They can also be supported in OpenCL using Intel extensions.

3.7 | Device management

The device management in HIPLZ focuses device selection (hipSetDevice and hipGetDevice) and device property queries (i.e.
hipGetDeviceProperties). From LO standpoint, this means creating a L0 context containing all the devices, and exposing those devices through
the hipGetDeviceCount. This allows sharing memory between devices using USM, without needing to register USM allocations between differ-
ent contexts. Setting the current active device in HIPLZ changes the values for the default devices and default stream. HIP device properties are
derived from the different device properties available in LO.

3.8 | DPC++ Interoperability

Interoperability between SYCL and HIP helps users maintain large heterogeneous code bases, and it also leverages the advantages of high per-
formance libraries built by vendors (e.g. Intel oneMKL 29). This has to solve two issues: 1) Execution context switching to ensure the same GPU
device management and execution environment exists for both programming environments and 2) Data transfer between the HIPLZ and DPC++
programming environments. Both HIPLZ and DPC++ use L0 as the runtime driver for executing kernel functions on Intel GPUs, and use L0's driver
object handles to maintain and exchange GPU device information, e.g. to pass an execution context object from HIPLZ to DPC++ and vise versa.
To support data exchange, the unified shared memory (USM) mechanism is employed. Both HIPLZ and DPC++ use raw pointers to maintain the

reference of the allocated memory from USM, and this simplifies memory reference passing between objects in each execution context.

3.9 | Kernel library

The implementation of the HIP math API in HIPLZ is based on OCML2L, which is a thin layer wrapping the OpenCL builtin math functions. We
used this since many HIP math API have direct equivalent in OpenCL. The HIPLZ kernel library is an implementation of the HIP math APl based on
ocMmL2L,

3.10 | Graph Support

The functionality of HIP graph is similar to CUDA graph. It organizes computing tasks (i.e. kernel function and memory copy) as a workflow graph
(hipGraph) E] The hipGraph can be launched via the hipGraphLaunch API, which means that multiple graph nodes (i.e. kernel function) can be
launched via a single host side operation. Since LO does not provide graph specific support, HIPLZ has to emulate graph operations.

The hipGraph is presented as a directed acyclic graph (DAG) (see Figure[6](a)) in HIPLZ. It can be explicitly constructed via creating and adding
graph nodes into it. The graph node can represent two kinds of tasks: computing kernel and memory copy. As shown in Figure [/| the two sub-
classes of hipGraphNode carry the properties for executing kernel functions and memory copies. The dependencies among graph nodes are also
specified explicitly during node creation. Another way to construct hipGraph is to capture kernel invocations in an user-specified execution region,

2The implementation of HIP graph support is located at https:/github.com/jz10/anl-gt-gpu wip branch
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hipGraph hipStreamBeginCapture(stream, hipStreamCaptureModeGlobal);
for(intI = 0; I < NUM_KENRNEL; I ++) {
hipLaunchKernelGGL(sampleKernel, ...); // postponed launching
}
\ hipStreamEndCapture(stream, &graph);

(b)

0
o
¢
¢
©

(a) (c)

Figure 6 The hipGraph representation, construction and execution.

translate them to a graph node implicitly and add them into graph with sequential dependency. The execution region is defined via invocation of

hipStreamBeginCapture and hipStreamEndCapture that captures the kernel functions scheduled on the given stream (see Figure@b)).

LZKernelNode
hipGraphNode hipGraphNode ~|:
LZMemCpyNode

class LZKernelNode : public hipGraphNode {  class LZMemCpyNode : public: hipGraphNode {
void * kernalFuncObj; void * srcAddr;
LZFuncParams * params; void * dstAddr;

... //. copy parameters

}... )

Figure 7 The hipGraphNode and its sub classes that represent kernel function and memory copy operation.

Graph launching executes/schedules a graph node on a given stream. To ensure the correctness of data dependencies, HIPLZ schedules graph

nodes by breadth-first traversal on the graph(see Figure [|c)).

3.11 | Discussion

The L0 API presents a unique set of challenges that must be overcame to implement HIP.

Program interface: The LO APl organization is very similar to OpenCL, especially for the objects that abstract the GPU device. However, L0 is a
lower level APl than OpenCL, as it lacks a kernel language, object lifetime management, and also requires finer grained control on tasks using queues
and command lists. This requires careful management of object lifetime in HIPLZ, and more involved synchronization schemes than in HIPCL.

Capacity of conversion: Users could benefit from a conversion guide that would describe the potential pitfalls that can arise from migrating
to the LO API from other heterogeneous programming models.

Lack of memory management mechanism: LO provides memory allocation support for host, device and shared memory, but there is not an
uniform way to manage the allocated memory object, so it is very easy to introduce a scenario that mistakenly uses the memory objects.

Lack of thread safety: There are many runtime objects and APIs that are not thread-safe in the LO specification, so mutual exclusion is

employed for all relevant API call sites in HIPLZ using mutexes.
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4 | EVALUATION

In this section we introduce the hardware we evaluated HIPLZ on, an overview of the tests, and then the results.

4.1 | Employed GPU Systems

In this study we evaluated HIPLZ on two Intel GPUs:

o Intel Gen9'22 on the JLSE cluster23, The Gen9 is an integrated GPU which is available in commercial Intel products.The Gen9 nodes are
composed of a Intel Xeon Processor E3-1585 v5 CPU and Iris Pro Graphics P580 (GT4e) Gen9 GPU2Z, With a peak clock rate of 1.15
GHz and 72 execution units which can each perform 2 double precision or 8 single precision FMAs per clock. The Gen9 GPU has a peak
theoretical double (single) precision performance of 331.2 GFlop/s (1324.8 GFlop/s). With 2 channels of DDR4-2133, the peak theoretical
DRAM bandwidth is 34.1 GB/s (2.133 Ghz * 8 bytes/clock * 2).

e Intel UHD Graphics 770, which is integrated into the Intel Core i9-12900K CPU, has a peak clock rate of 1.45GHz and 32 execution units.
Its peak theoretical single precision performance is 742.4 GFlop/s. With 4 channels of DDR4 shared with i9 processor, the peak theoretical
DRAM bandwith is 76.8 GB/s.

4.2 | Overview of Tests

To evaluate HIPLZ we collected a repository of HPC-relevant benchmarks, mini-apps, frameworks, and applications hosted on GitHub?4. The 50
selected codes include 2 benchmarks, 7 mini-apps (2 for BerkeleyGW), 1 application, and 40 HIP examples. The codes are listed in Table

4.3 | Results

We first discuss the performance results of the benchmarks and then the overall build/run/pass rate for the tests. For the measurements presented
here we used:

e HIPLZ version: From HIPLZ, branch launch_bounds, commit cbf2260

e HIPCL version: From a fork of HIPCL, https:/github.com/Kerilk/hipcl, in branch fence, commit dd39656

e OpenCL version: Intel OpenCL 3.0 NEO, driver version 22.02 for Gen9 and 23.05 for UHD Graphics 770;
o Intel Compute Runtime NEO version: driver version 22.02 for Gen9 and 23.05 for UHD Graphics 770;

o hip-test-suite?4 commit 3b19290 .

We note that HIPLZ has a differently named compiler driver than AMD HIP. HIPLZ uses clang++, while HIP uses hipcc.

4.3.1 | Benchmark and Performance Results

To evaluate the performance of the HIPLZ implementation, we consider the tests in the hip-test-suite benchmarks subdirectory. The two tests in
this subdirectory (ERT and BabelStream) measure the memory bandwidth and/or the peak performance of the system. The results are summarized
in Table [2| By comparing the memory bandwidth and floating point performance, HIPLZ performs similarly to the OpenCL port, near the theoretical
peaks of the Gen9 device.

For the memory bandwidth measurements, we expect the code to be able to reach 80% of the theoretical memory bandwidth of the hardware.
As shown in Table |2} with the HIPLZ implementation, the HIP BabelStream port measures a bandwidth of 27.76 GB/s on Gen9 and 63.17GB/s
on UHD Graphics 770, the HIP ERT port measures 25.84 GB/s on Gen9 and 63.22GB/s on UHD Graphics 770. These are both near 80% of the
theoretical bandwidth of the employed hardware.

For the floating point performance measurements, with our HIPLZ implementation, ERT measured 303.22 Gflop/s double precision peak per-
formance and 1240.69 Gflop/s single precision peak performance on Gen9. The measured double precision peak performance is about 91% of the
theoretical value, and the measured single precision peak performance is about 94% of the theoretical value. Since UHD Graphics 770 does not
have double precison support at the hardware level, we only measured performance for single precision, The single precision peak performance
measured with ERT measured 715.3Gflop/s peak performance, that is about 96% of the theoretical value.
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Table 2 Efficiency Evaluation of HIPLZ with Comparable APlIs.

Test (measurement) Gen9 UHD Graphics 770
HIPCL OpenCL HIPLZ HIPCL ‘ OpenCL ‘ HIPLZ
DRAM Bandwidth (GB/s) (from Triad BabelStream) | 26.13 26.07 27.42 6217 | 62.2 63.17
DRAM Bandwidth (GB/s) (from ERT) 25.48 25.77 25.84 62.35 | 63.16 63.22
FPé64 peak (Gflop/s) (from ERT) 301.66 299.12 303.22 N/A N/A N/A
FP32 peak (Gflop/s) (from ERT) 1235.39 | 1184.91 | 1240.69 | 713.9 | 702.5 715.3

Details about how this test was compiled and run can be found in https:/github.com/jz10/hip-test_suite.
Several of the tests in the proxies and HIP-Examples subfolders also have HIP and OpenCL ports and measure performance metrics. We also
compare several of these performance metrics in Table[3] As shown in Table[3] the performance achieved by HIPLZ on Intel Gen9 GPUs and UHD

Graphics 770 is similar to that achieved by the OpenCL port for additional tests.

Table 3 Performance metrics from additional tests

Test (measurement) Gen9 UHD Graphics 770
HIPLZ OpenCL HIPLZ OpenCL
su3_bench (Total GFLOP/s) 28.813 | 28.6 15.35 15.29
strided-access (Stride 2 bandwidth, GB/s) 21.573 | 22.0791 | 50.77 53.12
GPU-STREAM (Triad bandwidth GB/s) 27.8 26.5 67.38 66.17
mixbench (Compute iter 256, Read-only lops/bytes) | 413.55 | 414.55 239.87 | 239.62

We also note that although add4 and cuda-stream do not have OpenCL ports in the test suite, they measure memory bandwidth. The bandwidth
reported is similar to that reported by the OpenCL and HIP ports of Babelstream in Table so we can consider them achieving the expected
performance.

4.3.2 | Overall Results

The results are shown in Table Out of 50 tests, 48/50 (96 %) compile without errors, 44/50 (88%) compile and run without crashing, and 40/50
(80%) compile, run to completion, and give the correct answer.

4.3.3 | Discussion of Results

We categorize the failures (shown in Table@ into 3 types:

e Building failures: this was due to dependence on external libraries that are not currently supported by HIPLZ (cholla (dependence on
hipfft), KokkosDslash (dependence on kokkos)), unimplemented functions (adept-proxy (three-argument shuffles)), and compiler errors
(BerkeleyGW-FF, GridMini);

e Runtime failures: this was due to acquireing device memory that exceeds the capacity of GPU memory (gpu-burn);

e \Verification failures: the computing results were incorrect (BerkeleyGW-GPP and RSBench).

5 | RELATED WORK

Many of the programming language systems that support GPU offloading translate high-level programming language constructs to heterogeneous
programming model AP!ls. Typical examples are OpenMP 22! and OpenACC2¢. Compilers which support OpenMP or OpenACC translate high-level
pragma-based abstractions to lower-level (for example, CUDA driver or OpenCL) calls. This allows code using OpenMP or OpenACC to target a
wide variety of hardware as long as the compiler lowers the abstractions into lower-level representations that the underlying runtime can ingest.

This representation is bundled in a fat binary-based executable, in which the same binary embeds both host and device code. This allows the
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Table 4 Detailed results of building, running, and checking correctness for the tests

Test Build Run Correct Test Build | Run | Correct
BabelStream Y Y Y mixbench Y Y Y
cs-roofline-toolkit Y Y Y BinomialOption Y Y Y
cholla N BitonicSort Y Y Y
KokkosDslash N FastWalshTransform | Y Y Y
su3_bench Y Y Y FloydWarshall Y Y Y
BerkeleyGW-FF N HelloWorld Y Y Y
BerkeleyGW-GPP Y N Histogram Y Y Y
add4 Y Y Y MatrixMultiplication | Y Y Y
cuda-stream Y Y Y PrefixSum Y Y Y
gpu-burn Y N RecursiveGaussian Y Y Y
mini-nbody Y Y Y SimpleConvolution Y Y Y
reduction Y Y Y dct Y Y Y
rodinia_3.0 (18 tests) | Y (18) | Y (18) | Y (16) dwtHaar1D Y Y Y
rtm8 Y Y Y adept-proxy N

strided-access Y Y Y RSBench Y Y N
vectorAdd Y Y Y GridMini N

GPU-STREAM Y Y Y

device code to be recompiled or optimized when the driver is updated, without having to rebuild the application. The usage of fat binaries brings
the advantage for application deployment, i.e. no need to maintain separated binary or source code (host and device) and link them together for
execution. LLVM/Clang?Z uses PTX as the intermediate language (IL) for the CUDA driver. Intel OpenMP compiler makes another choice and uses
SPIR-V as IL in order to target their DpenCL or L0 based GPU backends2822530, The approach in HIPLZ is similar, although we implement the HIP
API and not pragma-based approaches, and we use SPIR-V as the intermediary representation.

Since the API pattern of HIP is highly similar to CUDA’s, there have been some pattern match based tools4 that directly translate CUDA API calls
to HIP API calls, thus enables the application porting from CUDA to HIP.

Different approaches exist to bridge programming models to L0: for example ZLUDA®!is a demonstrator showcasing running unmodified CUDA
applications on top of L0 by providing a L0 APIs based implemention of CUDA driver APIs, and converting NVIDIA PTX2 to SPIR-V at runtime.
Although ZLUDA only supports a limited subset of applications, but it does showcase promising performance on those applications.

Another well known project bridging several programming models to OpenCL is pocl®2. pocl implements OpenCL for NVIDIA GPUs on top of
CUDA, AMD GPUs on top of HSA and supports CPU devices as well through the Posix Threads programming API.

OpenSYCLE# 83136l s 5 sycL implementation that leverages existing heterogeneous programming model such as CUDA, HIP to support different
GPU architectures. It also provides a support for Intel GPUs via using L0 as one of its modular runtime backend plugin.

In this paper, we present HIPLZ that bridges HIP to LO to supports Intel GPU. It directly uses L0 APIs to implement HIP APIs’ functionalities and
SPIR-V as intermediate language (IL) to represent the kernel functions, and the host side executable binary invokes driver compiler to translate IL to
device binary. Compared with HIPCL , the advantage of this approach is to leverage LO APIs’ flexibility to get direct control of accelerator device, e.g.
immediate command list, unified shared memory. Compared with ZLUDA, HIPLZ provides better coverage of GPU programming model’s features
(e.g. asynchronous execution).

6 | CONCLUSION

In this paper, we introduced the design and implementation of HIPLZ, a compilation and runtime system that allows HIP code to run on Intel GPUs.
It uses the Lo API to implement the HIP API’s functionalities and SPIR-V as the IL to represent the kernel functions. To the best of our knowledge,
HIPLZ is the first compiler and runtime system that allows HIP code to run on Intel GPUs by using LO.

HIPLZ successfully compiled and produced correct results on Intel Gen9 GPU and Intel UHD Graphics 770 for more than 35 HIP test cases and
mini-apps. In terms of performance, we ran two performance benchmarks using HIPLZ and were able to achieve approximately the same peak
values as OpenCL, demonstrating that HIPLZ produces code that can effectively use the Intel GPU hardware. Future work will focus on extending
performance for more applications and interoperability with other programming models like OpenMP, Chapel and Python.
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