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Annual Progress Report—General Task
Prepared by C. H. Jones

1 October 1991 to 30 September 1992
Introduction

This report provides a summary of progress for the project
“Evaluation of the Geologic Relations and Seismotectonic
Stability of the Yucca Mountain Area, Nevada Nuclear Waste
Site Investigation (NNWSI).” This progress report was
preceded by the progress report for the year from 1 October
1990 to 30 September 1991. Initially the report will cover
progress of the General Task, followed by sections describing
progress of the other ongoing Tasks which are listed below.

Task 1 — Quaternary Tectonics

Task 3 — Mineral Deposits, Volcanic Geology
Task 4 — Seismology

Task 5 — Tectonics, Neotectonics

Task 8 — Basinal Studies

General Task
Staff

Steven G. Wesnousky, Project Director, Craig H. Jones,
Research Associate, Ingrid Ramos and Gloria Sutherland,
Secretaries.

The General task continued to coordinate project activities
to meet general deadlines and responsibilities. The central
office provided general secretarial support and network and
computer support. Computer capabilities continued to expand.
Dr. Wesnousky has also represented NWPO at a number of
meetings with the NRC and other federal agencies during the
year.,

Technical Activities

Research activities conducted by the general task have
focused on the tectonics of the Yucca Mountain region.
Research conducted by Dr. Jones has focused on the
seismological and tectonic framework of the entire
lithosphere. Because Yucca Mountain lies near the boundary
between two very different extensional regimes to the north
and south, general tectonic study of both regions will
improve understanding of the Yucca Mountain site.

The first project represents the completion of a project by
Dr. Jones; work during the past year has centered about
satisfying peer review for publication. In this experiment,
seismometers were deployed in the high Sierra Nevada of




southern California in 1988. Teleseisms and regional
earthquake arrival times recorded by this network were used
to examine the crustal and upper mantle structure beneath the
southern Sierra. The results, presently in a manuscript in
review, have proven quite controversial: While extension in
the upper crust has accommodated over 250 km of motion in the
Basin and Range, it appears from this work (when placed in
context for the entire region) that the downward continuation
of that deformation actually lies under the Sierra Nevada to
the west. This deformation is inferred to have warmed and
thinned the anti-buoyant mantle lithosphere, thus causing the
Sierra Nevada to rise. Such a model has important
implications in the Yucca Mountain area, because Death
Valley’s deformation lies only a few miles to the southwest.
Understanding the lithosphere-scale tectonics of the region
should improve the framework for systematically examining the
Yucca Mountain site; this work complements the earlier study
of Dr. Zhang, who described, without providing a tectonic
explanation, the evolutlon of faulting in the Death Valley
area through time.

The second project is something of an outgrowth of the
first; Dr. Jones combined with other scientists representing
other subdisciplines (Wernicke, Farmer, and Walker) to write
a single paper that attempts to integrate geological,
geochemical, and geophysical observation. This paper was
completed during the past year and is in press in
Tectonophysics at the present writing. Dr. Jones has been
responsible for the geophysical study and the overall
compilation and preparation of the manuscript. Although the
paper contains considerable review, new work in the
geophysical section explores the variation in the style of
deformation through the Basin and Range by taking seismic
velocity profiles of the crust that have been obtained in the
past few years and converting them into density structures.
Armed with the density of the crust, one can infer how much
of the variation in elevation seen through the Basin and
Range is due to variations in density in the crust; what
remains is probably due to variations in the mantle. Results
of this study that bear on Yucca Mountain directly are that
to the north, extensional deformation in the mantle probably
lies under the central part of the Basin and Range, while to
the south, deformation in the upper mantle lies under the
western flank of the Basin and Range. This implies that a
major lithospheric boundary lies near the Yucca Mountain
area; this boundary might be responsible for the diffuse band
of seismicity that crosses the Basin and Range at this
latitude. These results will be important when interpreting
results from a 3-d velocity structure study discussed below.
Some additional work might be started in the coming year to
expand this analysis to the entire western U.S. and quantify




the uncertainties in the techniques used will be quite useful
in evaluating the inferences from this study.

A third project is a continuation of work undertaken at
Caltech with Drs. Leslie Sonder (Dartmouth College) and
Steven Salyards (New Mexico State University), which in turn
was inspired by earlier work of Nelson and Jones (1987).
Paleomagnetic samples have been gathered in Miocene sediments
near Lake Mead in order to understand the mechanics that
accompany the creation of “oroflexes,” which are great bends
in the earth’s crust adjacent to large strike-slip faults.
These bends are best understood through paleomagnetic work,
which can constrain the exact amount of bending. Earlier
work by Nelson and Jones documented the presence of an
oroflex in the Las Vegas Range northwest of Las Vegas; that
study lacked the spatial resolution to understand the
mechanical underpinnings of the deformation and also could
not constrain the age of deformation. The present study
should solve both problems, for the voung sediments in the
Lake Mead area are well exposed and have not been as deformed
as the sedimentary rocks in the Las Vegas Range. Although
the study is still proceeding, data to date do clearly show
that the oroflex does extend to the southeast and formed
within the past 15-20 m.y.. This same structure or one
analogous to it might extend into Yucca Mountain, where
similar paleomagnetic rotations have been observed by USGS
scientists over the past few years. Completion of this work
should provide insight into structures that might be present
in Yucca Mountain itself, including, possibly, the presence
of large, subhorizontal decollements. Data collected in the
past year have led to the presentation of this work at
professional meetings and a manuscript is in preparation for
submission early in 1993.

A fourth project conducted by Dr. Wesnousky and Dr. Jones
investigates the physical parameters that control the
partitioning of slip between a vertical fault and an adjacent
dipping fault through the use of a simple model. The model
was improved and expanded for use on fault systems within
continents from models originally developed to understand
analogous phenomena observed at plate boundaries. This model
was initially applied to the San Andreas fault and it
indicates that the slip rate along the San Andreas should
vary as a function of the geometry of the adjacent dipping
faults. It also provides some insights into the variation of
physical characteristics of the faults that control the
strength of the fault. A manuscript was published Science.
Continuation of this work into the Basin and Range has begun
and some initial results are to be presented at the fall
meeting of the American Geophysical Union. Within the Basin
and Range, several faults exhibit similar behavior: one
large, vertical fault will tend to be strike-slip, while an




adjacent fault might have oblique-slip on its dipping
surface. Such fault systems include the Death Valley and
Owens Valley fault systems. The latter fault system has been
inferred to have slipped in different ways at different times
in the past because of changes in the stress field in the
Owens Valley area. We have found by extending our analysis
to this area that this conclusion is unwarranted; this style
of faulting is compatible with a single stress system.
Implications from this work include evaluating the likely
amount of variation in the stress field both in space and
time; as such, it will have implications for evaluating the
potential for changes in the stress regime and changes in the
activity of faulting in the Yucca Mountain area.

A fifth project represents a collaboration of Dr. Jones
with Dr. Steven Roecker (Rensselaer Polytechnic Institute)
and Dr. Joan Gomberg (USGS Golden) on the seismic velocity
structure of southern Nevada. During this year a new
collection of arrival times were picked by a student of
Roecker’s with guidance from Gomberg. In the coming year
this dataset will be used to determine a 3-dimensional
velocity structure for southern Nevada. In addition, the
Little Skull Mountain earthquake sequence from the summer of
1992 should provide additional constraints on the velocity
structure in the immediate vicinity of Yucca Mountain. Dr.
Jones assisted in deployment of portable seismometers from
UNR after the mainshock and is beginning to gather data
necessary for 3-d inversions from this earthquake segquence.
Overall, the determination of the lateral variations in
seismic velocity both improve the locations of earthquakes in
the area and provide insight into lateral changes in earth
structure reflecting subsurface geology.

Papers and preprints:

Jones, C. H., and S. G. Wesnousky, Variations in strength and
slip rate along the San Andreas Fault system, Science, 256,
83-86, 1992,

Magistrale, H., H. Kanamori, and C. H. Jones, Forward and
inverse three-dimensional P-wave velocity models of the
southern California crust, J. Geophys. Res., 97, 14115-
14135, 1992.

Jones, C. H., B. P. Wernicke, G. L. Farmer, J. D. Walker, D.
S. Coleman, L. W. McKenna, and F. V. Perry, Variations
across and along a major continental rift: An
interdisciplinary study of the Basin and Range Province,
western USA, Tectonophysics (part II of the Proceedings of
the Geodynamics of Rifting Symposium held in Glion-sur-
Montreux, Switzerland, 4-11 November 1990), 213(?) in
press, 1992.

Jones, C. H., H. Kanamori, and S. W. Roecker, Missing Roots
and Mantle “Drips:” Regional P, and Teleseismic Arrival
Times in the Southern Sierra Nevada and Vicinity,




California, resubmitted to J. Geophys. Res., August 1992;
(in review).

Review and Meeting Activities
Date Investigator Meeting or Review

12-4-91 Wesnousky Provided Review if NRC Staff
technical position on
investigations to identify fault
displacement and seismic hazards
at a geologic repository.

12-17~-91 Wesnousky Attended ACNW working group
meeting in Bethesda, MD on
concerns related to seismic and
faulting investigations for a
geologic repository

1-22-92 Wesnousky  Attended NWIRB meeting of the
Panel on Structural Geology &

Geoengineering in Irvine, CA.

12-28-92 Wesnousky Provided detailed review of DOE
study plan for effects of Local
site Geology on Surface and
Subsurface Motions (Study Plan
8.3.2.27.3.4)

3-1-82 Wesnousky Provide NWPO a review of the DOE
sponsored 'peer-reviewed' reports
regarding the hypothesis that
hydrologic and tectonic processes
are coupled and responsible for
carbonate deposits in and around
Yucca Mountain

4-2-92 Wesnousky Present summary of ongoing NWPO-
supported Seismology and
Neotectonic studies at Yucca
Mountain to the Nevada Commission
on Nuclear Projects— in Las Vegas

9-14 to Wesnousky Attend meetings in Las Vegas
19-92 sponsored by the NWIRB and NRC
concerning issues and progress in
studies on Volcanism and
Neotectonics at Yucca Mountain




PROGRESS REPORT
Task 1 Quaternary Tectonics

1 October 1991 to 30 September 1992

John W. Bell
Principal Investigator

Craig M. dePolo
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SUMMARY OF ACTIVITIES CONDUCTED DURING THE CONTRACT PERIOD

During the contract period, the following activities were conducted by Task 1:

* I.W. Bell reviewed the final draft of the Nuclear Regulatory Commission Staff Technical
Position (STP) on "The Identification of Fault Displacement and Seismic Hazards at a Geologic
Repository” and submitted a two-page report to the Nevada Nuclear Waste Project Office.

* J.W. Bell and C.M. dePolo reviewed the Department of Energy Study Plan 8.3.1.17.3.1
"Relevant Earthquake Sources" and submitted a five-page report to the Nevada Nuclear Waste
Project Office.

* J.W. Bell reviewed the Department of Energy "Outline for Topical Report on Erosion Rates
at Yucca Mountain Geologic Setting: Methodology and Results” and submitted a three-page
report to the Nevada Nuclear Waste Project Office.

* J.W. Bell participated in a three-day field review related to the Technical Review Board
review of the volcanic hazard issue and the DOE/NRC site visit to Midway Valley.

* J.W. Bell and F.F. Peterson revised the manuscript "Late Quaternary Geomorphology and
Soils in Crater Flat, Next to Yucca Mountain, Southern Nevada: A Reinterpretation" for
resubmission to Quaternary Research.

* A.R. Ramelli completed the manuscript "Quaternary Fault Interconnection and Possible
Distributive Behavior at Yucca Mountain, Southern Nevada" and submitted it to Geology.

*R. L. Dorn of Arizona State University provided a new rock varnish data set for previously
analyzed Crater Flat samples and performed alkalinity analyses of rock varnish microlaminations
on Crater Flat samples.

* A. Sarna-Wojcicki of the U.S. Geological Survey submitted the results of petrographic and
microprobe chemical analyses for volcanic tephra samples from the Cedar Mountain area.

* J.W. Bell presented the paper "Tephras and Late Holocene Alluvial-fan Deposition in West-
central Nevada: Is There a Connection?" at.the 1991 Annual Meeting of the Geological Society
of America in San Diego. .

* C.M. dePolo presented the paper "The 1932 Cedar Mountain Earthquake: An Example of
Active Tectonism in the Walker Lane" and led a one-day field trip at a symposium on the
Structure, Tectonics, and Mineralization of the Walker Lane sponsored by the Geological Society
of Nevada.
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* C.M. dePolo investigated the surface faulting associated with the June 28, 1992 Landers
earthquake (M7.4) in southern California.

* The geologic map of the Crater Flat 7%4-minute quadrangle was completed by UNLV and
NBMG investigators (J. Faulds, E.I. Smith, A.R. Ramelli, and J.W. Bell). The lower portion
of the adjoining quadrangle to the north (East of Beatty 7'4-minute) will be added and the
composite map published by the Nevada Bureau of Mines and Geology.

* The bedrock geology of the Mina 7'%-minute quadrangle was received from John Oldow of
Rice University. The surficial geology (already completed) will be added by J.W. Bell and the
map will be published by the Nevada Bureau of Mines and Geology.

* The causative fault(s) associated with the June 29, 1992 Little Skull Mountain earthquake
(M5.6) was analyzed by J.W. Bell and C.M. dePolo. Based on focal mechanisms, either the
Mine Mountain or Cane Springs fault systems are likely sources for the earthquake, and a low-
sun-angle aerial photographic mission over the epicentral area was planned; the photography will
be flown during the early part of the next contract period.

* J.W. Bell reviewed trenches excavated by M. Machette of the U.S. Geological Survey across
the 1915 Pleasant Valley earthquake (M7.6) fault zone, including the evidence for temporal
clustering on the fault zone.

* J.W. Bell led a one-day field trip for about 15 DOE and Woodward-Clyde personnel to
trenches excavated across the Genoa fault in northern Nevada. .




TECHNICAL REPORT

Crater Flat Allostratigraphy

Refinement and revision of Crater Flat Quaternary stratigraphy continued during the contract
period and consisted of several activities: revision of the rock varnish (RYV) cation-leaching
curve; sample comparison of RV manganese:iron microlaminations; correlation of Crater Flat
allostratigraphic units with regional chronologies.

Rock Varnish Chemistry Data

A complete compilation of all previous RV analytical data was prepared by Dr. Ronald I. Dorn
for all Crater Flat samples and is attached as Appendix A. Recent criticism of Dr. Dorn’s Crater
Flat data by Bierman and Gillespie (1991) is addressed in our study in two ways. First, the
Bierman and Gillespie (1991) conclusion that the U.C. Davis cation-ratio (CR) data set (analyses
of Dorn’s samples) is flawed has no merit based on both analytical procedure and on duplicate
data sets. Cahill (1992) states that the Bierman and Gillespie (1991) data set was produced on
entirely different laboratory equipment than Dorn’s data, thus making the Bierman and Gillespie
(1991) conclusions irrelevant. Second, only some of the early Crater Flat samples were analyzed
by the PIXE system, and all samples were additionally analyzed by wavelength dispersive
microprobe (Dorn, 1992). In order to address the Bierman and Gillespie (1992) comment that
Dr. Dorn has not published all specific chemical analysis data, a complete compilation of this
data is provided here (Table 1; Appendix A). :

Rock Varnish Cation-leaching Curve

The cation-leaching curve for Crater Flat (Figure 1) has evolved since Dorn (1988a); revised
calibration points have been added by Dr. Dorn during this contract period. The Lathrop Wells
basalt flow K-Ar calibration point was dropped because recent studies (e.g., Wells et al., 1990a;
Zreda et al., 1991; Wells et al., 1992; Zreda et al., in press) indicate the history of the eruptive

center still needs to be resolved. The CR of <2um dust was viewed as unnecessary, because
a C age of ~ 1300 yr BP is available for calibrating all but the youngest site; CFP-41 with the

youngest CR is < <1300 yr BP, with a provisional age of ~3004200 yr BP based on an
extension of the curve. We also use the most recent K-Ar dating results for basalt flows in

Crater Flat from Smith ez al.(1990). We note that CR’s for the Early Black Cone, Yucca, and
Solitario allostratigraphic units fall between the *C and K-Ar calibration points. The CR’s used
as calibration points in Table 1 are averages (with 1 standard deviation) of four or more
individual measurements. The CR ages reported for each site in Table 1 are averages (with 1
standard deviation) of four to fifteen separate CR ages. (The complete PIXE and microprobe
analyses data sets are attached as Appendix A).




Table 1. Results of Rock Varnizh Analyses

Allostratigraphic Unit Sample “C AMS Date K+Ca/Ti Calculated Cation
(This Study) (yr B.P.; lab #) (Avg +10) Ratio Age (yr3 B.P.)
Crater Flat CFP-41 - 9.1740.25 3004:200
JWB-36 1,320+70 (ETH 5264) 7.94+0.17 1,1004:400
Little Cones CFP-2 6,645+245 (ETH 3197) 6.47+0.13
JWB-38 8,425+70 (ETH 5268) 6.3740.13
CFP-26 10,180+270 (ETH 3187) 6.13+0.09
JWB41 11,1354105 (ETH 5270) 5.99+0.13
Late Black Cone CFP-33 17,280+370 (ETH 3191) 5.75+0.06
CFP-31 - 5.67+0.15 19,000:+4,000
JWB-39 19,6604240 (ETH 4483) 5.68+0.15
CFP-27 25,7004360 (ETH 3188) 5.4240.12
CFP-35 26,970+375 (ETH 3192) 5.34+0.15
CFP-36 28,9204400 (ETH 3190) 5.32+0.07
CFP-32 30,3204-460 (ETH 3189) 5.14+0.07
Early Black Cone CFP-37 - 3.98+0.19 159,000+38,000
CFP-29 >40,120 (ETH 5259) 3.98+0.32 168,0004-75,000
JWB42 - 3.90+0.11 176,000:+25,000
JWB-20 - 3.7940.11 200,0004-29,000
Yucca CFP-39 - 3.294+0.11 375,000+53,000
CFP-38 - 3.2940.11 373,000+50,000
Solitario JWB-43 - 3.17+0.10 433,000+54,000
CFP-40 - 2.95+0.10 572,000+ 66,000
JWB-40 - 2.84+0.09 660,0004-71,000
Little Cones basalt Smith ez al., 770,000+40,000 2.63+0.08
1990
Red Cone basalt " 950,000+ 80,000 2.62+0.12
Black Cone basalt - 1,090,000 120,000 2.531:0.06
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Figure 1. Rock varnish cation leaching curve for Crater Flat. Calibration is based on *C rock
varnish dates on allostratigraphic surfaces and on K/Ar dates on basaltic cones (Smith ez al.,
1990).

Microlamination Alkalinity Data

During the contract period, Dr. Dorn provided new RV alkalinity data that support correlation
of samples and corroborate previously estimated numerical ages. Manganese:iron ratios on
microlaminations are indicators of alkalinity fluctuations during the late Quaternary (Dorn,
1988b, 1990; Jones, 1991). The sequence of microlaminations observed in Crater Flat samples
is consistent with other evidence when evenly layered subaerial varnishes are used (cf., Dorn,
1990; Krinsley et al., 1990). Selected Crater Flat samples were examined by wavelength
dispersive microprobe, and several trends are evident on Figure 2. Younger varnishes have
fewer Mn:Fe layers than older varnishes. Crater Flat and Little Cones varnishes are only Mn-
poor, reflecting a period of enhanced alkalinity (Jones, 1991) during the Holocene. Late Black
Cone varnishes show a basal layer of reduced alkalinity, probably corresponding with a more
moist late Pleistocene period in the Nevada Test Site area (Spaulding, 1985; Claassen, 1986).
Early Black Cone, Yucca, and Solitario varnishes show progressively more complex sequences.




Alkalinity Index

CFP-40 CFP-39 CFP-29 CFP-33
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Figure 2. Averaged electron microprobe analyses (wavelength dispersive mode) of Mn:Fe
microlaminations on the different Crater Flat stratigraphic units. As in Domn (1990) the alkalinity
index represents normalized Mn:Fe values. Zero is the lowest ratio (highest alkalinity) and 1 is
the highest ratio (lowest alkalinity). Years before present (in 10°) is derived by normalizing
depth to the “C or cation ratio age. Alkalinity index values were regressed for every 5,000
years. The central line indicates the average alkalinity index values of 20 transects across layered
varnishes from five different rocks, and bars represent 2 standard deviations.

Regional Correlation of Quaternary Stratigraphic Units

Similar Quaternary stratigraphic sequences have been described in the southemn Nevada,
Colorado River, Death Valley, and Mojave Desert regions. Although the Crater Flat units are
more limited in extent and restricted to a single piedmont, a correlation of these sequences based
on stratigraphic order and similarities in reported distinguishing characteristics, such as
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geomorphic character, soils, and estimated numerical age (Table 2), provides supporting
evidence for the concept of regional climatic control of arid alluvial deposition (Bull, 1991) and
an additional test of the Hoover et al. (1981) chronology.

TABLE 2. Comparison of Crater Flat Alluvial Chronology With Other Chronologies in the Region (Listed ages are ka).

Crater Flat Lower Colorado Las Vegas and S. Death Valley East-central Mojave
(this study) River (Bull,1991)  Indian Springs (Dorn, 1988b) (Wells ez al., 1990b)
Valleys (Quade,
1986; Quade and
Pratt, 1989)
Modern 0 Q4b O Modern 0 Modem 0 Modern (Qf9) 0O
Crater Flat <.4->1.5 Qda 0.1-2 Unit G 0.4.0 Q3b3 0.5-2.5 Qf8 <0.3->0.7
Q3c 24 Unit F 4.0-8.0 Q3b2 2.04.5 Q5,7 2-8
Q3b 4-8
Little Cones 7-11 Q3a 8-12 Unit E 8.6-14.0  Q3bl1 6-11 Qf5 8-15
Late Black Cone 17-30 Q2¢ 12-70 Unit D 15-30 Q3a 13-50 Qf4 <34->45
Early Black Cone 130-190 Q2b 70-200 UnitC >30 Q2b 110-130 Qf3 >47->130
UnitB >40 Q2a 140-190 Qf2 <160->320
Yucca >360-370 Q2a 400-740 Unit A Qlb 400-650
Solitario >450->740 Ql >1200 Unit A Q1 >650->800 Qft <3800

Most striking in this regional correlation is the evidence for widespread alluviation in the
southern Basin and Range during the late Wisconsin pluvial (interstadial) and during the
transition from the late Wisconsin maximum pluvial to the arid Holocene-- a concept discussed
in detail by Bull (1991). Our Late Black Cone unit in Crater Flat is similar in stratigraphic order
and soil morphology to unit Q2¢ (12-70 ka) of Bull (1991) in the lower Colorado River region;
in both cases, the units contain the youngest well-developed Bt (argillic) and Bk (stage II-II)
horizons in the stratigraphic section, a characteristic indicative of development under the more
moist conditions of the late Wisconsin pluvial period (Nettleton et al., 1975). We note that the
Hoover et al. (1981) chronology does not include a similar late Wisconsin unit.




Cedar Mountain Allostratigraphy

As discussed in previous reports (Bell et al., 1990, 1991), allostratigraphic relations in the 1932
Cedar Mountain earthquake area consist of seven units (Fig. 3). Studies conducted during this
contract period included the refinement of the numerical ages of these units based on chemical
microprobe analyses of 16 volcanic ashes and on 15 radiocarbon dates collected during the
period. The results of the microprobe and radiocarbon analyses (Tables 3,4) indicate that
additional age constraints can be placed both on recency and recurrence of faulting associated
with the Cedar Mountain and adjacent fault zones.

Age (ka)
- _ A-Cto Bw soil A
Qfz, == ] Tephras T492, T494, T497, T498 <2
O [ e Bw soil ~59
3b | — Tephra 7 7.2
e T B 3 ~80- .2
Qfs, w soil 8.0-11
el Btsoil 21.9-254
Qf2b [T "1 Wilson Creek Ash 36
o swiimsod  Bt/Bgkm soil >40
22— Tephra 65-85 ~65-85
£y, iy Bt/Bgkm soil -
Al = Bishop/Glass Mtn. "G" ash 730-1,000
Qfy izl Bt/Bgkm soil _

Figure 3. Cedar Mountain area allostratigraphy showing units, soil stratigraphic relations,
tephras, and estimated numerical ages.

Volcanic ash analyses

The sixteen volcanic ash samples were submitted to Andrei Sama-Wojcicki of the U.S.
Geological Survey in December 1990, and the written report containing the analytical results and
identifications were received in June 1992 (Appendix B). Three sets of Mono Craters ashes are
identified here on the basis of glass shard chemistry: a Holocene set, a latest Pleistocene set, and
an older Pleistocene set. Positive identification and differentiation of a number of the Holocene
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Table 3, Identification and age of tephras from the Cedar Mountain and related areas; results from report of Andrei Sarma-Wojcicki (Appendix
B).

Ash sample Unit Best Age Estimate (yrs) Remarks

Bs-1 Qf3c 19504110, or 890+40 Similar to BS-9, -11, -12, -16
BS-2 Qf3c ~900, or 19504110 Very similar to BS-7, -11, -12
BS-3 Qf2a 60,000-100,000 Previously reported as 65-85 ka
BS4 Qf3c 1000-2000 Similar to BS-5

BS-5 Qf3c 1780-1960, possibly 7200 Similar to BS-1

BS-6 Qf2b 36,000 Wilson Creek Bed 19

BS-7 Qf3c 900 or 1780 Similar to BS-1, -5

Bs-9 Qf3b 7200 Good match with Mono Lake ash
BS-11 Qf3c 900-3750 BS-11 through BS-16 all similar
BS-12 Qf3c 900-3750 "

Bs-13 Qf3c 900-3750 "

BS-14 Qf3c 900-3750 "

BS-15 Qf3c 900-3750 *

BS-16 Qf3c 900-3750 "

BS-16 Qf3c 900-3750 "

Bs-17 Qf2b 36,000 Wilson Creek Bed 19

Wassuk 1 Qfy 900-3750 Similar to BS-11

Table 4. Cedar Mountain Area 1C Results

Sample Date (yrs) Lab # Stratigraphic position

BS-1 9954110 GX-17250 6 cm below ash BS-23

BS-2 5354150 GX-17251 6 cm above ash BS-23

BS-3 12604-145 GX-17252 Disturbed zone

BS4 4354110 GX-17253 30 cm above ash BS-25
BS-5 7904105 GX-17254 6 cm above ash BS-25

BS-6 1025465 GX-17255 6 cm below ash BS-25

BS-7 11104110 GX-17256 6 cm above ash BS-24

BS-8 15504110 GX-17257 15 cm below ash BS-24
BsS-9 1605+120 GX-17566 Immediately below ash BS-2
WR-3 Modemn GX-17568

WR-4 6854135 GX-18127 Immediately below ash WR-6
WR-5 Modem GX-18128

WR-6 12304125 GX-18129 60 cm below ash WR-7
WR-7 4404130 GX-18130 1 m above ash WR-7
11-Mile-1 25854:165 GX-17567 Av below Turupah Flat ash

ashes are problematic because of the close similarity in glass shard chemistry and variable
degrees of hydration. Nevertheless, general groupings of the Holocene tephras are possible.

The Holocene age tephras can be divided into those of mid-Holocene (~7200 yrs) and late
Holocene age (900-3750 yrs) based on correlation with other dated tephras in the western U.S.
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(Sarna-Wojcicki et al., 1988). In each case, however, several previously dated Mono Craters
ashes are similar enough in composition to result in more than one possible correlation and age.
This is large part due to the multiple eruptive sequences at Mono Craters all of which had
generally similar glass chemistry. The late Holocene set, in particular, has significant
uncertainties not resolved by the chemical comparisons. Many of these ashes are similar in
composition to both the mid- and late Holocene Mono Craters sets.

Previous measurements of refractive indices of these ashes (Bell ez al., 1991) indicates that seven
of the ashes analyzed here have refractive indices similar to that of the Turupah Flat ash (1.5-1.6
ka) of Davis (1978): BS-1, -4, -5, -11, -13, -15, -16. Bracketing radiocarbon ages at the Weber
Dam locale of Davis (1978) were listed in previous reports (Bell et al., 1991): 1455+ 140 and

1550+130 yrs. The age estimates for these samples in Table 3 are thus consistent with
correlation to the Turupah Flat ash. In addition, a radiocarbon date of 1605+120 yrs was
obtained from charcoal immediately beneath ash BS-2, an age also consistent with Sarna-

Wojcicki’s estimate of 900-1950 yrs.

Since submission of these original 16 samples, an additional 13 tephras from the Cedar Mountain
area and 7 samples from the Walker Lake area have been collected. Although these have not
been analyzed for glass chemistry, many have been examined for refractive index and glass
morphology properties, and several have been dated by radiocarbon (Table 4). The “C results

suggest that most, if not all, of these additional tephras are similar in age to those discussed
above. During the next contract period, a more comprehensive analysis of trace element
chemistry will be undertaken utilizing xray fluorescence (XRF) in order to develop more positive
evidence for differentiations and correlations.

Two older, pre-Holocene tephras can be positively identified in the Cedar Mountain area.
Samples BS-6 and -17 are chemically similar to the Wilson Creek Beds 16, 17 and 19, with the
closest match being bed 19 which is about 36 ka old (Benson e al., 1990). This ash is present
in unit Qf2b in the Cedar Mountain region (Fig. 3), and it is overlain by geomorphic surfaces
which have yielded “C AMS rock varnish ages ranging between about 21-25 ka (Bell er al.,
1991). An older Pleistocene tephra is present within Qf2a deposits (Fig. 3) that is correlative
with an unnamed Mono Craters ash found in the Mono and Walker Lake areas (Sarna-Wojcicki
et al., 1988). This ash is on the order of 60-100 ka based on extrapolated sedimentation rates;
it was previously estimated to be on the order of 65-85 ka (Sarna-Wojcicki, verbal
communication, 1988).

Radiocarbon analyses

Fifteen samples were submitted for “C analysis during the contract period, and the results are
listed in Table 4. Nine of the samples were from the immediate Cedar Mountain region and six
of the samples were from outcrops of volcanic ash in the Walker Lake and Dixie Valley areas.
The latter ashes are likely correlative with some or all of the Cedar Mountain ashes and provide
additional constraints on the Cedar Mountain allostratigraphy. All of the samples either closely
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underlie or overlie a tephra, and thus provide tight constraints on tephra ages. All of the ages
are latest Holocene, consistent with the results of Sarna-Wojcicki discussed above.

Refined ages of allostratigraphic units

Figure 3 lists the revised ages of the previously defined allostratigraphic units in the Cedar
Mountain region; revisions are based on incorporation of tephra analyses conducted during this
contract period. The principal differences in these refined ages compared to those reported in
Bell e al. (1991) are related to the occurrence of the sequence of late Holocene tephras in unit
Qf3c, the unnamed mid-Holocene 7.2 ka tephra in unit Qf3b, and the Wilson Creek Bed 19 (36
ka) in unit Qf2b. Of particular importance is the observation that the independently derived
tephra ages are very consistent with the rock varnish ages estimated for the geomorphic surfaces
of the same units. For example, a series of “C AMS varnish dates from four Qf2b surfaces
range in age from 21.9-25.4 ka, ages which are younger (as expected) than the underlying
volcanic ash. Additional rock varnish dating during the next contract period will provide further
verification of these age relationships and the rock varnish dating procedure.

1932 Cedar Mountain Earthquake

Research continued on the 1932 Cedar Mountain earthquake, the principal relative comparison
earthquake for the Yucca Mountain site. A surface rupture map was completed at a scale of
1:24,000, seismicity of the Cedar Mountain region was examined, a new kinematic model for
the earthquake is being developed, surface rupturing from a large strike-slip earthquake in
California (1992 Landers Earthquake, M7.5) was examined for similarities with the ground
rupture associated with the Cedar Mountain event, and a working model for earthquakes along
the Walker Lane was developed in light of these two earthquakes.

Surface rupture studies

A new surface rupture map has been completed and digitized (Fig. 4). This effort consisted of
enlarging surface rupture maps from Gianella and Callaghan (1934) to 1:24,000 scale and
transferring them to the topographic maps. New ruptures mapped by dePolo were transferred
from various scale aerial photographs to these maps as well. The result gives us a better picture
of the actual geometry and location of the surface breaks. This in turn has allowed a better
estimate of the cross-strike width of faulting and emphasizes the northerly trends of surface
ruptures in northern Monte Cristo and southern Stewart Valleys. This latter point has strongly
influenced the formation of a new kinematic model for the southern part of this event.

Gianella’s and Callaghan’s field notes have been scrutinized as part of this process as well.
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There are surface breaks mentioned in these notes that never made it to their final published
maps, some which have important tectonic significance. For example, ruptures are reported in
Gianella’s notes just north of Stewart Springs (eastern Stewart Valley on the flank of Cedar
Mountain) and through the springs itself. The rupture through the springs extends distinctly
beyond the springs, suggesting that it was indeed a tectonic surface rupture, and not just a
liquefaction or other effect of saturated ground. This becomes even more significant when
considered along with a rupture mentioned in a letter from Gianella the Mr. Spencer (who 1
believe lived in the town of Gilbert in southern Monte Cristo Valley at the time), dated January
13, 1933. This paragraph is so significant that we reproduce it in its entirety here:

"I learned today that Norman Annette found a crack south of Stewart Springs.
He went up a wash about a mile or so beyond the Simon road and said that he
traced it to within half a mile of the springs while the man with him, who owns
a prospect out there, traced it in the other direction for a distance of a mile. This
runs nearly N-S and may be a continuation of the ones we found on the Simon
Road."

The Simon road is roughly 3 1/4 miles south of Stewart Springs. The breaks mentioned in this
letter never made the map (with exception of the small break in the Simon road itself. This
opens the possibility that there was intermittent, but semicontinuous rupture from Gianella and
Callaghan’s rupture numbers "17" and "18", through rupture "16", near rupture "13" and
possibly beyond to the north. This will become an important consideration for the kinematic
modeling.

Unmapped ruptures are now suspected to have occurred south of Gianella and Callaghan’s
rupture number "20" and north of new strike-slip breaks mapped during this project. A field
trip is planned to investigate this area for ground disturbance. If breaks are found, this will
extend the main surface rupture zone in Monte Cristo Valley to the north. At this point in their
field work, Gianella and Callaghan were overwhelmed with surface breaks and were only noting
those that crossed the roads, and were not walking them out to any extent.

Unfortunately, neither original photographs or originally sketched maps have been recovered
from Gianella’s or Callaghan’s archives. This is a bit surprising. Sketch maps from the event
must have existed, or it would have been hard to produce the maps presented in their published
papers, unless they simply "faked" the details. The details are so realistic looking, however,
that this is unlikely the case. Perhaps a deeper dig into the archives is warranted. More
photographs were taken than are presented in their publications according to their notes.

Seismicity
After the surface ruptures were digitized, Diane dePolo of the University of Nevada, Reno

Seismological Laboratory searched the UNR catalog for seismicity surrounding the breaks (Figs.
5, 6). The towns of Gabbs, Luning, and Mina were added for reference. Two plots are shown
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here, one for the time period 1932 to June 1992, and the other, for the time period that there
has been more local monitoring, 1970 to June 1992.

Although the post-1932 seismicity map is clearly incomplete, it shows all the data that is
available for the aftershocks in UNR’s catalog. The difficulties of locating earthquakes in this
area prior to 1970 is evident in the many magnitude 4 and 5 events located on the tenth of a
degree latitude and longitude intersections. Contrasting the seismicity in the immediate area
around the surface ruptures with the seismicity of small earthquake swarms near Mina and
Luning, demonstrates that most of the aftershocks are missing. The areas around the surface
breaks should be as black and much more extensive with earthquakes as these swarms.

The post-1970 data still must be viewed as somewhat fuzzy in the locations of the earthquakes,
but offers the best opportunity to spatially associate earthquakes with the ruptures. Several
groupings of seismicity are apparent on Figure 6. In general, as pointed out by Doser (1988),
there are two groups of aftershocks, one associated with the northern ruptures, and one
associated with the southern. The southern group of epicenters cluster around the surface
ruptures rather tightly, several being located directly along rupture 23 A. There also seems to
be a lot of activity in the northern part of Monte Cristo Valley and the southern part of Stewart
Valley. In this region, there are several folds that were probably involved in the surface
deformation. These folds are intimately associated with surface faulting and presently form
small hills in the landscape. Most of the seismicity at the northern end is from the center of the
surface ruptures, and to the east. There is some seismicity immediately southeast of the
epicenter that is distributed in nature. A small pocket of seismicity is also located near rupture
3A in Gabbs Valley. Seismicity northwest of the surface rupture area is probably related to the
1954 Fairview Peak earthquake.

Kinematic models

A second kinematic model is being considered for the 1932 Cedar Mountain earthquake,
although more work must be done to substantiate it. Initially, Gianella and Callaghan thought
that the earthquake must be deep to give such a scattered pattern of surface ruptures. In its
simplest form, this could involve a single, north-northwest-trending rupture at depth, that
distributes and splays towards the surface. As discussed previously, however, Doser (1988)
found evidence for multiple ruptures in the teleseismic P waves from this event, both located
more toward the northern half of the surface rupture area. If the southern Stewart Valley and
Monte Cristo Valley surface ruptures are interpreted to be primary surface ruptures, this might
suggest that there were two other multiple events in addition to Doser’s, both northerly trending.
Such a model is consistent with the inferred regional stress regime. The consideration of this
second kinematic model has come about from the new mapping of surface breaks by Task 1,
plotting the breaks at a large scale, and incorporating Gianella and Callaghan’ notes and
correspondence.
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Similarities with the 1992 Landers Earthquake

There are several similarities between the 1992 Landers earthquake and the 1932 Cedar
Mountain earthquake including involvement of multiple faults, rupturing across valleys and along
different ranges, rupturing multiple geometric and structural segments, and a dominant strike-slip
nature.

Observations of the fresh surface ruptures from the Landers event are invaluable to the studies
of the Cedar Mountain earthquake. Many of the same geomorphic features whose remnants can
be seen from the 1932 earthquake occurred during the Landers earthquake. Of particular note
are the occurrence of many swell features. These were almost always related to small left-steps
between the main fault breaks. In the area of the Cedar Mountain surface breaks, we have
delineated some ruptures based on the occurrence of an alignment of swells and disrupted
pavement, and little else. Although these have always been fairly confidently interpreted as true
indicators of surface rupture, there is no doubt now. Also in abundance along the Landers
earthquake rupture were "moletracks”, similar to the "molehill ridges” mentioned by Gianella
and Callaghan (1934).

Implications for the Walker Lane

Commonly, a rather simplistic view of an earthquake along a single fault has been envisioned
for the seismic hazard of the Walker Lane. Perhaps this is true for several cases. But
earthquakes such as the 1923 Cedar Mountain earthquake and the more recent 1992 Landers
earthquake in Mojave Desert, California remind us that these major earthquakes (magnitude 7+)
can be complicated involving multiple geometric and structural segments of the same fault zone,
or different fault zones. '

An interesting aspect of the large strike-slip faults of the Walker Lane is that their activity, both
in recency and geomorphic expression, is highly variable along their strike. What the previously
mentioned earthquakes suggest as a possible explanation for this phenomenon is that parts of
different strike-slip faults could be involved in the same major event. Such an event could either
be characteristic, with some repeat history, or a random, triggered event. Such multiple fault
events should be considered as a possible model for earthquake behavior in the contemporary
Walker Lane.
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Appendix A

Chemical Analyses of Rock Varnish Samples




| abey

1686 000 1181 LE€Zz 1 001 Y 000 €01 -¥¥'8C 160 160 uonesqijed ui pasp) 09'9 9T &I
1808 000 LOLI 8I'61 960 €80 £t TO0  8E'0 Lb'TT ¥SST 1L0  uoneiqie) ur pasqy [A%] P T ddD
IL6L 60°0 LI'LI €681 860 980 06¢ O0I'0 80 080z OLSI 080 uone1qiie) ut posn 659 Ao
0086 SO0 LOEI OFIZ €21 €01 E8v L0  L90 SE0E SOST  S60 uoneqie) ut pasg Ly'9 477 ddD
8V'L6 LI'0O 8S'81 10°1T 11I'1 €01 8I'  SI'0 LTl S6'LT SI'IT 880 uonerqie) ur pasn St'9 ARG o)

EI'0FLY'9 <ddd
SOEL LO0O 9L6 T6'8 %€l WO €T S00  SO'T  #b'TE 1L €£0  uoneique ui pasp 1€°C P dRIg
9LT8 8I'0 06T €801 61 60 IcC  SI'0 €€'T SVSE ISLT 220  uonmiqie) ur pas) 9'c 7youIg
L8 EI'0 TIEl 8YTl 691 S0  69g 0 STO LI'LE OI'GI €40  uonmque) ut posq 09C qyoug
88'IL 8I'0 Tvel LLOT €51 TS0 ET 000 0L'0 95'8C 8I'PI 890  uonwique) ur pasn L2 X4 v¥TyoeIg

90°0F€ES'T auoy ey
L9Y9 €10 TEII 856 801 950 1ST ¢ I'0 10% 61'tc €TEl 160  uoneiqued ur pasn §6°T SN
66C9 LOO 60O 088 101 €90 It'l 00 29t SI'tt 99°El  0S'0  uoneIqueD i pasp) 19T Pomy
90s9 110 601 +vL'8 801 TLO I L0 S6'1 0S'€T €9SI  €E1  uoneIqueD UI pasn) £9°C STy
LOLS 90 008 S89 €L0 000 001 vC0 09t 61'tT SKEL  SC0  uonwaque) ur pasp Y34 Qo]
6L'EL ¥1'0 SSTI SSOI 901  8S0 651 S0 29T ¥6'9¢ OI'LI IS0  uoneique) ui pasp ELT eI

80°0F€9'c 0D PNy
€069 600 86'S 6I'L 190 120 €60 L0°0 Ve TI'8€ LETT 901  uopeiqie) ur pasp £6°C pouo) pay
P09 ZI'o €8S 10L 950 620 080 CI'0 Y0 68'€E 0801 S$S0  uomneiqueD ui paspy 09'¢ 979u0) pay
€999 TI'0 8L9 ¥E8 $90 SE0 660 010 680 109€ I¥'I1 660  uoneique) uf pasp 08¢ q79u0D pay
WI8 vT0 SLL 8T6 LLO TEO  SIT SE0 1T ISy ObPl 980  uoneique) ur pasn LS'T 872u0D pay

croFe9c U0y pY
IVIOL,  Ovd €074 OUA TOWL O0BD Ol £0S §0Wd TO!s €outy O3 ewsdis [ F98y WD w0 sopduresqng 29 iS

"UOI123J3P JO JWI] MOJOQ SeA J1 1O JUSWS[D ue Joj paprodar jou a1om san
ey SInsar FXId 91LL “2qosdoronu uonoape oy £q pazAjeue sojdures swres o J
*(0661) [ 19 wog 0} Suipioooe pazeue pue p

aqosdisadns 1OF[ £q opewt sjuswaInSEaW aqoxdoson vonoajg “raded Q1f) Ul Pasa YSiuwIeA Y01

v-

18A HXId 2194M PalsI] ST 0197 9001 O} PIzi[euniou uaaq
0 9WOS 3y} U0 Ipew UIDQ OS[E JABY SJUIWIINSBIW FK ][]
aredoid o1om sajdureg

*3pour dAISIAdsIP YiBuapoaem yim
Jo saskjeut [eapwoy) i xipuaddy




Z abeyg

1569 620 80'Cl 9v'01 080 11T LI'Z ST0 8L0 -9t €T91 880  uonwIqueD U pasp 6e'S 979¢ D
O0L'6L TO0 SOPI 9¥'ST  LOT IET 662 000 LEO0 +0'ST 8891 1I'C  uoneiqie) ur pasp (4% PT9E" D
62C9 LI'0 6Y'El 6LOI 80 L90 OFT LI'0 10 L9YT S88 6T1  uoneiqie) ui pasy 6E'S 979€7ddD
9L89 OI'0 6Tl 1011 650 001 OFl 000 080 o6L'LT 8901 SHT  uwoneiqyeD up pasn 9¢’s 479¢7dd0
§9L6 €00 90°S1 LOBL 0ST 66’1 LGE 000 990 <T6'IE 9S'IT 68T  uoneiqye) up pasp £Cs 89T O

LO'OFCE'S 9€ dJD
OL'€L LI'0O 0S0OF ¥S'ST ST1  I€1  TLE 000 660 STTT €8ST +vL1  uoneiqiuD uf pasp Le'S 976E ddD
06EL 1¥'0 T1I'0T 80'VI 601 0OT1 9g€ 0V'0 €LT 9v'TT 8L91 8T1  uomeiqued ur pasn 8¢'¢ PSE &ID
$6'C8  TE'0 9ECT GFLI OVT LS TEE 720 LST 8E'CT 1§91 180  uonwiqyed ug pasn 14 976ETddD
0L9L L0 SSTI 8E€LI €1  SE1 98¢ 00  6L'T 99TC €I'vI GE1  uoneIqie) ug pasp Les Q7 SE ddAD
90v8 ¥I'0 EI'El 9LLI vET 681 6YE 010 86C IS'LT 99F1 901  uoneiqeD ui posn 9TS LY S o)

ST'OFE'S St 44D
EI'E9 SO0 LE8 ILL SE0 OO0 90T 000 66'1 06T TI'TI $0'CT  uwonelqied w pasp 95'¢ LT ddD
SSIL 000 61'6 SE8 LOT €€T1  LOE 000 0T 68'1€ LOET 881  uonwiqyed ui pasp V'S P LT ddD
LUEL LO0 SL'8 008 S60 II'T 6LT L0 8T LLIE TEST 9ET1  uonwique) Wi pasn) 9'S 97LT 44D
LOOL 190 06 698 160 €80 TLT SO 't OV'6T 8¥TI  9p'1I  uoneiqyed ui pasp £33 QLT &1D
0L68 TCTO0 LI'OI +00I OI'T 001 OFE LI 80'T  19°0v TI'0T 6L1  uoneiqyed ui pasn 8¢S LKA e

[AN1NA4Y LTd4D
9206 LI'0 TEL 0S'E 680 SI'T OLZT SI'0 €81 ITLS 8EEl 96T  uonwIqieD ui pasp) eLs PTEE &I
6c¥8 900 99 16T SLO €11 AT 000 SSI I8YS 99TT 99’1  uoneiqie) uf pasp 69'S 97EE &
LU'vL 000 60'L 91'€ 6L0 860 8z 000 'l €L9% 886 6T uoneiqie) ui pasn) (2159 Q€€ &
118 S0 S0'8 00 180 90 6L'T  SI0 60C 09CTS TE6 160  uonuiquu u pasp LS UTEE dD

90'0FSL'S €€ ddD
9¢LL 1T0 ¥69 I8V 00T SLO 9LE L0 SpT LTy €TPI 10T woneiqued ui pasn 148" P9z &1D
0698 8I'0 6LL 6TS Tl +80 O9I'v SI'0 801 +8Lp SS'91 06’1  uoneIqi[eD ur pasn L0'9 97977440
PSL 900 0€CTl TE8 660 690 P8E 000 SS| Lyl €081 661  uoneiqueD ui pasn §T9 9797 dd0
9C8L SO0 II'El €€8 101 TLO0 LL'E 000 SOC €€'8C C961 LTl uoneiqueD ui pasp) 909 LEAR S o)

60°0FEL'9 9T 44D
[BIOL Ovd €0¢dd OUAN COLL OB O €OS SOt COS €OTlV OSW  ewsis [ F93v ) o) sojduresqng 7 anig

)




¢ abey

C66L SI'0  LOG ILTI 801 2Tl 96l O0E0 LEO " T6'9t 8091 901 T6L L8 €8¢ sT0z aMs .
vYPe8 0000 LSIT ZGII  OI'T 197 PL'L 000 YEOQ 8TSE 90°LT 78T 811°SLI 68t poz amMs
LET6  LO0O OSVI Lv'Ll €T 260 vo'T SO0  0E0 T8TE LSGI 1L £9905¢ 09'c 270z AMI
YEVYL 0T0 1901 6HEl  L60 090 YI'c  LI'0  LEO €£8C SO91 Ip1 298161 08¢ oz amr
VEI8  STO L9El 9891 0Z1 160 T TE0 8L0 SEBT YESI vI'l £19°261 18°€ LA TAR: 1Y
000'6T ¥ 000°00C  11°0F6LE 0T gMr
SLY8 1€0 6TSI €Tvl 801 080 86T O0v0 ¥E0 S86z 9981 1 81 1v6'STE e PT6E dd4D
LEI8  STO 9011 LOWI 1Ml SL'0O 10T 20 80 1905 €861 86°0 68S°09€ I€°€ 9768 O
S8'8L SO0 TT GI'VI 960 890 09T L00 €0 €LLT bb'8I  LI'T SoL'trt si'e 476€ddD
OCLL €10 6011 SGEl €60 1L0 65’1 210 80T €0'LT L8GI 901 6LE08E LTe ¥T6E ddO
000°€S ¥ 000°SLE  11'0F6Z°E 6t 44D
§6°V6 000 SSII 6ZC TI'T 061 SOt 000 T90 +8'CE LESE 1670 SPE'S0E 144> P8E ddD
9E96 8TT $6'6 1TE Y61 €61 8T LTT  ¥E0 E€VEV 8I'8T 660 P60'TTY 61t 978€7ddD
L9T8 ¥$'T 8GII 98T 1 SI'T 88T SI'T 990 €£5E 8TIT 060 $86°66€ 1A Q78€ d4D
9006 LO'0 1911 10V 9T1 €80 0EC 210 090 €L6¢ SE8T 8I'T 600°09€ Ie'e €8¢ ddD
000°0S ¥ 000'ELE  I11'0F6T'E SEddD
9U6L 900 STHI €9SI 60 LEO I9T 000 880 S0Lz SIS ZT0 £00°019 98°c 970V ddD
6EPL  6E0 LS6 OLI1 #01 OLO L1 SI'0  €L0 18'LT SL6T 180 EEE 19p cr'e POV ddD
90'IL 880 HTOI LLIT SOT €40 091 §6°0 990 LS°ST SI'LI 980 80S°18¢ £6'C 970V ddD
LE'B9 TOT SIT S6TI 980 8K0 OFi 080 +¥'0 1TcT I1IST S60 €2T'88S 6T q90r 440
LOEL LT'O 6ET1 €611 8L0 Tvo 8T 1 T80 SO €8'9C 061 950 880°16S 6T B0p dd40
000'99 F 000'CLS  01'0FS6'T 0b ddd
CL8L TI'0 €6 LSV 290 €90 6L1 L00 €TT 0T6Z €10C €60 uoperqie)) ur pasp 178 97C€ &40
68'8L 000 866 ¥8El 650 +SO 891 000 181 196 60'61 6971  uomeiqe) urpasn ¥0'S PZE 41D
0TZ8 1€0 SLOl 66'€El G660 09T LET €0 ¥8C 08'LC 8T0T 60  uoneiqye) ur pasp 1749 97gE D
88'C8 LTO II'IT 8E91 SOT 881 €T SC0 W1 19LT bIGE €1 uonexqied ut pasn 14%3 Q€ 440
IS9L 210 9v'el %I'St 01 SL1  SEe <r'0 €€T 9EvT 8591 971 uonBIqife) ur pasn) 60°S 8CE ddD
LOOFT'S ¢ dd)
I[BIOL  O®d €0zd OUAN O OBD Oy £0S SOud TOIS €0V OSW Bwidis | F 98y YD R sojduresqng 7 ang




€818

§T0

1A 41

89°81

LSO

t abeqd

6LT  ELT TE0 90 TS'ST 1S91  90'[ uoe1qI[e) ur pasn 00'8 1
vWP8  LO0 9681 9681 SS0  €€T 661 SO0 91 LSTC 9¥'LI vTT  uopeique) ur pasp 88'L |
LL8B  61'0 €8I STGI 050 0S1 261 <70 8’0 S0'6C 60°'SI 09T  uoneique) u pasp LL'L [
CIv8  S¥'0  SBEl 00TT 80 STI L9 Scp EL'0  LLYT 6SLI  8L°0  uoneiqued u pasn 98'L !
10%L 0000 LLOT OV'ST €90 291 v 200 LI'T  88'€T SG91 €C1  uoneiqied ui posn S6'L Yy
$6¥8 000 SLEl CESI TS0 660 00T  TI'0 LSO 90°0E €90T 660  uonwvigied ui pasn $9°L g
Py8 000 SS61 S9SI 950  L6T €SI 000 1071 1€°6T 0SL1  9¢'1  uonesque) uf paspy 8L J
PU'88 - 000 68'81 €0LI 0 €L0 SLT 000 990 €8'LC 1981 TST  uonwaque) up pasp 8L ?
SESL SY'0  TTSI SL91 8€0  L60  I1 SLO 09°0 I8¢ S8PI  9I'l  uoneique) ur pasn 60'8 P
C8BL SO0 SHET 8961 0S0 LVI  S9T  OI'0 8.0 6EYT 08'ST  S60  uoneiqiuD ui pasn LO'8 2
6£98 SI'0 €S¥I €6ST €0 901 $91  <zo 050  LE'ST 99°ST  98°0  uonwiqie) ur pasn 61’8 Mg q
99LL  LOO LZFEL OUIT €0 W1 SET 010 §°0 S8'CT S8¥I  8I'1I  uoneiqye) ui pasp 61'8 uopeIqIED p1-D ¥

LUVOF6'L  TA-9EINX UMT

8V'EL  TI'0 TTOL I0°El 201  6S0 62C OO 990 0S'6Z vO'ST €80 0£9'261 I18°€ C9TLE D
Cro8  TI'0 80ZI LEVI OI'l  $90 I+ 00 LSO 1IT0E LYI'LI +T1 £02'80¢ SLE PTLE dAD
PPIOL 910 vEOL I6El €01 OL0 ST SI'0 260 8€'0E 0S'SI 0670 SH8I€] AR 97LEdMD
0606 120 +6'€El 6591 80T 001 9€T SI'0 61l €6'6C I1'€C ¥E1 ST9'0E1 rAR4 TLE &A1)
OLTL 000 SFEL IE91 SOT  TOT  STT 000 680 ¥S'TC 00b1  $80 vC6'IEl iy CTLET D
000°8€ + 000'6ST  61'0F86'E LEJID

O0L9L LO0 2861 €08 TI't TS0 SET 000 9LO 6T°ST 99°Ll 80’1 680262 81’ 976¢ &0
ST6L S0 0E0l L0S SOT 890 €€T L0O &bl 0S'€E LYET 180 86L'Z81 98'¢ P 6T 4D
9¢98 II'0 ¥8SI 06 960 990 8T <TI0 8Ic SG'EE PEET TGl T6S0ET rARZ 9762 ddD
L6v8 TI'0 6USI 0SS 601 ¢80 65T LIO 690 86'9€ +80C 9T AN § wy Q762 ddD
6L98 000 0891 9LL IET €1 LLT SO0 80 TT8E PO'LI €60 662911 wy LA o)
000'SL F 000°891  ZE0F8G'E 62 ddD

IBIOL  O®d €0T°d OUN TOW O®D O £0S §0td OIS €ouly O  ewsdis | F98y W) ifo) soduresqng 79 ang

v’



G abey

LY6L €20 OLY 9¥0T 190 LbT 18T 220 S80 8¥6T TY'8I 9I'l  uonwiqie) I pasn 629 I
€908 OVO TTEl 120z 890 061 PST  L£0  iST L9TT 8V91 6S1  uoneIqueD ui paspy 9¢'9 b
8E6L T€0 8Tl 1TC  LKO 6LT 490 TE0 ST 12T $SST L0 uonwiqie) ur pasq ¥T'9 [
05S8 010 1961 201 950 8L1 L0l 210 Sbg Wre €S€l $0'1  uoneIqueD ur pasn 629 1
JLE8 900 IZIT LSLL 990 SI'l 40T SO0 SIT 900z 6E0C GE'T  uonBique) ur pasn o9 it
SOT6 810 LOSI L9'8T 650 LI'T 060 SI0 £I'g 98'9C TO'El IE1  uonwiqeD ur pasp z€9 3
L8BL 900 S86 SEVT SSO 660 POT 000 Il OI'tc 9€91 9LT  uonwique) ur pasp $T'9 J
ITI8 140 08 1L0z LLO 081 02T 0SO 2l €0°6T. 9E'ST  6I'l  uonwiqueD I pasn L9'9 9
6L18 900 II'Il 8S'€C $S0 01 65T §00 <TLT 2L7e. Or'si II't  uonesque) ur pasn ¥5'9 P
ILE8 000 SH'el €TTl TL0 #0T 8z 000 OI'l 9boc 690 +S'1  uoneique) ui pasp 859 o
L8GL SO GEVI E€9SI 890 IST 81 LI'0 80 4097 LSLE 11T voneqied u pasn 1€9 q
VTS8 880  8C6 €56 890 Tl SLT  LEO  8ST  €LOp 90°LI 96’1  uoneiqie ul pasn €9 e

£1'0FLED SENA aMmr
vLO8 110 8V'ZI €60T S0  8I'l 60 010 €81 997 86l GO'l  uonwiqye) ui pasp ¥6'S i
VP8 L60  L9TI GELI SS0 90T LT T6O P60 SLEE £8°€] $8'0  uoneiqiEeD uI pasp 86'S b
CVL9  TTO 0TTI IS6L SS0  TLT 860 STO L9  TO9l 9TEl ¥0'I  uoneIqieD ui pasn 909 {
0S8 SO0 9KPI OLLL 090 €Il SO LOO LSO 66T 1781 €1  uoneiqueD ui pasp 109 !
LTe8 Ly0 8TST OI'IT S0 L6O 0TI  LTO 101 OL'EL GI'LL €90  uonwuque) uf pasp 0z9 |
CVE8  EI'0 TLEl 8ELL TS0 EL0  L9T 010 LS80 9L9C <6l TYT  uoneiqieDd ui pasp 19 g
VS6L 000 GI'El 000z OL0 €T1 L81 000 8LO0 06z 8L'ST 60’1 uoneiqueD ur pasn SL'S ]
99€8 110 vGET 8091 850 690 88T 000 9L0 9Lz 6E61 65T  uoneIquED Ul pIsn 06'S 9
LOGL 000 O9El €I'TC TLO ILT  OLT 000 8¢1 4TIz 19°ST  80°'I  uoneIque) ui pasn 709 p
00€8  VI'0 GI'IL LZET 90 ¥ET LT 110 81T OLYE 20Ol 90l  uoneiqied wi pasp 019 2
8LLL 000 LUTl 9681 €90 0T €81 000 9CI +bbee 19°L] 98’1  uoneiqieD ur pasp 6'S q
8LE8 9C0 STEl 690z €90 Tl I91  2T0 €50 LI'LT G6TLI 160  uoneiqie) ur pasp €8'S e

£1'0F66'S IPINA gMI
IFIOL  Ovd £Ozed OUN TOLL O¥D Oz €0S SOzd  ZoiS €0TlV O  ewsdis | Fo8y 3D ') sojduresqug 29 ang




g abed

8E6L TI'0 8TLI SEBI SHO LT  ILT  SI'0 9T LLOT 1991 121 1874 SI'6 3
LWLL STO 9761 TGTI TWO 0T  OLT L20  0SO SI'bT LSSI €80 s8I 9€'6 °
LTOL LOO %91 €LTI 0S0 80T ST L00 +EO 19T 9681  €I'1 8I¢ €2°6 p
IEEL S0 vTEI €€C1  LKO  S8T LS 210 260 CEV9T GLST P01 (4] 9¢'6 o
PL69  v1'0 6TLI TETI L0 €T OLT  LIO 090 LEiz LLZ1 880 1434 89'8 £1 NOQHad q
GE'LL 000 8S'LI ¥L'SI €50 061 €61 SO0 Op1 880z 6191  6I'l 41 §T6 NOSyd.Lad &
00T T 00€ STOFLI'6 IA“IP-ddD
CCl8  LO0 V801 S9IT €90 9T 6TC SO0 9T SL'ET OLLT  9€1 6L6 £0'8 [
066L 000 8I'0I 1IWC S0 T 8LT 000 L1 SEIZ WLl I€T Lo1°1 68'L I
6L SI'0 0ET SH9E S0 ST 8T SI'0 0SO €76l 12l 060 80°1 vLL
IE€6L SI'0  ST6 889z €50 191 8S'1 TI'0 IST OL'6I $8'91  €1'1 965°1 9L 3
LEBL STO L6T 8V'8E SS0 Tl  LLl  STO  8L0 €581 61T 86'0 9611 LS'L J
8008 €T0 G8'E 0TOE €S0 OST  ELT  TTO 680 LOST 68°bl £6°0 90€‘1 08'L 2
VEI8 IO LTE 9662 S0 9I'l €9  O0TO0 90 69T 9¢'91  $0'1 166 208 P
1L69 8£'0 8L9 SEET TEO 880 S8I'l 950 HTI  GECT 290 1 689 1€8 FTVDOTHIVMS O
60GL LI'0 TEE €OLE Ly'0 O0ST +ST  SI'0 690 6£07° LLTI 98'0 9L €8 S NOILVYIEITVD 4
EGI8 LO0  LGE 19ST 250 T8l 19T O0I'0 6E0 OLLZ 08'8I PE1 LY £€'8 HHLLON®
00¥ F 001°I TA-9EINA UMl
EOLL 000 911 1661 $90 LIt 8LT 000 9TI g8'IT 6691 181  uopeqied ui pasp) 68°'S o
8818 OE0 19%1 TLST €90 181 €'l STO 661 Op6l OLvl  $E1  uoneIque) ui pasp LLS u
0808 I€0 <CI't 6E8CT 80 VLT +6'1 0S0 140 96'9C Lpl YI'l  uoneIqie) Ul paspy LS w
69'SL S0 PETI PSTE S0 91  $90  OI'0 ¥ET 6T GLII S6'0  uoneqie ui pasq s 1
ST6L 000 TI'6 ¥vLTC €80 8T1 8TT 000 T60 COEC L9l 262 uorjeIque) ui pasp 19°S b |
898L 000 L9VI ISLI §S0 TTI  6I'l 000 <TCT1 T6'€CT b9l 961 uoneIqIe) uf pasn) LSS [
ere8  vE0  IFEl 6191 080 L9T 881 O0E0 VT 909 LTL 6L'1  uoneiqieD ur pasn L9'S 1
068L 91I'0 T96 LI'ST T90 GO LST <TI0 6l LEIT STl PL'1 uoneique)d u pasn §S'S l
508 1¥'0  OL'Y 810t LLO 19T OL'T  SE0 680 89°€T bUSI GI'T  uonuiqie) up pasn 8p'S 3
PO8L 000 001 vE9T 850 TIT 9T 000 €€T TE0T 08I L9’ uoneique) ut pasn LS J
voeL 8I'0 €T I9LE €L0 8LT 091 SI'0 680 ¥E9l 766 160  uoneqie) ur pasn $8'S 9
6I'L 000 696 959 090 621 81 000 9T1 1L0Z 68SI 1L] uotjeIqie) ur pasp 06'S P
EI'8L 000 $96 0SLz 850 SOT I 000 6I'T 096I 99SI bl uotjeIqie) ui pasqy 6v'S 2
ILLL Tr0  ST'6 08'LT 650 091 G660 L00 981 TO6I OESI 1Tl uoneIqife) u pasn 'S 8 4D HONHYL q
EV6L GO0 PL'6 88LCT 090 STI LYI 000 EET 661 SSSI 85| uorjeIqIe) Ul pasy) 78'S OL INFDVIQV ©
SI°0F89'S GENA TML
IFIOL  OFd €0T%d OUN CTOLL O®D Oz €0S SO ZOIS €0UV O3S  ewSig [ F98y W) 1o sojduresqng 2 ang
h h




. abeg

OUL8  LOO TILL 6SLI LLO L90 01 SO0 b0 19°6Z. 98°L1 96’1 €LS'TS9 ¥8'C !
8EC8 SI'0 9971 €8€C €90 850 Y80 <TI0 OST €LbT L9991 190 G6££°06S T6'T 1
vO'e8 00 VI'Tl LOET 8S0  9K0 SLO 000 660 TI'SZ 98l £b'I 8EH'8SL oLe 3
S98L 000 186 TESI 890 €L0 €80 000 STI 186 8I'61 10’1 686°C8S £6'C J
E9VL  6T0 9SYl G66'81 L9D SSO 880 90 SOl LEVT ¥9T1  LTO 98¢€'TIL LL'e 2
SO9L €0 E9El 98%C 650 1K0 280 L00 H60 0T V1L 60’1 19v°0€L SLT P
6V'6L 600 90%I 0861 HLO 101 HLO SO0 ISl  €0'SE 18'ST  $80 £95'895 S6'T o
€598 TTO  SUEL LOSI €90 690 €L0 STO PEO LTYE SOGI e 105'829 L8 140 HONHFYL q
E9E8 8YO 6LST €ELI 280 990 801 LD 660 HS'8T 99°C] 181 98€'TIL LLe OL LNADVIQV ©

000'1L ¥ 000'099  60'0FH8C OPINA UMT
OL9L LI'0 +801 TT¥e SSO 65T 860 €20 <TT SG€L 9TIT  1L0 10291 6L'S q
09'8L 000 00C T6'6T SLO €81 4] 000 6L1 TLTT ¥I9I 860 00£'0Z - 19°S 3
CE6L  LOO 968 99%T SLO 691 86T L0 €51 ST€T €91 €I'1 955'0¢ 09'S J
LISSL 0T0 SHO1 €281 S0 60 <21 LI'O 881 601z 26l L9'1 068'€T 8b'S 9
60'8L E€I'0  9L'8 LO61 LSO 860 19T <TI0 LS80 ZLST O8I e 99L'E1 6'S P
VWLL VvT0 €6 L89C €S0 €T €60 LTO SLT HS6I 19WI £6°0 ovr'ee £S°S 2
$808 000 I€6 IT8L €S0 201 SEI 0 Tl 858 S8I'SI SpT £19°01 LL'S 1 NOQad q
88C8L OI'0 6811 S8TC 8Y0 60T 01 800 SST 86l 6T81 191 LeL'61 £9°S NOSYd1ad ®

000 T 000°61 ST'0FLY'S TA-I€-ddD
IFI0L  Otd €0zed OUN ZOML O®) 0 £0S SOz CO!S €0UV O3  ewsig [ F98y ¥ W sojduresqng 79 9jig

A [\




g abed

9OL 000 T6TU II'6T LLO ¥90 6I'l 00 690 L6LI YETI 160 ILL'ESH €I'e !
CLLL 9§'1 8LYVI TV0T 890 L¥'0 S8I' ST 050 +21¢ SEbl 960 06€'S0Y e u
8818 LT0 69TI 080T €80 OI'l SOT STO €01 92LT. €SI 10 ELI'OVE 9€'E 3
0918  STO €21 €0TC L90 LSO LOT LZO €50 S8I'LT' £5CI  SI'] 105°01% 1T€ 3
ve88 800 STOl 9TLZ €90 OKO €01 LOO LTO SOVT SESI 8T §28'0cS 20'€ 3
JLO8 66O S80I T8YC €80 8LO TC L8O LLT €E0T 891  8p0 ILL'ESY €€ p
V608 TI'0 G811 T88C €L0 SEO IET O0I0 €50 102 SHPI  £90 102'68 LOE 2
J0%L  GTO GSEL 8KYIT 190 0SO SI'l LED 68T Ly0T 29Il €Ol LEV'06E YA q
EV06 SI'0 66T LSGC 8L0 S80 LOT SI'0 T80 8697 1T9F 980 8€0'LEY 91'E v

000'vS F 000'EEr  OI'0FLI'E EPINX amI
JEOL 600 LOEl T¥TT 190 LLO 9T1 L0 SS0 LIS 88TI It LEV'T9T S6°€ f
CCr8 LUl 290l 98'LI €00 6L0 96T LOT 0T SSLT 806Gl LS L11'v81 $8'e !
LEE8 S¥0 6L6 0TTC TLO W0 LIT W0 050 6987 69LI £z 9zTE'LLI 88°¢ i
S698 850 OFEl PEBT 90 OLO  TI  OMO T80 H09T I16El 060 £C0'8E 80y 3
8Y9L 080 09I $8'81 850 90 6Tl LLO 9L SLYT 1STI 11D G66L'8YI wv ]
00SL  TI0  00CI CEIT 290 960 S60 OI'0 140 09ST +LTi 810 8€6'TLI 06'€ °
6CSL ST'0 LOEL OI'IT 290 $90 0TI 2I'0 LED VE'€C 9SEl 100 859'891 6'€ p
CIIL LU0 1001 11T 20 80T TI'T <TI0 OI'l 08'€Z €511 €80 8IT'SLY 68'€ YVEAN 2
PI'GL 000 051l GVIT OLO 680 LI'T 000 SOT 2662 SILI bz LTS'€0T LL'E  FOVJUNS HNOD 9
SCLL ST'0 €001 89°LL TLO 80T 20T OI0 S0 88 8L91 97] £86'vTC 69t MOVId ATiva®

000°ST ¥ 000'9L1 _ 11'0F06'E 42\ 0. 91Ny
IPIOL  O®d €0z OUWA COLL O®D 0T €£0S SOd ¢OS £0Zv OIN ew3IS [ F 98V UD O sajduresqug 29 ang

b



6 abed

000 000 000 950 600 LOO 000 OVPZ 4962 120 91 8I'C  €I'9 €€TC ¥I'El 099 LA
000 000 000 000 000 %00 000 +SST 880 STO IZ'I 9TC 9§°S 0I'tc LI'TT  9p9 P T &
000 000 000 +80 000 000 000 LTST CO'IE 920 HT1 97z 68'S 690C €STI LS9 AR o)
000 000 000 090 000 00 000 8I'€C 86, €20 ZTI SI'T  98S HPEC TESI LS9 LA )
000 000 000 <S80 000 000 000 89€C 9T6T G6TO  GI'I §TT 0ES 0TEC LOEl  ¥E9 ¥T¢ddAD
000 000 000 9L0 6I'0 000 000 620z LWLl 610 10T 8l L9E  LLE 8E9T  IPT PRI
000 000 LLE 000 ¥I'0 SO0 00 900z +0'81 110 S61 LET 8V'€  LTIE OLVI  6bT o7ydelg
000 000 v0'E  LLO  LI'D 000 SI'0 191 +T6I +I'0 €0T 9¢1  C9C 68'EE ELEl  LS'T qQoulg
000 000 000 €40 €O P00 610 L8TT SLOZ 8I0 STT I91 €I 8V'EE ESEl 96T uToelg
000 000 000 160 SI0 600 SI0 ILVC 9TIT SI'0 681 261 ¥62 88'0€ 6Vl  LST oy
000 000 LLE +80 920 900 00 SLEC 00T 910 S8LT SOT 897 STOE 6TPI 99T PO
000 000 000 +LO +I'0 $00 000 VEET w6l 610 061 STT LST 1ITC€ 8I'LL  $S°C 9 on
000 000 €% SLO SI'0 000 810 II'lz SIBI SI'0 0ST €51 06 SV'EE OV91  §S°T Q7o
000 000 000 080 8I'0 000 000 LLEC +S0T +I0 $O1 €L1  SL'g sece TI9 €LT eToI]
000 000 000 950 600 #00 OI'0 TOEl 091 610 901 LLO T61 €9'1S 8'El  PST  pTouo) pay
000 000 000 880 110 000 SO0 LEVI LI'LI $Z0 901 860 97 EV'0S 90'El 8T  97ouod pay
000 000 000 G690 <TI0 LO0 900 O08'SI +881 LTO ZI'l 9I'l gl I8LF 1TC1  89C  qouo) pay
000 000 000 690 1I'0 000 010 €IVl OVLI STO G601 060 SG'I 8V'0S 68C1 19T  ¥Tou0d pay
L I8 8N a4 uz mnp 1N a  un A L b 8D IS IV ¥ axid spdureg

SLINSHY FXId




000

000

Iv'e

01 abeq

000 €10 200 000 LLST.ZE0Z LTO 61T Z0€ 6£'C 8TLT O6I'SI  6ES 979E™dHD
000 000 000 000 SI'0 800 000 861Ig 8TLT TEO0 91 9CTE 9LV $S9T 8SHI TS P9t 4D
000 000 000 000 OI'0 000 000 IS6Z EEET 910 8L0 061 €I'T €5TE 956 LTS 579¢ ddD
000 000 000 90 11I'0 000 000 80l e LI'0 060 LT €0C I8EE PEOI LTS 479¢7d4D
000 000 SL€ 0S0 SI'0 000 000 666l v8YZ TC0  LST  8LE  6¥Y $S9T LI'VI LTS 8T9E 4D
000 000 000 000 910 €00 000 +22T £T8C 6T0 SL1  TSE S8S OI'VT LLEI  SES 97CE ddD
000 000 000 000 €I'0 900 000 +L0Z 969C 0£0 S91 OFE SS'S I8ST V'Sl T¥'S PTSEddD
000 000 STE 000 SI'0 200 000 S9IT Ib'ig SE'0 89T 9S°E 9I'S 00bC LLTI  G6I'S 276 ddD
000 000 98T 000 SI'0 900 000 SEZT 80'6T CE’0 991  e¥E  €€S 96TC 0811 8TS 4767 ddD
000 000 000 080 6I'0 +00 000 956 €6z 000 89T SI'v LYy 08LT €911  8T'S LIS fe)
000 000 000 6V'0 TTO 000 000 IS8 S8¥'LI 000 ¥S'T  LTE TTS 986E GEEN 1S’ 97LTdID
000 000 000 610 LI'O 000 000 6SLI SZ'L 000 OLT T8¢ VTS 1TOb ESEI €€C PTLT D
000 000 18P 000 <CI'0 SO0 000 <ZE9I 06SI 10 SHI  LTE 9P SO'8E LTSI 9p'S 97LTTdHD
000 000 60S 000 OI'0 000 000 LTSI 0Z8I a0 LT 69T 96V I¥9E 99T 0TS QLT ddD
000 000 2y 890 SI'0 900 000 SI'Ol TL'SI LIO SET  IST 8LV 9L8E STSI  ObS LIVAAN: L fo)
000 000 000 €£0 800 000 000 SSEI 09 800 Tl e0E 68€ LI'O9 IEIT  L9S PTEEddD
000 000 000 000 900 000 000 067 Lp'S 000 -0I'l S6'T 9T¢ 1879 Il  §9°C 7EE ddD
000 000 000 ¥S0 OI'0 000 0p0 SH'ST 699 oro  0E1T  ¥0e €y €78 €001 ¢8S 4 €C dlD
000 000 000 €70 110 000 000 8091 ISL L00  LI'T  TO'1 98V 8E€6S Lt 6L'S BTEE D
000 000 000 890 000 000 000 TE6I 206 600 9¥1 LTT 999 ¥y TWET  TI'9 P97 1D
000 000 000 €90 <ZI'0 000 000 6C81 €88 000 T TET SS9 €TS8 LS'El 809 97977 dHD
000 000 ¥8S IL0 000 +00 000 +EEC I1TSI 110 PET 661 LE9 €5°6T €SST T9 979 41D
000 000 OI't +90 000 000 000 SEVC 96T LU0 8ET 90T ST9 9Z0E +891 209 €97 ddD
eq N 3N qd uz nD IN a up A 1L p: €D IS IV 4D HXId sjdureg

} A k




000

000

e

oLo

| | abeq

10 200 000 09'81.210z OI'0 €H1 +8C 99'Cc 69°LE Lv'Tl s8¢ 90T gMI
000 000 000 190 <ZI'0 800 000 LI ‘6l L80T OI'0 9Y'I 60T OEE 69LE 0SHi 69't POz aMmr
000 000 000 990 8I'0 LO0O 000 #I0Z 189C $E'0 €T 60T 6S€ LI'OE TH¥i 1€ 70T dMSI
000 000 000 €90 SI'0 €00 000 666l ST SE0 ST 9T 0SE SGIE TESI t9'e 970 aMmS
000 000 000 OLO 91'0 000 000 SSIZ LI'8C €0 TET  6TT S9E  S§'8T 18T I6'€ vT0T ame
000 000 SLT €0 2TI'0 00 zTI'0 06T T € 90 LET TE1 8T 606T ELVI  9p'E P76€ d4D
000 000 €'t L90 1I'0 000 110 2€2e 8v'CC €C0 SET  LLT 69T 6V6T v9SI  OFE 976€ dd0
000 000 000 890 €I'0 900 900 #HHIzC 65°ST V€0  TET 081 IS'T €86 ¥T9l LTE 476€"dd0
000 000 000 490 SI'0 110 €00 91T €0'ST 10 LT1  6L'1 6TT 196 8TLI 1T°¢ ¥T6E d40
000 000 000 000 000 000 LOO 6EPE I’ 000 1€T $9E OV LOG6T LEET  CEE PT8E7dHD
6CE 000 000 000 G600 +I'0 000 9E6I LO'S 000 2T +v6e okt 9EIy TI'ie Ie'e 978E"ddD
60v 000 000 000 TTO 000 SO0 TSOT GE'S 000 €1'T 0£E T6E€ Svovr 66l 6Lt Q078 ddD
000 000 8SS ¥60 TCO LOO 000 G6V'ST TLS 90 W PLT 08T 6TSE LKOT  ¢TE UT8E"ddD
000 000 9S¥ 000 8I'0 600 OI'0 9E€T 66'ST +I 0 8I'T 00T 9¥CT SS9T 6EVI £6'C 30V D
IS0 000 000 8I'l SI'0 SO0 610 880T 91T 650 8Y'I  ¥81 19T OI'IE 08'LI 10 PO &0
EL0 000 000 LLO. SI'0 €I'0 €I'0 $SIT PO€C 090 LST S6T ST 9€0E +S91 08T N o)
6CT 000 000 660 8I'0 800 000 9E€C €I'9T §90 1T SKI YT 669 LI'SI $6'C Q0b ddD
000 000 000 €80 1T0 910 L00 SOTT PO'ET 0C0 8I't 0€1 LI'T OI'IE 69°LI ¥6'C BTOb ddD
000 000 000 €90 T1I'0 000 000 SS9I 699z PI'0 680 LLT 98T 0TZE 9I'8I 0z's 97Z¢ ddD
000 000 000 090 L0 900 000 Z9SI SI9Z €I 0 S80 SST  8LT YOVE 118l 60°'S (AR
000 000 000 +L0 LIO 900 000 €0 LEVEZ 970 ¢l COv 8E'E 99'8C 0991 1TS 97CE ddD
000 000 ISCT €90 €10 000 000 G6E6Gl 89z 9L'0 6CTT T8E 98T ITLT ESSI 8I'S Qe D
000 000 000 000 910 OI'0 000 60T I6LT Yoo T TWv  vI't 69T TSI $OS LA E o)
ed IS SN ad uz o IN o UA A L 2! ) IS IV ¥ aExid ordureg

k




21 abed

000 000 €ET +90 GO0 000 000 . V81 G6SHT 8I 0 91 LLT SGE 8SEE L6El  TGE TLE D
000 000 000 190 110 000 000 <L6l OLSZ 9l 0 T ELT ISE 00TE SLPT  06E PLE dAD
000 000 000 €90 SI'0 000 000 SS8I 80ST LI'O 8Vl ¥6'T  96'E LGEE LOVI 66't 97LE7ddD
000 000 000 LLO <TI0 000 000 90T TSST €£0 LTy 9I'c S6T 008C 891 OV q7LEddD
000 000 +¥TE L60 610 000 000 SLVT 00'8Z Leo  LE1  SvT  LI'E veT Sr'Tl Oy ¥TLE ddD

000 000 000 000 610 GO0 000 106T L8SI LTo  L9T 9L 8Sy  T86T TLII 08'¢c 9767 D
000 000 000 000 €I'0 900 000 8S0E S8 000 STT 09T 8I't O9EVE 6502 ¢8E . P67 ddd
000 000 000 TS0 9I'0 000 €00 IL6Z 88 000 ST S91  6TE 98PE YTOT  SGE 9

000 000 O¥8 000 SI'0 000 000 62T6C O8L 000 <CT1 LLT SI'E 1I8TE I¥SI £0v 9476z d40
000 000 000 990 €I'0 000 SO0 SS€C €TEl 0000 ELT VEE bLE 8K6E 601 60V ¥6C 410

egq I8 SN qd uz n IN EX | U A 1L A €D IS IV  d0dExId djdung



Appendix B

Petrographic and Chemical Analyses of Volcanic Tephra
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United States Department of the Interior I mm—
GEOLOGICAL SURVEY ——————

—

Geolagic Division; Branch of Western Regional Geology
Tephrochronology Project; MS 975; 345 Middlefield Road
Menio Park, CA 94825; Tel. 415 329-4938; FTS 459-4938;

FAK: 415 329-4936 or FTS 4594936

June 29, 1992

John Bell
Nevada Bureau of Mines and Geology

University of Nevada,
Reno, NV 89557

Dear John:

Here are the results of our analyses of your 16 tephra samples
that you submitted to us in January of last year. Samples JB-BS-4
through -7 were analyzed last June, and samples JB-BS-9 through -
17, and JB-WA-1, were analyzed last October. Samples JB-BS-1
through -3 somehow slipped through the cracks, and were not
analyzed until last week. I have given you results of the earlier
analyses on two different occasions via the telephone. This letter is a
written evaluation of the analyses as a follow-up to our phone
conversations, and for citation if you wish to publish the data, and a
first report on samples -1 through 3. I'm sorry it has taken so long
to finish these; part of the problem was that I was away out of the
country for most of last summer and we lost some continuity in our
work.

Petrographic Characteristics:

The samples were examined initially by Elmira Wan in our
Tephrochronology Lab before any treatment was begun, to check if
isotropic glass shards were present; a brief petrographic description
was made at that time. Subsequent observations were made on the
various processed fractions during sample preparation as warranted.
Because the samples were small, all available material was processed
(for future reference, you may want to collect larger samples, as this
makes a big difference in ease of processing). Petrographic
descriptions by Elmira are enclosed on copies of the lab notes. A few
words of explanation about abbreviations used in the notes:




WS - wet sieved

HCI - treated with 10% HCI (to get rid of carbonate coating or
cement)

HF - treated with 8% HF (to etch outside of shard; get rid of
hydrated or altered exterior)

Numbers below HCl or HF refer to number of seconds sample was
treated with acid.

BW - bubble-wall shard.

BWIJ - bubble-wall junction shard.

Mesh sizes used in sieving samples are for nylon screens. The
sizes differ from metal screens.

100 mesh has openings of about 150 microns.

200 mesh has openings of about 80 microns.

325 mesh has openings of about 40 microns.

Chemistry of glass shards based on probe analysis:

JB-BS-1 contains very homogenous glass, as indicated by
variations from shard to shard. Only silica seems somewhat variable,
and that is probably a result of variation in hydration from shard to
shard. The total for this sample is high, 97.4%, indicating that the
glass is not very hydrated. Closest matches are with young, near
surface layers erupted from the Mono Craters, and with pumice from
the Panum tuff ring (material sampled 1.5 m below the surface -
KRIL.82282A(P)). The chemically most similar dated tephra layer to
-1 is OD-ML-65CM, a sample of Owen Davis' from Mono Lake, the
uppermost of a sequence of Holocene ash layers; the date is
essentially at the level of the ash, a radiocarbon age of 1950 + 110.
Samples of yours similar to this one are JB-BS-2, -4, -5, -7, -12, -15,
and 16. Samples -2, -7, -11, and -12 have somewhat more iron than
-1. Another similar sample, BL-RSA-4 of Scott Anderson from
Barrett Lake, has an interpolated age from radiocarbon dates of
about 950 yrs B.P. Yet another good match with -1 and several of
your other samples in this batch (-9, -11, -12 through -16, and JB-
WA-1) is sample 3-30-82-1 of Scott Stine's, a "proto Panum" ash
overlying a radiocarbon date of 890 +40 in Lee Vining Creek.

JB-BS-2 is likewise similar to late Holocene tephra layers erupted
from the Mono Craters, including one of a sequence from Barrett
Lake, BL-RSA-2, estimated to be about 900 yrs B.P. It totals a high
98%, thus is little hydrated. It is similar again to tephra from the
Panum Crater tuff ring, the matrix ash from 1.5 m below the surface
(KRL82282A), as opposed to the pumice, and a late Holocene ash
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layer in Yosemite Valley, in lake deposits formed behind a terminal
or recessional moraine near Bridalvail Falls (YOS-1). Sample -2 is
also chemically similar to an early Holocene tephra layer at Crooked
Meadow, except that the latter is more hydrated than -2. Closest
matches to -2 in this batch are -12, -7, -11 (all with slightly higher
iron content), and -1.

JB-BS-3 is a moderately hydrated, homogenous tephra (K is
slightly variable). The total of 94.9% indicates about 5 % water in the
glass. This tephra, of probable early Mono Craters provenance,
matches well with tephra layers in Walker Lake (WL 3-7-2.66, WLC-
85-2(11.34M), WL-5-19-0.27M, WLC-85-2(13.65M),*WL5-19
78.19m, and in Mono Lake (KRL71082(CII), that are late Pleistocene
in age and roughly bracketed between about 60 and 100 Ka. The age
control is obtained from a sedimentation-rate curve in Walker Lake
constrained by radiocarbon ages on the young end, uranium-series
ages in the middle and lower parts, and some direct and indirect
tephra correlations to dated source units (Sarna-Wojcicki and others,
USGS OFR 88-548, and a later unpublished revision of this report).

JB-BS-4 is a fairly homogenous, poorly hydrated (about 3.5%
water) tephra similar to -5 and other Mono Craters tephra layers in
the age range of about 1000 to 2000 yrs. B.P. See notes to -1, above.

JB-BS-5 is a fairly homogenous tephra- with about 3.5% water. It
matches most closely with late Holocene tephra layers erupted from
Mono Craters such as -1 (above), and SL-103 and SL-115.5 (Swamp
Lake; about 1780 and 1960 yrs B.P., respectively), but also with
KRL82182(A-1), an older but more hydrated Mono Craters tephra
layer from Crooked Meadow, about 7200 yrs B.P.

JB-BS-6 is a very homogenous tephra layer that is moderately
hydrated (about 6.5% water). This is more typical of late Pleistocene
or older tephra layers. Closest matches are with the lowest tephra
layers in the Wilson Creek Beds of Ken Lajoie, Ash Beds 16, 17, and
19. The closest match (similarity coefficient of 0.998 amd 0.991 for
the six elements used) is to ash bed 19 (KRL7982-19B and 679-340),
extrapolated to be about 36 Ka, according to Ken (see Benson and
others, 1990, Paleo., Paleo., Paleo. v.78, 241-286). There are also
correlative beds in Walker Lake, and your sample -17.

JB-BS-7 is another poorly hydrated (about 3.25%) fairly
homogenous (except for K) tephra, similar to late Holocene Mono




Craters tephra layers. The closest match is to surface ash at Putnam
Dome (North)(KRL-91882A") and Crater Mt (Russell), ash from the pit
(KRL91882B), as well as dated late Holocene layers from Barrett Lake
(BL-RSA-2, about 900 yrs. B.P., and SL-103, about 1780 yrs. B.P.).

Samples JB-BS-9, -11, -12, -13, -14, -15, -16, and JB-WA-1 are all
very similar to one another. They are relatively homogenous,
weakly hydrated (range from 1.5 to 2.5%), except for -9, which is
moderately hydrated (4.7%). Closest matches fall into two categoried
for these: 1) mostly late Holocene tephra layers of Mono Craters
provenance, in the range of about 900 to 3750 yrs B.P., but 2)
KRL82182(A1) shows-up as a persistant good match for many of
these, and as the best for -9, the most hydrated one of the bunch.
This is an early Holocene layer, interpolated from Ken Lajoie's
radiocarbon dates to be about 7200 yrs. B.P.

JB-BS-17, as mentioned above, matches the oldest ash layers in
the Wilson Creek Beds (see comments on your sample -6).

I compared your two samples from a previously submitted set, 1-
JWB-1-CM-2 and -3, to see if any new good matches appeared since
the last evaluation. The best match is (still) with KRL-71082(II-3), a
tephra layer recently exposed on the causeway between Negit Island
and the north shore during a recent anthropogenic lowstand of Mono
Lake; this layer, according to Ken Lajoie who sampled it, is part of a
sequence of about eight or more beds interbedded with "older",
deformed lake beds. The set of beds are of two types, one set similar
to your sample -6, a putative early Mono Craters set of tephra layers,
the other similar to rhyolites erupted from Mammoth Mountain, in
the age range of 50 to 100 Ka. These age constraints, plus additional
ones from a sedimentation rate curve in Walker Lake based on
various age constraints (Sarna-Wojcicki and others, 1988, revised, as
above), suggest that these units are in the age range of 60 to 100 Ka.
The manganese was not determined for the Mono causeway samples
because one of the spectrometers was not working at the time.

Interpretation:
The differences among tephra layers derived from the Mono
Craters are small. I think, however, that we can distinguish three

sets of Mono Craters and Mono Craters-like ash layers without too
much difficulty; these are a Holocene set, a latest Pleistocene set (13-
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36 Ka)(some of your samples correlate with the oldest of these), and
an older late Pleistocene set (about 60 to 100 Ka).

When we attempt to distinguish between Holocene Mono Craters
tephra layers we are basically splitting hairs; I'm not sure such
distinctions are valid--at least not on the basis of electron-probe
analysis alone. I think we can safely say that the large group of your
samples (all except -3, -6, and -17) are Holocene. I suspect that most
of these, with the possible exception of -9, are late Holocene, and that
the latter might be early Holocene, based on its greater degree of
hydration. A problem I see here is that the more distal tephra
layers, being finer grained, may hydrate more rapidly than the
proximal coarse-grained tephra of equivalent age. Further analysis
of the Holocene tephra of Mono Craters source by XRF and other
techniques may help us to distinguish them with greater certainty. I
was hoping that radiocarbon ages would help to sort these layers out,
but it looks to me like there are systematic errors of about 1000
years in Holocene sets of layers sampled from different sites (for
example, sets from peat deposits at Crooked Meadow, and from lake
deposits in Barrett Lake and Walker Lake).

I hope these data are useful to you. I am sending a copy of this
letter to Ken Lajoie, because he is closely involved in investigations
of the Mono Craters tephra layers and has provided us with much of
the age control and reference samples.

Sincerely,

Andrei M. Sarna-Wojcicki
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8 observed after Process. qu:h spl. 15 Yoo smal fo contrnue W further
e xto Proccsm;ﬂg ; good enough ﬁr probe however Se —# PROBE NEXT

i

EoNe for PROBE 10/1’6):




000b4. *

2 JE-Bs- /¢
?q o : 'S 1 8/, ISP EC/28 Cr85707S
- B Pinkish gizy : Hz0 spros
Hel
o

rEmia

AR e SR R

( Benton Spring Ash ¥lb. NV, 38°27' 36°N, 17°5%" 2‘7" w). Enhve Spl- precessed -

- VF@ moderately. to shovigly veselate blocley./or - ribbed _shards._domiale w thus
. ash spl. Vescles ave mostly hydrated. and. srmdle -shaped ; a.fen tubylar +

.lrreq b-1 are Presmi' also. Adahhonauy,, there are _sparse Comcal Vesicles._.

3
;
2
’!
3,
g
A,
3
5‘4.
A

Mmomlﬁ ek (cldﬁf:ars, b,ohh’— hornblendz,magnehrcl Caleke..and _orthopx.

To remove sluamr residual coshing —> ACIPS Isr . .

— N;ca clean-up - Spl mﬁos Qre ~807 ﬁlaSs 157 x{—ls.~5‘? qlfered 3rzw:o

.

1S Nof enoygl res:dtw o _contiue. w/ add:hmml Pmccssmg However, enawgl‘
good vnat'l to rrobc so —» PROBENET . ____ ...

Drrwy
Ay

e
ST it

4t
25

DONE For peosa- lo/z]91

ik ST AP M S T T R R i S O B S B I e oy Fjﬂ‘&%ﬁ% m.-u"" --. ‘

Com pound grams Were commonly oloserved. as_were. qw_‘? _shards wf m'selow\;s. 5,

-




00005

. TB—Bs5—y7
CoLTE & .XR_g.[/ -. . l)/mé'/L{WaJ
o \
P;qul:?’n gray. Hzo- Spray

HF

)
. (Bentom Spring Ash ¥17. NV, 38°37' ‘357N, 17758 ' 34" W.) Ephre spl- processal
us VF@ spl- 15 composed & mostly .moderately to shongly vesiculale, Fbbed +
pumiceous shards. Vesicies. are hdrated for the meost part and are usu. spindle -
5(aa,ped (A fw of Hhese' 'spindles”™ are. areuate) The rema ining vesicles are usu. :
- B g bublde- Hee. AR ¥ o _shards contain xWe aud Microphenoenysts . !
There 15 a slight surhéal coa.hng on_mawny o Hie qrams Minerals observed : |

Feldspars, calaite, hornblende, Magnehk&, and liohte, To clean-wp spl. *-)7"}?5{?-5 %

DonE For PRoOBE lof2]a




s gam g

909653

F TNy

TE-ws —~

.,'u-.'.:"

cocore 5 YR, DISACErse D
P“:Ikls."l ﬂm’“f Hz0 SPray

b

~aociu v d

Ws [Hel
Ry

HF
&

. ‘ - ° . ¥.
( Wassuk_Ash #1. Reese River Gyn., NV, 38°48'30"N, 118° 4T ' 30! W ) Enhre spl. (

Sed. .. . .. e e
P'TOC.CS,.. .

an

or wems mme 3 mmes e ey

DONE PoR PROGe  lof2[d!

~ PRk T AW R R T TR AN Y
o —.rwwwmawwmmmwﬁvﬁf%!w%bwS?ﬁdafk‘v‘bi‘&'&%%@ﬁ'@#@@ﬁﬁm%gﬁ%ﬁ%ﬁﬁgim%g%E"‘




~a

S M NOs O - OO
LM MO NN MO CE T

928
LZA)
19
688
9vs
868
048
£9S
£E£9
109
£09
9zy
659
8(S
509
929
£69
209
SLS
819
S1NN0J
EE]

cooOrOOOO OO DM@

~

(=4
-

us

J594%
0NN
oLz
J594%
35947
1£65%

1£08%
35942
35947

IHUNFTES (D35)IHIL  (SLINNDD)

00407
0002
00'0z
0002
00402
0002
00°0Z
00°0Z
00402

81408
[ AR
A X4
A4 1
v'ael
6'(8
188144
P'G51
o'

B I = UN JINULY 309 ¢ = 'Nddll UM 0 = SN4UAXU "UN TN I
GopL b

L6058 g0'0z  9'20T  2'84S 9L5VT*0 000°0  8/'T  £9'S  ££4°0 034
b'2092s  00'0C  L'EL 0'S6 §¥000°0 000'0 £BL°'0 OI'I9 1IW0'O ONN
8'C6BLT  00'0C  ¢'91 &9 €5000°0 0000 ECF°T  09'99 090'0 ¢0I1L
0°/£08  00'0Z 9181  ['886  8BZOT'0 000'0 TB9'T L'V LE5'0 0¥

6 L92L 00002  6&'6ET  G'2ZI6  49192°1 0000  ¢E9'T e9't, 409k, 174
5°9£992  00'0C  4°'L8 £°608LC  BIVPO'T 000'0 E£98'%  98'0 _.8V4'94— OIS
B'€265F  00°0C  F'6¥C  SUOVBET 928560 000'0 @82'T BI'T EBP'CT  EOZTY

. 616582 0040Z  &'%ST  ¢'89T 00500°0 000'0  Z¥S'F  VO°'£ET 610°0 094
86452 00°0C 89 G'6b9C  TELZO°F 000°0 92T vB'C ES6'E OCN
(SINNDD) (J3S)3HIL (SLNAOD)  (SLNROD) X3NI (X)) (FAIAO)  'HHOA
UNVONVLS ONILNAOD UONE ULS NV3d 4IS ONILNAOD U9NE NN NY3d NAND OLLVY-Y YINHYD4 *OHOH *A3Q*0LS ZLHOIIW  3UIXO

96
11
Sé
&6
4
16
£é
101
ig
|1
90t
{8
16
g8
41
{8
114
90%
06
00t
S1HNOJ
NH

HETOR

N0 CT NN GO ON 0 QOQIN WL 0 00

=
B

£e
44
1]
9t
92
34
8L
&
92
&
ot
4%
91
£
1 {4
61
14
a
£
9z
S1NNO2
It

A £:11) GBT  bibé §0S 49482
8¢ L8 L9% 8008 905 [z06C
&¢ 186 [ TAQNN T4 1] S A AN 14
ANNAT LT TLES 06y #9282
9z S6b 08T 2904 |§:1 0 $ ¥ 244
(& 886 {81 8bI6 L6k 8092
& Lot €61 1806 9IS 9£Cie
¥e  0L6 00C GBI6 LTA 144
AN M) 90T 6906 cvS BeTte
9z 86 91¢ 5006 {86 9812
& 896 e ¢Len AN AT
6 (86 812 98 cev  STHLL
6 ¥96 9IT 6116 Sy 8642
IE 186 [ATANE 34 1 (L 74724
| R TA1) G6e £0é AN 1124
0F 9101 28T 6626 LI TA 414
& 586 60E S¥zé v09 296LC
0 996 858 £bES 9¢L S1082
9z £g£é ¢58  LvT6 £96 8280
£ 06 £6 6v98 ¥9T 01692
US SINMOD US SINROD @S SINROD
9 LA A b [A I§

1114
gic
vie
1144
62t
££2
174
9w
144
Sk
e
9
£9¢
{44
£6e
 £A%
{98
9EV
css
&11
us

TrST
8E6VT
00057
S06¢T
LT9vT
[ YA
6E6¥T
04641
L4414
44428
/444
L8kt
11714}
00641
£esvt
1avi
beave
[43:1 4
£T6ht
8EIv
SINNDJ
™

0z
4
81
6t
7
91
91
a
91
14!
St
91
91
<
1A+
or
1A
£l

£l
us

1-64-8 9-928L

0'T NOISY3N T¥-d$

1N3HIJ3dS ND

$W-d¢ ONISH U30NIIY Yivg

1144 =
86t &9
e0¢ 74
991 i
yot 174
[£:) /A
48T 6L
86T 18
ver 1 {4
&t (44
91 L4
£91 Ve
{81 {4
£61 6L
|74 09
(44 £5
¢St s
443 99
vt I8
891 i
651 0S
SINNOY  0S

o é

J35/71NIUYNT HY3E * 3NV

T 18313730 SaNI

829¢  LvST O
0092  L¥SkT  &F
689C  BYSYT 8T
99T BeSHT 3
(£92  188KE 9%
8192 oSSyl Si
SBLZ  9VSHT  bT
A AN /4 2 S
T AN 15 2 A
0862  E9SVT 1Y
{952 89Skt 01
I£9C ST 6
(8L (8SvT 8
8042 L&SYE (L
0v9Z  209¢T 9
9192 wO9VT S
19 00T b
A TANNN 133 S
£092  48SeT €
AT G
SINNDD  SINNOD Id
N HY3d

I-°7 7 §9-92ZL 131dRYS




SAMPLE ID: JB-BS-1 T226-6

Raw Probe Data

Raw Probe Data

Date of Analysis: 6/24/92

Recalculated to 100%

(FeO to Fe203)

$i02 74.788 S5i02 76.70
Al1203 12.482 Al203 12.80
FeO 0.933*%1.1113=Fe203 1.037 Fe203 1.06
MgO 0.019 MgO 0.02
MnO 0.041 MnoO 0.04
Cao 0.527 Cao 0.54
Ti02 0.060 Ti02 0.06
NaZ2o 3.953 Na2Zo 4.05
K20 4.604 K20 4.72
TOTAL(O) 97.406 TOTAL(N) 97.510 TOTAL (R)  99.99

20 Best Matches:

1 0.99%66
2 0.9903
3 0.9893
4 0.9891
S5 0.9890
6 0.9890
7 0.9889
8 0.9888
9 0.9886
10 0.9883
11 0.9883
12 0.9883
13 0.9882
14 0.9878
15 0.9878
16 0.9875
17 0.9874
18 0.9873
19 0.9860
20 0.9859

Elements used

NaZ2o
Al203
$i02
K20
Cao
FeO

**%%* This sample has been added to the data base ****xx

6/8/91 S$§-91-1-1 T232-2
3-30-82-1, T43-3
xx/xx/83 KRL82282A(P), T66-6
5/2/85 WL CORE G 380cm T92-8
8/7/91 $S-91-1-5 T232-6
8/6/91 $5-91~-1-SU T232-1
6/13/91 JB~BS-4 T227-1
8/7/91 58-91-1-4 T323-5
10/25/83 KRL-91882G, T66-11
BO-16
5/2/85 WL CORE G 370cm T92-7
1/30/92 FLV-201-TO T249-5
8/7/91 SS-91-1-Adgss
6/24/87 OD-ML-65CM T143-7
10/21/91 JB-BS-11 T241-2
9/3/88 FLV-64-CS T170-7
6/22/84  KRL-71082C (590) T58-1
10/23/85 BL-RSA-4 T112-9
11/25/86 KRL 860922 A T134-2
12/20/90 FLV-159-CH T219-6

in the calculation are:
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SAMPLE ID: JB-BS~2 T226-7

Raw Probe Data

Date of Analysis: 6/24/92

Raw Probe Data
(FeO to Fe203)

$i02 75.129 Si02
Al203 12.665 Al1203
FeQ 0.985*%1,1113=Fe203 1.095 Fe203
Mg0 0.019 MgO
MnoO 0.037 MnO
cao 0.518 Cao
Ti02 0.074 TiO2
Na2o 3.962 Na2o0
K20 4.628 K20
TOTAL (Q) 98.018 TOTAL (N) 98.128 TOTAL (R)
20 Best Matches:

1 0.9936 1/30/92 FLV-200-LC T249-4

2 0.9933 Y0sS-1, T13-1

3 0.9932 BO-~16

4 0.9912 10/25/83 KRL82282A, T66-5

5 0.9909 9/3/88 FLV-64~-CS T170~7

6 0.9907 DR-64

7 0.9%07 1/30/92 FLV-199-BC T249-3

8 0.9889 +6/8/91 S§-91-1-1 T232-2

9 0.9889 09/06/83 KRLY91882B, T64-12
10 0.9889 HC-10
11 0.9886 BO-11
12 0.9885 10/23/85 BL-RSA-2 T112-7
13 0.9883 LD-12, T3,4
14 0.9880 10/21/91 JB-BS-12 T241-3
15 0.9877 10/22/85 KRL 82182 (Al) (599) Til2-1
16 0.9877 5/21/88 WL-4-58 (144.77m) T164-1
17 0.987s LD-12 o
18 0.9871 GS-32
19 0.9870 1/30/92 FLV=-201-TO T249-5
20 0.9869 6/13/91 JB-BS-7 T227-4

Elements used

Na2o0
Al203
$io2
K20
cao
FeO

**%*** This sample has been added to the data base ****x

in the calculation are:

Recalculated to 100%

76.56
12.91
1.12
0.02
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SAMPLE ID: JB-BS-3 T226-8

Raw Probe Data

Raw Probe Data
(FeO to Fe203)

$i02 72.367
Al203 12.627
FeO 0.727*1.1113=Fe203 0.808
MgOo 0.079
MnoO 0.037
Cao 0.769
Tio2 0.074
Na2o 3.466
K20 4.788
TOTAL (0) 94.933 TOTAL (N) 95.014

20 Best Matches:

0.9886
0.9857
0.9843
0.9824
0.9824
0.9806
0.9750
0.9748
0.9746
0.9721
0.9712
0.9688
0.9681
0.9678
0.9678
0.9670
0.9662
0.9659
0.9638
0.9632

12/3/84

7/2/91
5/2/85
6/14/91
8/18/86
07/01/83
08/18/84
5/15/88
5/22/88
5/15/88
8/18/86
5/15/88
5/22/88
08/18/84
3/6/86
11/25/83
6/22/84

07/18/84

Date of Analysis: 6/24/92

Recalculated to 100%

Si02 76.16
21203 13.29
Fe203 0.85
MgO 0.08
MnO 0.04
Cao 0.81
TiO2 0.08
Na2Zo 3.65
K20 5.04

TOTAL(R) 100.00

WL-5-19-0.27M T84-13

DR-14
EL-1-M T230-5

WL 3-7 17.51m T93-8
FLV-176-TC T229-8

WLC-85-2 (13.65M)

T128-2

KRL71082 (CII), T56-3

WL 3-7-2.66
WL-4-27 (69.77M)
WL-5-16 (73.40m)
WL-4-27 (68.59M) .
WLC-85-2 (11.34M)
WL-4-26 (66.50M)
WL-5-16 (73.62m)

T163-9
T164-12
T163-8
T128-1
T163-7
T164-14

WL 4-26-3.06, T78-12
6VI84-1-5.5M T117-13

KRL71082F, T55-5
KRL-71082 (II-4)
DR-12

(593) T58-4

DSDP 36-10-2 SSA, T78-5

Elements used in the calculation are:

Na2o

A1203

$i02
K20
cao
FeO

***** This sample has been added to the data base *****
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Appendix C

Paper and Field Guide Presented at Geological Society of Nevada
Symposium on Walker Lane
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Approximate trace of the northwest-trending Bettles Well strike-slip fault, which apparently merges with
the Petrified Spring fault to the north. Together, these faults truncate the east end of the Bettles Well
Valley half-graben and displace the east end of the graben about 3 km right-laterally to the southeast.
This amount of displacement is equal to that of displaced Mesozoic structures across this fault.

Summit, elevation 6439’, microwave tower to north.
Fork In road at power line, take right fork heading east into the southern Stewart Valley.

To the left of the road (east) and about 200 yards down the broad drainageway are fault scarps produced
during the 1932 Cedar Mountain earthquake (Molinari, 1884, and references therein).

Water trough near cattle guard in fence. Looking to the west and south is an overview of the geology of
the eastern Pilot Mountains. Of importance is the southerly displaced continuation of the Bettles Well half-
graben now exposed at the Gun Metal mine. The half-graben has been displaced about 3 km south by
the Bettles Well fault system. The eastern extent of the half-graben is obscured by range-front faults along
the eastern Pllot Mountains. Scarps In alluvium can be seen In the valley fill east of the prominent pre-
Tertiary exposures.

In the southeastern part of the Pilot Mountains, a large skarn tungsten deposit, the Gunmetal mine, was
extensively explored and developed by Duval Corporation in the late 1970s. The original Gunmetal mine
produced tungsten during WW Ii from generally low grade ores, which locally averaged 1% WO,. An
extensive exploration effort was conducted by Union Carbide in late 1970s-early 1880s (Grabher, 1984).

Fork In road, stay right and drive south.
Take track on left (east) to small hill with white trench dumps.

STOP 11 - Craig dePolo, Figure 18. Examine features of the 1932 Cedar Mountain earthquake where
Trench #8 exposes uptumed tuffaceous sediments.

The Stewart-Monte Cristo fault zone, along which the 1932 Cedar Mountain earthquake occurred, is more
than a kilometer wide in this area. ‘The fault zone is dominantly right-lateral strike slip in nature. About
1m of right-fateral displacement occurred in this area in 1932. The small hill at this location is a "pressure
ridge” formed by compression at a left step in the fault zone (restraining bend). Due to a small amount
of contraction, Tertiary sedimentary rocks with a veneer of Quaternary alluvium are pushed up forming
the topographic high. Trench 8 was dug across a subtle scarp on the southern side of the hill (see figure
18 for faults and trench locations) and confirmed the contractional nature of the fauit zone at this location.
The northern half of the trench revealed steeply to vertically tilted Tertiary sedimentary rocks cut by
several reverse faults. The southern end of the trench exposes Quaternary graveis deposited by streams
running along the southern edge of the pressure ridge, roughly perpendicular to the trench. These gravels
are faulted and deformed towards the contact with the Tertiary sediments. The contact between the
gravels and the Tertiary sediments is a fault 2one with several episodes of movement represented. Most
of the Tertiary units in the fault zone have been highly sheared and jumbled. Several reverse faults are
present in the rest of the trench particularly in the hanging wall of the main (contact) fauit zone, three of
which offset the section exposed in the trench. Movement in 1832 may have occurred along the
southernmost fault in the trench, and along two of the reverse faults cutting the Tertiary sediments. The
southernmost fault deforms gravels very near the surface. In all cases the movement would have been
minor. A simplified trench log is given in Figure 19.
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Partial log of Cedar Mountain Trench 3A, cut back 80 cm from o

Figure 20.
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Return to main road and tum left (south).
Turn left on track and drive east to trenches.

STOP 12 - Craig dePolo, Figure 18. Examine fault escarpment and Trench #3. Don't fall in!

This is one of the first trenches dug by the Nevada Bureau of Mines and Geology in the study of the 1932
Cedar Mountain earthquake. Originally a single trench, Trench 3 was expanded into an "H" shape to
better establish stratigraphic relationships. One to two meters of right-lateral strike-slip displacement
occurred at this location in 1932. The 30-cm high surface scarp from this event is still well preserved and
can be traced out In either direction. To preserve these ruptures for others to examine and for
potential future scientific studies, please avoid walking on the scarp; this is especiaily important for
large groups of people or when the ground is wet.

Trench 3 exposes a vertical main fault that commonly splays into a flower structure near the surface, and
several secondary faults on the "downthrown” side (see Figure 20). The backfacing nature of this scarp
with respect to topography has ponded younger sediments against the fault. In some cases these
packages of ponded alluvium appear to represent individual earthquake events.

The east side of the trench reveals ponded late Quaternary silts and gravels. The west side consists of
tilted tertiary sediments, overain by mid-Quaternary gravels (ash within these gravels has been identified
as Bishop-aged ash; 0.7-1 Ma). The fault zone, especially in the flower structure, contains jumbled and
sheared units from both sides of the fault. Carbonate has been deposited in a small mass in the fault
zone, a faily common occurrence along youthful faults in the Basin and Range province. Slickensides
from the main fault plunge 6 to 9 degrees to the north supporting a large component of right-lateral strike-
slip motion along this north-striking fault.

The stream to the immediate south of the trench has a right-lateral offset at the fault zone. The 1932
stream-offset can be seen, but is difficult to measure. The overall rightateral jog in the stream is due to
several late Pleistocene and Holocene offsets. This is a rare, well-developed lateral offset of a stream
channel. Most streams have straightened their channels across the rupture. The particular example south
of the trench appears to be well developed due to a limited catchment basin and significant lateral offsets
per event,

Retrace route to main road and tumn right (north) ba-ck to fork in road at mile 58.1.

Turn hard right at the road fork and proceed southeast and east across the southern Stewart Valley to
the southern Cedar Mountains and Dicalite Summit area.

Crossing trace of Quaternary fault scarp from Stop 12.
Fork in road, bear left.
Cross main Stewart Valley wash.

~

Old bulldozer cut, trending east from the main Dicalite summit road, claim post and workings west of
road.

The hills to the east are composed of Tertiary ash-flow tuff units that overie locally discontinuous
intermediate composition lavas (about 30 Ma) that thicken to the south (Whitebread and Hardyman, 1987).
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The 1932 Cedar Mountain Earthquake: An Example of Active Tectonism in the
Walker Lane

Craig M. dePolo, Nevada Bureau of Mines and Geology, University of Nevada-Reno, Reno, NV 89557

The 1932 Cedar Mountain earthquake (surface-wave magnitude 7.2) has an important bearing on the
neotectonics of the western Great Basin because the event is the largest historical earthquake in the Walker
Lane, had an unusually wide distribution of surface ruptures, consisted of multiple events, and precipitated
the notion of the Walker Lane. Gianella and Callaghan (1934a) were the first to discuss the significance of
the Cedar Mountain earthquake, strike-slip faulting in the western Great Basin, and topographic aspects
associated with the Walker Lane.

The main shock of the 1932 earthquake occurred at 0610 UTC (2210 PST) on December 21 and had
a felt area of 850,0000 km: (Coffman and von Hake, 1973). Considering the location of the epicenter in
southern Gabbs Valley (Byerly, 1935) and the extension of surface ruptures for roughly 60 km to the south
of the epicenter, it seems clear that this -earthquake propagated to the south. Seismological studies
conducted by Doser (1988) suggest the Cedar Mountain earthquake was a complicated, multiple event.
Doser studied and modeled the teleseismic P-waves from this earthquake using seismograms recorded
woridwide and found that it was comprised of at least two subevents. For the preferred northerly-striking
nodal planes, both subevents were dominated by right-lateral strike-slip displacement and were subparallel
to the Walker Lane. Doser noted that the better located aftershocks from the 1932 event cluster in two
major areas, Gabbs Valley and northern Monte Cristo Valley, possibly highlighting the areas of the two major
subevents.

The earthquake appears to have involved at least two major faults and many minor fauits in the region.
The two major faults involved are the Stewart-Monte Cristo Valley fault zone (Molinari, 1984) and an
unmapped, subsurface fault below northern Stewart and Gabbs Valleys. Both of these ruptures were right-
lateral strike-slip in nature. Other faults that were involved in the 1932 earthquake include normal faults on
the west flank of Cedar Mountain, strike-slip faults in Stewart Valley, and normal faults in southern Gabbs
Valley. The Stewart-Monte Cristo Valley fault zone is the easternmost member of the group of strike-slip
fauits in the central Walker Lane.

The 2zone of surface ruptures from the Cedar Mountain earthquake is approximately 60 km in length
(end-to-end measurement) and 6 to 14 km wide (Gianella and Callaghan, 1934b). Surface ruptures were
not confined to a mountain front or a single topographic feature, but rather were distributed broadly across
three valleys and along short parts of adjacent mountain fronts. The longest and most continuous surface
faulting was about 17 km in length and occurred along the Stewart-Monte Cristo Valley fault zone in northern
Monte Cristo Valley. Right-lateral displacements along this fault zone ranged from a few centimeters to 2
m, and vertical displacements were as much as 0.5 m. Small-scale geomorphic features formed during the
surface rupture include fault scarps, grabens, moletracks, swells and depressions, warped scarps (small
surficial monoclines), and echelon-stepping breaks.

Trenching and Quaternary stratigraphic studies in Monte Cristo Valley have been conducted by the
Nevada Bureau of Mines and Geology to determine the structural nature of the surface faulting and the
paleoseismic history of the Stewart-Monte Cristo Valley fault zone. In trench exposures where significant
lateral slip occurred, the fault planes are vertical and small scale (1 to 2 m) flower structures commonly exist
near the surface. These structures, consisting of upward splaying fault traces and small reverse fauits,
appear to underlie surface expressions such as warped or ramped scarps, moletracks, and swells.

The ages of surfaces and deposits in Monte Cristo Valley have been estimated using tephrochronology,.
rock varnish radiocarbon dating, and soil development. From these ages and crosscutting relations of the
surfaces and deposits with the faults, normal-right slip rates for the Stewart-Monte Cristo Valley fault zone
of 0.2-0.5 mm/yr are estimated for the late Quaternary. The lateral to vertical displacement ratio ranges from
3:1106:1 (dePolo and others, 1987). Studies thus far indicate that the most recent paleoseismic event prior
to the 1932 earthquake probably occurred in early Holocene. .

The 1932 Cedar Mountain earthquake underscores the importance of considering multiple source
models when analyzing faults for seismic hazards in the Basin and Range province. It demonstrates the
potential for small surface faults to reflect an earthquake larger than an analysis of a single fault would




suggest, and for the potential involvement of subsurface faults that lack clear surface expression. Although
many of the widely distributed surface ruptures from the 1932 event were probably secondary or
sympathetic in nature, displacements ranged from a few centimeters to a decimeter or more at the surface,
which can be a significant amount for some engineering projects. In southern Gabbs Valley, surface
fuptures occurred along a group of subparallel northeast-striking normal faults, whereas the main subsurface
rupture below appears to-have been a northerly striking right-lateral fault. The complex nature of this event
illustrates the need for considering such complexities when analyzing earthquake hazards in the Basin and
Range province, especially for critical engineering facilities.
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INTRODUCTION

This report summarizes the results of Task 3 work initially discussed in our monthly
reports for the period October 1, 1991 through September 30, 1992, and contained in our
various papers and abstracts, both published and currently in press or review (see appen-
dices). Our work during this period has involved a) the continuation of studies begun prior
to October, 1991, focussed mainly on aspects of the caldera geology, volcanic stratigraphy,
magmatic activity, hydrothermal mineralization and extensional tectonics of the western and
northwestern parts of the southwestern Nevada volcanic field (SWNVE), and b) new studies
of the alteration and trace-metal geochemistry of subsurface rocks of Yucca Mountain
utilizing drill hole samples obtained in late 1991 and early 1992.

UPDATE ON THE NATURE AND DISTRIBUTION OF SUBSURFACE
ALTERATION IN YUCCA MOUNTAIN

During the past year, we have continued to investigate the nature and distribution of
alteration in the subsurface of Yucca Mountain. This has been accomplished by the visual
examination of intervals of core that were not previously inspected by our group, coupled
with initial hand-specimen, polished-section and thin-section petrographic studies of core
samples obtained primarily for chemical analyses. A graphical summary of alteration
features is presented in Figure 1, which has been modified from our 1991 report based on
our observations made during the period of this report.

Distribution, nature and origin of pyrite in tuffs and lavas of Yucca Mountain

One of our principal concerns has been to address questions about the distribution,
nature, and origin of pyrite observed in various intervals of drill core from the volcanic rocks
of Yucca Mountain by personnel Task 3, by Stephen B. Castor and the Nevada Bureau of
Mines group, and by several previous workers of the U.S. Geological Survey and the
national laboratories. In the volcanic rocks, pyrite is unevenly distributed in pyroclastic
rocks, mainly occurring in the unwelded to partially welded, lithic-rich parts of the Tram
Member of the Crater Flat Tuff and the Lithic Ridge Tuff, and in intercalated silicic lavas
(Figure 1). Our view has been that the pyrite is simply one product of hydrothermal activity
and its uneven distribution reflects the flow paths of fluids that had activities of reduced
sulphur species sufficient to sulphidize iron-rich phases in the rock mass (Weiss et al., 1991).
Castor et al. (1991; in review) believe most, or all, of the pyrite in the pyroclastic rocks is
lithic material, and therefore consider the pyrite to predate deposition of the pyroclastic host
rocks. Their hypothesis is that the "lithic" pyrite originated by hydrothermal alteration of
rocks in the vent area(s) of the Tram Member and the Lithic Ridge Tuff. They speculate
that during the eruptions of these pyroclastic rocks, pyrite and pyritic altered rock fragments
were ripped from the vent walls and incorporated in the tuffs. Castor et al. (1991; in review)
therefore propose that the pyrite in the pyroclastic rocks does not reflect in siru alteration
within Yucca Mountain. Based on a number of lines of textural evidence and the near
magmatic temperatures of the eruption, transport, deposition and initial cooling of the ash-
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flow sheets, we strongly disagree with the proposition that no in-situ addition of sulphur has
occurred, although hydrothermally altered and pyritic rock fragments could provide
evidence for earlier hydrothermal events.

In the subsurface of Yucca Mountain pyrite is most common and most widely
distributed in the Tram Member of the Crater Flat Tuff (Figure 1), where it is present as
disseminated grains composing <1% of the groundmass and as disseminated grains and
veins in lithic fragments. Some lithic fragments contain as much as about 10% pyrite, and
many are partly to completely replaced by varying proportions of albite, adularia, quartz and
- clay. Pyrite is also present both in lithic fragments and in the groundmass of the Lithic
Ridge Tuff, although it is apparently less widely distributed (Figure 1) and less abundant. In
lithic fragments and the groundmass of both ash-flow sheets, the disseminated pyrite
consists of anhedral to subhedral, generally pitted and wormy to seived, or skeletal(?), indi-
vidual crystals and granular aggregates of ~5 um - 300 um in maximum dimension (Figures
2 and 3). In some grains pits and ophitic texture appear to result from the presence of
numerous inclusions of altered groundmass, while other grains, mainly those smaller than
about 10 um in diameter, are not uncommonly subhedral in shape and free of pits.
Propylitically altered silicic lavas in USW-G2 contain disseminated pyrite grains having
textures and morphology indistinguishable from those of the pyrite in the tuffs (Figure 4).
Fractures, not uncommon in granular pyrite in the tuffs, are present in pyrite grains in the
altered lavas as well. These observations demonstrate that the fragmentation and degassing
processes of ash-flow eruptions are not required to produce the textures and morphology of
the pyrite in the tuffs, since the pyrite in the lavas is clearly not lithic material. Instead, as is
the case in the altered lavas, the observed pyrite textures in the tuffs more likely stem from
precipitation and growth (+ partial dissolution ?) from hydrothermal solutions.

Further textural evidence in support of the above argument includes the presence of
partly sulphidized phenocrystic biotite in the Lithic Ridge Tuff (Figure 5a), and pyritic clay-
altered pumice in the Tram Member (Figure 5b). It is difficult to imagine that this pyrite
predated and survived the eruptions of each ash-flow unit. The features shown in Figure 5
were found only with careful examination of an initial, small number of sections that had
been impregnated with epoxy prior to polishing, and, though not abundant, they may be
more common than would be inferred from inspection of unpolished core or unimpregnated
polished sections.

Another significant line of evidence arguing that the pyrite in tuff in Yucca Mountain
is the result of in siru growth involves the similarity in texture and morphology of the pyrite
in Yucca Mountain tuffs to that found in obviously hydrothermally altered porous ash-flow
tuffs elsewhere. For example, in the Divide mining district the early Miocene Tonopah
Summit Member of the Fraction Tuff contains as much as 1 - 3% pyrite where the unit has
been affected by propylitic and phyllic alteration (Bonham and Garside, 1979). This pyrite
has been considered by Bonham and Garside (1979) to comprise a common component of
the hydrothermal mineral assemblage in the Divide district. Examination of samples from
partially welded, pyritic ash-flow tuff of the Tonopah Summit Member shows that this
hydrothermal pyrite is essentially identical in texture and morphology to the pyrite in
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volcanic rocks in Yucca Mountain (Figure 6), and in some hand-spécimens tends to be more
abundant in lithic fragments than in the groundmass. It should be noted that pyrite has not
been described as a component of unaltered rocks of the Tonopah Summit Member
(Bonham and Garside, 1979). Similarly, in areas of little or no alteration, pyrite has not
been described as a component of the Lithic Ridge Tuff or members of the Crater Flat Tuff
(e.g., Carr et al., 1986). We intend to obtain additional specimens of pyritic, porous ash-flow
tuff from other paleohydrothermal systems (e.g., Round Mountain, NV) for comparison of
pyrite textures with those of Yucca Mountain.

Finally, although traces of magmatic pyrrhotite, cubanite chalcopyrite, and Fe-Ni
sulphides are not uncommon in volcanic rocks, they are found only as blebby inclusions in
phenocrysts and dense glassy rock (vitrophyre) where they have been sufficiently encapsu-
lated to prevent degassing of sulphur during eruption and primary cooling (e.g., Hildreth,
1977; Drexler, 1982; Whitney and Stormer, 1983; Keith et al., 1991). At the near magmatic
temperatures associated with the eruption, deposition and primary cooling of the Yucca
Mountain tuffs, "lithic" pyrite gains ripped from vent walls would have been rapidly heated
and would have lost most or all of their sulphur. Although pyrite enclosed within altered
rock fragments might retain their sulphur, it seems highly unlikely that unprotected pyrite
grains only 5 pm to few 100°s of um in maximum dimension would survive such heating.
Evidence for such degassing would include partial or total conversion of pyrite grains to iron
oxides. Iron oxide coatings or rims are absent from much of the groundmass pyrite in the
Yucca Mountain tuffs, arguing strongly against the idea that these grains are but remnants
of originally larger, partially degassed "lithic" grains.

Within both the Lithic Ridge Tuff and the Tram Member of the Crater Flat Tuff of
drill holes USW-G3, USW-Gland USW-G2, many lithic fragments are more strongly
altered than the enclosing ash-flow tuff. Much of the groundmass of the tuffs consists of
glass shards and small pumice fragments that have been altered to mixtures of clay, zeolites
and opaline silica. The stronger alteration of many lithic fragments, the lack of observable
pyrite veins cutting the matrix of tuffs, the truncation of quartz and pyrite veins by the
margins of the lithic fragments, and the relatively rare presence of pyrite in clay-altered
pumice clasts have led Castor et al. (1991; in review) to argue that essentially all pyrite,
including that in the groundmass, originated by hydrothermal alteration of rocks in the vent
area(s) of these two ash-flow units. Disseminated pyrite is also present in the pre-Lithic
Ridge tuffs of UE25p-1 (S. 1. Weiss, unpublished data, 1992), and in the lower parts of the
Prow Pass and Bullfrog members in USW-G2 (Caporuscio et al., 1982). Are we to believe
that this pyrite is of a "lithic" origin as well, in units not particularly rich in lithics, when its
presence can be more easily explained by the passage of sulphidic fluids through the more
permeable areas of the rock mass? There can be little doubt that altered lithic fragments
provide important evidence for pre-Lithic Ridge and pre-Tram hydrothermal events.
However, the later addition of pyrite is strongly supported by the textural, distribution and
temperature considerations discussed above.
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Other observations concerning the nature and distribution of subsurface rock alteration

Petrographic work on samples from the Yucca Mountain drill core is currently getting
under way and systematic studies have not yet been carried out, but several observations
merit discussion in this report. In USW G1 propylitic alteration of the pre-Tram silicic lavas
was verified. Beneath these lavas, the alteration gap composed of unaltered Lithic Ridge
Tuff, previously inferred from published reports (Figure 1) was confirmed. Another gap is
present in USW G3 where the presence of unaltered tuffs beneath the Lithic Ridge was
verified. These areas of apparently fresh rocks demonstrate, not surprisingly, that alteration
and hydrothermal fluid flow were not vertically or laterally continuous over the depths and
wide spacing of the drill holes.

Cursory examination of a small number of thin sections indicates that many of the
lithic fragments in the Tram Member and the Lithic Ridge Tuff of drill holes UE25b-1H,
USW G1 and USW G3 are more strongly altered than the enclosing tuffs. In the few
sections of these units examined to date, sanidine, plagioclase and mafic phenocrysts are
mainly unaltered, in contrast to the replacement of lithic fragments by combinations of
albite, adularia, quartz, calcite and clay.

In USW G2, pyritic propylitic(?) alteration in the lower part of the Prow Pass Member
of the Crater Flat Tuff dies out upward into weak argillic alteration, defined by the presence
of clay-replaced feldspar phenocrysts, associated with a zone of breccia veins at depths from
2873’ to about 2975’. The breccia veins are irregular, anastomosing to planar structures
filled with a mixture of cm- to mm-sized rock fragments, rock flour, very fine-grained silica
and reddish to black iron and manganese oxides. Jigsaw textures, irregular pinchouts and
the ranges of fragment size and shapes, and associated bleaching and argillic alteration of
the welded tuff, suggest that the veins are hydrothermal in origin. Very similar breccia veins
containing a matrix of extremely fine-grained iron-oxide, silica and fluorite (Figure 7) are
present in iron-oxide stained, brecciated, moderately to densely welded, devitrified ash-flow
tuff of the Crater Flat Tuff in drill holes UE25 C1, UE25 C2 and UE25 C3. Multiple stages
of cross-cutting quartz, fluorite, and iron-manganese oxide veinlets are present within and
cutting through the breccia veins. Fluorite also fills small cavities and is intergrown with
montmorillonite in other small, irregular cavities. Spengler and Rosenbaum (1991) recog-
nized that the brecciated rocks of the Crater Flat Tuff in the UE25 C holes form a tabular,
shallowly west-dipping body of hydrologic significance, through which aqueous fluids have
passed. Analyses of 7 samples from these brecciated rocks show the presence of anomalous
concentrations of Mo, Sb, Bi and As (see below), demonstrating that such fluids have
included metal-bearing solutions. ’

TRACE-METAL CHEMISTRY OF ROCKS FROM THE SUBSURFACE
OF YUCCA MOUNTAIN

Samples from 41 intervals of core and rotary cuttings were analysed .for precious
metals and a broad suite of elements generally considered useful in indicating the presence
of hydrothermal mineralization. These analyses were carried out to investigate the possible
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presence of metal and trace-element enrichments in the subsurface of Yucca Mountain that
might be associated with undiscovered, potentially economic mineralization.

Methods

Samples were analyzed by highly sensitive inductively-coupled plasma emission spect-
rography (ICP-ES), graphite-furnace atomic absorption (GFAA) and hydride-generator
atomic absorption (AA) methods carried out at MB Associates and the Nevada Mining
Analytical Laboratory (Hg); the results are listed in Table 2. Blind duplicate analyses
carried out in this and other studies indicate acceptable levels of precision for all of the
elements determined (Table 2). In all but a few samples, ICP-ES measurements gave
higher Hg values than were determined by AA measurements. Previous experience has
shown that at low levels the AA determinations of Hg are more precise and probably more
accurate than ICP-ES determinations (Weiss et al., 1991).

Special care was taken to avoid contamination of samples during preparation for the
analyses. First, with the core enclosed in 50 mil plastic bags, representative fragments
totalling about 60-100 grams were broken from each core interval using a clean, acid-treated
hammer. Where veins or filled fractures were observed, selected fragments contained more
wall-rock than vein material. Core fragments were inspected visually to avoid macroscopi-
cally visible drill-tool rubs, drilling lubricant and paint. Each core fragment was then
scrubbed and rinsed with distilled water, using a nylon brush, to mechanically remove poten-
tial microscopic surface contaminants. After air drying, samples were crushed and pulver-
ized to -200 mesh powders using carefully cleaned, small volume equipment not normally
used for processing ores. Ceramic plates were used on a small rotary pulverizer. In addition
to an initial mechanical and acid cleaning, both the crusher and pulverizer were cleaned
between each sample using an abrasion flux of fresh, unmineralized, densely welded tuff of
the Tiva Canyon Member having extremely low trace metal concentrations (e.g. Table 4 of
Weiss et al,, 1991; Table 2, sample 3SW-589 of this report). Sample powders were split and
sealed in clean plastic and glass vials.

Rotary cuttings were inspected under a binocular microscope for the possible pres-
ence of drill-tool fragments, Iubricants and other foreign material. Due to the small
amounts of cuttings available for study (<50 grams for each 10’ interval) and the sand-sized
nature of most of the cuttings, some contamination with drill-tool and lubricant particles
could not be avoided. Samples containing visible foreign material are noted in Table 2. As
will be discussed below, the effects of this contamination on measured precious- and trace-
metal contents are not likely to be significant. Cuttings were also pulverized to -200 mesh
powders using ceramic plates and sealed in clean plastic and glass vials.

Results

Elemental abundances measured for fresh specimens of the Bullfrog Member of the
Crater Flat Tuff and the Tiva Canyon Member of the Paintbrush Tuff ("fresh tuff reference
samples”, Table 2), together with analyses by similar methods of unaltered tuff given by
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Castor et al. (1989), Connors et al. (1991a; in review), Weiss et al. (1991) and Castor and
‘Weiss (1992) provide a limited, but useful indication of precious- and associated trace-metal
contents to be expected in unaltered, silicic volcanic rocks in Yucca Mountain. Silicic rocks
that have undergone cooling-related (primary) devitrification and weathering tend to have
slightly larger contents of As and Au than those found in glassy rocks, but overall, precious-
and associated trace-metal contents are extremely low. Based on the sources mentioned
above, and our prior exploration experience, we expect concentrations in fresh silicic
volcanic rocks to be approximately as follows:

Au  <1ppb (most <0.3 ppb

Ag <0.10 ppm

As <6 ppm (most <2 ppm)

Bi <0.10 ppm

Hg <30 ppb (most <15 ppb)
Sb  <0.20 ppm

Se  <0.10 ppm

Te  <0.10 ppm

Mo <2.0 ppm (most <1.0 ppm)
Tl  -<0.50 ppm

In east-central Yucca Mountain, rotary cuttings from four 10’ intervals of mineralized
carbonate sedimentary rocks of drill hole UE25p-1 assigned to the Silurian Lone Mountain
and Roberts Mountain formations (Carr et al., 1986), and containing disseminated pyrite
and fragments of pyrite, quartz and fluorite veins were analysed. Sample 16963, from a
depth of 5530°’-5540’ contains highly anomalous concentrations of Hg, Sb, Mo, Pb and Zn,
and modestly anomalous concentrations of As, Bi, and Tl (Table 2). Gold and Ag are
modestly enriched in 16963 with respect to the other three intervals of Silurian sedimentary
rocks (Table 2), but are still relatively low in absolute value. Analysis of powder made from
a second split from this interval (16963B) confirmed the first analysis and indicates that
within this interval, the cuttings are not chemically homogenous. The data are inconsistent
with contamination by drill-tool fragments and(or) lubricant owing to the clearly elevated
suite of trace metals. Rather, the chemical data, together with the vein fragments in this
interval, provide unequivocal evidence for the passage of metal-bearing, epithermal-type
fluids through pre-Cenozoic rocks beneath Yucca Mountain. Although the anomalous
metals in these sedimentary rocks could have been introduced prior to deposition of the
overlying Miocene volcanic rocks, significantly elevated As (~14-63 ppm), Zn (125 ppm)
and Sb (~1-2 ppm), and weakly elevated Mo (~2-3 ppm) and Hg (~50-135 ppb) are also
present in several scattered intervals from tuffs of stratigraphic unit Tot of UE25p-1 (Table
2).

To the northwest of drill hole UE25p-1, an unusual association of modestly to very
highly elevated Mo (as high as ~200 ppm) =* elevated Sb, As and B, is present in brecciated
rocks of the Crater Flat Tuff in drill holes UE25 C2, UE25 C3, and probably in UE25 C1 as
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well (Table 2). Three lines of evidence indicate that the elevated Mo concentrations are
unlikely to result from contamination by drilling tools, cutting tools or lubricants. First,
sample 20069B (109 ppm Mo) was composed entirely of fragments broken from the interior
of the core and having no surfaces cut by drilling or splitting tools. Second, the elevated Mo
values are associated with elevated Sb, As and Bi contents, which are not likely to result
from such contamination. Finally, the presence of drusy fluorite, and breccia veins with a
matrix rich in iron oxide, provide direct evidence for the passage of fluoride- and metal-
bearing fluids. These fluids passed through the tuffs after compaction, and apparently
caused some or all of the brecciation, but their origin remains unclear.

Further to the north, significantly elevated concentrations of As (39-85 ppm) and Hg
(~120-150 ppb) are found in strongly propylitically altered lavas of stratigraphic unit Tr1 in
drill hole USW-G2 (Table 2). In the same drill hole, between 3420’ and 3421’ (sample
16871), a 0.5-2 mm thick fracture filled with manganese oxide and adjacent fresh, but iron-
oxide stained tuff of the Bullfrog Member of the Crater Flat Tuff contains less As (18 ppm),
but much greater amounts of Hg (~0.7 ppm) and Sb (~5 ppm).

As discussed previously, drill holes USW-G3, UE25B-1H, USW-G1 and USW-G2
encountered deep, but aerially widespread pyritic alteration in units of the Crater Flat Tuff
and the Lithic Ridge Tuff. In drill holes USW-G1 and UE25B-1H nine samples from these
pyritic rocks contain no distinctly elevated Au, Ag, Sb and T1 (Table 2). Arsenic concentra-
tions are only 2-5 ppm higher than concentrations found in weathered devitrified rhyolitic
ash-flow tuff. Modest Hg enrichment (~106 ppb) is present in only one of these 9 samples
(sample 16860), but 8 samples contain marked enrichments of Bi, Se and Te. Further to the
south in USW-G3, where less pyrite is present in the Lithic Ridge Tuff than is found in the
‘Tram Member to the north, the pyritic rocks apparently contain less Bi, Se and Te, and
slightly more Hg (Table 2). Selenium is a common element in many volcanic-hosted
epithermal precious-metal deposits. Bismuth and Te are associated with magmatic-
hydrothermal systems (i.e. porphyry and skarn deposits) and various types of epithermal
vein systems. Trace amounts of these metals are commonly attributed to the input of
magmatic fluids into hydrothermal systems.

From textural and temperature considerations discussed earlier, we believe that much
or all of the pyrite formed after deposition of the tuffs by partial hydrothermal sulfidation of
iron-bearing phenocrysts and other iron-bearing phases in the groundmass and lithic frag-
ments. This pyritic alteration, or sulfidation, clearly represents a major enrichment of
sulphur relative to fresh rhyolitic tuffs.

The chemical data given above, in combination with presently available information
on subsurface alteration, veining, pyrite distribution, etc., are consistent with the passage of
hydrothermal fluids through parts of Yucca Mountain and the movement and local, gener-
ally low-level accumulation of various combinations of elements (including As, Sb, Hg, Bi,
Se, Te, Mo, Pb, Zn and TI) commonly associated with hydrothermal mineralization. In
many volcanic-hosted epithermal ore deposits, mineralization and associated trace-metal
halos are restricted to narrow areas of high permeability that channeled large volumes of
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fluid flow. Commonly, rocks a few meters outside these channelways show little, if any,
metal enrichments. This is true not only in vein systems, but in disseminated deposits as
well. For example, in porous ash-flow tuff of the Round Mountain gold deposit, mineraliz-
ing fluids were guided in part by primary permeability enhanced and preserved by original
vapor-phase crystallization, and fluid flow was restricted by lower permeability in porous
glassy zones (Sander, 1990). Many of our sample are from porous, previously largely glassy
tuff units which, upon alteration of shards and pumice to clays and zeolites, probably
became relatively impermeable and conducted only small amounts of fluid flow. Therefore,
many of our analyses may reflect the chemistry of zones of relatively small fluid flow. Our
data do not rule out, or demonstrate the presence of, possible epithermal precious-metal
mineralization between the widely spaced drill holes in Yucca Mountain.

MAJOR-ELEMENT CHEMISTRY OF THE MOUNT JACKSON DOME FIELD

In our 1990-1991 report (Weiss et al., 1991) we presented radiometric age data
demonstrating that rhyolite domes of the Mount Jackson dome field were emplaced from
about 6.8 Ma to 2.9 Ma. We have considered most rocks of the domes to be rhyolitic in
composition, except for the intermediate composition, lower lava of Mount Jackson, based
on field examination and reconnaissance-level hand-specimen and thin-section petrography
(McKee et al., 1989; Noble et al., 1991a). During the period of this report we have obtained
major- and minor-element chemical data from splits of the rocks used for the radiometric
age determinations (Table 3 and Figure 8). These data show that chemically, the capping
lavas are indeed high- to medium-silica subalkaline rhyolites, confirming our previous classi-
fication of these rocks. Two samples of the basal, less silicic lavas exposed on the west and
southeast sides of Mount Jackson (samples MJ-W and MIJ-SE, Table 3) have chemical
compositions of trachydacite (Le Bas et al., 1986) or rhyodacite. Many of the rhyolites are
highly evolved as shown by Rb/Sr ratios of >15 and low barium contents.

The linear alignments of the domes (Figure 8) and similarities in chemistry, petrogra-
phy, and general morphology suggest that the entire dome field was produced by eruptions
from a linear, high-angle fault controlled array of vents that were probably fed by a single
magmatic system. If this is the case, the geometry and remarkably long-lived nature of the
system (minimum of about 4 Ma) may reflect the influence of deep-seated faults or zones of
weakness during a period of tectonic stability within the Goldfield segment of the Walker
Lane belt.

PROGRESS IN RADIOMETRIC DATING STUDIES
Timing of Au-Ag mineralization, northern Bare Mountain

Much of the presently known Au-Ag mineralization in northern and eastern Bare
Mountain is spatially associated with the silicic porphyry dikes of Bare Mountain and
resulted from hydrothermal activity that occured at about 12.9 - 12.5 Ma during the main
magmatic stage of the SWNVF (Noble et al., 1989; 1991a). This interpretation is based on
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age determinations of hydrothermal minerals from the Goldspar and Telluride mine areas
and from the fact that the ca. 13.9 Ma silicic dikes are in most places strongly altered, locally
contain elevated gold concentrations (e.g., Sterling mine area, Jackson, 1988) and host gold
mineralization at the Mother Lode mine (Noble et al., 1989; Castor and Weiss, 1992).

Altered porphyry dikes have not been identified within or near the presently subeco-
nomic Secret Pass disseminated gold deposit, but stratigraphic and structural relations
permit a similar timing for gold mineralization there. Mineralization at Secret Pass is hosted
by the Bullfrog Member of the Crater Flat Tuff and is truncated by the underlying Fluorspar
Canyon - Tate’s Wash fault (Greybeck and Wallace, 1991). Alteration affects rocks of the
" Bullfrog Member and the porous lower portion of the overlying Topopah Spring Member of
the Paintbrush Tuff (Castor and Weiss, 1992), which has a radiometric age of about 12.8 Ma
(cf. Marvin et al., 1970; Sawyer et al., 1990). Movement on the Fluorspar Canyon - Tate’s
Wash fault accomodated tilting of the hanging-wall section at Secret Pass after deposition of
the Tiva Canyon Member of the Paintbrush Tuff, but prior to the deposition of nearby, flat-
lying rocks of the 11.6 Ma Rainier Member of the Timber Mountain Tuff (Monsen et al,,
1990). A strong argument can be made, therefore, that hydrothermal activity and mineral-
ization at Secret Pass took place between about 12.9 Ma and 11.6 Ma.

" The feasibilty of direct dating of the timing of hydrothermal activity at the Mother
Lode mine remains under investigation. At the Mother Lode mine ore-grade disseminated
Au-Ag mineralization is present within argillically altered porphyry dike rocks and adjacent
tuffaceous sedimentary rocks (Noble et al. 1989; Castor and Weiss, 1992). Mineralized and
altered dike and sedimentary rock samples containing abundant illitic mica (modestly-
ordered interstratified illite-montmorillonite) have been sent to Los Alamos National
Laboratory for evaluation for possible K-Ar dating.

PRIMARY LOW-LEVEL GOLD CONTENTS OF SILICIC VOLCANIC ROCKS:
APPLICATIONS TO STUDIES OF YUCCA MOUNTAIN

A short journal paper summarizing the results of K.A. Connors work on the initial gold
contents of silicic volcanic rocks was prepared and submitted to Geology. The principal
points of the paper, entitled The initial gold contents of silicic volcanic rocks (Appendix A),
are contained in the abstract as follows:

Fresh silicic volcanic rocks have markedly lower initial gold contents than would be inferred
from much of the geochemical literature. The great majority of 129 carefully selected glassy silicic
volcanic rocks analyzed contain less than 1.0 ppb, and many contain only < 0.1 to 0.3 ppb Au.
Nonperalkaline rhyolites contain <0.1 to 0.7 ppb, mean 0.22 ppb Au; of these, highly evolved, high-
silica subalkaline and peraluminous rhyolites have the lowest Au contents. Peralkaline and iron-
rich subalkaline rhyolites have higher gold contents of 0.2 to 4.5 ppb, mean about 1 ppb. The mean
of 23 relatively silicic intermediate rocks is 0.54 ppb Au, with tholeiitic andesites (icelandites)
generally higher in gold than calc-alkalic types. Fundamental controls on the initial gold content of
silicic volcanic rocks appear to be melt structure and petrologic affinity; regional setting is less
important. High-silica, nonperalkaline rhyolite melts apparently do not readily accomodate gold,
whereas crystal fractionation appears to increase the gold concentration in less-polymerized peral-
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kaline melts. Bulk composition and melt structure, and the amount and timing of separation of
vapor, mineral, and sulfide or metal melt phases, may largely determine the gold content of silicic
magmas on eruption. Silicic and intermediate volcanic rocks, particularly high-silica nonperalkaline
rhyolites, appear to be less favorable sources of gold for hydrothermal mineral deposits than crys-
tallizing magmatic bodies or other, more gold-rich rock types. Although iron-rich rhyolites may
have contributed to development of certain deposits, factors other than associated volcanic rock
type appear to be more important in determining gold availability to hydrothermal systems.

A longer paper is presently being prepared for Economic Geology to more fully discuss
the data, inferences and interpretive conclusions outlined above and in the text of Connors
et al. (in review; Appendix A). Clearly, rocks and alluvium in silicic volcanic terranes such as
Yucca Mountain should be very sensitive to the addition of small amounts of gold by
groundwater and hydrothermal solutions owing to the very low initial gold contents of most
rhyolites. Existing and future gold analytical data from Yucca Mountain must be evaluated
and interpreted in the context of Connors’ results, rather than average crustal abundance
values or average volcanic rock values found in much of the geochemical literature. Low-
level anomalies have the potential to delineate structural features and other paleohydrologic
flow paths along which post-depositional addition of gold may have taken place.

UPDATE ON THE MIOCENE VOLCANIC STRATIGRAPHY AND STRUCTURAL
GEOLOGY OF THE GOLD MOUNTAIN - SLATE RIDGE AREA

Most of our knowledge of the volcano-tectonic evolution of the Gold Mountain-Slate
Ridge area (GMSR) has been outlined in abstracts and papers included with previous yearly
reports (e.g., McKee et al, 1990; Noble et al., 1991a; 1991b; Worthington et al., 1991).
During the past year Ted Worthington has nearly completed his masters thesis on the
GMSR. In addition, we have obtained a new K-Ar age determination of 16.8 + 0.5 Ma on
biotite from the Tuff of Mount Dunfee, the stratigraphically oldest ash-flow unit recognized
in the Gold Mountain-Slate Ridge area. This age determination confirms a previous age
determination of 16.7 = 0.4 Ma on biotite from the same unit in another locality (E.H.
McKee, D.C. Noble and J. E. Worthington, unpublished data 1991-1992). Based on our
past work in the GMSR and in collaboration with E. H. McKee and M. C. Reheis of the
U.S. Geological Survey, we are currently preparing to lead a field trip entitled Neogene
Tectonism from the Southwestern Nevada Volcanic Field to the White Mountains, California
for the 1993 joint Cordilleran-Rocky Mountain Section meeting of the Geological Society of
America.

UPDATE ON MINING AND MINERAL EXPLORATION

Even though precious metals prices have been relatively weak during the past year,
strong exploration and mining efforts continued in the Beatty area of the SWNVEF. Heap
leaching continued at the presently closed Mother Lode gold mine. Considerable refractory
gold mineralization remains at the Mother Lode mine, but is subeconomic at current gold
prices. Exploratory drilling by U. S. Precious Metals continued near the mine and north of
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Tarantula Canyon in eastern Bare Mountain. Further south in Bare Mountain, gold produc-
tion continues at the Sterling mine, which is situated adjacent to Crater Flat. A new area of
subsurface gold mineralization has reportedly been identified between the Sterling and
Goldspar mines (J. Marr, pers. communication, 1992).

Gold production at the Lac Gold Bullfrog mine is projected to substantially exceed the
240,000 oz planned for 1992 due to better than expected grades in the open-pit mining area.
Underground production is running just under the planned rate of 1000 tons per day from
the decline at the north end of the open-pit. The decline encountered hot water (approx.
42° C), which is slowing underground production and requires pumping at a rate of about 15
gallons per minute. Lac Minerals Ltd is presently conducting exploratory drilling a short
distance north of the mine. '

Exploration for precious metals continued in the northern Bullfrog Hills. Pathfinder
Resources began an exploratory drilling program in the Pioneer mine area and has
completed a detailed geologic map of the northern Bullfrog Hills. This map is based
primarily on lithology and does not incorporate the regional stratigraphic units recognized
by Task 3 (Weiss and Connors, unpublished mapping, 1989-1990) or previous U.S. Geologi-
cal Survey investigators such as Ransome et al. (1910), Cornwall and Kleinhampl (1964),
and Maldonado and Hausback (1990).

HG Mining Inc. of Beatty, NV. continues production of cut stone products from ash-
flow tuffs quarried in the Transvaal Hills and upper Oasis Valley area. Although conven-
tional models predict little or no hydrocarbon resource potential, rigging began in June,
1992, for an attempt to re-enter and deepen the Coffer #1 wildcat oil well, which was origi-
nally drilled in Oasis Valley to a depth of 3880 feet in 1991.

REVIEWS, PRESENTATIONS AND PUBLICATIONS
Presentations

Noble presented to the Nevada Commission for Nuclear Projects an overview of Task
3’s efforts and hypotheses to address the issue of undiscovered potential mineral resources
in and near Yucca Mountain.

Publications

The following abstracts and articles resulting from Task 3 studies were produced
and(or) published during the period covered by this report, and are contained in the appen-
dices as follows:

Appendix A:

Connors, K., A., Noble, D. C, Bussey, S., D., and Weiss, S. 1., (in review), The initial
gold contents of silicic volcanic rocks, manuscript submitted to Geology, 1992, 14

p-
Appendix B:

Castor, S. B., and Weiss, S. 1., 1992, Contrasting styles of epithermal precious-metal
mineralization in the southwestern Nevada volcanic field, USA: Ore Geology
Reviews, v. 7, p. 193-223.
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SUMMARY OF CONCLUSIONS AND RECOMMENDATIONS

The veins and disseminated pyrite present in altered lithic fragments suggest that
hydrothermally altered rocks may have been present in the vent area(s) of the Lithic Ridge
Tuff and the Tram Member of the Crater Flat Tuff. The locations of these vents are not
known, but geophysical and other information has been used to propose that they may in
part lie beneath northwestern Yucca Mountain (Carr et al,, 1986). If this is correct, the
lithic fragments may provide direct evidence for one or more previously unrecognized peri-
ods of hydrothermal activity in or very near Yucca Mountain. A more basic problem is to
confidently determine if there has been, as we strongly suspect, a later in-situ addition of
sulphur to rocks in Yucca Mountain. Sulphidic solutions are common in hydrothermal
systems in volcanic rocks and have the capacity to transport significant quantities of precious
metals. We believe that the groundmass pyrite in the tuffs, with its similarity in texture and
morphology to that present in the pre-Lithic Ridge silicic lavas and other hydrothermally
altered ash-flow tuff elsewhere, provides evidence for such a post-depositional addition of
sulphur. Clearly, this process has affected the pre-Lithic Ridge silicic lavas in drill hole
USW G2, the lowermost part of the pre-Lithic Ridge tuffs in drill hole UE25p-1 and the
pre-Cenozoic carbonate rocks in UE25p-1. In the Lithic Ridge Tuff and portions of the
Crater Flat Tuff this sulphidation may have been from the passage of fluids, perhaps at low
water to rock ratios, that had little effect on the tuffs other than the destruction of glass and
the weak development of laterally and vertically discontinuous propylitic assemblages. The
uneven and discontinuous distribution of pyrite and veins and cavity in-fillings of quartz,
calcite, fluorite and barite in Yucca Mountain would be consistent with irregular, highly
channelized paleohydrology, a phenomena that is not uncommon in fossil hydrothermal
systems known elsewhere. Much basic petrographic work is planned to better determine
the identity and distribution of alteration minerals, and to ascertain that previous
investigators did not confuse altered lithic material with primary, magmatic components of
the ash-flow units. Also, as mentioned previously, further comparisons will be made
between pyrite textures of Yucca Mountain tuffs and those of pyrite in hydrothermally
altered, porous ash-flow tuffs elsewhere.

With regard to the chemical data in Table 2, it should be emphasized that the analysed
samples were selected to test, on a reconnaissance basis, the trace-element and precious-
metal contents of various types of alteration and paleo-fluid channelways, and represent
only a few, widely spaced drill hole intervals. The current data set provides only a minimal
glimpse of the nature of fluids that may have included cold as well as heated meteoric water.
Although no significant Au or Ag concentrations were found, there can be little doubt that
various combinations of trace-elements and metals, including Hg, As, Sb, Mo, Se, Te, Bi, Pb,
Zn and T}, are locally elevated relative to fresh rock concentrations. The remarkable Mo
concentrations in rocks of the UE25 C holes (Table 2) are associated with breccia veins,
fluorite, quartz and Fe-Mn oxide veinlets, and less enriched, but still highly elevated Sb, As
and Bi. These accumulations reflect the movement of metal-bearing fluids and are
sufficiently dispersed in the rock mass of Yucca Mountain to be detected by the few samples
analyzed. In particular, mineralogic and chemical data from the pre-Cenozoic rocks of
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UE25p-1 suggest the possible presence of deep base-metal and(or) precious-metal
mineralization in the vicinity of the drill hole. Additional samples from UE25p-1,
particularly those intervals adjacent to sample #16963, should be obtained for chemical
analyses to better bracket the vertical extent of the highly anomalous metal and trace-
element concentrations. Further geochemical work is clearly warranted and we intend to
obtain additional analyses.

Another area of research planned for the coming year will be to investigate the
precious-metals and trace-element contents of hydrothermally altered, but unmineralized,
rocks from several silicic tuff-hosted epithermal mineral deposts. This would involve the
same types of low-level, multi-element analyses reported in Table 2. If possible, we will
obtain specimens from a number of deposits, including Round Mountain, Secret Pass,
Rawhide, Paradise Peak and Wonder, Nevada, and perhaps Castle Mountain, California.
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Table 1. List of Core and Rotary Cuttings Samples from the Subsurface of Yucca Mountain
Received by Task 3

Hole #  SHFSpecID Depth Top Depth Bot Unit Type Al2Type  Py? Vns? cosmenis

UE25B-1H 16937  2110.0 2120.9 Tep chips
UE25B-1H 18938  2130.0 2140.0 Tep chips
UE2SB-1H 16939 2140.0 2150,¢0 Tep cthips
UE25B-1H 16940  2240.0 2250,0 Tep chips
UE25B-1H 16941  2280.0 2250.9 Tep chips

RIS IECN BRI BEIN RIS 3

UE25B-1H 17785  3184.7 3185.5 Tet core K Y cal #2vas
UE25B-1H 17756  3195.3 3196.,2 Tet core bt
UE2SB-1H 17757 3208.3 3209.0 144 core Y cal vas
UE2SB-IH 17758 3214.0 3214,7 et tore A i
UE25E-1H 16847  3550.0 3550.8 Tet ccre ¥ Y b
UE25B-1H 16648 3535.2 3556,0 et core Y Y Y cal?vas
UE2SE-IH 16849  3459.5 3640,2 Tet core Y Y Y cal ves
UE2SB-tH 16850  3875.0 3676.0 et core ¥ Y R
UE2SB-IH 16851  3495.0 3695.6 Tet core ¥ Y ]
UE25e-tH 16852  3771.2 317120 et core ¥ Y R lithology siailar to Round Min type il ore
UE2SB-1H 18854  1773.0 3773.5 Tet core Y ¥ K litholegy siailar to Round Ntn type 11 orey photes of gdass py 77
UE25B-IH 16855  3796.0 378¢.8 et core ¥ Y N
UE25B-1H 16856  3795.2 3796.7 Tet cere Y Y Y cal vas
UE2SB-IH 14857  3621.8 3822,4 Tet core Y Y Y disses py in qdeasstpy in lithicsy sinor py in cal wa.
UE2TB-1H 14859  3825.0 3825.7 et core Y ¥ Y  gocd green fluor? + cal vein, poss. fiuid incis.
UE2SE-14  18B80  3935.9 3936.5 Tet??  core ? R Y no py seen; cali? v
UE20B-1H 16881  3959.9 3960.56 Tir core  Y? ? 4§
UE2SB-1# 16862  3985.7 3986.3 ir core Y, arg? N Y «calwn
UE2SE-1H 16853  3999.9 4000.6 Tir core ¥ i K
UE25 Pt 16948 £80.0 £90.0 Tpt chips X 5 ?
UE25 P1 16949 900,¢ 910.0 - " Ipt chips K X ?
525 Py 16950 §20.0 930.0 Tt chips ¥ L ?
25 FL 16951 940.¢ 980.0 Tot chips K 8 ?
Uezd Fi 16952 2870.0 2880.0 Tet? chips ? H ?
UE2S PI 16953 31200 3130,6 Tir chips ? | ?
UE2S P1 16954  3670.0 3860.9 Tot chips ? K ?
JE2S P 16555  3890.0 3900.9 Tot chips ? ¥ ?  ait voic frags, some wipy
UE5 Pt 16956  3320.0  3530.0 7ot chips 7 ¥ 2 zeatas w/drill tool frags
UE2S PL 18957 3930.0 3940.0 ot chips ? i ?
UE25 Py 16958 40e0.0 4070,0 Tot/8ls chips ? Y 7 sized Tot/Sle
UEZS PL 16959 4080.¢ 4030,0 Tot+Pz  chips ? ¥ Y  sized Tot{lpy) + card frags, occais. gio, py vein frags.
Uezs pl 16960  4210,0 4220,6 Tst/Sla chips ? Y ?  aixed, 0¥ Tot w/sparse py
UEZS PL 16961 5450.0 3500.0 Sla chips 7 % Y cal + fluor? was
GE25 Fi 16562 $516.0 5520.0 bra chips ? R Y  csl, flvor, gtz vn frags
UE2S PL 16563  S830.0 5540.6 Sra chips ? ¥ ¥ coastas. «/drill fragsy py vnfvug fragsy fiuer, aL., tal va frags
Ue25 P4 16964 5350.0 5560.0 Sre thipe ? Y7 Y contas x/drill tool frags; disses py; qtz, cal, flusr va frags
Us¥ 81 16898  3218.9 3217.90 jct core 7 b K gy in lithics oaly??
UsH 61 16897 3215.5 3276,95 jct core Y Y ]
Us¥ &1 16900  3238.3 3237.1 Tet core ¥ ¥ N
usd 61 16208  3250.3 3250.6 Tet core ¥ Y N
usk 61 16903  3324.0 3124.9 et cere Y Y N
usw 61 16504  33¢8.2 3368, Tet core Y7 Y ¥
U5K €1 16995  3372.0 3372.4 Tet core Y? ¥ Y  ciszar gtz vn, pyritic lithics ¢ gdess.
us¥ 61 16906 3384,0 335,90 Tet core  §? Y i
ek 61 16907  3392.3 3293.0 et core  ¥? ¥ X ¢y in gd=zs i5a?, good one for 15
usH 64 16857  3393.¢ 3393.8 Tet core Y Y %
Sk 61 16968  3477.0 3478.0 Tet core Y7 b i
Usk 61 16909  2493.0 3494,0 et core  Y? ¥ i
USK 61 16530 3913.3 3516.6 Tet core Y2 Y b
USK 61 16311 E775.4 5776.4 Tot core  Y? K % gocd spec, for 18 to check out alt.

USH &1 16912 57%0.0 5731.9 Tot core  ¥?

=
o
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Table 1, continued

iole #  SHFSpeciD Oepth Top Depth Bot Unit Type Alt?Type  Py? Vns? coasents

ucw 61 16913 5823.0 9824,0 Tot core  Y? i H

UsN 61 16914 5944.7 5847,7 614 core  Y? N N xtal-rich, silky fidsp- get 15 for alt check
usy 61 16815 5860.0 5661,0 Tot core Y? ] ]

USH 51 16916 5879.8 5880.4 Tet core Y? K N

usw 82 16864  1674.1 1675,1 Tpt core  ¥? K R incipient alt?? in vit ?2?

usH 62 16865  1890.2 1690.8 Tt core ? K R incipient arqillic alt.??

UK 62 16866 1700.0 1700.6 st core  ? N incipiest arg. alt.?

usy 62 1£667  2Z80.2 280.8 Trc core ? Y  silica vns

UsH 62 16868 2306.3 2307.2 Tre core ? K

USK 62 16869  3105.0 3105.9 Tep core ? Y silica vns

usk 62 16870 3313.0 UL Teb core R N fresh? dense Tcb- possibie basaline oc
US¥ 62 16871 3428.0 3421,0 Tcb ccre  ? Y  Mnox-filled fracture/vein

usH 62 16672 3445.9 3447.1 Teb core  ? K

Uk 62 16873 3935.0 3935,7 Tet core Y N

us¥ 62 16874  3049.8 3450.5 et core  Y?

Usw 62 16878  3588.0 3568.8 Tct core Y

USH 62 16876  3985.0 3986.0 Tet core ¥ arg. alt?, dark, pheno-rich subunit, lower Tct
USW 62 16877 39514 3992.4 Tet ccre  Y? arg. alt? propylitic?

usk 62 16876  4188.3 4183.0 r2 core  Y? propylitic? alt. welded tuff

UsK €2 16879  4192.4 4193.0 Tir core ? ? clay/FeBx shear? bands, prev. glassy?

Us% 62 16850  4202.0 4202,7 Tir core 7 prop. alt? prev. glssy dense ash-flox tuff
UsK 62 16861  4204.4 4205.2 Tir core ? prepylitic alt?

USH 62 16862  4219.0 42147 Tir corer Y? propylitic alt?

Usw 62 16383 42773 4278.0 Tir core  Y? propylitic alt?, py??

UsK 62 {6084 €251, 4252,0 Tir tore Y2

UsK 62 16863  4303.0 4306.0 ilr core {?
sk 62 16866 5207.0 5207.7 | it core  Y?
Usw 62 16887  5232.9 5233.7 ir1 corg ¥
154 62 14888 254.0 5255.0 hig! core ¥
JSH 82 16889  5280.¢ 5280.6 Tri core ¥
usk 52 16890  5263.¢0 52640 ir1 tore Y,prop
ysh €2 16691 S644,0 Sa43, Trituff core Y¥%rop
ueR 52 16892 Sebt.0 9685.0 Tritutf core  Y2prop
Us4 &2 16893 5670.5 5671.3 Tri tore  Yiprop
4R 62 16698  T8BAL3 5685.3 Tri core  Y7prop
sk 62 16895  5697.0 $698.0 irt core  Y7prop
Use 82 1689 S711.9 5712,7 rd core  Y¥rop
UK 87 16930  4852.9 4654.5 ir core  Y2prop
Usk 63 16532 4754.7 4755.5 ilr core  Ylprop
usk 82 18933 4790.0 £730.7 Tir core  Y?prop
LEH 63 16934 4805.0 4803.7 fir tore  Y%prop
UsH 63 16935 4216.7 4817.4 Tir core  YZprop
sy 63 16936  4B28,0 4826.7 ir tore  Ylprop
USE 6U3 16924 $041.0 10417 Tpt core N
USH BU3 16527 11854 118¢,2 Tpt core K

w3y

cal-silica-chlor vas, hydraulic/hydrothersal? brecc vns; sparse py

-3

propyl. alt, cal-chlor-silica vns., sparse py
fault shear surfaces,shesred cal4graciay? va
propylitic? alt welded tuff

propylitic? ali. welded iuff

propylitic alt? lava

propylitic alt? lava; cal vas

3l vns

cal vns

py in lithics and gles

¥. sparse py in & few lithics; good satch for Round Hin ivpe 11 ore
v. sparse py in a few lithics; good satch for Round Mtm type 11 ore
v. sparse py in a few lithics; oood satch for Round Nin type II ore

cal vns
did ot receive part of core interval wmith vein

zzzzzzzzzzzzz-a-c-c-<-<:r.='.z:—.:r.:r.-:::::’-<-<-<-<=:zz==::=r:::=r.z:=:z=:r.=:z:=:x::=zz
e SE X E IR IR E <€ € € IR S NN e n - o SESE SN SE IR SE < SE SR DR X SR

UsH 613 16529 1229.4 1230.4 Tt core M K fresh Tpt vit for poszible baseline gc

Us# K3 16542 3340.0 3350.0 %7c?  chips X ]

usy #3 16943 3990.0 4000,0 ?Mc?  chips N N

yzz5 Al 16917 21153 2145.9 Tep core Y? Y  yellex-green fracture coating; SEM-EDY shows no As, U or irace setals
UE25 AL 16918 2115.8 2117.2 Tep ccre Y2 H oot whal we requested, incipient alt. vit??

U225 At 16919 2123,¢ 2123,7 Tep core Y7 Y arg alt?; sisilar to Rawhide oxide ore; silica vas

UE2S &1 16920 2133.5 2134,9 Tep core  Y? ¥?  arg alt+clay-zecl-wad fracture filling; sisilar to Rawkice oxide ore
Uezs & 16921 Z1E7.4 2188.1 Teo core  Y? K silicified? glassy tuff7?

UEZS Al 16922 2478.1 2478.7 It core  Y? % wk arg. alt plag, bio v. ex; streng v.p.??

UEZS A1 16923 2495.5 2496.1 cb core  Y? N arg. alt? v.p., fauit surfaces

UE25 #i4 16944 35%.4 366.2 Tet core K %  delicate carb xtals liniag relict v.p. puzs
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Table 1, continued

Hole 3 GNFSpec1D Depth Top Depth Bot Unit Type Alt?Type
UE2S A4 16945 36b.3 38,7 Tpt core K

UE25 A4 16946 3661 385.5 Tt core K

UE2S A4 16947 398.2 359.0 Tpt core M

UE25 Ct 20064 2783.0 2784.0 Te core  arg?4Fecx
UE25 €2 20065  2£88.1 2688,5 Te core arg?+Feox
UE2S C2 20066 2830C.0 2840.0 Tc chips arg?

UE2S €2 20067  2900.0 2910,90 Tc chips arg?
UE25 £3 20068 2509.¢ 29005 Te cere  arg?+4Feox
UE2S €3 20069 2902.2 2803.0 1 tore arg?+Feox
UE25 €3 20070 2821,3 2821.8 Tc core arg?+Fecx

SMFSpecID = sample identification number assi
Management Facility, Area 25, Nevada Test Site.

Depth top and D

sample interval.

Py? Vns?
N R
K N
N Y
N Y
N A
N Y
N Y
N Y
X Y
R N

cosaents

caliche in relict v.p. puas; contan w/coppery setallic drill lute
iresh devitiv.p.; ainor caliche

drusy ¢al vn and cal-cesented brecc, fault surface

rubble zone frags containing hydraulic/hydrotherssi? breccia veins
strong reddish Feox stain

bleached, Feox hydraulic/hydrothersal? breccia vas

breccia veins as in 200845 bleached, bio fresh

breccia veins, clear calcite and dark grey calcite veins

breccia vas, fluor cubes lining cavities, vig §tz+{1? vas, ac efferv,
bleached to sustard color

gned to each interval by staff of the Sample

epth Bot refer to the depth in feet from the surface to the top and bottom of each

Srm = Roberts Mountain Formation, Slm = Lone Mountain Dolomite; Tot = pre-Lithic Ridge sequence of ash-flow

and bedded tuffs, Tr1 = pre-Lithic Ridge silicic lavas, Tlr =

Prow Pass members of the Crater Flat Tuff, respectively;

of the Paintbrush Tuff.

Lithic Ridge Tuff; Tct, Tcb and Tcp = Tram, Bullfrog and
Tc = Crater Flat Tuff undivided,; Tpc = Tiva Canyon Member

py = pyrite, fluor = fluorite, cal = calcite, qtz = quartz, vns = veins, alt = altered, mod = moderately, dissem =
disseminated, gdmss = groundmass, arg = argillic, carb = carbonate, v.p. = vapor phase, pums = pumice(s), brecc =
breccia.
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Table 2. Precious Metalg and Iﬁ&icator-Element Abun‘da-rilces in Core

Ag and Au values given in
Hole # SMFID#Unit Py?  Vns? Comments . Ag Au
UE25B-1H 16854 Tt Y N lithology similar to Round Mountain type I ore. 380 0492
UE25B-1H 16855 T Y N ) 345 0233
UE25B-1H 16856 Tt Y Y cal vns, 379 <0.200
UE25B-1H 16857 Tct Y Y cal vns; dissem py in groundmass and in lithics; minor py in cal vn. 337 0230
UE25B-1H 16859 Tct Y Y cal + green to clear fluor?? vein, possible fluid inclusions. 34.1 0.596
UE25B-1H 16860 Tct? N Y cal + green phase in vn; no py seen. 333 0.324
. YMX-2 (blind duplicate 16860) 40.1 1.10
UE25B-1H 16861 Tir ? N 286 <0.200
UE25B-1H 16862 Tir N Y calvn. 336 0230
UE25P1 16954 Tot N ? 411 0360
UE25P1 16955 Tot Y ? alt volc frags, some w/py. 271 <0.198
UE25P1 16956 Tot N ? alt Tot, no py seen, contains drill tool fragments. 296 <0.197
UE25P1 16958 Tot Y ? mixed Tot/SIm. 540 0519
UE25P1 16959  fault? ? ? 93.0 213
UE25P1 16960 Tot/SImY ? mixed Tot/SIm, 90% Tot fragments contain sparse py. 298 <0.198
UE25P1 16961 Slm N Y cal + fluor? vas. 913  0.794
UE25P1 16962 Sm N Y cal+fluor?+qtz? va fragments. 513 <0.196
YMH-X5 (blind dup. 16962). 547 <0.199
UE25P1 16963 Sm Y Y contains drill tool fragnients; py and fluor vn or vug fragments. 1390 4.83
16963B* (powder from 2nd split of chips; 5 gram GXPL). 1730 7
UE25P1 16964 Sm Y Y qtz, py, fluor? vas + dissem py, contains drill tool fragments. 492 0.328
USWG1 16904 Tt Y N 418 <0.196
USW Gl 16905 Tect Y Y clear qtz vn; pyritic lithics and groundmass. 39.1 2.72
USWG1 16907 Tet Y N pyritic lithics and groundmass. . 36.7 0.396
USWG1 16914 Tot N N xtal-rich, milky feldspar phenocrysts. 333 0.327
UsSWG2 16871 Tcb N Y Mn-ox filled fracture. ) 148 147
16871 (second split of original powder)
USW G2 16887 Trl Y Y propylitic alt, cal-chlor-silica vns., albitized feldspar phenos. 284 0332
USWG2 16888 Tr1 N Y as above 262 <0.197
UswW G2 16889 Tr1 Y Y as above 287 0232
YMX-1 (blind duplicate 16889) 349 114
USW.G2 16890 Trl N Y fault surfaces, sheared cal+green clay? va. 279 <0.198
USW G2 16895 Trl1 N Y cal vns. 430 0360
USW G2 16896 Tri N Y cal vns. 386 <0.197.
USWG3 16932 TiIr Y N py in lithics and groundmass. 36.7 <0.198
X-1 (blind duplicate 16932 for Hg by AA)
USWG3 16933 Tir Y N very sparse py in few lithics; lithology similar to Round Mintype II. 367 <0.194 ;
UswG3 16934 Tir Y N v. sparse py in few lithics; good match for RM typell ore. 402 0328
USW.G3 16935 TIr Y N v. sparse py in few lithics; good match for RM typellore. ... 413 0329
USW G3 16936 Tir ? N 344 <0199
UE25CL. 20064 Tc N Y rubble zone fragments w/breccia veins. 85 <0.198
UE25C2 20065 Tc N N strong reddish Feox stain. 65 0295
UE25C2 20066 Tc N Y bleached, Feox breccia vas. 124 <0225
UE25C2 20067 Tc N Y bleached, breccia veins as in 20064; biotite fresh. 10.1 0.276
UE25C3 20068 Tc N Y breccia veins, clear calcite+dark grey calcite veins. 125 0328
UE25C3 20069 Tec N Y breccia vns; fluor+montmorill. in cavities; vig qtz+fluor? vns, nocal.  21.1 0.395
20069R (2nd analysis of powder from original split of 20069) . 100 <0.199
X2 (blind duplicate 20069 for Hg by AA)
20069B (powder from second split of 20069 excluding cut surfaces) 99 <0.199
YMH-X4 (blind duplicate 20069B) - 104 <0.198
UE25C3 2000 Tec N N bleached to mustard color. 45 0261
Fresh tuff reference samples
BMCF-D Tcb mod. welded, devit; S end Yucca Mtn NW of Lathrop Wells cinder cone. 10.1  <0.199
3SW-589 Tpc fresh, dense, devit, minor caliche in lithophys.; Exile Hill. 9.7 0.265
YMH-X3 (blind duplicate 3SW-589) 131 <0.198
X-3 (blind duplicate 3SW-589 for Hg by AA)

SMF ID # denotes sample identification assigned to each interval by staff of Sample Management Facility, Area 25,
Nevada Test Site; ID numbers beginning with YM and X were assigned by Task 3 to denote blind duplicates.

Srm = Roberts Mountain Formation, Slm = Lone Mountain Dolomite; Tot = pre-Lithic Ridge sequence of ash-flow and
bedded tuffs, Trl = pre-Lithic Ridge silicic lavas, Tlr = Lithic Ridge Tuff; Tct, Tcb and Tcp = Tram, Bullfrog and Prow
Pass members of the Crater Flat Tuff, respectively; Tc = Crater Flat Tuff undmded,, Tpc = Tiva Canyon Member of the
Paintbrush Tuff.




and Rotary Cuttings Samples from the Subsurface of Yucca Mountain
wpb, all others given in ppm

As Bi Cd Hg HgAA Sb Se Te Cu Mo Pb Zn n

42 0451 0202 0066 0023 <005 035 0208 28 038 135 374 <0492
48 0554 0132 0063 0022 022 0456 0413 33 047 170 370 <0.500
78 0442 0118 0068 0037 023 0416 0428 35 033 158 384 <0.500
52 0450 0196 0078 0021 <005 0556 0268 32 069 141 382 <0493
79 0445 0.118 0080 0024 <005 0464 0202 3.1 027 165 39.7 <0496
07 0182 0324 0153 0106 <005 <0243 <0049 58 023 7.7 541 <0486
<075 0167 0355 0142 nd <015 <0753 <0151 65 041 79 532 <151
05 0183 0082 0060 0040 0.14 <0250 0112 24 023 87 414 <0500
03 0057 0037 <0020 <0010 <005 <0246 <0049 09 <002 80 364 <0493
52 01s6 0320 0140 0120 <007 <0338 <0068 1.7 118 149 308 <0.675
27 0154 0089 0053 0038 042 <0248 0085 26 079 226 125 <0495
34 0105 0082 0039 0022 0.52 <0.247 0062 17 062 141 21 <0493
478 0123 0127 0092 0.061 1.84 <0243 0055 1.6 286 117 294 <0487

rography for all elements except Au
all other analyses used 15 gram
ded to nearest 0.1 ppm, and Mo

632 0051 0253 0129 0136 039 <0242 <0048 14 132 56 425 <0484 &
143 0164 0107 0060 0027 114 <0247 0157 14 082 130 215 <0.4% e
97 <0050 0035 0056 0046 -135 0268 <0050 1I 219 19 128 <049% 8€8
37 <0049 0030 0025 0031 077 0363 <0049 08 192 23 117 <0489 &8 o
39 <0050 0031 0031 nd 086 0318 0065 09 178 23 118 <0498 g 8 &
259 192 0469 0585 nd 127 0687 0091 386 208 900 227 244 2355
382 165 0208 0815 0714 201 138 <0526 649 286 1358 304 305 2 e
45 0053 0037 0051 0051 123 <0246 <0049 16 162 97 15 <04% 554
80 0340 0079 0073 002 015 0404 0439 43 037 161 212 <0491 22
68 0427 0173 0070 0023 <005 0526 0206 39 064 183 379 <0486 gy =
84 0381 0224 0069 0016 <005 0687 0325 47 068 150 374 <0495 e
26 0070 0045 0054 <0010 <005 <0245 <0049 20 <002 101 573 <0490 g 5E
18 <0049 0416 0649 078 531 <0246 <0049 17 046 95 368 <0491 =8 g
0.681 2
688 <0050 . 0.100 0192 0118 <005 <0249 <0050 39 059 121 501 <0498 g8g2
852 0064 0119 0220 0152 040 <0247 0073 35 116 172 819 <049 2383
471 0081 0126 0220 0123 <005 <0248 <0050 31 205 169 52 <0497 g &g
S0 <0132 0132 0188 nd <0132 <066 <0132 35 22 165 518 <132 558
386 <0050 0163 0081 0037 034 <0248 0067 37 018 223 838 <049 2%
16 <0049 0092 0061 0016 017 <0246 0067 126 018 93 768 <0491 259
05 <0049 0100 0178 0021 <025 <0246 <0049 112 <002 72 788 <04%2 £ 28
15 019 0153 0078 0046 <005 <0248 <0050 18 0.I3 93 127 <04% 3's g
0.050 20
13 0152 0071 0091 0063 011 <0243 0130 10 030 105 328 <0.486 S K
12 0268 0215 0110 0079 <005 <0246 <0049 17 015 106 317 <0492 g w8
L1 0177 0144 0111 0066 <005 <0247 <0049 16 012 108 298 <0493 £38%
11 0179 0077 0053 0046 024 <0249 0115 17 029 148 277 <0498 582
181 0106 0119 0042 0033 151 <0247 <0049 08 125 99 406 <049 = E m
55 1110 0050 <0020 0017 <005 <0246 0083 05 <002 139 170 <0491 =SS
224 0122 0057 0026 0018 372 <0282 <0056 06 88 62 93 <0563 525
204 0277 0120 0050 0021 047 <0345 <0069 08 125 65 273 <0689 Z B
774 0163 0292 0075 0062 149 <0246 <0049 06 098 109 391 <0491 gES
343 1970 0083 0153 0045 337 <0247 0134 05 193 111 208 <049 2 =8
377 1240 0092 0113 0045 367 <0249 0188 07 207 113 236 <049 528
0.050 28 a
23 0674 0067 0065 0030 235 <0248 009 04 110 92 193 <0497 < § 2
227 0744 0066 0064 0045 23 <0248 0107 06 109 90 191 <04% mS5
353 <0.049 0063 0041 0058 467 <0244 <0049 07 029 28 128 <0489 S5S
Fresh tuff reference samples L
53 <0050 0062 0024 0013 026 <0249 0055 10 136 20 479 <0497 g29
27 <0050 0037 <0020 0015 <005 <0249 <0050 14 089 49 490 <0497 ek
26 <0049 004 002 004 012 <0247 0053 12 064 45 505 <0455 GED

to nearest 0.01 ppm. Number of significant figure does not indicate precision or accuracy of analyses.

py = pyrite, fluor = fluorite, cal = calcite, qtz = quartz, vns = veins, alt = altered, mod = moderately, dissem =
disseminated.
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not determined.

HgAA = analyses carried out by the Nevada Mining Analytical Laboratory using hydride <generator type atomic absorption methods,

M. O. Desilets, analyst.
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Table 3. X-Ray Fluorescence Analyses of Rocks of the Mount Jackson Dome Field
major elements given in weight percent, minor elements in ppm

Sample # 383A 383A* 383B 385 387 387* MIJ-SE MI-W DWLJ-1

SiO2 75.6 729 74.4 74.5 72.6 72.8 67.0 65.6 746 -

AlO3 12.6 122 12.4 121 12.7 12.7 144 152 12.8

MgO 0.20 0.24 0.23 0.18 0.19 0.18 0.72 0.87 0.11

CaO 0.66 1.52 0.79 0.82 0.76 0.85 2.49 2.92 0.70

Na0 4.26 4.03 4.08 4.06 4.05 4.06 3.70 4.14 3.74

K20 4.48 4.53 4.56 4.25 4.85 4.83 4.16 3.77 4.55

P20s 0.02 0.04 0.03 0.03 0.02 0.02 0.11 0.12 0.02

TiO2 0.161 0.141 0.145 0.131 0.135 0.127 0.380 0367 0118

MnO 0.08 0.08 0.08 0.08 0.08 0.08 0.06 0.06 0.07

Fe;03 0.97 0.83 0.87 0.84 0.92 0.87 2.13 2.30 0.58

Cr -10 13 -10 -10 -10 -10 -10 -10 -10

Rb 172 189 187 316 157 159 - 138 95 237

Sr -10 -10 -10 19 13 21 715 971 -10

Y 27 34 28 42 -10 16 14 -10 14

Zr 119 112 114 100 129 102 162 130 93

Nb 35 S0 47 73 32 33 39 30 40

Ba 31 57 63 91 77 72 1230 1650 41

LOI(%) 0.85 2.65 2.10 2.80 2.95 3.00 2.90 2.95 220

SUM(%) 99.9 99.2 99.7 99.9 99.3 99.6 983 98.6 99.5
Analyses Recalculated "Anhydrous™

Sample # 383A 383A* 383B 385 387 387* MI-SE MJ-W DWLJ-1

SiO, 76.2 74.9 76.0 76.6 74.8 75.1 69.0 67.6 76.3

AO3 12.7 12.5 12.7 124 131 13.1 14.8 15.7 131

MgO 0.20 0.25 0.23 0.19 0.20 0.19 0.74 0.90 0.11

CaO 0.67 1.56 0.81 0.84 0.78 0.88 2.57 3.01 0.72

NayO 4.30 4,14 4.17 4.18 4.17 4.19 3.81 4.27 3.82

K20 4.52 4.65 4.66 4.37 5.00 4,98 4.29 3.89 4.65

P20s 0.02 0.04 0.03 0.03 0.02 0.02 0.11 0.12 0.02

TiO2 0.162 0.145 0.148 0.135 0.139 0.131 0.392 0378  0.121

MnO 0.08 0.08 0.08 0.08 0.08 0.08 0.06 0.06 0.07

Fe,03 0.98 0.85 0.89 0.86 0.95 0.90 2.19 2.37 0.59

Cr -10 13 -10 -10 -10 -10 -10 -10 -10

Rb 173 194 191 325 162 164 142 98 242

Sr -10 -10 -10 20 13 22 737 1007 -10

Y 27 35 29 43 -10 16 14 0 14

Zr 120 115 116 103 133 105 167 134 95

Nb 35 51 48 75 33 55 40 31 41

Ba 31 59 64 94 79 74 1267 1701 42

See Figure 7 for sample locations. All samples contained small amounts of secondary carbonate
minerals (caliche). To minimize the CaO contributed by caliche, most samples were crushed to -20
mesh and leached for 10 minutes with 5% acetic acid in a sonic cleaner. * indicates samples not
leached in 5% acetic acid. Total iron as Fe,Os.

Analyses carried out by XRAL Ltd., using fused disk (lithium metaborate flux) X-ray fluorescence
methods.
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pection by Task 3 and numerous published reports

Los Alamos National Laboratory.

Data from direct visual ins

Subsurface stratigraphy and hydrothermal alteration features of deep drill holes in Yucca
of the U. S. Geological Survey and the

Mountain.

Figure 1.



Figure 2. Pyrite in lithic fragments and groundmass of the Tram Member of the Crater Flat Tuff
from drill hole UE25-B1H, SMF sample # 16954, including both disseminated and vein
pyrite. p = pyrite, G = groundmass, L = lithic fragment.
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Figure 3. Poorly formed pyrite in the groundmass of the Lithic Ridge Tuff from drill hole USW-G3.
a) SMF sample # 16935. b) SMF sample # 16932. p = pyrite, goe = goethite.
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Figure 4. Disseminated pyrite in altered silicic lava from drill hole USW-G2, SMF sample # 16887.

a) large, inclusion-bearing, pitted to seived, subhedral pyrite grain. b) small subhedral
pyrite grains and larger, anhedral skeletal grain. p = pyrite




Figure 5. a) Partial sulphidation of biotite phenocryst in the Lithic Ridge Tuff from drill hole USW-
G3, SMF sample # 16932. b) pyrite rimming and within clay altered pumice fragment in
the Tram Member of the Crater Flat Tuff from drill hole UE25-B1H, SMF sample
#16859. p = pyrite.
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Figure 6. Pyrite in groundmass (a) and porous lithic fragment (b) of the Tonopah Summit Member
of the Fraction Tuff (Bonham and Garside, 1979) from the Belcher Divide mine, Divide
mining district, Esmeralda County, Nevada. Note anhedral, pitted and ophitic to wormy
morphology of the pyrite. p = pyrite, G = groundmass, L = lithic fragment.
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Figure 7. Oxidized Crater Flat Tuff with iron-oxide cemented breccia vein, S
drill hole UE25-C3.
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The initial gold contents of silicic volcanic rocks

Katherine A. Connors, Donald C. Noble,
Mackay School of Mines, University of Nevada-Reno, Reno, NV 89557

Steven D. Bussey
Western Mining Corp., (USA), 240 S. Rock Blvd., Suite 137, Reno, NV 89502
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Mackay School of Mines, University of Nevada-Reno, Reno, NV 89557

ABSTRACT

Fresh silicic volcanic rocks have markedly lower initial gold contents than would be
inferred from much of the geochemical literature. The great majority of 129 carefully selected
glassy silicic volcanic rocks analyzed contain less,than 1.0 ppb, and many contain only < 0.1
to 0.3 ppb Au. Nonperalkaline rhyolites contain <0.1 to 0.7 ppb, mean 0.22 ppb Au; of these,
highly evolved, high-silica subalkaline and peraluminous rhyolites have the lowest Au con-
tents. Peralkaline and iron-rich subalkaline rhyolites have higher gold contents of 0.2 to 4.5
ppb, mean about 1 ppb. The mean of 23 relatively silicic intermediate rocks is 0.54 ppb Au,
with tholeiitic andesites (icelandites) generally higher in gold than calc-alkalic types. Funda-
mental controls on the initial gold content of silicic volcanic rocks appear to be melt structure
and petrologic affinity; regional setting is less important. High-silica nonperalkaline rhyolite
melts apparently do not readily accommodate gold, whereas crystal fractionation appears to
increase the gold concentration in less-polymerized peralkaline melts. Bulk composition and
melt structure, and the amount and timing of separatiofl of vapor, mineral, and sulfide or
metal melt phases, may largely determine the gold content of silicic magmas on eruption.
Silicic and intermediate volcanic rocks, particularly high-silica nonperalkaline rhyolites,
appear to be less favorable sources of gold for hydrothermal mineral deposits than crystal-
lizing magmatic bodies or other, more gold-rich, rock types. Although iron-rich rhyolites may
have contributed to development of certain deposits, factors other than associated volcanic

rock type appear to be more impoﬁant in determining gold availability to hydrothermal N

systems.




INTRODUCTION

There are remarkably few reliable data on the gold contents of fresh volcanic rocks in
view of the importance of gold in the mineral industry, the intimate association of several types
of gold deposits with high-level magmatic activity, the fact that many precious metal deposits
are hosted by volcanic rocks, and the availability of analytical techniques for determining very
low concentrations of gold. We have measured the gold contents of a variety of fresh, glassy
volcanic rocks, most of silicic composition, with the principal objectives being to: 1) better
define the range of initial gold contents, 2) determine if gold content is related to petro-
chemical type and degree of differentilation/evo]ution and, 3) determine if rocks of areas with
different geologic setting and history have significantly different gold contents. Our findings
bear on problems of geochemical exploration, the genesis of hydrothermal precious-metal
deposits, and more general petrologic and geochemical questions.

The average gold content of felsic voleanic rocks is commonly given as between 2 and 4
ppb (Table 1). Work by Gottfried et al. (1972) and Bornhorst et al. (1986) suggests consider-
ably lower values, of about 0.1 to 2.0 ppb, for generally fresh silicic and intermediate volcanic
rocks. Our ongoing studies (Connors et al., 1990, 1991) have produced a body of data showing
that rocks careful selected to represent initial gold contents typically contain less than 1 ppb
Au, and in many cases 0.1 ppb or less.

Crocket (1991), who gives an average of 1.55 ppb for silicic volcanic rocks, based in
large part on data sets that include numerous individual values much higher than any observed
in the above studies, notes that "the lowest gold contents in felsic volcanics are from the west-
ern US localities (Gottfried et al., 1972), where averages of <1 ppb apply". Interestingly, these
values of <1 ppb were common in the one study that carefully documents preparation and
analysis. All other felsic volcanic suites included by Crocket are of pre-Cenozoic age, from the
former Soviet Union, and give averages of >1 ppb Au. Indeed, rocks from one region have an
average value of 9.6 ppb with a range of 1.5 to 22.5 ppb. Crocket (1991) suggests that the low
gold contents found in the western U.S. may reflect regional variation or analytical bias at these

very low gold concentrations. We believe that the average of 1.55 ppb given by Crocket (1991)




is stfongly influenced by the relatively high averages for suites of samples to which gold has
been added by groundwater and/or hydrothermal solutions.
Sample Selection, Preparation and Analysis

Many factors influence the initial gold content of volcanic rocks. These include: 1) gold
content of the original source material(s), 2) degree of partial melting and other aspects of
magma generation, 3) magma differentiation, mixing and assimilation, and 4) magmatic out-
gassing at depth and on eruption with possible fractionation of gold into the vapor phase.
These factors are presently difficult to quantify. Careful sample selection can, however, mini-
mize or eliminate changes resulting from loss, migration, and/or addition of gold during pri-
mary crystallization, or later by circulating hydrothermal fluid or groundwater.

Glassy volcanic rocks, unlike plutonic and crystallized (devitrified) volcanic rocks, are
essentially unaffected by circulating fluids during crystallization and cooling, and therefore
more closely represent the composition of the magma upon eruption. Halogens and many
other elements may be lost from silicic melts and volcanic rocks before, during or shortly after
primary crystallization (e.g., Noble et al.,, 1967; Haffty and Noble, 1972; Stuart et al., 1983;
Webster and Duffield, 1991). Studies of fumarolic gases and precipitates (e.g., Symonds et al.,
1987; Anderson, 1991) suggest that gold and many other metals may be removed, transported
by high-temperature magmatic gases, and concentrated in fumarolic encrustations, including
those of "rootless" systems such as the hot pyroclastic flows of the Valley of Ten Thousand
Smokes (Zies, 1929; Papike et al,, 1991). Keays and Scott (1976) demonstrated that gold is
largely lost from fresh, crystallized interiors of ocean-ridge basalt pillows relative to their glassy
rims, suggesting crystallization makes gold readily available to solution mobilization. More-
over, devitrified and vapor-phase crystallized silicic volcanic rocks are more readily subject to
the addition of various elements, presumably including gold, both during crystallization and
from groundwater after crystallization, because of their porosity, the great surface area of the
finely crystalline groundmass material and the presence of iron oxides, etc.

For these reasons we have used glassy rocks in preference to primarily crystallized
(devitrified) specimens to minimize the effects of possible post-eruption loss and addition of

gold. Nonhydrated glassy specimens, which have behaved as completely closed systems since




cooh:ng (Rosholt et al., 1971), were used wherever possible. Where such materials were not
available, dense hydrated glassy rocks (vitrophyres) free of observable alteration were ana-
lyzed. Because of the ubiquity of gold in the home and laboratory, special care was taken to
avoid contamination during sample collection and preparation.

Gold contents were determined by XRAL Activation Services, Inc. using procedures
similar to those of Rowe and Simon (1968). Neutron activation was done prior to fire-assay
collection of gold to eliminate contamination during the fire-assay procedure. Two grams of
sample, instead of one as generally used, were analyzed to decrease the effects of sample
inhomogeneity and to slightly lower the nominal detection limit of 0.1 ppb. Analyses of a single
split of U.S.G.S. standard RGM-1 gave values of 0.61 and 0.67 ppb Au; these agree well with
values of from 0.4 to 0.8, mean 0.6 = 0.05 ppb for three runs on each of six splits of RGM-1
reported by Gottfried et al. (1972). Ten samples were run twice, and most results agreed
within 0.1 ppb. A nonhydrated comendite glass analyzed 14 times between August, 1990, and
January, 1992, yielded values of from 0.9 to 1.1 ppb Au. Petrochemical affinity was inferred
from petrologic and major and minor element data. )

RESULTS

A total of 129 samples of tuff and lava, largely from the Great Basin of the western
United States, were analyzed. Most were from various centers in southern and northwestern
Nevada. Samples also include rocks from the Long Valley and Little Walker volcanic centers,
and various centers in the eastern Great Basin, as well as specimens from other regions,
including Idaho, Colorado, Ethiopia, Mexico, Peru, and Japan.

Our data indicate that the great majority of silicic volcanic rocks have very low original
gold contents (Fig. 1). Most contain considerably less than 1 ppb gold and many, particularly
" very highly evolved, high-silica subalkaline and peralumiﬁous rhyolites, contain 0.1 ppb or less.
Subalkaline high-Si rhyolites, which have low Ca and Fe, have extremely low gold contents,
most between <0.1 and 0.3 ppb (Figs. 1A, 2A). The mean and median of 23 samples are about
0.2 ppb and the maximum is 0.6 ppb. Eight peraluminous (S-type and topaz) rhyolites also
have uniformly very low gold contents of <0.1 to 0.5 ppb with mean and median values of 0.15

and 0.1 ppb, respectively (Fig. 1A, 2A). This suite includes samples from Spor Mountain and
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the Honeycomb Hills in west-central Utah (Christiansen et al., 1986) and aluminosilicate-
bearing ash-flow tuff and Macusani glass from southeastern Perti (Noble et al.,, 1984), which
contain very high contents of such elements as Li, Rb, Cs, F, Ta, and Nb, but only 0.1-0.2 ppb
Au, Low- to medium-silica subalkaline rhyolites, which are less evolved and have higher Fe
and Ca have only slightly higher gold contents of from <0.1 to 0.8, mean 0.26 ppb (Fig. 1B, 2B).
Iron-rich subalkaline rhyolites (tholeiitic or ferrorhyolites - filled symbols on Fig. 1B) have gen-
erally higher gold contents of from 0.4 to 0.8 ppb. '

Peralkaline rhyolites contain appreciably more gold. A suite of 37 samples ranges from
0.2 to 4.5, average 1.0 ppb Au (Fig. iC). However, there is no obvious correlation between
degree of peralkalinity and gold content. The highest gold values (4.5 and 3.2 ppb) obtained are
from slightly peralkaline comendites, whereas pantellerite glasses from Ethiopia and southern
Nevada, the highly peralkaline samples, contain only 0.2 ppb and 0.6 ppb Au, respectively.

The silicic rocks can be divided into distinct high- and low-gold groups (Fig. 3). The
low-gold group includes subalkaline and peraluminous rhyolites with various silica contents and
degrees of evolution (Fig. 3A), which have from <0.1 to 0.7 ppb, average 0.22 ppb Au. The
high-gold group includes the peralkaline rhyolites and the iron-rich, nonperalkaline rhyolites
and dacites, with Au contents between 0.2 and 4.5 ppb. More than 30 percent of the peralka-
line rhyolites have gold contents of 1.0 to 4.5 ppb and 70 percent have 0.6 ppb or more Au.
Even the average for the high-gold group of 0.96 ppb Au is much lower than the commonly
cited average gold content of silicic volcanic rocks of 3-4 ppb. It should be specifically pointed
out that our sampling has markedly overemphasized peralkaline rocks relative to their abun-
dance in nature, and unweighted averaging of our entire data set would produce an overesti-
mation of the average initial gold contents of salic volcanic rocks.

The mean and median of 0.54 and 0.4 ppb Au respectively for 23 relatively silicic inter-
mediate rocks (Fig. 1D), are slightly higher than those for subalkaline and peraluminous silicic
rocks. The higher gold concentrations are generally found in rocks with tholeiitic affinity, with =
iron-rich tholeiitic andesites (icelandites) being somewhat higher in gold than calc-alkalic types
(Fig. 1D). Five specimens of icelandite from the McDermitt caldera complex (Wallace et al.,

1980) and three specimens from the High Rock Canyon icelandite-ferrodacite field, northwest-




ern Nevada, have a mean value of 0.8 ppb. Similar relatively high gold contents have been
found in the Fe-rich differentiates of Tertiary basalts in Iceland (Zentilli et al., 1985).
Correlation Between Petrochemistry and Gold Content:

There is a general trend of increasing gold with increasing iron but iron content alone
does not allow prediction of the gold content of a rock. A better correlation is obtained when
both Ca and Fe are used. Figure 2 is the same type of plot used by Warshaw and Smith (1988),
but with logarithmic axes to better display samples with low Fe and Ca. The diagrams show a
distinct division between rock types, with a general increase in gold content with increasing
FeO/CaO. The subalkaline and peraluminous rhyolites plot in the lower portion of the dia-
gram, and the peralkaline rocks in the upper left, reflecting their higher iron contents and
higher Fe/Ca ratios. Warshaw and Smith (1988) demonstrated a general trend of decreasing
JfO27 with increasing FeO/CaO; the importance of low fO5 in stabilizing gold in melts can be
inferred from the higher gold contents of the peralkaline and tholeiitic subalkaline rocks.
When evaluated in detail, relations may prove more complicated. For example, the composi-
tionally complex Summit Lake Tuff in NW Nevada (Noble et al., 1970) shows no simple rela-
tionship between major element chemistry and gold content. ‘
Regional Variations in Initial Gold Content

The gold contents of the silicic volcanic rocks analyzed in this study are consistently low,
irrespective of geographical location. The gold contents of specimens from Colorado (0.5 and
0.1 ppb), Mexico (0.08 and 0.16 ppb), Peru (9 rocks with Au from 0.1 to 1.2, avg. 0.4 ppb),
Japan (0.36 ppb) and Ethiopia (0.2 ppb) correspond well with samples of similar composition
from the western U.S. (both this study and Gottfried et al.,, 1972). The data give no indication
that the low gold concentrations seen in the western United States are a regional phenomena
as suggested by Crocket (1991).

Sample suites from northwest Nevada and the Southwest Nevada volcanic field provide
a measure of the influence of differences in regional geology on gold contents. Sr and Nd iso- N
tope data suggest that volcanic rocks in northwest Nevada have little or no crustal component
(Tegtmeyer and Farmer, 1987) whereas volcanic rocks in southwest Nevada show evidence of a

considerable crustal component (Farmer et al, 1991). The major differences between the
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average gold contents of rocks from the two regions (Fig. 4) are largely explained by the much
higher ratio of peralkaline to nonperalkaline rhyolite in northwestern Nevada. We conclude
that although regional setting may exert some subtle influence on gold content, the most
important control appears to be petrologic affinity. Even in the NW Great Basin, where Neo-
gene silicic volcanic rocks are closely associated in space and time, and probably genetically,
with large volumes of continental flood basalts, which as a group appear to have higher gold
contents than other basalts (Gottfried et al., 1973; Bird et al.,, 1991), four nonperalkaline rhyo-
lites have gold contents of only 0.1, 0.2, 0.25, and 0.36 ppb. In our suite of silicic rocks, varia-
tions with regional setting are evident only in the dominance of particular petrologic types.
Controls on gold content

Our data suggest that the elevated gold contents of many peralkaline rocks is largely a
function of the compatible behavior of gold in peralkaline melts, although mixing and perhaps
wall rock assimilation may account for the higher than average gold concentrations of some
samples. That significant amounts of gold can be carried in slightly peralkaline rhyolite melts is
demonstrated by 15 specimens of aphyric, nonhydrated comendite obsidian from northwestern
and southern Nevada that contain from 0.6 to 4.5 ppb Au. Also, densely welded, phenocryst-
rich glassy tuff from the Soldier Meadow Tuff, NW Nevada (Korringa, 1973), contains 0.6 ppb
Au, whereas nonhydrated glassy groundmass material from the rock contains 0.9 ppb Au.

The relatively high gold contents of the peralkaline rhyolites may reasonably be
explained by retention of gold in the residual liquid during phenocryst separation in a manner
similar to that generally accepted for the elevated Fe, Zr, REE, Nb, etc., contents of such rocks
(e.g., Noble, 1968; Mahood and Hildreth, 1983). Zentilli et al. (1985) show that Au correlates
positively with Y, Zr and other indicators of differentiation, and suggest that Au has been sys-
tematically partitioned into the evolving melt. Conversely, the extremely low gold contents of
many high-silica nonperalkaline rhyolites would appear to require removal of the gold during
differentiation (Tilling et al., 1973), and/or during degassing.

A fundamental control of the different gold contents of these two types of silicic rocks
therefore appears to be melt structure. High-silica rhyolites, containing small amounts of Ca

and Fe, are highly polymerized and a wide range of minor elements, apparently including gold,
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are not accommodated. Higher contents of network-modifying cations, particularly iron and
alkalies in excess of that required to balance the aluminum present, as well as water and halo-
gens, depolymerize silicate melts. This markedly reduces the partition coefficients of minor
elements between the melt and the separating crystal (Drexler et al., 1983; Mahood and Hil-
dreth, 1983) and presumably also immiscible melt phases. Gold content will be controlled by
the amount and timing of separation of mineral phases capable of siting gold, such as Fe
oxides, and of sulfide melt and perhaps liquid metal phases (Bornhorst and Rose, 1986; Bird et
al., 1991), as well as by the degree to which gold is accommodated within the melt. Another
major control may be volatile loss, which would effectively remove gold and other metals
strongly partitioned into the vapor phase (e.g., Symonds et al., 1987; Lowenstern et al., 1991).
DISCUSSION AND CONCLUSIONS '

Initial gold contents of silicic volcanic rocks, irrespective of geographical location, are
lower than indicated in much of the geochemical literature. Fresh, glassy volcanic rocks typi-
cally have original gold contents much lower than the 4 ppb commonly quoted for igneous
rocks. Average values range from about 0.15 ppb for peraluminous rhyolites to about 1.0 ppb
for peralkaline rhyolites. Our results are much lower than those reported in the Russian litera-
ture (e.g., Korobeynikov, 1989) and average values given in geochemical texts and reviews
(Table 1). These higher values reflect, we believe, the addition of small but significant amounts
of gold to older and probably altered rocks. Indeed, it is likely that some of the Cenozoic silicic
volcanic rocks analyzed by Gottfried et. al (1973) contain gold added by post-depositional pro-
cesses.

Original gold content of silicic volcanic rocks appear to depend more on petrochemical
type and degree of differentiation/evolution than on regional setting. Rocks with high Fe con-
tents and Fe/Ca ratios have generally higher gold contents than rocks of more calc-alkalic
character (Fig. 2). We speculate that this is largely due to differences in melt structure and fOy
and the amount and timing of separaﬁon of crystal, liquid sulfide and metal (?), and volatile ~
phases.

High-silica subalkaline rhyolites appear to be poor sources of gold for the formation of

gold deposits. Very large volumes of rock would have to be leached by hydrothermal solutions.




Ecoﬁomic epithermal deposits in subalkaline silicic terranes would appear to require contribu-
tions of gold from other, more gold rich, igneous or sedimentary rocks and/or from known or
inferred intrusive bodies that drove the hydrothermal systems.

Peralkaline silicic rocks, other iron-rich silicic and intermediate rocks, and mafic rocks
(Gottfried et al., 1973) are more viable potential sources of gold. Mafic rocks and magmas are
the only possible source material in deposits such as those on Lihir Island, Papua New Guinea
(Moyle et al., 1990), and are attractive sources in continental areas with coeval large-volume
basaltic magmatism (Noble et al., 1988). Certain deposits, for example Hog Ranch in north-
western Nevada, and prospects in the Challis volcanic field, Idaho, are associated in time and
space with peralkaline rhyolite and ferrorhyolite (Harvey et al., 1986; Hardyman and Fisher,
1985; Hardyman and Noble, 1989). However, even the relatively gold-rich peralkaline rocks
analyzed in this study contain very modest absolute concentrations of gold. The lack of an
obvious preferential association of gold mineralization with volcanic fields dominated by per-
alkaline and subalkaline Fe-rich volcanic rocks, combined with the close association of AuxAg
mineralization with high-level magmatic (porphyry) systems, argues that factors such as con-
tents of halogens, sulfur, water, etc., higher initial gold, and fO7 conditions of magmas, are
more important than volcanic rock type in controlling gold availability to hydrothermal systems
in volcanic terranes. The common association of pronounced gold anomalies with intrusive
related hydrothermal systems, the occurrence of hypogene porphyry ores containing > 0.3 ppm
Au, and evidence for the existence of metal-rich salic melts (e.g., Wilson 1978) all suggest the
existence of atypical silicic to intermediate magmas with much higher gold contents. Indeed,
silicic magmas may, in general, initially contain much higher concentrations of gold than
observed in volcanic rocks, with a large fraction of this gold being removed, transported and
possibly reconcentrated by magmatic degassing during and/or prior to eruption.

The very low initial gold content of most rhyolites make rocks and alluvium in silicic vol-
canic terranes very sensitive to the addition of small amounts of gold by groundwater as well as **
by hydrothermal solutions. Such terranes will be particularly amenable to ultra-low detection
limit soil and rock geochemical surveys. Low-level anomalies have the potential to delineate

structural features that may have controlled addition of gold by post-depositional processes




that include upward migration as volatile complexes during primary cooling, and migration in

surface and groundwater as well as by hydrothermal activity.
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FIGURE CAPTIONS

Figure 1. Cumulative plots showing distribution of gold contents for different rock types. A:
subalkaline high-silica rhyolite and peraluminous rhyolite (solid symbols), B: subalkaline low-
to medium-silica rhyolite, C: peralkaline rhyolite, and D: rocks of intermediate composition.

Solid symbols in 1B and 1D indicate iron-rich (tholeiitic) specimens.

Figure 2. Gold content as a function of Ca and Fe. A: high-silica rhyolites and peraluminous

rhyolite, B: low- to medium-silica rhyolite and, C: peralkaline rhyolite.

Figure 3. Histograms of samples from the ’low gold’ and "high-gold’ groups of silicic volcanic
rocks. A: low-Fe subaluminous and peraluminous rhyolite, B: peralkaline fhyo]ite, fer-

rorhyolite and ferrodacite.

Figure 4. Cumulative frequency diagram for all samples from northwest and southwest
Nevada, showing a comparison of the distribution of gold contents for the two regions. Solid
symbols indicate peralkaline samples, symbols with cross-bars represent intermediate com-

position samples.

Table 1 -- Average Gold Contents of Silicic Volcanic Rocks Given in Review Papers and Texts
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TABLE 1. AVERAGE GOLD CONTENTS OF SILICIC VOLCANIC

ROCKS GIVEN IN REVIEW PAPERS AND TEXTS

Source and date Rock Type/Suite Au Au No. of
range, ppb avg., ppb  samples
Allman and silicic volcanic 1.0-3.5 1.8 11
Crocket (1978) rocks from various none given  1.79 2
regions and averaged 0.1-2.8 0.6 21
from various sources 0.4-5.5 2.3 4
Rose etal. (1979)  granitic none given 2.3 7
Boyle (1979) rhyolite, obsidian, etc.  0.1-113.0 3.7 372
Levinson (1980) felsic igneous none given 4.0 ??
Romberger (1988) rhyolite 0.5-3.5 1.5 188
Crocket (1991) felsicvolcanicrocks ~ nonegiven  1.55 ”
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YEARLY REPORT
YUCCA MOUNTAIN PROJECT
TASK 4
October 1, 1991 to Sept 30, 1992

James N. Brune

SUMMARY OF PROPOSED ACTIVITIES: We proposed to (1) Develop our data
logging and analysis equipment and techniques for analyzing seismic
data from the Southern Great Basin Seismic Network (SGBSN), (2)
Investigate the SGBSN data for evidence of seismicity patterns,
depth distribution patterns, and correlations with geologic
features (3) Repair and maintain our three broad band downhole
digital seismograph stations at Nelson, Nevada, Troy Canyon,
Nevada, and Deep Springs, California (4) Install, operate, and log
data from a super sensitive microearthquake array at Yucca Mountain
(5) Analyze data from micro-earthquakes relative to seismic hazard
at Yucca Mtn.

SUMMARY OF ACTIVITIES

(1) Continued activities to upgrade the CUSP data logging for
eventual use on Yucca Mountain data.

(2) Maintained 3 broadband stations. Re-installed seismometers.
Sent Nelson control unit to England for external repairs (afterx
vault flooding). Received digitally recorded data.

(3) Continued to operate the 4-station microearthquake array at
Yucca Mountain.

(4) Continued analysis of the Szymansky and Archambeau-Price
reports.

(5) Attended workshops on seismic hazard in Santiago Chile and
Mexico City.

(6) Began work on a system to estimate magnitudes from
microearthquake data.

(7) Received and analyzed paper by Gomberg on the strain pattern
in southern Nevada.

(8) Visited Univ. of California, San Diego, to discuss use of
digital seismic arrays for seismic hazard and seismic source
mechanism studies. Consulted with colleagues about future of
proposed strain meter installation at Yucca Mountain.

(9) Attended meetings of Seismological Society of America, Santa
Fe. Presented paper on precarious rocks at Yucca Mtn.




(10) Published paper on microearthquakes at Yucca Mountain, Nevada
(see attached reprint).

(11) Investigated possible causes for bias in magnitude between
Northern Nevada Network and SGBSN.

(12) Filtered selected SGBSN stations to duplicate Yucca Mtn.
microearthquake response in order to check high frequency noise
level of SGBSN stations.

(13) Made repairs on Nellis Boundary microearthquake station.

(14) Copied selected microearthquake records from Yucca Mtn.
region.

(15) Studied microearthquakes triggered in southern Nevada region
by Landers, CA, (see attached abstracts).

(16) Studied micro-earthquakes associated with Little Skull Mtn.
earthquake.

(17) Studied rocks dislodged by Little Skull Mtn. earthquake.
PUBLICATIONS
Microearthquakes at Yucca Mountain, Nevada, James N. Brune,

Walter Nicks, and Arturo Aburto, Bull Seismol. Soc. Am., vol. 82,
no. 1, 164-174, 1992.

Real Time Analog and Digital Data Acquisition through CUSP,
William A. Peppin, Seis. Res. Lett., submitted 1991.

1992 AGU Abstracts:

Distribution of Precariously Balanced Rocks in Nevada and
California: Correlation with Probability Maps for Strong Ground
Motion by J. Brune.

Seismicity in Nevada Apparently Triggered by the Ianders,
California Earthquake, June 28, 1992 by J.G. Anderson, J. Louie, J.
Brune, D. dePolo, M. Savage and G. Yu.

Remote Seismicity Triggered by the M 7.5 Landers, California,
Earthquake of June 28, 1992 by J. Brune et al.

MEETINGS, WORKSHOPS
Gave invited papers at Santiago, Chile and Mexico City.




PROGRESS REPORT--OCTOBER 1, 1991 TO SEPTEMBER 30, 1992

TASK 5 Tectonic and Neotectonic framework of the Yucca
Mountain Region

Personnel
Principal Investigator: Richard A. Schweickert

Research Associate: Mary M. Lahren, October 1, 1991 to March
31, 1991

Graduate Research Assistants: _
a. Zhang, Y.--October, 1991-September, 1992

Part I. Highlights of major research accomplishments

a. Structural studies in Grapevine Mountains, Bullfrog Hills. and

Bare Mountain
ri i i
on_Mesozoic thrust belt by S.J. Caskey and R. A. Schweickert
h

.__Publication_of on r n_research funded under
R nition of significance of pre-Middie Miocene normal an
strike-slip faulting_at Bare Mountain (Yang Zhanaq)

r

Valley (M.M. Lahren) A
f. Preliminary paleomagnetic _analysis of Paleozoic and Cenozoic
re M in n han . Gill n . rlin

Part Il. Research projects

This section highlights the research projects conducted by Task 5
personnel.

1. Regional overview of structure and geometry of Mesozoic thrust
faults and folds in the area around Yucca Mountain; R. A. Schweickert.




The purpose of this study is to provide information about the deep
structural geometry of Paleozoic units and their bounding faults, which is
necessary both for understanding of Tertiary faults and for the correct
formulation of regional hydrologic models. It has also provided evidence
for a previously unknown strike-slip fault beneath Crater Flat, and for the
existence of major pre-Middle Miocene extension in the NTS region. The
study involves new field work in selected areas and a synthesis of
structural relations in areas both east and west of Yucca Mountain,
including the CP Hills-Mine Mountain area to the east, and Bare Mountain-
Bullfrog Hills-Grapevine Mountains to the west.

2. Kinematic analysis of low and high angle normal faults and
strike-slip faults in the Bare Mountain area, study of metamorphic rocks,
and comparison of structures with the Grapevine Mountains Y. Zhang and R.
Schweickert

The purpose of this study is to determine the timing and slip
directions of high and low-angle normal faults exposed at Bare Mountain,
which is a direct analogue of the deep structure beneath Yucca Mountain.
This will provide better constraints on the displacement histories of the
faults. In addition, metamorphic fabrics are being studied in metamorphic
rocks in the northern parts of the mountain and traced to lower grade
rocks in the southern part of the mountain. Finally, the development of
these structures is compared with possible analogues in the Grapevine
Mountains and the CP Hills to develop firm constraints on the deep
structure beneath the Yucca Mountain area.

3. Evaluation of pre-Middle Miocene structure of Grapevine
Mountains and its relation to Bare Mountain. R. Schweickert and M.M.
Lahren

The goal of this project is to establish the Mesozoic and Cenozoic
structural geometry and timing of deformation in the Grapevine Mountains,
which developed in close proximity to the Bullfrog Hills and Bare Mountain
areas, prior to post-10 Ma displacement on the Bullfrog Hills-Boundary
Canyon detachment fault. This study is clarifying the significance of pre-
Middle Miocene and possibly pre-Tertiary extension and detachment




faulting on crustal structure in the area between the NTS and Death
Valley, and beneath Yucca Mountain.

4. Evaluation of paleomagnetic character of Tertiary and pre-
Tertiary units in the Yucca Mountain region, as tests of the Crater Flat
shear zone hypothesis and the concept of oroclinal bending. S. Gillett, R.
Karlin, Y. Zhang, and R. A. Schweickert.

Paleomagnetic data from various volcanic units at Yucca Mountain
show that up to 30° of progressive north-to-south clockwise rotation has
occurred since mid-Miocene. These studies are geographically relatively
limited; one of the goals of this study is to expand the data base to
various Paleozoic and Mesozoic units to understand the regional variations
of magnitude and timing of rotations.

5. Late Quaternary fault patterns in southern Amargosa Valley,
Stewart Valley, and Pahrump Valley. M.M. Lahren and R.S. Schweickert.

This project involves the compilation of all available data on the
distribution and style of late Quaternary faults in the region, primarily
from mapping by Donovan and Hoffard (M.S. Theses completed under Task 5)
and USGS mapping. This compilation will reveal the nature of the late
Quaternary structural setting of Yucca Mountain. Field checking of certain
key areas is required.

6. Tectonics and Neotectonics of the Pahranagat shear zone, Lincoln
County, Nevada; (R. Elwood and T. Reynolds, formerly supported here, have
both left UNR but still plan to complete their studies).

The rationale for this study has been that the Pahranagat shear zone
lies on trend with the Spotted Range - Mine Mountain structural zone,
which is composed of seismically active, ENE-striking, sinistral faults,
and which lies immediately south of Yucca Mountain. Studies of the
Pahranagat shear zone have been undertaken to evaluate whether the two
zones are parts of a related zone of crustal weakness that may be active.

In addition, the Pahranagat shear zone shows clear evidence that
shortening occurs within the Basin and Range province. Such shortening
may be manifest as thrust earthquakes and (or) as shortening through




aseismic folding. Elwood’s part of this project was completed in 1991,
and her thesis report is in progress.

Part il

Brief summaries of research results during FY 1992

This section presents a summary of progress to date. Because these
projects are long-term and field-intensive, the results are still
preliminary, and should not be quoted without permission. Many of our
interpretations are speculative.

1. j i Pahr n

Stewart Valleys, Nevada and California. (See attached map, Figure
1).

Our map is preliminary and requires field checking in a number of
areas, but it clearly indicates that Late Quaternary faults at Yucca
Mountain (area A, Figure 1) lie along strike with an 80+ km-long,
continuous zone of NNW-striking late Quaternary strike-slip and normal
faults (B, Figure 1) in the southeastern part of Amargosa Valley and in
Stewart and Pahrump Valleys, that represents the principal zone of late
Quaternary fault movements in the area east of Death Valley. These faults
are distinctly east of, and are not connected to, the Death Valley-Furnace
Creek fault zone. These facts indicate that the fault patterns at Yucca
Mountain are a manifestation of a regional strain pattern involving NW-
trending strike-slip displacements and associated NS-striking normal
faults. A 10-mile wide gap exists in this zone of surface faults between
the southern end of Yucca Mountain and the southeastern end of Amargosa
Valley (C, Figure 1), and this coincides with the area of late Holocene
outwash from Forty-Mile Canyon to the northeast.

Near the northern end of the zone of faulting in southern Amargosa
Valley (D, Figure 1), northeast-striking faults apparently related to the
Rock Valley fault zone to the northeast (E, Figure 1), occur in association
with north and northwest-striking faults. The interaction of northeast-
and northwest-striking faults is not understood.

Our preliminary tectonic model is that normal faults in Crater Flat
and at Yucca Mountain are related to a major late Quaternary pull-apart
zone in the northwest-striking strike-slip system (see Figure 2).
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Yucca Mountain and Crater Flat are viewed as lying

within a large right-step pullapart zone in a northwest-trending
zone of right-lateral faulting. These features evolved since
Middle Miocene time and are currently active.




2. Regional overview of structure and geometry of Mesozoic
thrust faults and folds in the area around Yucca Mountain. R. A.

Schweickert.
(See preprint by Caskey and Schweickert; Appendix 1).

3. Evaluation of pre-Middle Miocene structure of Grapevine
Mountains and its relation to Bare Mountain, . _Schweickert and

M.M. Lahren. (see Figure 3).

New field work and map-scale structural analysis has confirmed
that the Oligocene Titus Canyon Formation unconformably overlaps a
major detachment fault system related to the Titus Canyon fault (as
mapped by Reynolds (1969))(Figure 3). We documented four localities in
Titanothere and Titus Canyons and south of Daylight Pass in which
conglomerate and sandstone of the Titus Canyon Formation lies in unmoved
depositional contact on Cambrian rocks in upper and lower plate positions
relative to the Titus Canyon fault. The basal conglomerate commonly
contains highly polished 1-3m boulders of Zabriskie Quartzite in a sandy
conglomerate matrix, all resting on Cambrian rocks. We also recorded
kinematic indicators on several segments of the Titus Canyon fault that
indicate top to the east displacements. Finally, in the lower part of Titus
Canyon, we discovered that the Miocene Hall Canyon fault is a high-angle
fault that cuts across the trace of the older, low-angle Titus Canyon fault.

As noted previously, the Titus Canyon fault (Figure 3) is a
detachment fault that excises the upright limb of a major Mesozoic
recumbent fold, the Titus Canyon anticline, and has a structural relation
similar to that of the Wildcat Peak normal fault at the southern end of
Bare Mountain, and the Conejo Canyon fault at the north end of Bare
Mountain. The former excises the upright limb of a large recumbent
anticline in the hangingwall of the Panama thrust (as mapped by Monsen
and others (1990)).

The Titus Canyon fault is undated, but is pre-Titus Canyon
Formation, and could even be of Late Cretaceous age. Existing data
suggests that the Late Miocene Fluorspar Canyon-Bullfrog-Boundary
Canyon detachment system (Figure 3) pulled apart and exposed elements of
a much older detachment system, which includes the Titus Canyon fault,
the lower detachment fault in the Bullfrog Hills, and the Conejo Canyon
and Wildcat Peak faults at Bare Mountain. New work at Bare Mountain by Y.
Zhang indicates that this older detachment system was largely
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Figure 3. Modified from Hamilton (1988). Map showing post-10
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fault and remnants of Oligocene or older detachments, including
Titus Canyon fault, Conejo Canyon fault, and Wildcat Peak fauli.
If the post-10 Ma detachment system were restored, the Titus
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responsible for the exhumation of deep metamorphic rocks at northern
Bare Mountain, Bullfrog Hills, and the Funeral Mountains, and that these
metamorphic rocks were already exposed at high structural levels when
ash flow tuffs of the Southwest Nevada Volcanic Field were erupted.

Structural relations in the western part of the Bullfrog Hills
suggest that a portion of the Grapevine thrust is exposed where Ordovician
carbonates rest upon Mississippian clastic rocks. To account for this
segment of the Grapevine thrust, displacement on pre-Middle Miocene
faults like the Titus Canyon fault must be invoked.

Implications of this study for Yucca Mountain are that pre-Middle
Miocene detachment faults are very likely to occur beneath the volcanic
section, and have probably disrupted and extended the Paleozoic section at
depth. The combination of Mesozoic thrusts, pre-Middle Miocene
detachment faults, and post-13 Ma faults at Yucca Mountain most likely
indicates the impossibility of constructing accurate cross-sections of
Paleozoic aquifers and aquitards beneath Yucca Mountain.

Kmemgtlg analysis_of low and high angle normal faults in the

n mpari r with th
_G_aaL_e_MQ_u_tiﬁ Y. Zhang. (see Figure 4)(also see attached abstract
by Zhang and Schweickert; Appendix 1).

A complete section of upper Precambrian through Mississippian
sedimentary strata is well exposed at Bare Mountain. These rocks are
involved in numerous folds, low- and high-angle faults, and strike-slip
faults. Field relations indicate that many of these structures are pre-
Middle Miocene in age. Thus, Bare Mountain provides an important window
into the deep structures of Paleozoic rocks that lie beneath Yucca
Mountain.

Research Activity

Two periods were spent in the field at Bare Mountain and vicinity,
January 7 - 18 and June 1 - 7, 1992, respectively.

Structural mapping of fault-related structures at Bare Mountain was
performed at a scale 1:24,000, incorporating published geologic maps of
Bare Mountain. The northern part of Bare Mountain, which exposes complex
structures, was selected as a key area for detailed mapping at scale of
1:12,000.

Field work also included reconnaissance in the Grapevine Mountains
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of the. Death Valley region with R.A. Schweickert and M.M. Lahren.

Samples of metamorphic rocks and fault rocks were collected for
micro-structural analyses. Thin sections were made and were
investigated for deformation styles. Both brittle and ductile deformation
have been documented in various faults at Bare Mountain.

Samples also were collected from metamorphic rocks and diorite
dikes that intruded Precambrian and Cambrian metasedimentary rocks for
U-Pb and Ar-Ar geochronologic dating. Unfortunately, the sample of
diorite cannot be dated by the U-Pb method because of a lack of zircon in
the rocks. Other options will be tried with the sample.

Geologic map compilations and cross-section constructions on the
basis of field data and air-photo information are approximately half
complete. These maps and sections will show the structural patterns and
Mesozoic and Cenozoic geologic history of Bare Mountain. Preliminary
results are:

Summary

On the basis of structural studies at Bare Mountain, my main
conclusions are listed below.

1. Pre-Tertiary thrusts exist at Bare Mountain (Figure 4), as shown
by Monsen and others (1990). The Panama thrust is north-vergent and the
Meiklejohn Peak thrust is south-vergent. North-vergent large scale folds
occurring throughout the footwall of the Panama thrust and south-vergent
folds in the footwall of the Meiklejohn Peak thrust are compatible with
north-south shortening that resulted from Mesozoic deformation.

2. Two different ages of detachment faults have been distinguished
at Bare Mountain. An older detachment fault (Conejo Canyon detachment
fault) is exposed in the footwall of the Fluorspar Canyon detachment fault
(7.5 - 10 Ma) in the northern part of Bare Mountain. The Conejo Canyon
detachment fault was responsible for the denudation of amphibolite-
facies metamorphic rocks at the northwestern end of Bare Mountain.
Kinematic and structural data indicate that the Conejo Canyon detachment
fault roots to the south. Still earlier high-angle faults, some possibly
strike-slip faults, predate the Conejo Canyon fault. Published K-Ar ages
from metamorphic rocks in the footwall of the Conejo Canyon detachment
fault suggest that the unroofing and detachment faulting occurred in pre-
Miocene times.

3. North-south striking and east-dipping oblique-slip faults became




active with most right oblique displacement prior to 14 Ma. Minor younger
displacement has cut the 14 Ma dikes. These faults truncated both the
Mesozoic thrust faults and the pre-Miocene detachment faults. Kinematic
indicators indicate east-side-down oblique displacement on the larger
faults, which further implies that rocks in the central part of Bare
Mountain have been downdropped from the upper plate of the Conejo
Canyon fault. If so, the Conejo Canyon fault roots at depth beneath the
southern parts of Bare Mountain and the Wildcat Peak fault lies

structurally above the Conejo Canyon fault. Some east-dipping faults are
overlapped by 15 Ma volcanic rocks at the north end of Bare Mountain.

. _Evaluati leomagnetic char r Tertiar n re-
Tertiary units in the Yucca Mountain region. as tests of the
j linal

bending. S. Gillett, R. Karlin, Y. Zhang, and R. A. Schweickert.

Knowledge of the amount and sense of structural rotations is
important for constraining kinematic models of tectonic deformation.
Paleomagnetism is a powerful tool for identifying rotations about both
horizontal axes (tilts) and vertical axes (oroclinal bending). Previous
work at Bare Mountain (Monsen and others, 1990) revealed that north-
south trending vertical quartz latite dikes (13.9 Ma) cut, or are cut by, a
set of east-dipping faults that are dominant structures in the central part
of Bare Mountain. The quartz latite dikes intruded Paleozoic rocks in
various structural domains along the north - south extent of the range.
Paleomagnetic study of the dikes is intended to constrain the sense of
tilting and/or rotation of the domains separated by low angle faults.

Paleomagnetic data (Rosenbaum et al.,, 1991) from ash flow tuffs at
Yucca Mountain demonstrated about 30 degrees of vertical axis rotation
(clockwise) over the 25 km north-south extent of Yucca Mountain since
emplacement of the Tiva Canyon member (about 13 Ma) of the Paintbrush
Tuff. Paleomagnetic data from 13.9 Ma quartz latite dikes at Bare
Mountain can provide a test of the oroclinal bending hypothesis.

Method and measurement
In January, 1991, paleomagnetic sampling of the following units was
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completed: the Lower Cambrian Carrara Formation at Carrara Canyon and
Gold Ace Canyon at Bare Mountain, and in Striped Hills; Devonian rocks of
Tarantula Canyon in Tarantula Canyon, at north end of Bare Mountain: 14
Ma dacite dikes at Tarantula Canyon; and the Middle Jurassic Sylvania
pluton at Slate Ridge. All samples were collected with a portable rock
drill and oriented with a brunton compass. In the laboratory, each sample
was separated into 2 or 3 specimens (A,B, and C). NRM’s have been
measured on all samples of the quartz latite dikes. Specimen A was
subjected to progressive alternating field demagnetization
(measurements for AF demagnetization have not been completed).
Specimen B was thermally demagnetized over Curie temperatures of the
minerals or to 700° C. Specimen C from some of the samples was
subjected to both AF and thermal demagnetization in order to compare the
results from specimens A and B.

Specimens with strong magnetism were measured on a spinner
magnetometer (usually for natural remanence and several early steps of
demagnetization). Most of the specimens were measured on a cryogenic
magnetometer.

Discussion

Demagnetization indicates magnetite and hematite carry most of the
remanence in the dikes. A few samples contain pyrrhotite that loses
magnetism at a low temperature range from 310° C to 330° C. Samples
containing magnetite have blocking temperatures of about 580° C. A few
samples have blocking temperatures as high as 620° C. This phenomenon
probably indicates maghemite is the remanence carrier. Hematite is the
dominant carrier of magnetization in the dikes. Blocking temperature in
these samples is about 685° C.

Most samples have a remanence that comprises two or more
components. On equal-area projections of directions, two concentrations
are recognized, one a reversed direction in the west and another, also
reversed, in the south portions, respectively. Two stable reversed
Tertiary field has been recognized and have the potential to constrain
structural movements. Remanences of the overprinting field with low
blocking temperature are not difficult to differentiate from primary
components and viscous components. Further measurements and analyses
of the paleomagnetism of the dikes are continuing. This work will
hopefully provide quantitative constraints on the timing and mode of




deformation since 13.9 Ma at Bare Mountain.

6. Geology of Black Marble butte

Existing geologic maps show a NNW-striking high-angle fault along
the eastern edge of Black Marble butte, at the southern tip of Bare
Mountain, which separates Cambrian Bonanza King Formation on the west
from the Timber Mountain Tuff to the east. If present, this fault could
represent a NNW-striking strike-slip fault or a southern continuation of
the Bare Mountain fault. However, our field studies suggest no fault is
present in this location.

Near the southeastern end of Black Marble butte, a section of poorly
indurated Cenozoic sandstones and crystal tuffs strikes northwest, dips
northeast, and appears to lie unconformably upon Cambrian Bonanza King
Formation. These strata dip eastward beneath basalts that underlie the
Timber Mountain Tuff. [f so, the Bonanza King represents either basement
or large slide blocks in the pre-13 Ma stratigraphic section. If no fault is
present in this location, the southern continuation of the Bare Mountain
fault would have to pass west of Black Marble butte, through Steves Pass.

Part IV. Other activities of Task 5 personnel

1. Technical review of reports for the Center

None formally assigned; reviewed new publications by Snow (1992)
and Wernicke (in press):

Snow, J.K., 1992, Large-magnitude Permian shortening and
continental-margin tectonics in the southern Cordillera: Geol. Soc.
America Bull.,, v. 104, p. 80-105.

Wernicke, B., 1991, Cenozoic extensional tectonics of the U.S.
Cordillera, in Burchfiel, B.C., Lipman, P.W., and Zoback, M.L., eds., The
Cordilleran orogen; Coterminus United States: Boulder, Colorado, Geol.
Soc. America, The Geolopgy of North America, v. G3, in press.

2. Meetings attended in relation to the Yucca Mountain Project
and the Center for Neotectonic Studies

a. Geological Society of America, National Meeting, San Diego,

California, October, 21-24,1991 (attended by Schweickert, Lahren,
and Zhang; see abstract by Zhang and Schweickert)
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b. Premeeting fieldtrip, attended by Schweickert, October 17- 20,
1991, to Chicago Pass, Death Valley, southern Nopah Range, Kingston
Range, Winters Pass in the Mesquite Mountains, Providence
Mountains, Soda Mountains, Marble Mountains, and Little Piute
Mountains, southeastern California.

Field work

a. Structural mapping in Bare Mountain, Y. Zhang, January 7-10, June
1-7, 1992; Schweickert, Lahren, and Zhang, January, 11-14,
1992

b. Geologic mapping and structural analysis in Grapevine Mts.,
Bullfrog Hills, Bare Mountain, and Black Marble--Schweickert,
Lahren, and Zhang, January, 14-17, 1992

Professional reports provided to NWPO
a. None

Abstracts published

a. Zhang, Y., and Schweickert, R.A., 1991, Structural analysis of Bare
Mountain, southern Nevada (abs.): Geol. Soc. America Abs. with
Programs, v. 23, p. A185-A186.

Papers accepted for publication in peer-reviewed literature

a. Caskey, S.J., and Schweickert, R.A., Mesozoic deformation in the
Nevada Test Site region: Implications for the structural
framework of the Cordilleran fold and thrust belt and Tertiary
extension north of Las Vegas Valley: Tectonics; accepted for
pubhcatlon 2/92.

Graduate theses supported by NWPO
a. Zhang, Y., in progress, Structural and kinematic analysis of
Mesozoic and Cenozoic structures at Bare Mountain, Nye
County, Nevada

Appendix .

Abstracts and published papers
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1. Caskey, S.J., and Schweickert, R.A., Mesozoic deformation in the
Nevada Test Site region: Implications for the structural framework of the
Cordilleran fold and thrust belt and Tertiary extension north of Las Vegas
Valley: Tectonics, accepted for publication, 2/92. (preprint)

2. Zhang, Y., and Schweickert, R.A., 1991, Structural analysis of Bare
Mountain, Southern Nevada (abs.): Geol. Soc. America Abs. with Programs,
v. 23, p. A185.
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EXECUTIVE SUMMARY

Task 8 is responsible for assessing the hydrocarbon potential of the Yucca
Mountain vicinity. Our main focus is source rock stratigraphy in the NTS area in
southern Nevada. (In addition, Trexler continues to work on a parallel study of source
rock stratigraphy in the oil-producing region of east-central Nevada, but this work is not
funded by Task 8.) As a supplement to the stratigraphic studies, we are studying the
geometry and kinematics of deformation at NTS, particularly as these pertain to
reconstructing Paleozoic stratigraphy and to predicting the nature of the Late
Paleozoic rocks under Yucca Mountain.

Our stratigraphic studies continue to support the interpretation that rocks
mapped as the "Eleana Formation" are in fact parts of two different Mississippian units.
We have made significant progress in determining the basin histories of both units.
These place important constraints on regional paleogeographic and tectonic
reconstructions. In addition to continued work on the Eleana, we plan to look at the
overlying Tippipah Limestone. Preliminary TOC and maturation data indicate that this
may be another potential source rock.

We have set up a lab for extracting radiolaria and sponge spicules from
siliceous rocks, and are in the process of setting up a lab to extract conodonts from
calcareous rocks. This substantially improves our biostratigraphic dating capability, by
increasing both the number of rock types we can date and the number of individual
samples we can run. More dates tied to measured sections will allow us to refine the
basin histories and will aid in regional correlation.

Our structural studies focus on understanding the distribution of Late Paleozoic
rocks at NTS. The deformational history is complex, and detailed mapping is
necessary to determine both the present surface distribution of Late Paleozoic
sedimentary rocks and the geometry and kinematics of the various faults that offset
them. Both are necessary in order to predict the subsurface distribution of potential
source rocks.




INTRODUCTION

Our studies continue to concentrate on the stratigraphy of Late Devonian
through Lower Pennsylvanian rocks at NTS, because these have the best potential to
be hydrocarbon source rocks. Our work involves structural as well as stratigraphic
studies: detailed stratigraphy will identify the extent of potential source rocks, and
structural history controls both the maturation and the present structural position of
these rocks.

This report summarizes new results of our stratigraphic and structural studies in
southern Nevada. New to this year's report is a basin history for each unit (the
‘eastern’ and 'western' Eleana), and a separate section on biostratigraphy. Directions
for future work are included where appropriate in each section. We conclude with a
brief summary of implications of all the above for hydrocarbon potential in the NTS
region.

STRATIGRAPHY
A. introduction

Our work this year supports the interpretation that rocks mapped as "Eleana
Formation" at NTS are in fact two different, in part coeval, sedimentary units. The
evidence for two separate units includes: (1) a fault contact wherever the two are
adjacent; (2) different sandstone compositions between the two units; (3) paleocurrent
directions which are internally consistent for each unit, but differ between the two units;
(4) different depositional environments and basin histories; and (5) overlapping ages.

The following section will describe the internal stratigraphy of the 'eastern
Eleana’ and then the 'western Eleana’. These are followed by a comparison of the
basin histories documented in each unit, and a discussion of the stratigraphic and
structural implications of these histories.

B. Eastern Eleana

The internal stratigraphy of the 'eastern’ Eleana documents a two-stage
depositional history. Most of the section is mud interbedded with occasional thin,
craton-derived, sand sheets. These were deposited on a west-facing continental
platform or slope, and may also comprise parts of the distal Mississippian foreland
basin. We have so far been unable to determine whether the mud came from the
craton or the Antler allochthon. The mudstone and sandstone -are unconformably
overlain by limestone which represents the re-establishment of a carbonate platform in
the area. Exposure of the 'eastern’ Eleana is poor; our surface measured section is
supplemented by several cores and well logs, including one complete core through
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1000m of section. There is evidence for both soft-sediment and tectonic deformation
in this core, suggesting that neither original thickness nor internal stratigraphy of the
mudstone section can be determined reliably.

The 'eastern Eleana’ section (see Red Canyon Wash measured section, Fig.s
1,2) is predominantly thick, siliciclastic mudstone; quartz arenite and calcareous
mudstone are occasionally interbedded. Strong bioturbation of some horizons
indicates that the water column was well oxygenated and well mixed at the time of
deposition. However, euxinic horizons in both the siliciclastic and calcareous
mudstones document a restricted basin at the time these were deposited. At present,
we don't know whether the degree of oxygenation varied spatially, temporally, or both
... or whether an open or a restricted basin was more characteristic during deposition
of the 'eastern ‘Eleana’.

Primary sedimentary structures are generally absent in the mudstone, with
the exception of local lamination or bioturbation. The quartz arenite contains both
ripple and trough cross-lamination, indicating that sands were reworked by bottom
currents. Paleocurrents determined from cross-lamination are variable, ranging from
SE to WNW, but generally indicate sediment transport toward the south or west.

Sandstones from the 'eastern’ Eleana are uniformly quartz arenites. The few
(less than 2%) sand grains that are not quartz are stable, resistant grains like zircon
and epidote. Sandstone compositions, therefore, support the paleocurrent evidence
that the sediments were derived from the craton; there is no petrographic evidence of
derivation from the Antler allochthon.

At the top of the section, quartz arenite beds are thicker and more common, and
limestone is occasionally interbedded. These compositional changes indicate that
clear-water, open marine conditions were established at this point in the local
depositional history. Sedimentary structures in the quartzite suggest shallow-marine
currents (possibly longshore), and wave reworking. These quartzites probably
correlate with the Scotty Wash sand beds associated with the Chainman Shale to the
northeast. Scotty Wash sandstones are petrographically identical, are of the same
age (as well as they are presently constrained) and paleocurrents indicate a linked
sand distribution system.

Prior to our work, the only dates for these rocks were from macrofossils high in
the section (j.e., in the open marine deposits described above), and even these dates
have undergone a recent revision. The lower (mudstone) part of the ‘eastern Eleana'
is difficult to date. Spores (dated for Task 8) suggest an Osagean - Meramecian
(middle Mississippian) age for much of the mudstone section, but palynology on rocks
of this age is not deemed reliable by many workers. The top of the Eleana was dated
as Chesterian (latest Mississippian) (Gordon and Poole, 1968). Endothyrids dated for
Task 8 were also latest Chesterian (Mamet, written comm., 1990). However, the

4




Spsss
S

SR
icn

R

Sy, L
0 e g o

Tertiary volcanic and
sedimentary rocks

O

Paleozoic sedimentary
rocks

Figure 1(a): Location map, Nevada Test Site and vicinity, area of Fig. 1(b) shown.




NTS Boundary

Red Canyon .

YUCCA FLAT

Figure 1b: Location map, Eleana Range and vicinity; area of Fig. 3 and locations
of measured sections shown.




600

500

400

300

200

100

meters

Figure 2: Measured section
of the eastern Eleana
Formation at Red Canyon Wash ;
see Fig. 1(b) for location

spiculite

biogenic calcarenite
thin ss and mud
mudstone

micrite

quarkzite

larger grain-size
-

1400

Tippipah Ls.




ammonoid Homoceras (which defines the base of the Pennsylvanian) has recently
been discovered in continuous section with upper Mississippian ammonoids within the
uppermost Eleana (Titus and Manger, 1992). This moves the top of the Eleana section
into the Pennsylvanian. (For a summary of all Task 8 age data see appendices 2 and -
3).

The carbonate rocks of the Tippipah Limestone unconformably overlie the
mudstone/sandstone/limestone section at the top of the 'eastern’ Eleana with
substantial erosional relief. For example, Titus and Manger, (1992) describe an
ammonoid assemblage that occupies a 17m-thick shale section below orthoquartzites
of the highest Eleana. This assemblage has been erosionally removed in similar
basinal rocks just 16 km to the east. The flooding surface at the base of the Tippipah is
therefore a sequence boundary, representing a transition from possibly subaerial to
shallow marine conditions. Conodont dates consistently identify the base of the
Tippipah as Lower Pennsylvanian (Morrowan) (Gordon and Poole, 1968). The
shallow marine conditions that allowed the build-up of a Pennsylvanian carbonate
platform differed from those prior to erosion in that there was a dramatic reduction in
the amount of fine-grained siliciclastic detritus.

We haven't worked on the Tippipah yet, but the internal stratigraphy of the
Tippipah Limestone is one of the topics we intend to investigate further in the next
year. Reconnaissance has shown that chert pebble conglomerates with a carbonate
matrix occur within the section. The chert pebbles clearly are reworked from older
sedimentary rocks, but the depositional environment of such rocks (and the
paleogeography at the time of deposition) is enigmatic. The geologic history recorded
in the Tippipah is the last chapter in the 'eastern Eleana’ tectonic story; in addition,
maturation and TOC results on a few samples of Tippipah suggest that it may be a
potential source rock.

C. Western Eleana

The internal stratigraphy of the 'western’ Eleana also documents a two-
stage tectonic and depositional history: the lower part is siliciclastic submarine fan
deposits, the upper part is organic/detrital basin fill. The transition between the two is
fairly abrupt, and represents an important Mississippian tectonic event. From the
sections that we have measured so far, it appears that we may be seeing two different
parts of the 'western Eleana’ basin that have been structurally juxtaposed. This may
ultimately prove very helpful in deciphering the Mississippian paleogeography as well
as in improving our understanding of the 'western’ Eleana.

The submarine fan basin fill comprises a fining-upward sequence of mid-fan
to inner fan deposits. Our current interpretation of this setting is that it was a mid-fan
channel complex, topographically constrained laterally and occupying an elongate
trough. This is born out by the lack of dispersal of paleocurrent trends, and the general
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lack of fine-grained inter-channel deposits. The small and large-scale fining-thinning
upward cycles observed in the measured section are consistent with channel fill and
amalgamation as channels were alternately abandoned and reoccupied in the narrow
fan system. Paleocurrents determined from these rocks are more consistent than
those from the 'eastern’ Eleana, and trend SSW to SW. These confirm a somewhat
unusual fan geometry: the submarine fan may have occupied an elongate SSW-
trending basin that was filled primarily by axial turbidity currents.

The clast compositions in the sandstones and conglomerates provide
information about the source areas feeding the submarine fan. Limestone (+/- chert)
and quarizite clasts were most probably derived from the older sedimentary rocks of
the Paleozoic continental margin. These rocks must have been tectonically uplifted in
order to be a source; paleocurrents suggest that this tectonic source was generally to
the north of the 'western Eleana’ basin. Vesicular basalt clasts were most probably
derived from the Antler allochthon, although they could also have been derived from
terranes to the west of it. At any rate, it is unlikely that these clasts were derived from
the North American craton to the east. Phosphatic clasts (appendix 1) (+/~ chert) were
formed in situ or also were derived from the Antler allochthon and/or terranes to the
west of it (e.g., those now in the northern Sierra); there is no known phosphatic source
of pre-Mississippian age on the North American craton. We hope to be able to do
more with these phosphatic clasts -- possibly finding diagnostic fossils associated with
them - to pinpoint their source.

Although the Eleana has generally been interpreted as part of the Antler
foreland clastic wedge and thus correlative with the Diamond Peak and Chainman
formations of central Nevada, there are no known units directly correlative to the
'western’ Eleana. ldentifying such unit(s) and determining their relative
paleogeographic position(s) would go a long way toward resolving the obvious
paleogeographic problems posed by our interpretation that rocks previously mapped
as "Eleana" are in fact parts of two separate basins. As far as we know, coarse-
grained rocks of the 'western Eleana’ are found only at the Nevada Test Site and the
adjacent Nellis Air Force Range. Finer-grained rocks of apparently similar
composition (e.g., primarily cheri-grain sandstones) and Mississippian age are
mapped as "Eleana" at Bare Mountain and also occur in the El Paso Mountains (M.
Carr, pers. comm. 1992) and in the northern Sierra (Harwood and others, 1991; M.
Carr, pers. comm. 1992). At present, it is not known whether any of these are
genetically related to each other or to the coarse submarine fan deposits of the
'western’ Eleana; this is another direction for future work.

The organic/detrital basin fill depositionally overlies the submarine fan
deposits, and contains a variety of rock types. The carbonates in this section are
reworked bioclastic sands, often in graded beds. These sands are primarily crinoidal,
but also include brachiopods, gastropods, corals, ammonoids, etc. This organic
detritus comprises reworked Mississippian organisms, derived from a productive
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carbonate platform. The siliceous argillites and cherts contain some radiolaria, but are
primarily spiculites. The sponge spicules originated in relatively shallow water
(Murchey, 1990; B. Murchey, pers. comm., 1992) but are almost certainly reworked,
because they occur in the graded beds. In many places, beds which contain coarse
crinoid debris at the base grade up into spiculitic chert at the top, demonstrating that
siliceous and carbonate reworked organic debris were transported and deposited
simultaneously. Preliminary dating from the radiolaria supports a Mississippian (no
older than Osage) age for these rocks (B. Murchey, pers. comm., 1992). Micrites,
calcareous mudstones, and mudstones are intimately interbedded with the bioclastic
limestones and cherts. Locally, these fine-grained rocks show extensive bioturbation,
indicating a well-oxygenated water column.

The biogenic beds contain the primary sedimentary structures associated
with submarine fan turbidites in an outer fan setting. Primary depositional
mechanisms are turbidity flows and pelagic rain-out of suspended debris in the water
column. Paleocurrent data from these rocks are limited, but suggest that transport was
in part toward the east.

Sedimentary clasts (in addition to bioclastic debris) in the graded beds
include chert and phosphate. The phosphatic clasts (see Appendix 1) may be primary
phosphate nodules formed on a slope where upwelling currents enhanced biogenic
productivity, or they may be reworked from older rocks. The chert clasts are
presumably reworked material from the oceanic terranes to the west or northwest.

There are several similarities between rocks of the organic/detrital portion of the
‘western’ Eleana and the siliceous sedimentary rocks in the upper Paleozoic Havallah
sequence of northern and central Nevada. Both contain sponge spicule-rich turbidites
derived from a shallow source. Similar assemblages of radiolaria and sponge
spicules occur in the two (B. Murchey, pers. comm., 1992). Several distinctive
structural features in chert ("step boudins" with silica-sealed cracks, and asymmetric to
overturned folds with thickening at the hinges) resemble those described in the
Havallah (Snyder and Bruekner, 1983; Snyder and others, 1983; Bruekner and
Snyder, 1985; Bruekner and others, 1987), and interpreted to be pre-lithification
features. It is premature to propose a correlation between the two, but testing this idea
will be another direction for future work. If the two units correlate, it will require
significant revision of both structural and paleogeographic models!

So far, our age control on the 'western’ Eleana is limited to the sediments
from the upper (organic/detrital) part of the basin. (For a summary of all Task 8 age
data see Appendices 2 and 3.) Endothyrids and calcareous algae from the lowest
bioclastic limestone horizons consistently yield zone 16 (latest Meramec - earliest
Chester) ages. We are provisionally using this information to date the shift from a
siliciclastic-dominated sediment system to one that was fed primarily by an organically
productive platform. Other potential dating methods for these rocks include radiolaria
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- Figure 3: Geologic map of the southern Eleana Range, showing the distribution of
‘eastern’ and ‘western’ Eleana Fm. See Fig. 1(b) for location
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Figure 4: Measured section of the 'western' Eleana Fm. at West Ridge; see Fig.s 1(b)
and 3 for location
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Figure 5: Measured section of the 'western' Eleana Fm. at Red Canyon;
see Fig.s 1(b) and 3 for location.
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Figure 6: Pie diagram of conglomerate clast count (300 clasts)
near the base of the Red Canyon measured section; "sed lith" clasts
are fine-grained litharenite. Compare with Fig. 9.




Figure 7: Measured section of the 'western' Eleana Fm. in the southern
Eleana Range; see Fig.s 1(b) and 3 for location.
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Figure 8: Measured section of the 'western' Eleana Fm. at East Ridge;
see Fig.s 1(b) and 3 for location
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Figure 9: Pie diagrams of conglomerate clast counts (250 and 200 clasts)
near the base of the Southern Eleana Range section. "sed lith" includes
limestone, siltstone, and litharenite. Compare with Fig. 6.




and sponge spicules from the cherts, and conodonts from the limestones. In addition,
it may be possible to date radiolaria and/or spicules from the phosphatic clasts which
occur in both the submarine fan section and the organic/detrital section. Note that if
the phosphatic clasts are reworked from an older oceanic terrane, ages from the
phosphatic clasts would date the source terrane (and might aid in correlation), but
would not date the Eleanal

The 'western Eleana' measured sections fall into two groups of similar
stratigraphy. This suggests that we are seeing two different parts of the 'western
Eleana’ basin, now faulted together:

version 1: In some measured sections (e.g., West Ridge (Fig. 4) and Red Canyon
(Fig. 5)), micrite and biogenic calcarenite immediately overlie the conglomerate and
sandstone of the submarine fan deposits. There are at least 100 - 200m of these
calcareous rocks before the appearance of siliceous sediments (chert and siliceous
argillite containing radiolaria and sponge spicules). In the submarine fan deposits
associated with these sections, conglomerates contain chert, quartzite and minor
amounts of siliciclastic sedimentary rocks (Fig. 6).

version 2: In other measured sections, (e.g., Southern Eleana Range (Fig. 7) and
East Ridge (Fig. 8)), 50m or more of siliceous sediment lies between the coarse
clastics of the submarine fan and the first occurrence of micrite. In the one case we
have with continuous section, there is another 120m of spiculite and occasional micrite
before the first occurrence of biogenic calcarenite. In the submarine fan deposits
associated with these sections, conglomerates contain chert, quartzite and siliciclastic
sedimentary rocks, but also include basaltic volcanic and limestone clasts (Fig. 9).

It therefore appears that in version 1 we are seeing a part of the basin that was
relatively close to the productive Mississippian carbonate shelf, and received
calcareous debris as soon as the clastic sedimentation ceased. In version 2, we are
seeing a part of the basin that was either far from or separated from the carbonate
source, and received only fine-grained material that was carried in suspension.
Eventually, the coarse bioclastic material also made it to this part of the basin. The
geographic separation of these two parts of the 'western’ Eleana basin is also
reflected in the submarine fan deposits in the lower parts of these sections: although
the source terranes for the different parts of the submarine fan had many
characteristics in common, the volcanic and limestone source(s) supplied only a
limited part of the fan (i.e.,version 2).

D. Comparison of basin histories; implioat}'ons
A comparison of the basin histories of the 'eastern’ Eleana and 'western

Eleana', as they are presently known from the measured sections (Fig. 10) and
paleontologic data summarized above, shows that the Mississippian rocks at NTS do
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not reflect the evolution of a single simple basin. Rather, they record the development
of two separate basins. Indirectly, this points to a poorly understood but significant
structural juxtaposition of the two. The history of each basin will be summarized briefly
below, followed by a discussion of the implications for tectonic/structural history.

The muddy sedimentary basin of the "eastern’ Eleana was probably
established on the Devonian carbonate margin of North America. We have not found
the depositional base of unequivocal 'eastern’ Eleana rocks. However, we are
tentatively interpreting the fine-grained mudstone and limestone unit mapped as "MI"
on the Mine Mountain 7 1/2' quadrangle (Orkild, 1968), which depositionally overlies
Devonian carbonates, to represent the base of the 'eastern’ Eleana. This
interpretation is based on Orkild's (1968) Mississippian age*, the presence of
mudstone and quartz arenite and absence of chert and other lithic clasts (like the
‘eastern’, and unlike the 'western', Eleana), and the fact that "MI" has never been
mapped or described anywhere except in a single, 250ft thick exposure on the flank of
Shoshone Mountain, in the Mine Mountain quadrangle. Mississippian rocks in nearby
areas -- within and adjacent to the Mine Mountain quadrangle -- are either chert-
bearing submarine fan deposits (which we interpret to be ‘western’ Eleana) or
mudstone and quartz arenite shelf (?) deposits (which we interpret to be ‘eastern
‘Eleana). It is hard to justify a new and unique unit designation ("MI") for a single
exposure, when similar rocks with an established name crop out nearby, so we
suggest that this unit may represent the lower 'eastern’ Eleana.

The 'eastern’ Eleana basin fill consists of prograding muds which were locally
calcareous, and craton-derived quartz arenite. There is no evidence so far of any
sediment source other than the craton. Sand dispersal was generally toward the
south and west. The quartz sand beds became thicker and more common with time;
limestone is interbedded with the quartz arenite at the top of the section. The
limestone at the top of the section had been dated as late Chesterian (latest
Mississippian) (Gordon and Poole, 1968) and on calcareous (Mamet, written comm.. to
Task 8, 1990). However, the uppermost part of the section has recently been
reinterpreted as earliest Pennsyivanian (Titus and Manger, 1992). The water in the
‘eastern’ Eleana basin was well oxygenated at some times and restricted at others; we
don't yet understand the mechanism or know which was dominant.

The siliciclastic basin fill is erosionally truncated (Titus and Manger, 1992), so
we do not see the top of the section. Although there was significant erosion on this

* The map explanation -- which is the only published description of "MI" — notes "common, well-preserved
Devonian conodonts, probably reworked from the Devil's Gate Limestone”. There is no explanation of
why the conodonts are thought to be reworked or why the unit is interpreted to be Mississippian rather
than Devonian. If "MI" is Devonian, it may still represent the base of the ‘eastern’ Eleana ... it just pushes
back the inception of siliciclastic deposition into Devonian time.




surface in the NTS area, there seems to be little section missing at Syncline Ridge
because lower Pennsylvanian rocks occur both above and below the unconformity.
The erosional surface was flooded in earliest Morrowan (Early Pennsylvanian) time,
and a carbonate platform (the Tippipah Limestone) developed.

The 'western’ Eleana submarine fan also depositionally overlies Devonian
carbonate. Clastic (Eleana) deposition appears to have started by Late Devonian time --
a Late Devonian conodont assemblage is described 160it above the base of the
Eleana clastic section (Rogers and Noble, 1969). We have not been allowed access
to the area where the basal contact is exposed, but the stratigraphy is briefly described
in the explanation on the Oak Spring Butte 7 1/2' quadrangle (Rogers and Noble,
1969). Based on this description and the coarse base of our measured sections, the
submarine fan appears to have prograded quickly into the narrow foreland basin. The
timing of this event is not well constrained, and the. relationship of this clastic fan to the
arrival of the Antler allochthon in central Nevada is not currently known. Because of
the basin geometry, the direction of sediment transport, and nature of the basin fill, a
simple peripheral foreland basin model such as is currently popular in central Nevada
for this orogeny does not work here.

The submarine fan was active from Late Devonian to Late Mississippian (late
Meramecian or early Chesterian) time. The fan appears to have developed in an
elongate trough, with SSW-trending axial currents. Sediments in the fan were derived
from tectonically uplifted older Paleozoic rocks, the Antler orogen, and possibly also
from volcanic and/or oceanic terranes to the west of the Antler orogen. The submarine
fan rocks we have observed were deposited in a channel-fill complex that is
regressional overall. Submarine fan sedimentation tapered off by early Chesterian
time, and slow subsidence of the basin continued without much external sedimentary
input. Slow deposition of fine-grained organic debris (both calcareous and siliceous)
was the dominant mode of sedimentation. The arrival of numerous bioclastic-rich
turbidites signals the appearance of a significant "carbonate factory" upstream. This
may be synchronous with the transgressive event suggested in central Nevada, where
Diamond Peak siliciclastic sediments are overwhelmed by carbonate shelf limestone
(Trexler and Cashman, 1991). Transgressive events should shut off siliciclastic
sediment transport and enhance carbonate production in shelf areas. Note that the
suggestion we made in an early Task 8 Progress Report -- that the change in sediment
composition might be due to the emergence of the orogenic highland represented by
the mid-Mississippian unconformity in the Diamond Mountains -- now appears to be
incorrect, even though the two events occurred at about the same time. The
unconformity in the Diamond Mountains represents uplift and emergence of marine
sedimentary rocks; the change in sediment composition in the ‘western Eleana’ basin
represents subsidence and flooding of the continental margin in the source area.

The obvious conclusion that can be drawn from these two basin histories is that
the Latest Devonian and Mississippian rocks at NTS do not reflect a single, simple
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orogenic history (Fig. 10). Rather, they document sediment derived from different
sources and deposited in different environments. Furthermore, they have been
subjected to different syndepositional tectonic histories. Clastic deposition appears to
have started at about the same time (Late Devonian) in both the ‘eastern’ and
'western' Eleana basins. A late Meramec or early Chester transgressive event is
recorded in the ‘western’ Eleana. An Early Pennsylvanian erosion event, followed by
Early Pennsylvanian flooding, is recorded in the 'eastern’ Eleana.

STRUCTURAL GEOLOGY

Our work on the structure of the southern Eleana Range documents several
superimposed deformations, and shows that detailed mapping is required throughout
the area in order to understand the structure. Deformation events that pre-date the
oldest Tertiary volcanic rocks in the area (the ca. 16 Ma Redrock Valley Tuff) include
(1) possible pre-lithification (therefore Late Paleozoic) deformation in the upper part of
the 'western’ Eleana, (2) thrust faulting and associated overturned folding of probable
Mesozoic age, and (3) the cryptic fault that juxtaposes 'eastern’ and ‘western' Eleana.
Tertiary low-angle normal faulting obscures the earlier deformations, and makes
structural reconstructions difficult. Structures typical of each of these events are
described briefly below.

A possible Late Paleozoic deformation was pointed out to us by colleague
Walt Snyder (Boise State University) when he visited NTS with us in December, 1991.
lts existence is suggested by a distinctive mesoscopic deformational style that occurs
locally in the upper part of the 'western Eleana’. Good examples of this deformation
occur both north and south of the Pahute Mesa road where it crosses the ridge we
informally call East Ridge -- between Syncline Ridge and the southern end of the
Eleana Range (see Fig. 1b). Interbedded spiculitic chert, siliceous argillite and
bioclastic turbidites are folded into asymmetric to overturned mesoscopic folds.
Bedding thickens at some fold hinges, suggesting that the rock was not completely
lithified when the folding occurred. These rocks also contain "step boudins" (or "step
planes” and "solution boudins"), as described in the Havallah sequence rocks of the
Golconda allochthon (Snyder and Bruekner, 1983: Snyder and others, 1983; Bruekner
and Snyder, 1985; Bruekner and others, 1987). In these structures, bedding is
extended by slip along multiple sub-parallel surfaces and rotation of the intervening
blocks. The cracks are sealed with silica (not obvious quartz veins) that Snyder
interpreted to be diagenetic (Snyder and Bruekner, 1983: Snyder and others, 1983;
Bruekner and Snyder, 1985; Bruekner and others, 1987). Further documentation of
this deformational event is important for two reasons: (1) If it exists, it provides another
line of evidence that the rocks of the ‘western’ Eleana may be genetically related to the
Havallah sequence of the Golconda allochthon. (2) If it exists, we must be careful not
to confuse it with mesoscopic deformation produced by later structures (e.g.,
Mesozoic(?) thrusting). :
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We have mapped several structures in the southern Eleana Range that are
unequivocally related to Mesozoic(?) thrust faulting. One of these is the large
overturned fold south of Red Ganyon in the lower (submarine fan) portion of the
‘western' Eleana (just north of the uncolored area in Fig. 3). Overturned upper
(biogenic/detrital) 'western Eleana’ overlies ‘eastern Eleana' along a sub-horizontal
contact farther south in the Eleana Range. More mapping is needed to resolve the
structural relationships between these two areas (uncolored area in Fig. 3). The
geometry and extent of thrust faulting in the southern Eleana Range is particularly
important to Task 8: It will constrain projections of structures toward the southwest
(toward the poorly-exposed Calico Hills and then Yucca Mountain). It will also help us
evaluate the applicability of "thrust play" models for creating hydrocarbon reservoirs at
NTS.

The fault juxtaposing 'eastern’ and ‘'western’' Eleana is cryptic, and is
best exposed in the southemmost Eleana Range (see the southwest quadrant of the
geologic map, Fig. 3). Here, it is sub-vertical and strikes north-northwest. Several
exposures farther north in the Eleana Range also indicate a north-striking, sub-vertical
fault contact. It is not yet known whether this represents the original fault contact
between the 'eastern’ and 'western' Eleana, or a later (possibly reactivated) fault.
Steep foliation characterizes the 'eastern’ Eleana in the vicinity of the fault. In the
'western ‘Eleana, the fault is at a relatively high angle to bedding, and a broad,
overturned fold is sometimes -- but not always -- developed within 10 to 20 m of the
fault. This folding suggests west-over-east reverse movement. Foliation, brecciation,
and veining (quartz, calcite, or chalcedony) occur locally, adjacent to the contact. The
fault juxtaposing 'eastern' and ‘western' Eleana is potentially the most significant
structure at NTS from a tectonic standpoint, yet the nature of this fault remains
disappointingly enigmatic. Further mapping, particularly farther north along the front of
the Eleana Range, may reveal better exposures of this feature.

Tertiary low-angle normal faulting is characterized by brecciation, iron
staining, and polished or striated fault surfaces. Shattering -- with or without veining --
is typical near the base of the upper plate. Its distribution is irregular; it may extend
tens of meters into the upper plate. Iron staining is common along the fault contact and
in the lower plate in the vicinity of the contact. We have mapped low-angle faulting at
several places in the southern Eleana Range; its presence has explained some
anomalous map relationships (e.g., the "thrust slice” of Tippipah Limestone over
Eleana mapped by Orkild (1963) in the Tippipah Spring quad (see geologic map, Fig.
3)). Jim Cole's detailed mapping at Mine Mountain (Cole and others, 1991) showed
that both high- and low-angle normal faulting were active during Redrock Valley Tuff
time (ca. 16 Ma). The tectonic transport due to low-angle faulting was toward the west
and southwest. We don't yet know whether this is also true for the low-angle faulting in
the southern Eleana Range, or how/whether Tertiary faulting in these adjacent areas
might be related. Detailed mapping will be necessary to identify the low-angle faulting
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(let alone to determine the kinematics); it is vital that we do so, because of the potential
for structural and stratigraphic misunderstandings if Tertiary faulting goes
unrecognized!

BIOSTRATIGRAPHY

We have made great strides in biostratigraphic dating in the last year,
increasing both the variety of techniques we can use and the number of samples we
can analyze (at no increase in budget for biostratigraphic dating). In addition, we have
curated all the samples -- they are now all stored, in numerical order by sample
number, in the sample storage drawers in LMR 355A -- and put all sample information
into a computer data base (see Appendices 2 and 3). Much of this has been possible
because of student technician help.

With the recognition (in December, 1991) that the siliceous rocks in the upper
‘western’ Eleana were spiculites, came the possibility of getting both age and
environmental information from these rocks. We have set up a lab for extracting
radiolaria and sponge spicules, and have arranged for Bonny Murchey (USGS)
to analyze the residues. She is able to date them, based primarily on radiolaria, and
to make some interpretations about the depositional environment (especially
paleobathymetry) based on the proportions of different kinds of sponge spicules.
Preliminary results are in agreement with age determinations based on other methods.
Our future sampling will be designed to take advantage of our new ability to date
siliceous rocks.

We have not dated any additional samples using endothyrids and
calcareous algae. This method has given very consistent results from the two
stratigraphic horizons we have sampled extensively (the base of the organic/detrital
section in the ‘western’ Eleana and the top of the ‘eastern’ Eleana). We would now
like to determine how these ages compare to conodont and radiolarian ages from the
same rocks.

We have not dated any additional samples using palynology, because we
have found widespread skepticism about the accuracy of this technique among
colleagues in academia. We were using this method to date the mudstones of the
‘eastern’ Eleana section, and we have yet to find an effective alternate dating method
for these rocks. Claude Spinosa (of Boise State University) sampled ‘eastern’ Eleana
core and processed it for conodonts in his lab, but, so far, the samples have been
barren.

Ideally, we would like to have a single biostratigraphic dating tool that could be

abplied throughout both ‘eastern’ and ‘western’ Eleana sections; this would be the
most reliable way to compare the ages of the two. The best candidate for such a tool is
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conodonts, which can be found in both carbonates and mudstones. In previous
years, we have gotten conodont ages from both ‘eastern’ and ‘western’ Eleana rocks,
although these have only been from the carbonates in each section. We are now in
the process of setting up a conodont extraction lab. This will allow us to run more
(potentially barren) samples in our attempt to find datable rocks. Dora Gallegos and
Claude Spinosa of Boise State University are willing to do preliminary identifications
for us, but have recommended that we contact an expert on Mississippian conodonts
(Anita Harris or Bruce Wardlaw of the USGS) to do the final identifications.

IMPLICATIONS FOR HYDROCARBON POTENTIAL

The 'eastern’ Eleana is the only potential hydrocarbon source rock within the
Eleana Formation, and its surface exposure is limited to the area around Yucca Flat. It
can probably be traced to correlative units (Chainman Shale and Scotty Wash
quartzite) to the northeast. To the southwest, it is exposed in the Calico Hills (Fig.
1(a)), where it extends to a depth of at least 2552’ in drillhole UE25a-3 (Jim Cole,
written comm., 1991). We have no data about the extent of the ‘eastern’ Eleana west
of the Calico Hills. In the southern Eleana Range, ‘eastern’ Eleana is structurally
juxtaposed against the ‘western’ Eleana along a cryptic fault. We must understand the
geometry and kinematics of this fault in order to predict the sub-surface distribution of
the ‘eastern Eleana’. This distribution will be a critical factor in assessment of
hydrocarbon potential near Yucca Mountain.

The other potential source rock in the area is the Tippipah limestone. This unit
has received almost no attention to date, and will be a target of our investigations in
the next year.

The coarse clastic 'western’ Eleana is a potential hydrocarbon reservoir,
although surface exposures suggest very low porosity and permeability. These strata
do have correlatives to the west and probably project to Bare Mountain, where a
section of mostly fine-grained siliciclastic sediments has been mapped as Eleana
Formation. The paleotopographic control on the 'western’ Eleana strongly indicates
that coarse facies cannot be projected northwest or southeast, but that very likely they
will extend to the southwest toward Yucca Mountain

Thermal maturation data indicate that the ‘eastern’ Eleana and Tippipah

Limestone may have had a favorable thermal history for hydrocarbon generation,
while the ‘western’ Eleana is overmature.
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APPENDICES

Appendix 1: Three analyses -- core to rim -- of a white-weathering
phosphatic clast from the 'western Eleana' (sampled near the base of the
Castle Valley measured section). Phosphate, silica and calcium contents
vary concentrically across the clast. Analyses were done using the energy
dispersive spectrometer on the SEM.

Appendix 2: Table of samples processed by Task 8.

Appendix_3: Table of sample processing in progress.
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