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Abstract—Three types of information fusion strategies are
studied to assess the performance of classifiers for detecting low-
level 235U radiation sources, using features obtained from gamma
spectra of NaI detectors. These strategies are based on using two
spectral region features, fusing eight classifiers of diverse designs,
and fusing multiple detectors located at different positions around
the source. The inner, middle and outer groups of detectors,
within a formation of two concentric circles and a spiral of 21
detectors, are identified based on their distance to the source,
which is located at the center. This study provides two main
qualitative insights into this classification task. First, the fusion of
detectors leads to an overall improved classification performance,
least in the inner group, most in the outer group, and in between
for the middle group. Second, several classifiers and fusers
achieve lower training error which does not translate to lower
generalization error, indicating their over-fitting to training data.

Index Terms—classifier fuser, detector fuser, radiation signa-
tures, multiple detectors, gamma spectrum.

I. INTRODUCTION

Classifiers for detecting low level radiation sources using
spectral measurements from portable gamma-ray detectors
have been studied under various scenarios. They include
general formulations [15], detector networks [2], [16], use of
NaI detectors [14], and deployments of multiple detectors [18]
(to name a few). The signatures of low-level 235U sources are
of particular importance in nuclear safeguards and security
tasks [7], [8]. The hand held gamma spectral detectors, such as
NaI detector by Passport Systems and CsI detector by Kromek,
are used in the field, and a variety of solutions have been
developed to use their spectra to infer the presence of radiation
sources. The underlying detection task is challenging because
the Poisson distributed gamma measurements of these sources
are hard to distinguish from the background measurements.

Our goal is to study the performance of Machine Learning
(ML) classifiers combined with information fusion strategies
involving features, classifiers and detectors, for this task. Our
work builds upon recent ML studies using single detectors
with a single 235U spectral signature in [12], which revealed
large variations in identically produced detectors and over-
fitting by non-smooth ML methods. We expand this study
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by considering the information fusion methods involving two
features based on gamma spectral regions, detectors located
at different positions around the source, and the classifiers
designed using diverse approaches, namely smooth and non-
smooth, statistical and structural, and hyper parameter meth-
ods. In general, classification problems related to 235U and
other sources have been studied using data-driven ML methods
[12], [3], [5], which complement the statistical and first
principle methods [8], [7].

We utilize data sets collected under controlled conditions
using 21 NaI detectors deployed over a 6 x 6 meters area
in a formation of two concentric circles and one spiral, with
the source located at the center. The activity levels in two
spectral regions associated with 235U signatures are estimated
as counts at 1 second intervals, which are used as classifier
features. These detectors form the inner, middle and outer
groups based on their distance to the source, which represent
an increasing degree of difficulty for classification. Eight
different classifiers and six classifier-fusers are tested using
measurements collected over multiple experimental runs.

A detector profile of a classifier is its classification error
expressed as a function of the detector distance from the
source. A classifier profile of a detector(s) specifies the errors
of various classifiers and their fusers that use its(their) mea-
surements. We estimate these profiles under the three fusion
strategies using multiple data sets. They indicate an overall
trend of decreasing error as detectors closer to the source
are used and more detectors are fused – both phenomena are
explained by the increased “effective” NaI capture area for
gamma radiation. They also reveal unexpected trends of lower
training error not being reflected in lower testing error for
certain classifiers and fusers; this is more pronounced with two
features but less with larger training sets. This study provides
a concrete case of over-fitting by complex classifiers, whose
training performance could be a misleading indicator of their
generalization. Interestingly, unlike the other case, there does
not seem to be a physics-based explanation to expect their
superior performance, but one might be needed to guide their
use in applications.

The organization of this paper is as follows. The datasets
are briefly described in Section II. Experimental and analytical
results of classifiers and fusers are described in Sections III
and IV, respectively. The performance of combining features
from multiple detectors is described in Section V. A summary
and directions for future work are described in Section VI.
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Fig. 1. Detector configuration of two circles and a spiral.

II. MEASUREMENTS

Measurements from controlled tests conducted at the Savan-
nah River National Laboratory using 235U source of 191 uCi
strength are used in our study [13]. The source is introduced at
the center of the Low Scatter Irradiator facility via a shielded
conduit, and is stationary during the tests, and the detectors
are arranged in the fixed geometric pattern shown in Fig. 1,
which consisted of two rings with radii 2 and 4 meters with
4 and 5 detectors, respectively, and a spiral of 12 detectors.
Each detector employed a 2” x 2” x 11” NaI sensor connected
to a mobile phone, and an example is shown in Fig. 1.
All detector are identically produced and configured, and the
quality of their measurements is a reflection of their NaI sensor
material. The nearest and farthest detectors are located 0.75
and 5.78 meters from the source, respectively. Multiple runs
were executed with and without the source; each run with the
source lasted 120 seconds and each background run lasted 60
seconds.

Bin # Lower Upper ISOTOPE(s)
(keV) (keV)

04 123 160 Tc-99m (Technetium 99m)
U-235 (Uranium 235)

05 166 203 U-235 (Uranium 235)

TABLE I
SPECTRAL BINS FOR ESTIMATING COUNTS FOR SOURCE ISOTOPES.

The dashboard of measurements and counts for an exper-
imental run using a source are shown in Fig. 2. Using the
spectra from each detector, the activity levels in two spectral
regions associated with potential 235U signatures are estimated
as counts at 1 second intervals; the corresponding bin numbers
and energy bounds are shown in Table I. They are used as
features to train the classifiers for detecting the presence of
source. Classifiers are trained and tested using background
and source measurements collected over multiple experimental
runs under two scenarios:
S1: training and testing with 240 counts from 2 background

runs and 1 source run; and
S2: training with 480 counts from 4 background and 2 source

runs, and testing with 6 background and 4 source runs.

III. CLASSIFIERS AND FUSERS

Eight classifiers that represent diverse designs, and six
fusers that combine their outputs are considered. The eight

Fig. 2. Measurements dashboard: top left: detector locations; bottom left:
spectrum of detector 10 closest to source; top right: spectrum of detector 19,
farthest from source; and bottom right: counts per second at detector 10.

Fig. 3. Select-six classifiers have similar detector profiles.

classifiers provided by the Matlab ML toolkit are: Auto Tuning
and Selection method (AUTO), Classification Trees (CTREE),
Error Correcting Output Codes (ECOC), Ensemble of Trees
(EOT), k Nearest Neighbors (KNN), Naive Bayes (NB),
Neural Network (NN), and Support Vector Machine (SVM).
These classifiers are described in [11], [12], and AUTO uses
the hyper-parameter searching of individual methods, CTREE,
EOT, KNN, NB, and SVM, and chooses one among them
based on training data set. These eight different classifiers are
chosen to represent their diversity of design, namely smooth
and non-smooth, statistical, structural, and hyper parameter
tuning and classifier selection methods [1], [4], [6]. The sheer
complexity of these classifiers and fusers makes it hard to
predict their performance for the current task, and our data
sets enable their systematic experimental study.

A. Detector Profiles of Classifiers

The detector profiles of six of eight classifiers, called
the select-six, are chosen, by excluding the neural network
and nearest neighbor methods whose profiles deviated sig-
nificantly, as described in [12]. The detector profiles of the
select-six classifiers in turn reflect the quality of the detector
spectrum as well as the detector distance to the source, as
shown in Fig. 3.
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(a) S2: Training (b) S2: Testing

Fig. 4. Classifier profiles of classifiers at different detector distances.

(a) S1: train - bin 4 (b) S1: test - bin 4

(c) S1: train - bin 5 (d) S1: test - bin 5

Fig. 5. Distance profiles classifiers and fusers with bins 4 and 5 - they are similar for two bins but different between training and testing for the outer group.

The classification error improves overall as measurements
from detectors closer to source are used, as indicated by
classifier profiles in Fig. 4. The detectors form three groups
of seven each, the inner (75-189 cm), middle (190-317 cm)
and outer (359-578 cm), as shown in Fig. 3. They represent
an increasing complexity of classification reflected in their
range of classification error. The training profiles are well
separated, and they become lower as detectors closer to the
source are considered, except for outlier detector 14, as shown
in Fig. 4(a). This separation does not entirely translate to test
profiles, particularly, in the middle and near groups, as shown
in Fig. 4(b).

B. Detector Profiles of Classifier-Fusers

The classifiers are fused using two different methods,
namely, non-smooth EOT and smooth SVM. Three different
sets of classifiers are fused: (a) all eight classifiers are fused
using the non-smooth EOT and smooth SVM fusers; these
fusers are denoted by EF and SF, respectively; (b) the hyper-

parameter and selection classifier AUTO and two non-smooth
classifiers CT and EOT are fused using EOT and SVM
methods, denoted by ACEEF and ACESF, respectively; and
(c) the classifiers AUTO, KNN, NN are fused using EOT and
SVM methods, denoted by AKNEF and AKNSF, respectively.

The detector profiles of classifiers and their fusers using two
features under scenarios S1 and S2 are summarized in Figs. 5
and 6. The detector profiles using single features, based on
bins 4 and 5, indicate similar profiles, as shown in Fig. 5. The
fusers achieve lower training error across all three detector
groups, but it translates to lower testing error only for the near
and middle groups. For the outer group, the classifier-fusers
achieve lowest training errors but their test error is higher than
those of AUT0 and SVM, which is an indication of over-fitting.

Increasing the data sizes reduces the gap between the
training profiles of classifiers and their fusers (Fig. 6(a)), and
lowers the gap between training and testing profiles (Fig. 6(b)).
Inclusion of an additional feature widens the training gap of
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(a) S2: train - bin 5 (b) S2: test - bin 5

(c) S1: train - bins 4,5 (d) S1: test - bins 4,5

(e) S2: train - bins 4,5 (f) S2: test - bins 4,5
Fig. 6. Training and testing detector profiles of classifiers and fusers with larger data sets, two spectral bins and both.

the fusers, and hence the widening of train-test gap, as shown
in Figs. 6(c) and (d), respectively. These effects are somewhat
lessened when larger data sets are used, as shown in Figs. 6(e)
and (f). In both cases of increased features and data sizes, the
fusers are subject to more over-fitting (Figs. 6(c) and (e)).

IV. GENERALIZATION EQUATIONS

To complement the empirical results presented in pre-
vious sections, we derive the generalization equations of
the classifier-fuser method. A classifier learns a classifi-
cation function f ∈ F between an input feature vector
X ∈ <d and an output label Y ∈ {0, 1} such that f(X)
is an estimate of Y . The training process utilize l-sample
{(X1, Y1), (X2, Y2), . . . , (Xl, Yl)} to estimate a “suitable”
classifier function f̂ ∈ F by (approximately) minimizing the
empirical misclassification error given by

Î(f) =
1

l

l∑
m=1

(f(Xm)⊕ Ym), (1)

where ⊕ is the Exclusive-OR operation: 0 if f(Xm) = Ym
and 1 otherwise. For individual classifiers, X corresponds
to features (d = 1, 2) and Y is a binary variable, and for
classifier-fusers, X belongs to {0, 1}n, n = 3, 8, and Y is
binary variable.

In a generic classification problem the feature vector X and
output vector Y ∈ {0, 1} are distributed jointly accordingly
to an unknown distribution PX,Y . The expected classification
error of a classification function f is

I(f) =

∫
(f(X)⊕ Y ) dPX,Y .

The expected best classifier f∗ minimizes I(.) over F , i.e.,
I(f∗) = min

f∈F
I(f).

The joint distribution PX,Y of data is complex and is only
partially known, since it depends on gamma spectral measure-
ments, sensor errors, and background variations. Consequently,
an optimal f∗ cannot be computed precisely with probability
of one even in principle. Under certain conditions, Vapnik’s
generalization theory [17] establishes that a “suitable” estima-
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tor f̂ obtained from independently and identically distributed
(iid) training data can ensure

Pl
X,Y

[
I(f̂)− I(f∗) > ε

]
< δ(ε, ε̂, l) (2)

where ε, ε̂ > 0, 0 < δ < 1, and Î(f̂) = min
f∈F

Î(f) + ε̂. This

condition ensures that “error” of f̂ is within ε of optimal error
(of f∗) with probability 1 − δ, irrespective of the underly-
ing distribution Pl

X,Y . Furthermore, the confidence parameter
δ(ε, ε̂, l) approaches 1 as the sample size l approaches infinity.
The generalization bound δ(ε, ε̂, l) applicable to individual
classifiers can be derived using various properties of classifier
function classes [10].

A. Estimation of Improvement

Consider the fuser class FF used in fusing the classifiers
fa ∈ Fa, a ∈ A={AUTO, CTREE, ECOC, EOT, KNN, NB,
NN, SVM}. Let fF denote the classifier function obtained
by composing fa’s with the fuser function from FF . The
improvement ∆F of the fused estimate over the best individual
classifier is defined as

∆F = min
a∈A

I(fa)− I(fF ).

Then, if FF has the isolation property [9], then ∆F ≥ 0. The
best accuracy improvement is given by ∆∗F = min

a∈A
I(f∗a ) −

I(f∗F ). and its estimate based on samples is given by ∆̃F =
min
a∈A

Î(fa)− Î(fF ).

B. Estimation of Confidence

We now show that the estimate ∆̃F is within ε of the optimal
∆∗F with a probability that improves with the training data size
l independent of the underlying distribution PY,X .

Theorem 4.1: Consider that there exists δb(ε, ε̂b, l) such that
based on i.i.d. l-sample, we have

Pl
X,Y

[
I(f̂b)− I(f∗b ) > ε

]
< δb(ε, ε̂b, l). (3)

for all classifiers b = a ∈ A and classifier-fusers b = d ∈
D = {EF, SF,ACEEF,ACESF,AKNEF,AKNSF}
such that δb(ε, ε̂b, l) → 0 as l → ∞. Then, the probability
that ∆̃F is within ε of ∆∗F is bounded as

Pl
X,Y

[
|∆̃F −∆∗F | < ε

]
> 1− δd(ε/2, ε̂d, l)−

∑
a∈A

δa(ε/(2NA), ε̂a, l),

for any classifier-fuser d ∈ D.
Proof: We first note that for d ∈ D
|∆̃F −∆∗F | ≤ |Î(f̂d)− I(f∗d )|+

∣∣∣∣min
a∈A

Î(f̂a)−min
a∈A

I(f∗a )

∣∣∣∣ ,
which establishes that the condition |∆̃F −∆∗F | > ε implies
that at least one term on the right hand side is greater than
ε/2. We now have

|Î(f̂d)− I(f∗d )| ≤ |Î(f̂d)− I(f̂d)|+ |I(f̂d)− I(f∗d )|,

which in turn establishes that the condition |Î(f̂d)− I(f∗d )| >
ε/2 implies that at least one term on the right hand side

is greater than ε/4. Then, by hypothesis in Eq (3), both
conditions are simultaneously satisfied with probability at most
δd(ε/4, ε̂d, l). Similarly, we have∣∣∣∣min
a∈A

Î(f̂a)−min
a∈A

I(f∗a )

∣∣∣∣ ≤ ∣∣∣∣min
a∈A

Î(f̂a)−min
a∈A

I(f̂a)

∣∣∣∣
+

∣∣∣∣min
a∈A

I(f̂a)−min
a∈A

I(f∗a )

∣∣∣∣ ,
which in turn establishes that the condition∣∣∣∣min
a∈A

Î(f̂a)−min
a∈A

I(f∗a )

∣∣∣∣ > ε/2 implies that at least

one term on the right hand side is greater than ε/4. Then, we
consider the two upper bounds∣∣∣∣min

a∈A
Î(f̂a)−min

a∈A
I(f̂a)

∣∣∣∣ ≤ ∑
a∈A

∣∣∣Î(f̂a)− I(f̂a)
∣∣∣∣∣∣∣min

a∈A
I(f̂a)−min

a∈A
I(f∗a )

∣∣∣∣ ≤ ∑
a∈A

∣∣∣I(f̂a)− I(f∗a )
∣∣∣ .

In each case, the condition that left hand side is larger than
ε/2 implies at least one of the terms under the summation is
greater ε/(2NA). Under the hypothesis of this theorem in Eq
(3), both conditions are satisfied with probability at most∑

a∈A
δa(ε/(2NA), ε̂a, l).

By combining the above terms together, we have

Pl
X,Y

[
|∆̃F −∆∗F | > ε

]
< δd(ε/2, ε̂d, l) +

∑
a∈A

δa(ε/(2NA), ε̂a, l),

which proves the theorem. �
The confidence bound is expressed in terms of the precision

parameter ε and the confidence parameter [1− δd(ε/2, ε̂d, l)−∑
a∈A

δa(ε/(2NA), ε̂a, l)], which approaches 1 with increasing

number of measurements l, thereby indicating the effectiveness
of the classifier fuser. However, this result is asymptotic and
is not fine enough to provide inferences for finite (small)
samples. For a fixed l, the confidence on the precision of ∆̃ is
lower in proportion to the number of fused classifiers and also
their parameters; it is reflected in the higher generalization
error of classifier-fusers despite their lower training in the
previous section.

V. DETECTOR FUSERS

The features from multiple detectors are fused within each
group, starting with the one nearest to the source and suc-
cessively adding detectors in the increasing order of their
distance. There is an overall lowering of the classifier profiles
as more detectors are fused in the outer group, both for
training and testing as shown in Fig. 3 (a) and (d), respectively.
The error reduction is least for the inner group, since the
single detector classifiers already achieve low errors, as shown
in Fig. 3 (c) and (f), respectively. The lowering of profiles
is very instructive in the middle group, where the addition
of the second detector resulted in visible lowering of the
profile, but further addition of detectors has less effect. Overall,
the addition of detectors effectively increases the capture
area, albeit distributed, of NaI material, which is exposed to
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(a) outer group: train (b) middle group: train (c) inner group: train

(d) outer group: test (e) middle group: test (f) inner group: test

Fig. 7. Classifier error profiles of fusers with 1, 2, ..., 7 detectors in outer, middle and inner groups.

more gamma radiation. But, the performance saturates once
it reaches around that of the nearest detector adjusted for
distance, wherein further addition of detectors does not lead
to much improved performance.

VI. CONCLUSIONS

By using controlled measurements, three types of informa-
tion fusion strategies are studied for detecting low-level 235U
radiation sources, using features obtained from gamma spectra
of NaI detectors. This study provides two main qualitative
insights into this classification task. First, the fusion of detec-
tors leads to an overall improved classification performance,
explained by increased effective NaI capture area. Second,
the over-fitting by classifiers and classifier-fusers calls for
methods supported by the underlying physics, analytical and
statistical models, rather than simply relying on complex
machine learning methods that perform well on training data.

Future directions include developing physics, data and sta-
tistical basis for the generalization performance of various
classifiers, and quantitative measures to assess and compare
the profiles to complement qualitative approach of this paper.
It would be interesting to see if over-fitting of the classifiers
is specific to the codes used, by testing other codes such as
scikitpy and R. It would be of future interest to study similar
aspects for other low level radiation sources.
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