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Abstract       
     
This paper presents a progress update on a research project that is being currently funded by the Water-
Power Technologies Office of the US Department of Energy per performed and executed by the Oak Ridge 
National Laboratory (USA) and Pacific Northwest National Laboratory (USA) in collaboration with Norwegian 
University of Science and Technology or NTNU (Norway).   This paper summarizes the dynamic modeling of 
hydropower systems for the development of digital twin (DT) for hydropower systems. The obtained modeling 
suite covers the penstock dynamics, turbine and generator dynamics, and linkages to the grid, where 
linearized models have been developed for various components in the NTNU testing system. In this context, a 
discretized input and output model for the turbine shaft speed control has been obtained as a starting point to 
build the adaptively learned models representing the relationship between the guided vane opening, shaft 
speed, and water head. This allows the establishment of adaptive learning strategy where the data from any 
reference hydropower generation unit can be used to learn the model parameters. To enhance the robustness 
of the online learning of model parameters, a modeling error dead-zone based recursive least squares 
algorithm has been developed. In terms of the synchronous generator, standard d-q axis model has been 
used. Both the real-time data driven modeling and synchronous generator- simulation have been performed 
and desired results have been obtained. 
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1. INTRODUCTION      
    

 With the increased penetration of renewables, the operation of power grid needs to deal with large 
variations in terms of frequency, voltage and power flow regulations and control. This requires hydropower 
generation to provide fast responding services to the grid. As a result, hydropower generation needs to 
operate in a large range, even larger than it was before – presenting challenges on solving responsive 
operational optimization and proactive asset management.  To address such challenges, it is imperative to 
develop a full-scale hydropower digital twin (DT) to provide an effective R&D and operational platform for the 
hydropower plant operators and utility companies to explore best practices for the process optimization and 
monitoring (Parrott and Warshaw, 2017; Tao, et al. 2019).          
 
        To develop the required digital twin (DT), it is imperative that dynamics of the hydropower generation be 
modeled well.  This requires the modeling of various components of the systems such as penstock, turbine, 
generator and linkages to the power grid in general. On the other hand, it is also important that digital twin has 
desired capabilities in terms of user’s friendly interface and visualization that can help the users to perform 
relevant testing on the DT for system operation optimization and fault diagnosis. Once built, it is also expected 
that the DT can be connected in parallel to the actual hydropower system so that the real-time operation data 
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can be injected into the DT for the updating and tuning of the models. In this perspective, the following 
problems need to be solved: 
 

1) Adaptive learning of the dynamics of the system needs to be developed so that the models in DT can 
effectively learn the system dynamics using the real-time data from the operational control system 
(such as the data from SCADA and DCS systems). 

 
2) Interface and data process tools need to be established that support the adaptive modeling and dialog 

between the users and the DT. 
 
      To solve the first problem, a recursive learning algorithm needs to be developed (Wang, Liu and You, 
1991; Goodwin and Sin, 2009; Weldcherkos, et, al, 2021). Since the data from the system contain 
measurement noises it is important that robust learning algorithm is to be used to realize a reliable learning. In 
this paper, the dead-zone and normalized recursive least square will be used for the input and output model 
learning of the hydro-turbine system whilst the standard d-q axis modeling for the synchronous generator will 
be employed.  
 
      In order to address the second problem as stated above, an affordable solution needs to be developed.  
Indeed, the DT should be affordable to implement and operate. It should be simple enough so that it can be 
operated by technical workforce that can be easily accessible and can be trained. Regarding data use and 
integration, DT should have both backward and forward compatibility. In other words, DT should provide a 
platform that can integrate data from both heterogenous legacy systems and devices and new sensors and 
equipment using open interoperable protocols and using an open system architecture for creating solutions 
(Wang, et al, 2021).  
 
      To address such requirements, an open platform DT is conceived as the best path forward for providing 
affordability while offering wide coverage on data integration. In developing the Digital Twin, certain features 
and functionalities are envisaged as the core elements: 1) capability of accommodating internet of things 
(IoT) platform; 2) data acquisition, curation, and integration; 3) object modeling that allows easy 
configuration using user friendly graphical interface; 4) data processing, data modeling and management 
using Data Orchestration process, and 4) User Interface that shall include a very robust portfolio including 
simple dashboard, mobile apps, 3D visualization, augmented reality, and virtual reality. The Digital Twin will 
also have an applications layer for predictive analytics, control, optimization and grid services with an 
effective user interface. The Digital Twin will be designed to be open access and will serve as an R&D 
platform for accelerating the pace of developing new technologies for the significant growth and 
sustainability of the hydropower industry, national labs, and academia. 
 
      The paper is organized as follows: In section 2 the adaptive learning algorithm using dead-zone recursive 
least squares will be described together with the learning results using the real-time testing data from the pilot 
hydropower plant in the NTNU Waterpower Laboratory. In section 3, the d-q axis modeling for the 
synchronous generator will be given. Simulation results of the hydropower system is presented in section 4. 
This is followed by the description of data engineering process using an open-platform. 

    
2. ADAPTIVE LEARNING OF THE TURBINE DYNAMICS     

    
        Figure 1 shows a generic structure of a hydropower generation system, where the shaft speed of the 
hydro-turbine is controlled by the guide vane opening assuming that the turbine is a Francis type. 
 

 
 

Figure 1. A generic structure of a hydropower generation system. 
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      For such a system, the shaft speed system of a hydro-turbine system can be generally modeled in the 
following discrete-time input and output form (Wang, Liu and You, 1991; Fang and Shen, 2005): 
 
                𝑥(𝑘 + 1) = 𝑎1𝑥(𝑘) + 𝑎2𝑥(𝑘 − 1)  +  𝑎3𝑥(𝑘 − 2) + 𝑏1∆𝑢(𝑘 − 1) + 𝑏2∆𝑢(𝑘 − 2) + 𝑐0𝑑(𝑘)         [1] 
 
where 𝑥(𝑘) = 𝑥(𝑘𝑇) and ∆𝑢(𝑘) = ∆𝑢(𝑘𝑇) are the sampled shaft speed and guide vane opening of the turbine 
in their normalized incremental senses, respectively. 𝑘 = 1, 2, .  .  . is the sampling index, 𝑇 is the sampling 

period for discretization purpose, and 𝑑(𝑘) is related to the discretized and normalized incremental value of 

the load torque with 𝑐0 being a coefficient.  
 
      The objective of adaptive modeling and learning is to use the shaft speed and guided vane opening data 
to estimate the model coefficients in Eq. [1]. 
 
      To estimate these coefficients in the system, we denote 
                                 

                                             𝜃 =  [𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2]
𝑇                                                                                 [2] 

 

                                             𝜑(𝑘) =  [𝑥(𝑘), 𝑥(𝑘 − 1), 𝑥(𝑘 − 2), ∆ 𝑢(𝑘 − 1), ∆𝑢(𝑘 − 2)]𝑇                           [3] 
 
      Then, when the test runs for the data collection are under a fixed load condition (i.e., 𝑑(𝑘) = 0 ), Eq. [1] 
can be simply expressed by 
 

                                             𝑥(𝑘 + 1) =  𝜃𝑇𝜑(𝑘)                                                                                     [4] 
 
      Assuming that the current sample time is (𝑘 + 1)𝑇 and the data have been available from 𝑘 = 1 up to 𝑘 +
1, the dead-zone normalized least squares algorithm can simply be used to recursively estimate the 
parameters as shown in the following form.             
 

                                          𝜃̂(𝑘 + 1) =  {
𝜃̂(𝑘) + 

𝑃(𝑘)𝜑(𝑘)𝜀(𝑘)

𝑚(𝑘) 
,        ||𝜀(𝑘)|| >  𝜀0

𝜃̂(𝑘),                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                          [5] 

 
where 𝜀0 is a pre-specified small threshold that reflects the noise bound in the real-time date and it has been 
further included that  
 

                                         𝜀(𝑘) = 𝑥(𝑘 + 1) − 𝜃̂𝑇(𝑘)𝜑(𝑘)                                                                         [6] 

                                         𝑃 (𝑘 + 1) = 𝑃(𝑘)  −  
𝑃(𝑘)𝜑(𝑘)𝜑𝑇(𝑘)𝑃(𝑘)

𝑚2(𝑘)
                                                                [7] 

                                         𝑚(𝑘) =  √(𝛿 + 𝜑𝑇(𝑘)𝑃(𝑘)𝜑(𝑘)                                                                      [8] 

 
where 𝛿 is a small number typically less than 0.05, and the initial values of {𝜃(𝑘), 𝑃(𝑘)} are pre-specified,     
respectively, based upon the pre-knowledge of the system parameters and operating conditions.    
 
      Tests were conducted with changes in experiment conditions at the test rig at NTNU in June and July 
2022. The system was set up in an open loop control mode initially with guide vane opening as the input and 
the shaft speed and water head as the outputs.  
 
      In this configuration, the guide vane opening (𝑢) was directly changed while keeping other initial conditions 

fixed; the system load 𝐿 was fixed at 378 N·m and its normalized incremental value 𝑑(𝑘) = 0, and the power 
generated was 14.9 kW. In this experiment, the maximum guide vane opening angle was 14°. To collect the 
data, it went from 5.60° to 4.60°. These changes reflect the open-loop tests in which the input was the guide 
vane opening and the outputs were the shaft speed and water head.  
 
      Figures 2 – 3 shows the adaptive modeling results when the proposed dead-zone recursive least square 
algorithm is used, where the speed response and its estimate (red color) is given in the top half of Figure 2 
and the water head and its estimated response (red color) are displayed in Figure 3. The bottom diagram of 
Figure 2 shows the response of the guide vane opening in percentage variations. These responses show that 
the proposed adaptive learning works well in terms of tracking the system dynamics for the turbine. 
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Figure 2. The response of the shaft speed, its estimated response (red color) in their true value ranges and 

the actual guide vane opening (bottom figure) in its normalized incremental sense. 
 

    
 

Figure 3. The water head and its estimated response (red color) in percentage variation sense. 
 
3. MODELING OF SYNCHRONOUS GENERATOR                                  
 

      To obtain the power and voltage output from the hydropower, this paper describes the generator dynamics 
in a classical third-order model (Yang, 2019). Accordingly, the voltage control model for the generator can be 
expressed as: 
 

                                                             
𝑑𝐸

𝑑𝑡
= ℵ(𝐸, 𝐼, 𝑋q

′′, 𝑋d
′′, 𝑣)                                                                  [9] 

 
which can be further expressed in the following form:     
 

                                                       

{
 
 

 
 𝑇d0

′ 𝑑𝐸q
′

𝑑𝑡
= 𝑣 − 𝐸q

′ − 𝐼d(𝑋d − 𝑋d
′ )

𝑇d0
′′ 𝑑𝐸q

′′

𝑑𝑡
= 𝐸q

′ − 𝐸q
′′ − 𝐼d(𝑋d

′ − 𝑋d
′′)

𝑇q0
′′ 𝑑𝐸d

′′

𝑑𝑡
= −𝐸d

′′ + 𝐼q(𝑋q − 𝑋q
′′)

                                                   [10] 
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where v is the excitation control input of the generator. Id is the direct-axis (d-axis) component current, Iq is the 

quadrature-axis (q-axis) component current. 𝐄′ = [
𝐸d
′

𝐸q
′ ] is the transient internal EMF of the generator with 𝐸d

′  

being the d-axis component and 𝐸q
′  being the q-axis component. 𝐄′′ = [

𝐸d
′′

𝐸q
′′] is the sub-transient internal EMF 

of the generator with 𝐸d
′′ being the d-axis component and 𝐸q

′′ being the q-axis component. In Eq. [10], 𝐗 =

[
𝑋d
𝑋q
], which is the synchronous reactance of the generator with Xd being the d-axis component and Xq being 

the q-axis component. 𝐗′ = [
𝑋d
′

𝑋q
′ ] is the transient reactance of the generator with 𝑋d

′  being the d-axis 

component and 𝑋q
′  being the q-axis component. 𝐗′′ = [

𝑋d
′′

𝑋q
′′] is the subtransient reactance of the generator with 

𝑋d
′′ being the d-axis component and 𝑋q

′′ being the q-axis component. Additionally, 𝐓𝟎
′ = [

𝑇d0
′

𝑇𝑞0
′ ] is the open-circuit 

transient time constant of the generator; 𝑇d0
′  is the d-axis component, and 𝑇q0

′  is the q-axis component. 𝐓𝟎
′′ =

[
𝑇d0
′′

𝑇q0
′′ ] is the open-circuit sub-transient time constant of the generator; where 𝑇d0

′′  is the d-axis component, and 

𝑇q0
′′  is the q-axis component. The values of these parameters were obtained from the experimental test, as 

shown in the following Table 1.             
          The synchronous generator parameters in Table 1 were obtained using an equivalent synchronous 
generator that has the same power generating capacity as that of the NTNU testing system.             
 

Table 1. Parameters used for the third-order model in Eq. [10] 
 

Parameter Value 

𝑋d 0.7680 

𝑋d
′  0.2490 

𝑋d
′′ 0.1870 

𝑋q 0.5120 

𝑋q
′′ 0.1890 

𝑇d0
′  7.8800 

𝑇d0
′′  0.0490 

𝑇q0
′′  0.0283 

.  
      On the other hand, the generator voltage is controlled through the PID controller, which implements the 
proportional, the integral, and the derivative terms, as shown in the following. 
 
                                                              𝑒𝑣 = 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑠𝑒𝑡 𝑝𝑜𝑖𝑛𝑡 − 𝑉g                                                  [11] 

                                                              𝑣 = 𝐾p,v𝑒v + 𝐾I,v ∫ 𝑒v 𝑑τ
τ

0
                                                       [12] 

where ev is the tracking error of the incremental voltage control for the incremental voltage; Vg is the set-point 
of the voltage controller, which is the voltage from the generator terminal; v is the output of the voltage 
controller; for the PI control, Kp,v is the coefficient for the proportional gain, and KI,v is the coefficient for the 
integral gain; and ev,f is the filter error of the incremental voltage control, which can be calculated from the 
following:             
 

                                                               𝑇f
𝑑𝑒v,f

𝑑𝑡
+ 𝑒v,f = 𝑒v                                                                  [13] 

 
where Tf is the filtering time constant.𝑒𝑣,𝑓 is the excitation voltage applied to the excitation circuit of the 

synchronous generator. 
 
 
4. SIMULATION RESULTS WHEN CONNECTED TO THE GRID     
 
      In the simulation, the focus has been on the performance of the hydro-turbine dynamics when the system 
is connected to the grid with variable power (load) generation. In this context, the system was regarded as of a 
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one-machine–one load situation. Load torque, denoted as mL, has the pattern shown in Eq. (14) in percentage 
variation sense: 
 

                                                             𝑚L = {
0,when 𝑡 ≤ 200 s
0.1, when 𝑡 > 200 s

                                                    [14] 

 
      This equation indicates that the load was suddenly increased by 10%. Because the speed control system 
operated in the closed-loop manner this time, the speed was expected to go down initially and then be 
recovered back to its set point. The simulation results are shown in Figure 4, which shows that the speed (i.e., 
the frequency) was very well controlled, and the frequency recovered within 9.6 seconds back to 50 Hz. 

 
Figure 4. The speed (in frequency) response when the load was suddenly increased by 10%  

at the time of 200 s. 
 

      Figure 5, Figure 6, and Figure 7 show the relevant responses for the water head, water flow rate, and 
guided vane (inlet gate) opening, respectively, where desired dynamics responses were obtained. 

 
Figure 5. The water head response in meters when the load was suddenly increased by 10% at the time of 

200 s. 
 

 
Figure 6. The water flow rate response in percentage variation sense when the load was suddenly increased 

by 10% at the time of 200 s. 
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Figure 7. The guided vane opening in percentage variation sense when the load was L increased by 10% at 

the time of 200s. 
. 
 
5. DATA ENGINEERING PROCESS USING OPEN PLATFORM  
 
An overview of Data Engineering Process Using Open Platform is illustrated in Figure 8. In this illustration, it is 
assumed that a Digital Twin of a Turbine is built. Focusing on the process section, where it can be seen that 
the data engineering and open platform can address the second problem in section 1 effectively in terms of 
obtaining interface and data process tools that support the adaptive modeling in sections 2 – 4 and dialog 
between the users and the DT. 
. 

 
 

Figure 8. An overview of Open Platform Data Engineering process. 
 
6. CONCLUSIONS      
 
 As a powerful tool in realizing the digitalization, digital twin requires both adaptive learned models and 
effective data process with effective user’s interface. This paper has addressed these two issues, where a 
novel modeling method for the hydro-generation unit has been developed together with data engineering 
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processing and potential interface. In terms of modeling, a dead-zone based robust least square algorithm has 
been proposed to learn the system dynamics and a desired performance has been achieved when using the 
testing data from a pilot hydropower system in NTNU (Norway). This is then followed by the overview of a 
data process and open platform engineering process. 
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