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ABSTRACT

Individual human location trajectory and check-in data have been
the driving force for human mobility research in recent years. How-
ever, existing human mobility datasets are very limited in size
and representativeness. For example, one of the largest and most
commonly used datasets of individual human location trajectories,
Geolife, captures fewer than two hundred individuals. To help
fill this gap, this Data and Resources paper leverages an existing
data generator based on fine-grained simulation of individual hu-
man patterns of life to produce large-scale trajectory, check-in, and
social network data. In this simulation, individual human agents
commute between their home and work locations, visit restaurants
to eat, and visit recreational sites to meet friends. We provide large
datasets of months of simulated trajectories for two example regions
in the United States: San Francisco and New Orleans. In addition
to making the datasets available, we also provide instructions on
how the simulation can be used to re-generate data, thus allow-
ing researchers to generate the data locally without downloading
prohibitively large files.
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1 INTRODUCTION

Managing, analyzing, understanding, querying, mining, and pre-
dicting human mobility is of great significance for a variety of
applications ranging from disaster response [6], environmental
sustainability [4], public health [13], urban planning [16], traffic
management [17], and activity-based intelligence [3] to name but a
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few. Datasets that enable these applications mainly comprise loca-
tion trajectory data and location-based social network (LBSN) data.
Trajectory data captures the location of individuals at a relatively
high frequency, such as at 1Hz (one location per second per indi-
vidual). LBSN data captures both 1) so-called check-ins, that is, the
location of individuals only when a point of interest (POI) such
as a restaurant is visited as well as 2) a social network between
individuals. However, publicly available real-world trajectory and

LBSN data sets exhibit certain weaknesses:
Non-Representativeness: For trajectory data, the most commonly

used data set is the GeoLife dataset [19] which captures the locations
of 178 individuals in Beijing, China. It becomes very challenging
to infer patterns of human behavior from such a small sample as
it is not a representative sample of the large population of Beijing.
In all existing check-in datasets that capture individuals’ check-
ins, the vast majority of users have less than ten check-ins [11].
Past research analyses of LBSN data concludes that “Researchers
working with LBSN data sets are often confronted by themselves
or others with doubts regarding the quality or the potential of their

data sets” and that “it is reasonable to be skeptical”[9].
Small size: Existing data sets of human mobility are small [7].

They tend to only cover a short period of time, a small number of
users, or a small number of check-ins. Using such small datasets, it
becomes difficult to assess the scalability of methods and algorithms

to an entire population of an area and to a long time duration.
Privacy concerns: Individual human mobility data is considered

Personal Identifiable Information (PII) as it allows one to trace an
individual’s identity. Acquiring, storing, and publishing individual
human mobility data require the consent of individuals. Even if such
consent is given, users may later revoke this consent, for instance,
by deleting their LBSN account. This limits, for good reasons, our

ability to acquire additional individual-level human mobility data.
No ground-truth: Itis abig challenge, in existing human mobility

data, to infer the underlying behaviors that lead to an individual’s
decision to visit a place. For example, did an individual visit a restau-
rant to eat by themselves? To meet a friend? To have a business
meal? Or to work at the restaurant? What preferences lead an in-
dividual to choose one grocery store over another? But without
knowing the underlying human behavior that led to the observed
mobility, it is difficult to confidently infer patterns of human be-
havior and to predict future mobility.
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To overcome these weaknesses, we developed a LBSN simula-
tion capable of creating multiple artificial but socially plausible,
large-scale trajectory and LBSN data sets in [7]. These large and
dense data sets allow the broader social and data science research
communities to test human mobility-based hypotheses without
encountering issues pertaining to data representativeness, data
sparsity, privacy concerns, and lack of ground-truth. These datasets
enable investigation of research questions that is not currently pos-
sible given the limitation of existing real-world data sets. In addition
to making these datasets available, this Data and Resources paper
provides the underlying simulation framework enriched by instruc-
tions on how to regenerate the datasets locally (thus avoiding the
transfer bottleneck for very large datasets) and how to generate
new datasets for new study regions.

In the remainder of this paper and beginning in Section 2, we
provide an overview of existing trajectory and LBSN datasets and
generation tools. In Section 3, we briefly sketch the functionality of
the Patters of Life simulation described in [7, 20]. We then present
the generated datasets by explaining their structure and providing
descriptive statistics in Section 4. Then, Section 5 provides instruc-
tions to regenerate the datasets and to help users to create new
datasets for new study areas and Section 6 concludes the paper.

The two resources offered by this Data and Resources paper are:

e Simulated datasets of human mobility that ran more
than 927 hours to capture more than 22,360,320,024 trajec-
tory locations, more than 423,609,129 check-ins, and more
than 1,736,701,154 social links. The total size of the provided
datasets exceeds 1,528 GB. Datasets are shared at https://osf.
io/gbhm8/ and documented at https://github.com/azufle/pol.

e Source code of the simulation found at https://github.
com/azufle/pol. It includes documentation and parameter
files to re-run the simulation locally and regenerate the afore-
mentioned datasets (or even larger datasets) locally without
having to transfer large datasets over the web.

2 PRIOR DATASETS AND SIMULATORS

Location Trajectory Data: The most commonly used real-world
trajectory data set is the Geolife GPS trajectory dataset [19], which
was collected and shared by Microsoft Research Asia. This dataset
captures detailed trajectories of 178 users in Beijing, China, over a
period of over four years (from April 2007 to October 2011). Fur-
thermore, the dataset captures a broad range of users’ movements,
including not only life routines like going home and going to work
but also some entertainment and sports activities, such as shop-
ping, sightseeing, dining, hiking, and cycling. While this dataset is
excellent in terms of quality and fidelity, it is, unfortunately, very
small. It is difficult to infer broad mobility patterns from a set of
only 178 users, especially in a large city such as Beijing.

The second dataset is the T-Drive trajectory data sample [18],
which was (also) collected and shared by Microsoft Research Asia
and captures one-week trajectories of 10,357 taxis in Bejing, China.
While the number of individuals captured in this dataset is much
larger than in GeoLife, T-Drive captures the trajectories of taxis,
not individuals. Thus, consecutive trajectories of the same taxi may
not correspond to the same passenger. While useful for applications
such as traffic prediction, this dataset is very limited in terms of
providing insights into individual human mobility and behavior, as
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it is impossible to understand the sequence of places that individuals
have visited.

LBSN Data: A summary of existing LBSN datasets having up to
2.7M users and up to 90M check-ins is given in [7]. It has been
shown that after removing users with less than 15 check-ins and
removing locations with less than ten visitors, more than half of the
check-ins are eliminated [10]. Further, these datasets are captured
over years, thus capturing less than 50K check-ins per day. Since
these datasets are collected globally, this leaves only hundreds of
check-ins per city per day.

Synthetic Data: The problem of using sparse and noisy real-world
LBSN data has already been identified in previous work (e.g., [1,
2, 8]). However, none of these works have proposed a way to ob-
tain plausible check-in data. For example, [1, 2, 8] generated user-
location check-ins at random using parametric distributions with-
out considering the semantics of the movement. While [15] created
additional check-ins by replication of Gowalla and Brightkite data,
thus creating more data for run-time evaluation purposes but with-
out creating more information.

One could, therefore, question whether the experimental results
of existing works on LBSN and trajectory data may be considered
conclusive, both in terms of scalability and effectiveness due to a
lack of large-scale available data sets [9]. This paper aims to close
this gap by proposing the means to generate large-scale and ground-
truth based synthetic data sets through simulation, described in the
following.

3 PATTERNS OF LIFE SIMULATION

Our approach for the generation of massive and realistic human
mobility data (trajectories, check-ins, and social networks) is based
on a socially plausible agent-based simulation called Urban Life [20].
Urban Life is an agent-based city-level simulation in which each
agent represents a simulated human in the real-world that follows
socially plausible patterns of life. The simulation allows to leverage
real-city environment data (road network, buildings, apartments)
leveraging a pipeline to extract data from OpenStreetMap (OSM)
detailed in Section 5.4. Agents in Urban Life commute between their
home and work locations. They go to restaurants to eat, and they
go to recreational sites to meet friends and socialize. A social net-
work that captures friendship, family, and co-worker relationships
evolves as agents interact with each other over time.

Agent behavior is driven by Maslowian needs [12] such as phys-
iological needs (shelter, food), financial needs (money), and love
needs (friends, family). These needs drive the decision-making of
agents that lead to behavior to satisfy the needs, leading to an
emerging behavior in which agents find a balance between spend-
ing time and making money, meeting friends, and satisfying other
needs. An in-depth description of the Urban Life simulation can be
found in [20] and the Java-based source code of the simulation can
be found on GitHub at https://github.com/gmuggs/pol.

4 DATASET DESCRIPTION

Here, we provide summary statistics for a number of simulated
LBSN and trajectory datasets that we provide for benchmarking.
The datasets, as well as additional documentation, can be found
at OSF (https://osf.io/gbhm8/). Details on how to regenerate these
datasets and how to leverage the Patterns of Life simulation to new
study regions can be found in Section 5.


https://osf.io/gbhm8/
https://osf.io/gbhm8/
https://github.com/azufle/pol
https://github.com/azufle/pol
https://github.com/azufle/pol
https://github.com/gmuggs/pol
https://osf.io/gbhm8/

Massive Trajectory Data Based on Patterns of Life
(Data and Resources Paper)

SIGSPATIAL ’23, November 13-16, 2023, Hamburg, Germany

Table 1: Simulated Location-Based Social Network and Trajectory Data

Settings Check-Ins Social Links Trajectory Points Runtime

Map | #Agents | #Days Count | Size (MB) Count Size (MB) Count Size (GB) (hours)
GMU 1,000 450 2,442,934 175 9,768,020 269 129,600,000 8.8 3.16
GMU 1,000 3,630 19,109,109 1,433 85,828,108 2,457 | 1,045,440,000 71 22.33
GMU 1,000 7,230 37,952,610 2,764 | 171,906,382 4,812 | 2,082,240,000 141 46.12
GMU 3,000 450 7,369,221 532 30,203,582 872 388,800,000 27 11.66
GMU 5,000 450 12,314,442 890 56,073,810 1,637 648,000,000 45 31.96
GMU 10,000 450 24,168,718 1,843 | 123,572,434 3,788 | 1,296,000,000 89 49.57
NOLA 1,000 450 2,473,475 176 9,529,160 262 129,600,000 8.8 3.15
NOLA 1,000 3,630 19,325,948 1,433 81,377,850 2,252 | 1,045,440,000 71 23.96
NOLA 1,000 7,230 38,370,713 2,764 | 162,645,920 4,505 | 2,082,240,000 141 47.22
NOLA 3,000 450 7,666,739 552 27,204,936 785 388,800,000 27 14.80
NOLA 5,000 450 12,839,165 926 49,217,712 1,432 648,000,000 45 21.62
NOLA 10,000 450 25,731,468 1,945 97,549,684 2,969 | 1296,000,000 89 53.87
ATL 1,000 450 2,481,774 176 9,169,470 252 129,600,000 8.8 6.25
ATL 1,000 3,630 19,404,487 1,433 80,419,112 2,252 | 1,045,440,000 71 47.50
ATL 1,000 7,230 38,526,948 2464 | 161,632,490 4,505 | 2,082,240,000 141 91.71
ATL 3,000 450 7,610,274 545 27,333,644 789 388,800,000 27 22.73
ATL 5,000 450 12,816,339 919 44,525,826 1,297 648,000,000 45 39.57
ATL 10,000 450 25,389,727 1,945 | 102,295,850 3174 | 1,296,000,000 8.8 65.93
SFCO 1,000 450 2,507,220 178 8,663,638 238 129600000 8.8 7.22
SFCO 1,000 3,630 19,662,213 1,433 74,305,732 20,448 | 1,045,440,000 71 54.86
SFCO 1,000 7,230 39,063,687 2,867 | 149,298,832 4,198 | 2,082,240,000 141 103.7
SFCO 3,000 450 7,651,106 547 26,694,044 771 388,800,000 27 28.54
SFCO 5,000 450 12,938,737 927 50,027,578 1,454 648,000,000 45 53.89
SFCO 10,000 450 25,792,051 1,945 97,457,318 2,867 | 2,082,240,000 141 85.51
Total 84000 50640 || 423609105 30812 | 1736701132 68285 | 23146560000 1499 936.83

Table 1 provides an overview of the generated datasets. As re-
gions of interest for the simulation, we used four suburban and
urban regions, including 1) the George Mason University Cam-
pus area, Fairfax, Virginia, 2) the French Quarter of New Orleans,
Louisiana, 3) San Francisco, California, and 4) Atlanta, Georgia. For
each study region we obtained road networks and building from
OpenStreetMap [5]. Detailed instructions how to obtain OSM data
for use in the Patterns of Life simulation (for any region of interest
in the world) can be found in Section 5.4. For each of the four study
regions, we run the simulation with 1K, 3K, 5K, and 10K agents for
15 months of simulation time. The first simulated month is always
used as a “simulation warm-up period” and not reported as data.
We also provide simulations for 10 years and 20 years, having 1K
agents for each of the four regions of interest. For each dataset,
three datasets are provided: 1) Check-ins, and 2) social network
links are described in [7]. In addition, 3) trajectory information
is provided consisting of three primary columns: simulationTime,
location, and agentId. One tuple of data is provided per agent per
five-minute tick. The simulation parameters allow us to provide
data at more frequent intervals. However, a frequency of 1Hz would
increase the (already prohibitively large) data size by a factor of
300 without including substantially more information. Location is
provided using geographical coordinates.

For each of the resulting 24 datasets Table 1 shows the resulting
number of check-ins, social network links (which may change over
simulation time), and trajectory points.

Table 1 also reports the corresponding dataset sizes. Due to
dataset larges becoming prohibitively large (to share and down-
load) we do not provide datasets with a higher number of agents or
a longer simulation time. We note, however, that instead of down-
loading these datasets, researchers may also run the simulation
locally to reproduce the datasets, as described in the following sec-
tion. This approach allows us to generate datasets of arbitrary size
by scaling the number of agents and the simulation time without a
data transfer bottleneck.

5 DATA RE-GENERATION INSTRUCTIONS

In this section, we outline the procedure involved in executing the
simulation and producing the dataset. Specifically, we demonstrate
how to create an identical dataset, as well as generating a novel
dataset for a different geographical region, such as a new city or
area.

5.1 Running the Simulation

The simulation Java code can be obtained via cloning from our
GitHub repository (https://github.com/azufle/pol), with the project
dependencies managed through Maven. Detailed instructions on
setting up the simulation model and software environment are
provided in the documentation of the GitHub repository.

5.2 Simulation Parameterization

The simulation includes a file named ‘parameters.properties’, which
encompasses the default properties, including the number of agents,
the map to be used, and the simulation duration. For each of datasets
provided in Table 1 we provide a separate ‘parameters.properties’
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to allow exact reproduction of each of the datasets. Researchers are
encouraged to change the parameters to simulate more agents, for
a longer duration, or for a different region of interest which can
be prepared using OpenStreetMap as detailed in Section 5.4. Many
of the parameters that pertain to the behavior of agents and their
physiological, financial, and love needs are explained in more detail
in [20].

5.3 Dataset Preprocessing

Upon the completion of the simulation, generated data can be found
in the ‘logs’ folder. Trajectory data can be extracted from the file
‘AgentStateTable.tsv’ which documents the state (including loca-
tion) of each agent at every time step. Trajectory information is
obtained by projecting the attributes simulationTime, location, and
agentld. Additionally, it’s important to note that the simulation in-
cludes a “warm-up period” of one month of simulation time. During
this period, agents may behave differently as their social network
has not yet formed and their simulated patterns of life have not yet
converged. Thus, it is recommended to discard the first 30 days of
simulation data.

5.4 New Map Creation

We provide our datasets for four cities across the United States.
However, researchers may wish to simulate different study re-
gions across the world. Here, we provide brief instructions to
simulate and study regions by leveraging OpenStreetMap (OSM)
data. Detailed instructions can be found in our Github reposi-
tory (https://github.com/azufle/pol) in a separate file ‘documenta-
tion/map.md’. The process begins with the extraction of data from
open map services, such as Overpass Turbo[14]. Three geographic
files are necessary for each simulation: buildings.shp, buildingU-
nits.shp, and walkways.shp. The buildings.shp file contains building
footprints, the buildingUnits.shp file holds details about building
units, and the walkways.shp file provides information on the trans-
portation network. Each of these files requires additional attributes
for simulation purposes. In the buildings.shp file, building type
helps distinguish between residential and non-residential buildings.
Road segments bear a ‘function class’ (fclass) tag, helping classify
buildings as residential or non-residential. The buildingUnits.shp
file, derived from building footprints, contains points representing
possible locations for homes and workplaces. These can be obtained
from OSM or created based on the size of a building. The attribute
‘building’ in this file maps a unit to the corresponding building.

6 CONCLUSIONS

In this Data and Resources paper, we provide very large sets of sim-
ulated individual-level trajectory and location-based social network
data. Our datasets are orders of magnitude larger than existing real-
world datasets. We also share the source code of the simulation
along with parametrization files to allow the community to regener-
ate the data locally without the bottleneck of transferring hundreds
of GB of data. This aspect helps to include researchers from coun-
tries that may not have as ubiquitous access to high-speed internet.
By providing these datasets, we address the limitations inherent in
publicly available real-world trajectory and location-based social
network (LBSN) data sets, which include issues of data representa-
tiveness, data sparsity, privacy concerns, and a lack of ground truth.
While our datasets are simulated, they are based on real-world
map data (roads, buildings, units) and based on socially plausible
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patterns of life following robust social theories of human behavior.
In making these datasets available and providing the means for the
generation of new datasets, we hope to facilitate more extensive
and reliable research in human mobility data science. Our datasets
will enable scalability evaluation for human mobility data science
and they will enable new research towards activity-based intelli-
gence [3] by providing large mobility datasets that enriched with a
ground truth of underlying behavior. For example, the simulated
data may enable research towards the classification of different
types of agents (adults, children, retirees) based on their mobility or
may allow researching the early-detection of abnormal trajectories
such as agents that exhibit a changed behavior due to exposure
to an infectious disease. For future work, an important aspect will
be adding realistic movement on top of the realistic behavior as,
currently, all agents move at a constant velocity on a shortest path
between their current location and their destination. In addition,
allowing agents to have interactions outside of places of interest (on
the road network and via telecommunication) will be an additional
step towards more realistic behavior.
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