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Highlights

Cumulative Fission Yields of Short-Lived Fission Products from
25U and ?*°Pu Measured by HPGe Gamma-Ray Spectroscopy

Samuel Kim, Jeff Martoff, Michael Dion, David Glasgow

e Research highlight 1 Preliminary study to show how gamma-ray spec-
troscopy of short-lived fission products from U and 2**Pu may shed
light on the spectral deviation in the 5 to 7 MeV range in the reactor
neutrino spectra.

e Research highlight 2 Measured cumulative fission yields of 4°Cs and
98r from 2%°U and #Pu are shown to be consistent with expectations
based on the JEFF3.3 fission yield library.
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0 Abstract

a1 In this study, we present a preliminary investigation focused on determin-
» ing cumulative fission yields for short-lived fission products. Our analysis
2 involves examining gamma spectra from the irradiated samples of 2*°U and
2 239Pu using the High Flux Isotope Reactor. The motivation stems from the
s observed discrepancy in the antineutrino energy spectrum within the range of
6 b to 7 MeV. While several hypotheses have been proposed, a thorough anal-
o7 ysis of fission yields provides an additional way of gaining insight into this
;s unexplained phenomenon. Our study suggests that the measured gamma
2 rays from '°Nb, 1°Cs and %Sr are consistent with the expected values.
50 However, ®*Rb, Y, 7Y and '*2Cs cannot be quantified due to insufficient
s statistics, interference from other gamma rays and the Compton scattering
2 background. Additionally, the calculated cumulative fission yields based on
5 the measured “°Cs and %Sr are found to be consistent with the JEFF3.3
s fission yield library. The present work shows that the potential of improv-
55 ing gamma-ray spectroscopy in the fission yields as a means to improve our
s understanding of the neutrino spectrum.

s Keywords: cumulative fission yield, gamma-ray spectroscopy, nuclear data
s library

39 1. Introduction

40 Nuclear reactors are a large source of electron antineutrinos, making them
s indispensable for investigating the properties of these particles. Approxi-
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mately 6 antineutrinos are generated from a single fission event, and there-
fore, a 1 GW thermal reactor emits about 10%* antineutrinos per second(1, 2].
In recent years, several reactor experiments were carried out to investigate
various properties of the reactor antineutrino flavor oscillations (Daya Bay/[3],
RENO4], STEREO[5], PROSPECTI6], NEOS|7], JUNO[8]) [2].

Experimental observations have revealed a spectral deviation in the 5 to
7 MeV range of antineutrinos when compared to the best available model.
Currently, this spectral feature remains unexplained [9]. While Hayes et
al. [10] have explored various potential sources contributing to this spectral
deviation, Dwyer and Langford [11] have pointed out that several obvious
systematic uncertainties such as absence of fission yields in the short-lived
isotopes have not been considered in the summation method. They suggest
that investigating fission yields could offer valuable insights into understand-
ing this spectral deviation. Sonzogni et al. [12] re-evaluated the thermal and
fast fission yields of 23°U in the ENDF/B database. Their analysis revealed
that the revision of thermal yields and decay probabilities for *Ge led to
about 10% variation in the calculated antineutrino spectrum in the 5 to 7
MeV energy range.

While measurement of fission yields from short-lived fission products re-
mains challenging [13], this study represents a feasibility study for measure-
ment of cumulative fission yields from short-lived fission products through
gamma-ray measurements. In our analysis, measured cumulative fission yield
is compared with the JEFF3.3 fission library to identify any disparities. The
JEFF3.3 database is selected for the comparison because it is the preferred
source of yields for antineutrino applications [9, 14]. Selection of the short-
lived fission products (Table 1) for our investigation is based on the list of
significant contributors at 5.5 MeV in the antineutrino spectrum [11, 12].

Unstable nuclides directly produced in fission undergo beta decay along
the isobar chain. Although these beta decays have very short half-lives,
they eventually yield nuclides with sufficiently long half-lives to allow mea-
surement of emitted gamma rays [15]. The direct fission yield of individual
nuclides in the primary fission event is referred to as Independent Fission
Yield (IFY), while the total yield of a nuclide including beta decay feeding is
termed Cumulative Fission Yield (CFY). These yields are expressed as per
fission event [12, 15].
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Table 1

Decay data for 8 nuclides investigated in this study from the ENDF /B-
VIII decay data sublibrary, including the decay chain gamma-ray with
the strongest intensity selected for the present analysis. Uncertainty is
given in the parenthesis.

Isotope Half life (s) Gamma Energy (keV) Intensity

%BRb  5.84(2) 432.61(3) 0.202(14)
00N 1.4(2) 535.666(14) 0.46(6)
WCs  63.7(3) 602.25(5) 0.53(3)
95Sr  23.90(14)  685.6 0.226
2Rb  4.49(3) 814.98(3) 0.032(4)
96y 5.34(5) 1750.4(2) 0.0235(24)
Ty 3.75(3) 3287.6(4) 0.181(19)
4205 1.68(14)  359.598(14) 0.27(3)

2. Experiment

The 23U sample consists of 252.72 nanograms of natural uranium nitrate
in an Inductively Coupled Plasma calibration solution. The 23°Pu sample
consists of 301.3 nanogram of National Institute of Standards and Technology
(NIST) Certified Reference Material (CRM-137). The samples are irradiated
using the PT-2 pneumatic tube of the High Flux Isotope Reactor (HFIR) at
the Neutron Activation Analysis laboratory (NAA) of Oak Ridge national
Laboratory. The measured thermal and epithermal neutron fluxes at the
irradiation location [16] are 4.59x 10" n/cm?/sec and 1.96Ex 10" n/cm?/sec
respectively for ?%U, and 4.43x10™ n/cm?/sec and 3.24x10M n/cm?/sec
respectively for 2°Pu. The energy ranges for epithermal neutrons are 0.1 eV
to 10 keV for ?**Pu and 1 eV to 10 keV for ?*>U [17]. The neutron fluxes are
measured using manganese and gold activation foils.

Each sample is irradiated for 30 seconds, and then transported to the
detector chamber using the pneumatic tube transfer system [16] which in-
troduces a 20-second delay prior to the gamma-ray measurement. Fig. 1
shows the measured gamma-ray spectra of the irradiated 2*U and #°Pu.
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The gamma rays are measured with a 44% relative efficiency, ORTEC p-
type coaxial HPGe detector with an aluminum end cap. Each sample is
placed at 33 cm above the detector and measured for 30 seconds.
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Fig. 1. Measured gamma-ray spectra from freshly irradiated 23°U and 239Pu are plotted.
See text for details.

3. Fission yields and expected gamma rays

The expected gamma-ray yield calculation starts by determining the num-
ber of 235U and ?*Pu nuclides initially present in the sample from the sample
mass (m), Avogadro’s number (N4) and the molar weight (M). The number
of nuclides (Nyq) directly produced from fission is given by Eq. (1).

mN A

= 1)
The equation includes the IFY of a specific nuclide, the thermal neutron
cross section (of) and the thermal neutron flux (¢) [18]. The IFY are tabu-
lated in the JEFF3.3 library, and the neutron cross section is based on the
ENDF/B-VIIL.O neutron cross section standard sublibrary. The JEFF3.3
and ENDF/B-VIIL.O fission yield libraries contain different IFY values for
certain nuclides. This is demonstrated using the *°Cs decay chain in Table
2. In this example, JEFF3.3 does not have IFY for 4°Sb, so the IFY value

Nfd:IFYO'f¢
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Table 2

Examples from the 4°Cs decay chain, showing the differing IFY of 23°U (top) and 2*°Pu
(bottom) from JEFF3.3 and ENDF/B-VIII.O fission yield libraries. Uncertainty of each
IFY is indicated in the parenthesis.

IFY IAOSb ]40TC ]401 14OXO 14OCS
JEFF3.3 No data 6.57E-08 (2.26E-08) 3.03E-04 (1.03E-04) 1.25E-02 (3.10E-03) 1.84FE-02 (3.85E-03)
ENDF/B-VIILO 2.82E-09 (1.81E-09) 9.04E-06 (5.78E-06) 1.11E-03 (7.13E-04) 2.59E-02 (1.04E-03) 3.05E-02 (1.83E-03)

IFY 140G}, 140 1407 140 140
JEFF3.3 No data 2.33E-07 (8.06E-08) 4.77E-04 (1.63E-04) 1.83E-02 (4.06E-03) 2.18E-02 (4.52E-03)
ENDF/B-VIILO 5.61E-11 (3.59E-11) 1.41E-06 (9.02E-07) 5.94E-04 (3.80E-04) 1.54E-02 (4.31E-04) 2.28E-02 (3.64E-03)

from ENDF/B-VIILO is used instead in our analysis. This suggests that Ng4
will be different depending on the fission library used.

To determine the total number of nuclides (Nr) present at the end of
irradiation, N4 as well as each of its successors in the decay chain need to
be determined from its own IFY and (-decayed. For the analysis presented
in this work, only the -decay path for the parent-daughter chains is used.
The expected N7 is given in Eq. (2).

Np = N LS Decay([Ny)) )

The first term gives the total number of a gamma-ray emitting nuclide pro-
duced directly from IFY during the irradiation. The second term describes
the total number of a gamma-ray emitting nuclide resulting from the g-decay
of j predecessor based on its own IFY.

In our study, the decay chains consist of 4 nuclides (**Rb, '*2Cs) and 6
nuclides (19Cs, %°Sr, 2Rb, 0¥, 190Nb, 97Y). Each decay chain leading from
IFY to the gamma-ray emitting nuclides measured in this study is described
by a set of coupled linear differential equations describing the radioactive
decays. These equations are reformulated as a set of matrices and solved
using MATLAB [19]. The solution to each decay chain gives the number
of a gamma-ray emitting nuclides produced from IFY and the decay of its
predecessors during the 30-second irradiation. Fig. 2 summarizes the percent
composition of the N based on the contribution from IFY and its successors.
In general, only the parent or parent / grandparent of a given gamma-ray
emitting nuclide remains at the end of irradiation. The nuclides further up
in the decay chain have all decayed away due to their very short half-lives.
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Fig. 2. The plot summarizes the percent contribution from the IFY and its successors to
the composition of Ny in our study. For example in 23°U, 47% of Ny for *°Cs is due to
IFY of °Cs. The remaining contribution comes from #°Xe (51%, parent) and 4°1(2%,
grandparent). The predecessors further up the decay chain such as 4°Sb and #°Te have
all decayed away, and their contribution to '4°Cs is negligible. Nuclide labels for 235U and
239Pu are the same, and omitted in the 23°Pu portion of the chart for clarity.
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The uncertainty in the Np is determined from the IFY of a gamma-ray
emitting nuclide and its predecessors, their decay constants, and thermal
neutron cross sections as shown in Eq. (3) [20]. The IFYs make a greater
contribution to the overall uncertainty than A and ¢. For example, the IFYs
accounts for 99% of the uncertainly in *°Cs and %Sr for both **U and ?*Pu
while the contributions from A\ and o are 1%.

sl (D R CO IR

Finally, the expected gamma-ray yields (/N,) during the subsequent 30-
second measurement time are calculated from the Ny, the decay constant (\),
the absolute efficiency (€) of the HPGe, and the gamma emission intensity
(I,). The calculation includes the contributions from the predecessors con-
tinuously decaying during the 20-second transportation delay. Except 4°Cs,
the half-lives of the measured nuclides are much shorter than the detector
measurement time, therefore, it is necessary to decay-correct the peak counts.
The ANSI standard for the correction factor is described in Ref.[21]. The
uncertainty in the expected gamma-ray yield, 0(XV,), is evaluated through a
quadrature sum of uncertainties in N, €, and I,. The dominant contributor
to 6(N,) comes from the 6(Nr). For example, 99% of the overall 6(N,) in
10Cs and %Sr for both 2°U and ?*Pu can be attributed to §(Nr).

4. Measured gamma rays

The energy and full width at half maximum (FWHM) calibrations of the
HPGe detector have been determined by analyzing known gamma-ray peaks.
The absolute efficiency of the detector is estimated using the Geometry and
Tracking (GEANT4)[22] simulation package. In the simulation, 17 gamma-
ray energies are selected to cover the energy range from 50 keV to 3.5 MeV.
Each gamma-ray simulation was performed using 1E+-6 photons to determine
the efficiency of the detector at each photon energy. The detector model in
GEANT4 includes all the details of detector construction, including a 0.1
cm thick aluminum window on the endcap of the detector and a 0.07 cm
thick dead layer on the surface of the HPGe crystal. Dimensions of the
HPGe were taken to be 6.5 cm in the diameter and 6.45 cm in the length
based on published ORTEC documents[23]. According to the ANSI/IEEE

7
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standard 325 [24], the relative efficiency of an HPGe is defined by Eq. (4).
The absolute efficiency of HPGe at 1.33 MeV is measured with a source to
detector distance of 25 cm. The relative efficiency is the ratio of this HPGe
absolute efficiency to the absolute efficiency of a 3-inch by 3-inch Na(Tl)
scintillator at 1.33 MeV measured at 25 cm (1.2E-3).

Absolute efficiency

1.2 x 1073 )

To establish a benchmark, a GEANT4 simulation was performed for a
point source placed at the standard distance of 25 c¢cm from the detector.
The absolute efficiency at 1333 keV was expected to be 5.3E-4 for a 44%
relative efficient HPGe [25]. The simulated absolute efficiency was 5.9E-
4(7.7E-5). Fig. 3 shows the simulated detector efficiency. The efficiency
is fitted using the parametric equation given in the RADWARE software
package [26]. Above 150 keV, efficiency is fitted with the parameters (D, E
and F) in the form of:

Relative efficiency =

Efficiency = ePFy+Fy? (5)
where y = In(E,/1000) and E, is a gamma-ray energy in keV.

Measured gamma-ray peaks are analyzed using two methods: non-linear
fitting and a simple summation. The ANSI standard for the summation
method is given in [21, 27, 28|, and the detailed explanation is given in
29, 30]. Non-linear fit analysis is performed using a GF3M program from
the RADWARE package [26] and an open-source software, GNUPLOT [31].
(see Figs. 4 and 5)

The fitting algorithm offers a linear and a quadratic baseline fit. The
linear baseline fit is chosen because it produces a less fitting error in the
peak-count estimate than the quadratic fit. The linear baseline is given by
A + Bx where A and B are fitted parameters, and x is a channel number.
Initial estimate of A and B are given by a straight line between the limits of
the fit. In the Gaussian profile, the fitted parameters are the position, height
of the peak and the peak width (FWHM). The initial values for position and
height are determined based on a given peak. To sufficiently account for the
linear baseline as an approximation to the Compton continuum, 3 x FWHM
from the centroid is chosen as a fitting range for a well isolated Gaussian
peak [24, 32].

Table 3 and Table 4 summarize the fit results for 2*°U and #°Pu. In
general, the fitted peak energies are consistent with tabulated values for

8
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statistics, and are omitted in this figure.
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Table 3

Best-fit values and fitting statistics for the fission products from 23U are summarized.
Fitted energies are consistent with the calibrated energies. But fitted FWHMSs show some
divergence. The fit statistics (p-values) indicate acceptable fits for 19°Nb, °Cs and *°Sr.
(see Results section for detail).

Centroid FWHM
25U x?/DOF Calibrated Fitted Calibrated Fitted  p-value
M0Cs  1.63 60233  602.28(4) 1.93 2.87(8)  0.05
958y 1.43 685.57 685.43(6)  2.01 2.50(11) 0.03
100N} 1.26 535.61 535.4(3)  1.87 2.4(10)  0.02
%RL  1.21 43267 430.38(15) 1.76 34(3) < 0.0l
2Rb  2.26 814.98 814.6(5)  2.12 1.1(12) < 0.01
By  1.62 1750.50  1749.4(3)  2.73 1.9(6) < 0.01

both 25U and #°Pu. However, the p-values and FWHM fits suggest that
a single Gaussian may be a poor model for some peaks, likely indicating
interference from additional unidentified gamma rays. This could be clarified
with improved counting statistics. As shown in Fig. (1), ?*°Pu generates
generally more gamma-ray activities than ?3°U, suggesting more interference.
This fact appears to be consistent with all p-values being lower for 23Pu
compared to 2¥U.

5. Cumulative fission yields from measured gamma rays

The cumulative fission yield is calculated by evaluating the disintegration
rate of nuclides relative to the total fission rate, and is given in Eq. (6)
[33]. The disintegration rate of nuclides at the end of irradiation is derived
from the measured gamma-ray counts, including appropriate adjustments
for delay and count corrections. The overall fission rate is determined by the
number of ?**U (**Pu) in the sample, the thermal fission cross-section, and
the thermal neutron flux.

AN,

FY =
¢ NpgLye (1 — e Mir) (e M) (1 — e~ Nom ) (6)

12
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Table 4

Best-fit values and fitting statistics for the fission products from 23°Pu are summarized.
Similar to the case of 235U, fitted energies are consistent with the calibrated energies while
fitted FWHMSs show some divergence. Unlike 235U, the fit statistics (p-values) indicate
poor fit quality for 1°°Nb, 0Cs and >Sr due to interference from other gamma rays. (see
Results section for detail).

Centroid FWHM
25U x?/DOF Calibrated Fitted Calibrated Fitted  p-value
M0Cs 1.90 60233 602.03(5)  1.93 3.41(11) < 0.01
%Sr  1.37 68557  685.45(6)  2.01 241(11) < 0.01
100N}, 2,74 535.61 534.75(10)  1.87 2.09(23) < 0.01
BRb  2.92 432.68 434(10) 1.76 5(18) < 0.01
2Rb  1.89 814.96 815.4(3) 2.12 1.9(10) < 0.01
By 1.9 175050  1750.19(13) 2.73 2.23(23) < 0.01

In Eq. (6), N, is the measured gamma-ray peak count based on Nr, t;, is the
irradiation time (30 seconds), t4 is the transport delay time (20 seconds) and
tm is the detector count time (30 seconds). Because the gamma-ray peak
counts for Rb, ?2Rb and Y are below the statistical limit of detection,
properN,, cannot be determined. The fission-produced '“’Nb at the end of
irradiation has almost all decayed away during the 20-second transport delay
due to its short half life (1.5 seconds), and is not detectable by the HPGe
during the measurement time. The measured 100Nb gamma rays are pri-
marily due to the decay of '%7Zr (7.1 seconds). N, from *°Cs and %Sr are
appropriate to use for calculating CFY. The uncertainty in the calculated
CFY, 6(CFY), is determined through a quadrature using N, A, € and L,.

6. Results

For each gamma-ray, the statistical significance is determined using the
method of Refs. [29, 30, 27]. This method involves two statistical limits:
Lc and Ld. The critical limit (Lc) is defined as the net count of a gamma
ray peak above which a sample net count is statistically significant with the
probability of false positive given by a. The detection limit (Ld) is defined
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as the net count of a gamma ray peak above Lc that has a probability of
false negative given by 5. We adopt the usual convention of using o = =
0.05 as the desired level of statistical significance. We note that the statistics
in this method are based on a one-sided 95% confidence level so that the z
statistic cutoff is 1.65, not 1.96. For the non-linear fitting method, Lc and
Ld are given by Eq. (7) and (8) where 0 = v/B and B = background count
(no sample is present) respectively [29].

Le =2.330 (7)
Ly=271+4650 (8)

In Fig. (6) and Fig.(7), the measured gamma rays for *°“Nb | 19Cs and
95Sr are statistically significant, are above the minimum detection limit, and
are fully consistent with the expected counts.

For Rb, ?2Rb, and *Y, the obtained net counts from fitting significantly
exceed the expected values. Using multiple Gaussian peaks does not improve
the fitting results for Rb and “*Rb. In the case of °Y (1750.4 KeV),
separation of ™Y (1750.06 KeV) from ?°Y cannot be achieved in the current
data. Therefore, we estimate the gamma ray interference as follows.

For Rb, 6 nuclides (A = 90, 134, 138, 143, 144, 145) produce a similar
or larger order of magnitude of gamma-ray yield (1, x total fission yield) in
the 432 keV region in our data [34, 35]. Based on the estimate of the gamma
rays having a measurable effect, the proportion of gamma-ray yield of Rb
with respect to the 6 nuclides gives about 6% which is consistent with the
expected net count of *Rb. In addition, **Ba (431.2 KeV, I, = 0.0276) is
expected to produce approximately the same number of gamma ray counts
in our data as %Rb (432.61 KeV, I, = 0.202), and is shown to be consistent
with %Rb.

As for 22Rb, 13 nuclides (A = 82, 91, 92, 101, 132, 133, 132, 136, 137,
139, 140, 144, 147) produce a similar or larger order of magnitude of gamma-
ray yields than ®2Rb in the 815 keV energy region [34, 35]. The proportion
of measured peak counts from ?Rb with respect to the thirteen nuclides is
about 1.4% which is consistent with the expected net count of “>Rb. For
239Pu, 1% of the contribution in the 815 keV region is due to **Rb alone.

%mY has a larger gamma-ray intensity (0.88) than Y (0.024), and larger
IFY from #°U(0.011) and #°Pu(0.014) compared to *Y: 235U (0.006) and
239P(0.008). The fission analysis shows that 3% (1%) of the gamma ray
yield is due to P°Y alone for ?*°U(**Pu). When fitted net counts are adjusted
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appropriately to account for interference, they are shown to be consistent
with the expected net count. However, the results are below the statistical
significance and are inconclusive.

Due to their statistical insignificance of gamma-ray peak counts, the com-
putations of CFY for *Rb, “Rb, and ?°Y have been excluded. Similarly, the
calculation of CFY for 1%°Nb is excluded because it is undetectable by the
HPGe detector during the measurement. CFY values for *°Cs and ?>Sr have
been calculated and are shown in Fig. 8 (*3U) and Fig. 9 (***Pu) alongside
the JEFF3.3 fission yield data for comparison. The primary sources of un-
certainty in 6(C'FY’) come from the uncertainties associated with N, and e.
This indicates that enhancing the statistics for gamma-ray peak counts and
refining efficiency calibration can result in a better estimation of CFY.

Hayes et al. [1] draw attention to the possibility of a contribution from
epithermal neutron-induced fission. In this study, the highest neutron flux
is observed at 0.02 eV within the thermal neutron range. Consequently,
the recorded epithermal neutron flux accounts for just 0.4% (0.7%) of the
thermal neutron flux for #*°U ( 23Pu). This implies that the number of
neutrons interacting with #°U ( 239Pu) in the thermal region is 234(137)
times greater than in the epithermal region. In our analysis, the contribution
from epithermal neutrons is deemed too minimal to significantly impact the
fission yield data.

7. Conclusion

Certain nuclides make substantial contributions to the antineutrino spec-
trum in the 5 to 7 MeV range. An examination of their fission yields provides
valuable insights for comprehending the unexplained spectral deviation in
this energy range. In this study, we determine the cumulative fission yields
of specific short-lived fission products from the irradiated 2*°U and #°Pu us-
ing the gamma-ray spectroscopy. The measured gamma rays for °°Nb | 14°Cs
and ?°Sr are consistent with the expected. Statistics for the measured **Rb,
92Rb and %Y are sub-optimal due to interference from other gamma rays
and Compton background. The gamma ray peaks from 7Y and 42Cs are
undetectable due to low fission yield, limited detector efficiency, and environ-
mental background. Because of its short half-life, we are unable to calculate
the CFY for °“Nb. The calculated CFY for *°Cs and % Sr are in agreement
in comparison with the JEFF3.3 database.
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Fig. 6. Fitted and expected net counts and statistical limits and uncertainties for 23°U.
The yields of °°Nb, 4°Cs and ?°Sr are shown to be consistent with the expected values.
93Rb, P?Rb and °Y are below the statistical limit of detection, and are excluded from the
plot for clarity.

A follow-up experiment offers the opportunity to improve various aspects
of the current preliminary study. The primary source of uncertainty comes
from IFY measurements, which need separate and dedicated experiments
to refine their accuracy. To prevent the loss of nuclides, it is essential to
reduce the 20-second transport delay. For instance, all fissioned °°Nb nu-
clides decay during the transport delay due to its short 1.5-second half-life.
Addressing this challenge may require a substantial reconstruction of the
sample transportation apparatus, incurring significant expenses. Additional
improvements include the integration of multiple HPGe detectors to enhance
gamma-ray detection through coincidence measurements, as well as installing
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Fig. 7. Fitted and expected net counts and statistical limits and uncertainties for 239Pu.
The yields of 1°°Nb and ?>Sr are plotted and shown to be consistent with the expected
values. The fitted '4°Cs is about 35% larger than the expected value, suggesting a pos-
sible problem with the JEFF3.3 fission yield library. ?*Rb, 2Rb and “6Y are below the
statistical limit of detection, and are excluded from the plot for clarity.
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Fig. 8. Comparison of measured CFY and JEFF3.3 library CFY from 23°U. Within the
uncertainty, measured CFY are consistent with JEFF3.3 CFY.
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Fig. 9. Comparison of measured CFY and JEFF3.3 library CFY from ?*°Pu. Within
the uncertainty, measured CFY are consistent with JEFF3.3 CFY except Y. Measured
CFY for %Y is about 5 factors larger than CFY from JEFF3.3.
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better shielding to minimize background interference. The fission analysis
could be improved by incorporating additional decay paths, such as beta-
delayed-neutron emissions and isomers. But this would significantly increase
the complexity of the analysis, necessitating the use of more advanced soft-
ware tools. Although CFY measurements show consistency, a subsequent
study can further enhance their accuracy by accounting for correction fac-
tors such as beam fluctuations and gamma-ray attenuation.
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