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Abstract:
Ethbnum Molecular Dynamics has been generahzed to simulate
‘Nonequilibrium systems by adding sources of thermodynamic heat and
- work. This generalization incorporates microscopic mechanical
definitions of macroscopic thermodyhamic and hydrodynamic variables,
such as temperature and stress, and augments Atomistic forces with
special Boundary, Constraint, and Driving forces capable of doing work on,
and exchangmg heat with, an otherwise Newtonian system:
{p =Fa(q) + Fa(Q) + Fc(q,p) + FD(q,p) } = mlqe+dt — qt + qe—adl /a2 }.
The underlying Lyapunov instability of these nonequilibrium equations of
motion links microscopic time-reversible deterministic trajectories to
macroscopic time-irreversible hydrodyhamic behavior as described by the
~ Second Law of Thermodynamics. |
Green-Kubo linear-response theory has been checked. Nonlinear
plastic deformation, intense heat conduction, shockwave propagation, and
nonequilibrium phase transformation have all been simulated. The
nonequilibrium techniques, coupled with qualitative improvements in
parallel computer hardware, are enabling simulations to approximate

real-world microscale and nanoscale experiments.




Motivation/Goals:

Three strong motivations led directly to nonequilibrium molecular
dynamics: it furnished a welcome check for Green and Kubo’s linear-
response theory of transport; it promised success in treating nonlinear
problems; it furnished a new tool for understanding real phenomena.
These goals parallel Zwanzig's reviews! of the motivation underlying
nonequilibrium statistical mechanics. In 1977, in a perceptive speech in
Kyoto2, Kubo likewise discussed the prospects for theoretical physics.
Pointing out that physicists are not afraid to shun formalism and to face
facts, Kubo emphasized that nonlinear problems were the only problems
left. To solve these problems, once computers became available,
nonequilibrium molecular dynamics had to be developed. The
development was carried out by many people3. It is natural that they had,

and still have, similar ideas at about the same time.

Relation to Thermodynamics and Hydrodynamics: -

A century ago, Lyapunov analeed the dynamic stability of differential
- equations. Linear analysis of the growth of a trajectory perturbation, 6 «
3, gives just three possibilities: decay, oscillation, and divergence. The last .
case—divergence and exponential “sensitivity to initial conditions”—
defines Lyapunov instability. The biggest Lyapunov exponent A1 gives the
average rate at which two neighboring trajectories diverge, (t) =
3(0)exp(A1t). The rate at which the ares of an ellipse, defined by three
neighboring trajectories, diverges defines the next exponent, and so on:
A(t) = A(@)exp(A1t+A2t) . Lyapunov’s “instability chaos” is the fundamental
link between reversible microscopic nonequilibrium dynamics and

irreversible macroscopic physics.



3

Lyapunov’s ubiquitous exponential divergence underlies Boltzmann's
1872 concept of “molecular chaos”, the random orientation of collision
partners in a low-density gas. Boltzmann’s equation in turn links
microscopic molecular chaos to macroscopic irreversibility and transport
properties. It was not until 1967 that Lorenz’ analysis of weather
forecasting popularized and underscored the importance of Lyapunov
instability4. Now, the “Butterfly Effect”, “chaos” and “Lyapunov
instability” are familiar parts of our physics vocabulary5 and key
ingredients in our understanding of nonequilibrium molecular dynamics.

Both temperature and thermostats are missing in Newtonian
mechanics. Both are required to simulate the energy flows described by the
thermodynamics and hydrodynamics of nonequilibrium systems. Kinetic
theory furnishes the operational definition of temperature through the
ideal-gas thermometer. In nonequilibrium molecular dynamics
temperature is always measured by kinetic energy.

' Theoretical analysis is greatly simplified if the generalized constraint
and driving forces of nonequilibrium molecular dyriamics are deterministic
and time-reversible. The simplest such thermostat can be based on Gauss’
Principle of Least Constraint. The corresponding constraint forces keep
the kinetic energy of a selected set of degrees of freedom constant6. A
more elegant alternative Gibbsian constraint force, producing the
canonical distribution rather than the isokinetic one, was discovered by
Nosé in 19847, and was recently generalized by Bauer, Bulgac, and
Kusnezov3. | ' S

: ‘We will see that Gibbs’ definition of entropy, Seq = —k<Inf>, and the
corresponding equilibrium definition of temperature, T = (dE/dS)v, are
twin casualties of these thermostat definitions. None of the reversible
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deterministic thermostats provides a nonequilibrium analog for the
equilibrium Gibbs entropy. The nonequilibrium Gibbs entropy diverges!
Despite this lack of a nonequilibrium entropy the incorporation of heat
flow through the time-reversible thermostat forces leads to a microscopic
understanding of the macroscopic Second Law of Thermodynamics®. We
will see that this understanding involves Mandelbrot’s fractals and ‘th(
Lyapunov’s instability spectrum. The irreversibility can occur( in few-body

systems. Even one-body Brownian motion can be treated in this way3.

Computational Advances:
In the 1950’s Alder, Wainwright, and Wood used the computers at

Livermore and Los Alamos to show that a few dozen hard spheres could
characterize both solid and fluid phases. Alder and Wainwright also
showed that, apart from fluctuations, the evolution of unusual initial
states is described by the Boltzmann Equation10.

At both weapons laboratories, high-explosive work spawried an active
interest in shockwaves. By 1967, the year of Lorenz’ seminal work, hard
spheres were passé. Vineyard, Rahman, and Verlet were successfully
extending molecular dynamics to smooth pair potentialsil. At Livermorel
tried to use Rahman’s ideas to make movies of shock-induced soft-sphere
melting12. The movie project ultimately failed for lack of a reliable data
storage device. ’ |

But times change. At Livermore we progressed through seven
successive incarnations of CDC and CRAY computers, each more -
powerful than its predecessors. Now these once-remarkable
supercomputers are dinosaurs, giving way to machines like Tony De
Groot’'s SPRINT, which is 100 times more cost-effective. Now we can
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follow and display the motion of millions of atoms on a university
budget13. The size and time scales of such simulations are approaching
those of real microscale and nanoscale experiments. Another four or five
orders of magnitude improvement }’(forecast in the near futurel4.

Simulation algorithms are changing too. In the 1950’s solving
Newton’s equations of motion for a few dozen hard spheres was a
challenge. In 1960 Vineyard was the first to formulate interesting
nonequilibrium boundary conditions for particles with continuous forces!1.
Today, we can treat far from equilibrium flows with a million atoms using
realistic interatomic forces. Boundary, constraint, and driving forces,
added to the usual atomistic forces, furnish the sources of mass,

momentum, and energy crucial to most nonequilibrium flows:
p =Fa(q) + FB(q) + Fc(q,p) + Fp(q,p) = mlqe+de — Gt + qe-dil /de2.

These new motion equations are still deterministic and still time-
reversible. But they are not symplectic, so that phase volume can vary
with time and exhibit irreversible behavior. Nevertheless the solution
algorithms are based on Stormer’s ideas from nearly a century ago. As
computer capacity continues to expand, calculations incorporating

electronic, as well as atomic, coordinates will become commonplace.

NoneguiliBrium Molecular Dynamics Develops:
During the ten years leading up to Howard Hanley’s 1982 Boulder

conference on Nonlinear Fluid Behavior efficient algorithms: consistent

with the Green-Kubo relations were discovered for diffusion, shear and

bulk viscosity, and heat conductivityld. Gauss’ isokinetic thermostat was
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formulated as a differential equation with Fc=-{p=®p/2K. [®and K
are the potential and kinetic energies of the thermostatted degrees of
freedom.] In 1982 it was not clear to outsiders that Green-Kubo linear-
response theory was an exact limiting case of the nonequilibrium
simulations. Only specialists knew.

Nonequilibrium molecular dynamics was exposed to the scrutiny of the
experts attending Howard Hanley’s 1982 Boulder Conference, Nonlinear
Fluid Behaviorl6. Discussion centered on the validity and reversibility of

the motion equations, nonlinear response theory, the proper boundary

conditions, and on the relation of calculations to properties of real
molecules. By now these questions have been substantially resolved. For
useful summaries see the reprint volume Simulation of Liquids and
Solids17 and the Proceedings of Michel Mareschal’s Brussels meeting,
Microscopic Simulations of Complex Flowsl13.

It has been confirmed that the finite-word-length accuracy of the
simulations does not limit the validity of the results. Yorke, Yoshida, and
others!? have established the existence of “shadow trajectories” which lie
close to computed ones. Yoshida's “shadow trajectories” are the most
interesting. As a simple illustration of his general result, consider the
smogth (q,p) trajectory generated by the “Yoshida Hamiltonian” Hy = qpdt
+ (:%)2/ 2. The trajectory approaches the harmonic oscillator one as dt is
reduced. For finite dt the [Hamiltonian] trajectory is of course symplectic,
conserving phase volume. But it also [surprisingly!] traces out the phase-

space points generated by an algorithm equivalent to Stormer’s:

qt+dt = qt + prdt; pt+dt = pt — qe+dedt .
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Partly in response to discussions at Boulder I became convinced that the
study of small systems was necessary to an understanding of
nonequilibrium systems. Gary Morriss and I reported on some of these
results at the Enrico Fermi Summer School at Lake Como in 198520, The
small-system and time-reversibility studies both showed that Gibbs’
entropy diverges for nonequilibrium steady states!

I continued working on small systems while on sabbatical in Vienna,
working with Karl Kratky and Harald Posch while corresponding with
Denis Evans, Brad Holian, and Gary Morriss. I became convinced that the
Kawasaki-Visscher-Evans-Holian-Morriss exact but formal response
theory15 had conceptual problems when applied to nonequilibrium steady
states. The equations for the phase-space distribution function diverged.
A key consequence of the divergence was that Gibbs’ statistical definition .
of temperature in terms of the phase-space entropy S= —k<Inf>,T=

(dE/dS)v, had to be abandoned. When the phase-space density f(q,p,t)
- collapses onto a strange attractor Gibbs’ entropy diverges. Thus
temperature must be defined according to kinetic theory: 3NkT = Zp2/m.

- A family of one-body “Galton Board” problems that I began to study
with Tony Ladd in 1983 and followed up with Bill Moran2! showed that
‘the fractals popularized by Mandelbrot generally underlie nonequilibrium

systems and even some equilibrium ones.

We have studied several such few-body strange-attractor
examplesZiZZ. In every case the equations of motion were deterministic

and time-reversible, and in every case Lyapunov instability broke the

symmetry to provide irreversible behavior. Poincaré cross-sections cutting

through five typical multifractal strange attractors are illustrated in
Figure 2:
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. Isokinetic Dissipative Motion in the Galton Board;
. Field-Driven Conductivity in a Sinusoidal Potential;

. One-dimensional, One-particle Thermodynamic PV Cycle;
. Viscous Dissipative Motion in the Galton Board.
By 1987 the realization that time-reversible deterministi {t
ctal structures led .

ics as a time-symmetry
breaking of Lyapunov-unstable thermostattgd flows6.. The examples in
Figure 2 illustrate the general rule that,

1
2
3. Two-Body Shear Flow—a Shearing Galton Board;
4
5

nonequilibrium molecular dynamics always produces.
us to understand the Second Law of Thermodyn

espite time reversibility of the

motion equations, the Lyapunov exponents, which give the averaged rate

of expansion and contraction in phase space, always have a negative sum

in steady nonequilibrium flows. For homogeneously thermostatted

systems Sarman, Evans, and Morriss, have shown in addition that each

such pair of exponents undergoes an equal negative shift23. The general m:v,\
‘case is more complicated. Figure 3 illustrates the shift of the spectyecfor an
inhomogenous eight-body system, a shear flow thermostatted at the

boundaries.

The predominantly negative Lyapunov exponents shrink the occupied
phase-space, not only in volume, but also in dimensioﬁality, well below the
equilibrium value?4. A more complete quantitative understanding of the
large-system dimensionality drop awaits the teraflop and petaflop
machines of the next decadel4.




Some Conclusions: .

From the pedagogical standpoint the main conceptual point revealed
by analysing computer simulations is clear: Lyapunov’s mechanical
instability underlies Boltzmann's thermodynamic stability. Thus the
microscopic sensitivity to initial conditions provides the averaging
required for the inexorable work-to-heat dissipation associated with the
Second Law of Thermodynamics. The macroscopic Second Law of
Thermodynamics can be derived from the microscopic mechanical
equations describing time-reversible deterministic thermostats. The Nosé-
Hoover thermostats fundamental to this derivation necessarily involve

feedback. For a recent illustration of the Feedback concept, see Figure 4.

Recent and Future Applications of Nonequilibrium Molecular Dynamics:

Let us highlight a few recent examples of nonequilibrium flows and cite
- recent books for more6,15-18,20, Liem, Brown, and Clarke recently
published very detailed density and temperature profiles for a
nonequilibrium shear flow driven by isothermal boundaries25. Their
profiles, reproduced in Figure 5, indicate the finite extent of boundary
influences and the eventual convergence to a smooth hydrodynamic profile
- despite the huge gradients. The ordering and the low-density nonlinear
transport coefficients in such flows have been simulated and analyzed by
Hess and Loose26. Shockwave studies have continued, and show that
linear tranéport theory is a good first approximation to this highly
nonlinear problem. Klimenko and Dremin’s shockwave simulations were

brought up to date in 198027; these have now been followed by Robertson,

Brenner, and White’s simulations of the shock-induced dissociation of
chlorine28,
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The Rayleigh-Bénard problem, discussed by Lorenz4, has been the
object of many simulations. Rapaport, Mareschal, and others have used
molecular dynamics to generate intricate roll patterns which transfer heat
between two reservoirs through convection2?. I first saw the details of
such patterns in Sitges, in 1980, where Gollub30 showed pictures of some
laboratory rolls which had not yet stabilized on a timescale of 400 hours.

These long times emphasize the limits of simulation and experiments.

The breaking of spatial symmetry in the Rayleigh-Bénard problem has - -

solid—staté analogs. Our indentation simulations, starting out with a
perfectly symmetric single crystal, show the interesting loss of space
symmetryl3 shown in Figure 6.  Grain growth studies, based on Holian’s
ideas!3 for generating polycrystalline initial conditions, and Abraham’s .
seminal work on spinodal decomposition31 also suggest the generality of
symmetry breaking. Justasin the breaking of time symmetry the
fundamental mechanism is deterministic chaos, Lyapunov instability.

Extending Nonequilibrium Molecular Dynamics:
Applications demand more practical work in the direction of simulating

metals and covalent materials. Landman’s pictures of ’recordiné. head
lubrication are a recent example32 directly related to practical
applications. This practical emphasis will grow. For realism the electrons
must be included: There is much to be done with the new ideas for -

electronic motion simulation begun by Car and Parrinello33,

. Nonequilibrium simulation has its limits. From.an atomic pfrspective,
a micron is a long distance and a microsecond is a long time/. There is a
pressing need for extending the scope in time and space. There are many
ways to try to do this. They need to be tried out and evaluated.
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Unfortunately these methods are fully as time-consuming as is the solution
of the partial d1fferent1al equations of continuum mechanics. One
- promising approach is to consrder the interaction.of. contmuum zones W1th =
L partxcle-ﬁlled zones13 Another is to usesmooth—partlcle I
hydrodynan:ucs34 S
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Figure Captions B
Figure 1. Our founding.'fathers, Boltzmann and Lyapunov.
. F1gure 2. F1ve deterministic time-reversible noneqtuhbnum strange
attractors stabﬂlzed by Nose-Hoover thermostats. S
.. Figure 3. Equilibrium and Nonethbrmm Lyapunov spectra fora
‘boundary-driven eight-atom shear flow. |

~ Figure 4 Lee Lorenz’ 25 May 1992 New Yorker drawmg

: Flgure 5. Den81ty and temperature profiles for plane ( Couette ﬂow
o Figure 6. Spahal symmetry loss durmg plane—stram mdentauon -
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