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Abstract

Designing products for easy assembly and disassembly during its entire lifecycle for purposes including
service, field repair, upgrade, and disposal is a process that involves many disciplines. In addition, finding the
best solution often involves considering the design as a whole and by considering its intended lifecycle.
Different goals and constraints (compared to initial assembly) require us to re-visit the significant fundamental
assumptions and methods that underlie current assembly planning techniques. Previous work in this area has
been limited to either academic studies of assembly planning or applied studies of lifecycle assembly
processes, which give no attention to automatic planning. It is believed that merging these two areas will
result in a much greater ability to design for, analyze, and optimize the disassembly and assembly processes.

Summary

Many manufacturing companies today expend more effort on upgrade and disposal projects than on
clean-slate design, and this trend is expected to become more prevalent in coming years. However,
commercial CAD tools are better suited to initial product design than to the product’s full lifecycle.
Computer-aided analysis, optimization, and visualization of lifecycle assembly processes based on the product
CAD data can help ensure accuracy and reduce effort expended in planning these processes for existing
products, as well as provide design-for-lifecycle analysis for new designs. ‘

In this paper we attempt to find a balance between the academic studies of assembly planning and applied
studies of lifecycle assembly processes while maintaining a high level of automated planning capabilities. We
briefly examined some of the issues in lifecycle engineering which are currently considered critical and used
these issues to motivate the current direction in which our automated assembly planning tool, Archimedes, is
developed. We summarized the existing capabilities of our system and described recent developments within
system that are intended to enable its use in a more general lifecycle framework by allowing users to compute
disassembly plans tailored to specific service, upgrade, and/or dismantlement strategies. Specifically, we
described a "shortening algorithm" which makes it much easier for Archimedes to find shortest or least-cost
disassembly sequences to gain access to specific parts and subassemblies. In practice the shortening
algorithm provides an effective way to find the lIowest-cost servicing disassembly plan. . It allows replacing
one or several subassemblies, gaining access for inspections, and optimizing disassembly to minimize service-
related costs. The user can specify the set of parts for the service operation, enable the optimizer, start the
planner, and let it run until the cost of the best plan so far stays the same for several iterations. At that point
the plan will, with high probability, be the one desired. If not, the user can either rerun the planner for a
longer duration, or add constraints to help the planner find the minimum cost service plan.

" Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States
Department of Energy under contract DE-AC04-94-A1.85000.
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Abstract

Designing products for easy assembly and
disassembly during its entire lifecycle for purposes
including service, field repair, upgrade, and disposal is a
process that involves many disciplines. In addition,
finding the best solution often involves considering the
design as a whole and by considering its intended
lifecycle. Different goals and constraints (compared to
initial assembly) require us to re-visit the significant
fundamental assumptions and methods that underlie
current assembly planning techniques. Previous work in
this area has been limited to either academic studies of
assembly planning or applied studies of lifecycle
assembly processes, which give no attention to automatic
planning. It is believed that merging these two areas will
result in a much greater ability to design for, analyze, and
optimize the disassembly and assembly processes.

1 Introduction

Many manufacturing companies today expend more
effort on upgrade and disposal projects than on clean-slate
design, and this trend is expected to become more
prevalent in coming years. However, commercial CAD
tools are better suited to initial product design than to the
product’s full lifecycle. Computer-aided analysis,
optimization, and visualization of lifecycle assembly
processes based on the product CAD data can help ensure
accuracy and reduce effort expended in planning these
processes for existing products, as well as provide design-
for-lifecycle analysis for new designs. In this paper we
attempt to find a balance between the academic studies of
assembly planning and applied studies of lifecycle assem-
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bly processes while maintaining a high level of automated
planning capabilities.

To be effective, computer-aided assembly planning
systems must allow users to express the plan selection
criteria that apply to their companies and products as well
as to the lifecycles of their products. In addition, the
planning system must provide efficient and easy-to-use
optimization features to minimize assembly and
disassembly costs. In the next section we introduce and
briefly describe our automated assembly planning system
known as Archimedes. We further go on to describe the
principles and implementation of our system and how it
lends itself to the planning of later lifecycle assembly
processes; specifically, we describe our constraint-based
approach for representing and reasoning about assembly
constraints. Section 3 provides an overview of previous
research efforts conducted in the areas of automated
analysis of lifecycle assembly processes and optimization
strategies in assembly sequencing. Section 4 introduces
our optimizing search algerithm. We focus on the
development of an algorithm that is designed to
automatically select least-cost disassembly sequences for
service-oriented operations. Finally, in Section 5 we
conclude with a summary of our research efforts.

2 Assembly Planning System

2.1 Overview

Archimedes 1is a constraint-based interactive
assembly planning software tool used to plan, optimize,
simulate, visualize, and document sequences of assembly
{8]. Given a CAD model of the product, the program
automatically finds part-to-part contacts, generates

- collision-free insertion motions, and chooses assembly




order. The engineer specifies a quality metric in terms of
application-specific costs for standard assembly process
steps, such as part insertion, fastening, and subassembly
inversion. Combined with an engineer’s knowledge of
application-specific assembly process requirements,
Archimedes allows systematic exploration of the space of
possible assembly sequences. The engineer uses a simple
graphic interface to place constraints on the valid
assembly sequences, such as defining subassemblies,
requiring that certain parts be placed consecutively with
or before other parts, declaring preferred directions, etc.
Archimedes considers thousands of combinations of
ordering and operation choices in its search for the best
assembly sequences and ranks the valid sequences by the
quality metric. Graphic visualization enables the engineer
to easily identify process requirements to add as sequence
constraints.  Planning is fast, enabling an iterative
constrain-plan-view-constrain cycle. For some restricted
classes of products, it determines plans that optimize a
given cost function, graphically illustrates those plans
with simulated robots, and facilitates the generation of
robotic programs to carry out those plans in a robotic
waorkeell.

2.2 Constraints Background

In experiments with product designers and assembly
process engineers, we have found that a high level of
interactivity is critical to successful application of an
assembly planner. Our framework provides a library of
constraint types [7], from which the user can instantiate
constraints on the assembly plan. While the focus of this
paper is not constraints, we feel that is necessary to
provide a background on our implementation of
constraints since our constraint system provides
underlying mechanics to our optimization algorithms.

Constraints are implemented as filters, procedures
that either accept or reject assembly operations. Each
constraint is described to the user in straightforward terms
based on manufacturing and assembly sequencing
concepts and defined using a simple graphic interface.
During planning, each proposed assembly operation is
passed to the constraint’s filter filnction, which retuins
true or false depending on whether the operation satisfies
the constraint or not. Only an operation that satisfies all
current constraints is feasible.

For use in a standard state-space search method (such
as generating an AND/OR graph for the assembly), it is
important that the filter functions take single assembly
operations as input, rather than more complex information
such as a sequence of operations. In a state-space search,

a given operation appears only once in the state graph,
and is either present or not. Hence its feasibility cannot
depend on operations that come before or after it.

2.2 Assembly Planning

The approach taken in assembly planning is critical
to the design, implementation, and performance of a user
constraint system. It especially affects special-purpose
routines for efficiency. Archimedes generates two-
handed monotone assembly sequences in reverse, starting
from the more highly constrained, fully assembled state.
The search space is an AND/OR graph of subassembly
states and the operations used to construct them from
smaller subassemblies. The strategy is designed to
generate a first plan as quickly as possible, like a depth-
first search, but to avoid getting caught by bad early
decisions as a depth-first search would. This is critical to
achieve the desired view-constrain-replan cycle of
interaction. During each pass of the search algorithm, a
single assembly sequence is generated, making random
choices of operations to construct each subassembly. The
first time any subassembly is visited, only a single
operation is generated to construct it, and the known
subassemblies of that operation are then visited. Bounds
on quality measures for each subassembly and operation

are stored and propagated in the AND/OR graph as they

are generated. This allows useless search paths to be
identified and pruned, and an optimal plan to be identified
when it becomes available. The same algorithm functions
as an any-time algorithm to optimize the assembly
sequence when the user requests. The planner uses a non-
directional blocking graph of each subassembly [14] to
efficiently determine assembly operations that might be
performed to construct that subassembly and then checks
these operations for geometric collisions. This check
serves as a built-in filter. Operations are then checked
against the list of user constraints.

3 Previous Work

Previous efforts to incorporate a comprehensive set
of user constraints in assembly planners were based on
liaison precedence relations which specified logical
combinations of part connections that must be established
either before or after others. Precedence relations were
pioneered by Bourjault [2] and greatly extended by
DeFazio and Whitney [4]. Wolter et al [15] analyze the
expressive power of precedence relations in detail.
Precedence relations are quite powerful, but they can be
very difficult to write correctly or understand as a user of
an assembly planner. In our computer-aided assembly




planning system, described in {8], we chose a procedural
approach over precedence relations for reasons of
efficiency and simplicity of implementation. Our system
demonstrates that an assembly planning system can
achieve comprehensive constraint coverage while
maintaining the advantages of a  procedural
representation.

As in initial assembly, the product design and known
process constraints are inputs to creating such plans.
However, for lifecycle assembly planning processes
different goals and constraints, compared to initial
assembly, require significant re-analysis of fundamental
assumptions and methods underlying current assembly
planning techniques. Some of those issues that require
re-analysis include:
¢ Disassembly operations: The mechanics of

disassembly operations must be characterized as to
feasibility and cost, and differ greatly from their
assembly counterparts for planning purposes. For
instance, pressfits are rarely possible to disassemble
without damaging one or both parts, which is
sometimes acceptable. _

e Partial assembly: (Dis)assembly does not always
proceed from or result in individual parts. For
instance, a field upgrade may only require partial
disassembly of a system to replace specified
subassemblies. ‘ .

e Non-monotonic assembly: In the assembly planning
literature, operations are non-monotonic when they
leave parts in intermediate positions rather than
placing or removing them completely. For instance,
removing three screws from an access plate and
leaving it hanging on the fourth screw is non-
monotonic.

o Destructive disassembly: In some applications,
operations that destroy parts (i.e., cutting, tearing, or
melting) are acceptable in disassembly.

» Dismantlement optimization: This problem has an
erratic cost criterion, since a small amount of
disassembly sometimes makes huge gains in
recovery/disposal gains/costs. This makes the
optimization computationally difficult compared to
initial assembly. .

There is little prior art on planning lifecycle assembly
processes and the issues thus raised. Non-monotonic
assembly planning is the most difficult issue
computationally and is know to be PSPACE-hard {15],
and the only system to generate such plans was limited to
an impracticably small number of parts [6]. The only
known study of planning methods for destructive
disassembly uses a simplified model of destructive
operations that does not correspond to what is seen in
practice [5]. The commercially available ReStar system
[10] attempts to optimize disassembly processes for
recycling and is based on a service-assembly planner

described in [12]. Both rely on user input to determine all
possible operations, making them impractical on products
of more than ten to twenty parts.

Related research outside assembly planning is more
extensive.  Programs from Boothroyd-Dewhurst do
enable design for service and recycling by analyzing plans
entered by the user, but do no planning or optimization.
Finally, researchers in concurrent engineering and green
engineering have studied design-for-service and design-
for-disposal (for instance [1,3,10]), but lack of assembly
planning capability limits them to heuristic and statistical
methods.

Milner and Graves [9] describe a tool which aided in
the assessment of the true cost of assembling a product.
The problem that they addressed was: Given a product
design, determine the lease cost assembly system for that
product. They developed a heuristic search through the
multitudes of sequences to find those of nearly least-cost
using simulated annealing (SA) to make such a search.
However, a primary drawback of this system was that the
least-cost sequences found by SA were often not of good
engineering quality because engineering nuances could
not be captured by the cost function.

Although Archimedes has proven to be a very
powerful tool for optimizing assembly sequences, the
above mentioned technical issues forced us to revisit our
fundamental planning algorithms. Due to the flexibility
inherent in our constraint system and our optimizing
search algorithm, we have employed additional
constraints in our system which allow us to address some
of these drawbacks and limitations. In our system, we
merged our constraint-based assembly planning
algorithms with SA heuristics to produce optimal
disassembly sequences in hopes of building a foundation
for future research in planning for and optimizing the
lifecycle assembly mentioned above.

4 Optimizing for Service-oriented Part
Removal

As a first approach to service-oriented part removal,
we employ the Archimedes disassembly planner
essentially as-is, by specifying a constraint, which we
refer to as REQ_SUCCESS _PART (parts), which
essentially cuts the planner off when none of the desired
parts are left in a subassembly. In general, this does not
produce very satisfactory disassembly plans, as the first
disassembly sequence produced by the planner typically
contains large numbers of unnecessary operations, which
have nothing to do with getting at the desired parts. As a
next step, we implement the general search-optimization
strategy that has been incorporated into Archimedes. This
strategy uses a hill-climbing variety of the standard A*
search [11] to repeatedly probe the subassembly



Figure 1. Example of an assembly from which we wish to remove a specific part, B: the initial plan removes parts H

and I unnecessarily.

tree, looking for better (less costly) disassembly
sequences. Running with a REQ_SUCCESS _PART
constraint, and the optimizer enabled, causes Archimedes
to iteratively run the disassembly planner, with an aim
toward finding an "optimal"” disassembly sequence. The
debilitating drawback to this approach is that the size of
the subassembly tree makes it impossibie to find optimal
solutions in reasonable time, for assemblies with more
than about 20 parts. The nature of the optimization
scheme is such that the algorithm will run until the cost of
the best disassembly sequence found so far is equal to the
lower bound on the cost of the best disassembly sequence
possible. The problem is that if the base assembly admits
a large number of possible disassembly steps, the
execution time required to find the best possible
disassembly sequence is prohibitive. Even proving that
the best possible sequence is at least two operations deep
requires the exploration of tens of thousands of
disassembly sequences. Finding a "best" disassembly
sequence can also take a prohibitively long time. “Best”
means that a person can analyze an assembly sequence
and say with certainty that a particular sequence is clearly

the best possible. Archimedes may still be unable, using
the general-purpose optimizer, to find that sequence, let
alone say that no other sequence is better.

One of the reasons that the general-purpose optimizer
does not provide adequate support for service-oriented
part removal is that it is not capable of eliminating, in an
efficient manner, what humans would think of as
"obviously unnecessary" part removals from the
disassembly sequence. For example, consider the partial
disassembly sequence shown in Figure 1; the task is to
remove the part labeled B from the assembly for service
or replacement. It is obvious that the correct disassembly
sequence is to remove the screws labeled F and G from
the assembly and then to remove the cover plate, D.
Because Archimedes has no way of knowing, a priori,
that removing screws H and I will not help in gaining
access to part B, it might return the sequence shown in the
figure; removal of parts [, H, F, G, D, and then B. In this
case the number of parts is small enough that the
optimizer would quickly discover the sequence {F, G, D,
B}, and also quickly discover that no cheaper sequence
would achieve the removal of part B. But if the assembly




had, say, 40 or 50 parts, Archimedes might run for an
arbitrarily long time before discovering the sequence {F,
G, D, B}, and would run even longer before proving to its
own satisfaction that a cheaper sequence did not exist.

In order to improve Archimedes' ability to find
sequences that do not contain "obviously unnecessary”
part removals, we implemented a specific module that
operates on existing plans to improve their efficiency.
The planner invokes two steps when a
REQ_SUCCESS_PART constraint is declared. First, the
standard disassembly planner is used to provide an initial
sequence P that enables the removal of the desired part (in
this case, B). Second, a subroutine (hereafter referred to
as the "shortening algorithm") is invoked which attempts
to shorten P by eliminating removal operations from it.

Algorithmically, this is accomplished by attempting
to indefinitely defer specific removal operations. For the
disassembly sequence shown in Figure 1, {1, H, F, G, D,
B}, the planner attempts to determine if, instead of
removing part I first, part H could be the first part
removed. Since this is possible, the planner goes on to
consider the sequence {H, L, F, G, D, B}. This sequence
has all of the same operations, and the same cost, but has
deferred the removal of part I for one operation.

The planner then tries to defer I's removal by another
step: {H, F, I, G, D, B}. It is successful, so it goes on to
try {PL F’ Ga I& D, B}’ {I_L F’ G’ D9 Ia B}a and ﬁnally {}{9
F, G, D, B, I}. For this final disassembly sequence,
however, the planner realizes that it does not need to
remove part I, having already removed part B, and so it
returns the plan {H, F, G, D, B}, which is cheaper by the
cost of removing part I. The purpose of “marching” part [
through the sequence in this fashion, rather than directly
eliminating it from the plan, is to allow the contact and
collision analyses to be applied at each step to ensure that
we do not try to illegally remove parts by, for example,
pulling them directly through part L

If the planner is not successful in deferring the
removal of the first part indefinitely, it goes on to try
again with the second part, then the third part, and so on,
until it reaches the end of the plan. If it never succeeds,
then it simply returns the original plan. If, on the other
hand, it does succeed in deferring the removal of any
particular part indefinitely then it stops. The planner then
re-computes the "best plan”, and repeats, until it fails to
indefinitely defer the cost of any part removal. In our
example, after specifically generating the removal
operations needed to provide the disassembly sequence
{H, F, G, D, B}, the planner then goes on to try to defer
the removal of part H, generating, in order, the sequences
{F,H, G, D, B}, {F, G, H, D, B}, {F, G, D, H, B}, and
finally {F, G, D, B, H}, which is truncated to {F, G, D,

B}, which is, in this case, the optimal solution.

It must be stressed that this additional algorithm does
not guarantee convergence of the optimized search for a
cheapest disassembly sequence. This is true for two
reasons. First, this algorithm does not provide any
information about minimum possible costs. In this case,
if there were 40 or 50 parts in the assembly, the algorithm
would do nothing toward proving that there was not a
cheaper sequence. If cost and length of the disassembly
sequence are considered to be identical for the purposes
of illustration, then this algorithm would do nothing
toward showing that there does not exist a length 3
disassembly sequence terminating in the removal of part
B from the assembly in Figure 1.

[F] [dl[H ]

Figure 2. Example of assembly where the. shortening
algorithm is not guaranteed to find an optimally short
disassembly sequence.

The second reason that the results of this algorithm
are not guaranteed is that the effects of this algorithm are
only visited upon plans found by the existing disassembly
planner. Suppose for example, that part B was held
within its cavity in part A not only by the plate D, but also
by a plate J, which is held in place only by a.single screw,
K, shown in Figure 2. Then the optimal removal sequence
would be {K, J, B}. Until the planner finds a sequence
containing {K, J, B} as a subsequence, the shortening
algorithm will not be able to produce {K, J, B} as an
alternative.

5 Conclusion

In this paper, we briefly examined some of the issues
in lifecycle engineering which are currently considered
critical and used these issues to motivate the current
direction in which the Archimedes assembly planning toot
is developed. We summarized the existing capabilities of
Archimedes and described recent developments within
Archimedes that are intended to enable its use in a more
general lifecycle framework by allowing users to compute




disassembly plans tailored to specific service, upgrade,
and/or dismantlement strategies. Specifically, we
described a "shortening algorithm" which makes it much
easier for Archimedes to find shortest or least-cost
disassembly sequences to gain access to specific parts and
subassemblies. In practice the shortening algorithm
provides an effective way to find the lowest-cost servicing
disassembly plan. It allows replacing one or several
subassemblies, gaining access for inspections, and
optimizing disassembly to minimize service-related costs.
The user can specify the set of parts for the service
operation, enable the optimizer, start the planner, and let it
run until the cost of the best plan so far stays the same for
several iterations. At that point the plan will, with high
probability, be the one desired. If not, the user can either
rerun the planner for a longer duration, or add constraints
to help the planner find the minimum cost service plan.
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