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Abstract—Recent studies show that commercially-available
adaptive cruise control (ACC) systems are string-unstable, indi-
cating that ACC-driven vehicles amplify speed fluctuations from
downstream traffic and induce stop-and-go waves. Moreover, it
is challenging to revise the original control algorithm of an ACC
system to achieve string stability due to its internal complexity
and powertrain uncertainties. To achieve desired control per-
formance given a string-unstable ACC system and circumvent
revising the original control algorithm, this study proposes a
model predictive control-based trajectory shaper (MPC-TS),
which only modifies the sensor-measured trajectory information
(i.e., position and speed) of the preceding vehicle. The proposed
MPC-TS leverages the input shaping technique to generate ref-
erence trajectory to improve string stability, while incorporating
tracking errors and vehicle acceleration/deceleration magnitude
in the MPC cost function and constraining fluctuations of vehicle
speed and spacing to ensure desired car-following performance.
Numerical experiments validate the control performance of ACC
with the proposed MPC-TS in terms of string stability, safety,
traffic efficiency, and comfort.

Index Terms—adaptive cruise control, string stability, safety,
input shaping, model predictive control

I. INTRODUCTION

The rapid advances in vehicle automation and sensing
technologies enable adaptive cruise control (ACC) systems
to be widely equipped on commercially-available vehicles.
An ACC system consists of two main components: a high-
level planner (HP) and a low-level controller (LC). The HP
uses sensor-measured trajectory information (i.e., position
and speed) of the preceding vehicle to compute desired ego
vehicle trajectory (e.g., future speed/acceleration). Next, the
LC computes a proper gas/brake command and delivers it
to the vehicle powertrain for execution. ACC systems can
effectively alleviate driving fatigue and improve the experience
of commuting by automatically realizing car-following (CF)
and cruising functionalities. However, recent studies have
shown that the current commercially-available ACC systems
are string-unstable [1]-[3], indicating that vehicles driven by
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ACCs will amplify speed fluctuations from downstream traffic
and induce undesired stop-and-go waves.

To mitigate string instability, the most direct and intuitive
approach is to fine-tune or modify the control algorithms
of an ACC system. Several studies have developed HPs
to compute desired trajectories. For instance, proportional-
derivative (PD) type linear CF controller and its variants
have been extensively studied to ensure string stability and
desired CF performance [4]-[6]. Model predictive control
(MPC) type planners have also been widely studied to achieve
optimal trajectory with operational constraints (e.g., speed
limit, minimum safe spacing, and actuator saturation) [7]-
[9]. Numerous methods for LCs have also been proposed
to execute the planned trajectory. For example, proportional-
integral-derivative control [10], feedback linearization control
[11], and loop shaping control [12] have been developed to
minimize the tracking error between the actual and planned
trajectories. However, directly modifying the control algo-
rithms of an ACC system to achieve string stability suffers
from the following challenges. Firstly, the performance of LC
can significantly influence string stability [10], which has been
neglected in HP design and stability analysis. However, the
interaction between HP and LC is complicated and difficult
to analyze because it involves: (i) numerous parameters, (ii)
powertrain uncertainties rooted from real-world operations,
and (iii) unknown controller dynamics due to commercial
propriety. These factors hinder rigorous analysis considering
HP, LC, and vehicle powertrain dynamics to achieve practical
string stability, entailing laborious tuning works based on trial-
and-error. Second, there is a trend of switching to learning-
based control methods from rule-based control methods in
the industry [13]. The complexity and intractability of deep
neural networks used in deep (reinforcement) learning can
substantially increase the effort and cost to tune and revise
ACC control algorithms to achieve string stability.

To circumvent directly modifying the existing control al-
gorithms of ACC systems and achieve string stability, this
study develops a trajectory shaper (TS)-based method. The
TS-based method only modifies the sensor-measured trajectory
information of the preceding vehicle before it is used by the
ACC control algorithm. Specifically, the TS-based method
is inspired by the input shaping technique used to alleviate
residual vibrations in mechanical systems [14]-[16]. Func-



tioning as an input signal filter, the TS-based method shapes
the trajectory information of the preceding vehicle based on
the estimated natural frequency and damping ratio of an ACC
system, such that a string-unstable ACC system can behavior
in a string-stable manner. This study first introduces a vanilla
trajectory shaper (VTS) by adapting the zero-vibration shaper
(ZVS) technique [14] to ACC systems. However, the string
stability achieved by VTS may introduce delay to vehicle
trajectories and sacrifices other CF performance metrics (i.e.,
safety and traffic efficiency). Thus, to balance different CF
performance metrics, this study further proposes an MPC-
based trajectory shaper (MPC-TS). The MPC-TS aims to track
the trajectory generated by VTS in the prediction horizon
to enhance string stability while incorporating: (i) objectives
including comfort and maintaining desired time headway and
identical speed with the preceding vehicle; and (ii) safety,
efficiency, and feasibility-related constraints on vehicle states
to achieve a well-balanced CF performance. The emphasis on
specific control performance is regulated by the corresponding
weighting coefficient in the cost function. Remarkably, the
formulation of MPC-TS enables a framework to alter the
sensor measurement based on the different CF performance
metrics rather than merely focusing on string stability. Numer-
ical experiments show that the proposed MPC-TS outperforms
VTS in terms of safety and traffic efficiency (i.e., maintaining
small time headway to improve roadway capacity), while
maintaining an almost identical string stability performance.

The contributions of this study are two-fold. First, an alter-
native approach to achieve string stability is proposed, which
can save costs and efforts in tuning/revising complicated ACC
control algorithms. Second, the proposed MPC-TS provides
a general framework to balance multiple CF performance
metrics, such that ensuring string stability will not sacrifice
other performance metrics during ACC operations.

The remainder of this study is as follows. Section II
introduces the input shaping technique and VTS. Section
III formulates the MPC-TS. Section IV provides numerical
experiments to validate the proposed approach. Section V
concludes this study and points out future research directions.

II. VANILLA TRAJECTORY SHAPER

This section introduces the VTS based on the input shaping
technique to alleviate the string instability of ACC systems.

A. Input Shaping

The input shaping technique seeks to alleviate the residual
vibrations in mechanical systems via shaping the input signal
(e.g., reference trajectory to track) [14], [15]. The dynamics of
vibrations can be approximated as a second-order dynamical
system formulated as the following transfer function [16]:

Y(s) Kwa 0
U(s) 82+ 2(wos + wi
where s is the Laplace operator, Y (s) and U(s) are the output
and input of the system (e.g., Y(s) can be the position of the
mass of a mass-spring-damper system, and U(s) is the input

force applied on the spring and damper), respectively. & is the
static gain which scales the magnitude of the input signal, wq
is the natural frequency which describes the oscillation period
and speed of the system, ( is the damping ratio which reflects
the capability of alleviating oscillations.

The core idea of input shaping is to apply an impulse
sequence {(tj,M;),j =1,..., N} to shape the original input
signal U via convolution, such that the shaped input signal
will not excite any vibrations from the dynamical system. M
and t; are the magnitude and time instance of jth impulse,
respectively. Correspondingly, in the Laplace domain, the
shaped input can be expressed as:

ZM Uls 2)

shaped

Specifically, to design the 1mpulse sequence, a performance
metric called residual vibration percentage is defined as:

V(wo, ) = e /S (wp, €)2 + C(wo, €)? 3)
S(wo

where ) = Z;V L Mje*otti sinwg /1 — (2,
C(wo, ¢) ZJ L Mje*o% coswg/1 — (t;. The residual
vibration percentage measures the vibrations after applying
N; impulses to the second-order dynamical system in (1).
Enforcing (3) to zero indicates the impulse response of a
mechanical system will not exceed the input level, and any
overshoot/undershoot will be eliminated. Correspondingly, in
the implementation of zero-vibration shaper (ZVS) [14] (the
simplest input shaping technique), two impulses are applied
to eliminate the vibration (i.e., V = 0 and N = 2), which
can be computed by solving the following equations:

S(wo, ) =0 (4a)
N

> M;=1 (4c)
j=1

Correspondingly, by setting ¢; = 0 as the time instance
of initializing ZVS, solving (4) yields the following impulse
sequence of ZVS:
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The impulse sequence is then convoluted with the original
input signal (following (2)) to achieve zero residual vibrations.

B. VTS for String Stability

The string instability issue of an ACC system is analogous
to the residual vibration problem of mechanical systems for
the following reasons. First, the [, string stability criterion:
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states that the impulse response of the ego vehicle (Y, (s))
triggered by the preceding vehicle should not exceed the per-
turbation of the preceding vehicle (Y,,_1(s)) [17]-[19]. This
is identical to the rationale of residual vibration percentage,
as eliminating overshoot/undershoot will also prevent string-
unstable responses. Second, the trajectory control of an ACC
system can also be modeled as a second-order dynamical
system, and the input signal of an ACC system is the speed
of the preceding vehicle [20]. Specifically, the longitudinal
motion of the ego vehicle n is modeled as a double integrator
(4], [21], [22]:

(7a)
(7b)

Dn (t) = vn(t)
ijn(t) = arL(t)

where p,,(t) and v, (t) are position and speed of ego vehicle
n at time ¢, respectively. The acceleration a,(t) of the ACC-
driven ego vehicle can be described using the PD controller
type constant time headway-relative velocity model (CTH-RV)
[2], [10], [23], which rectifies the spacing error and speed
tracking error in the CF process:

an(t) = kpel (t) + kyey(t) (8)

where €P(t) = pp_1(t) — pn(t) — hv,(t) — do is the spac-
ing error under the constant time headway policy, e?(t) =
Up—1(t) — v, (t) is the speed tracking error. p,_1(t) and
vn—1(t) are position and speed of the preceding vehicle n—1 at
time ¢, respectively. h is the desired time headway to maintain
between vehicles for ensuring safety and traffic efficiency.
kp and k, are the control gains to rectify spacing error and
speed tracking error, respectively. dj is the vehicle bumper-to-
bumper distance, which is set as 4m in this study.

Next, to achieve string stability using the input shaping
technique, we first derive the transfer function of an ACC
system based on (7) and (8) as:

L(pn) kys + k, a
L(pn—1) 82+ (kph + ky)s + ky $2 + 2Cwos + wi
€))
where L(-) stands for Laplace transform of -. Correspondingly,
the natural frequency and damping ratio of an ACC system can
be computed as:

A (2¢wo — wih)s + wd

wo = vkp (10a)
¢ = 0.5(kph + k) /\/kp (10b)

The magnitudes and time instances of impulses can then
be computed by substituting (10) into (5). Next, the impulse
sequence {(t;, M;),j = 1,2} is convoluted with the measured
position and speed information of the preceding vehicle to
obtain the shaped trajectory information:

P (t) = Mipn_1(t —t1) + Mopy 1 (t —15)  (11a)
U:ripled(t) = Mll)n,l(t — tl) —+ Mz’l)nfl(t — tg) (11b)

pMred(1) and o™(t) are used to replace p,_i(t) and
vn—1(t) for computing e?(¢) and e?(t) in (8), respectively.

Note that although VTS can ensure string stability with the

estimated damping ratio and natural frequency of an ACC
system, it cannot guarantee other performance metrics (e.g.,
safety and efficiency). In the next section, MPC method
is incorporated into the design of TS to enhance the CF
performance in terms of safety, efficiency, and comfort.
Remark 1: The implementation of VTS relies on the es-
timation of k,, k,, and h (to compute wy and (), which
can be achieved via online parameter estimation algorithms
based on real-time measurements [23]-[26] and offline CF
model calibration based on historical data [2], [27], [28]. This
study also assumes the perception module has removed the
measurement noise effect.

IIT. MPC-BASED TRAJECTORY SHAPER

The MPC-TS optimizes the shaped position and speed infor-
mation of the preceding vehicle at each time step. It leverages
VTS to generate a string-stable reference ego vehicle trajectory
and mimics the reference trajectory to improve string stability
performance. The tracking errors of desired spacing and speed
with respect to the preceding vehicle are also embedded in the
MPC cost function to guarantee desired tracking performance.
Moreover, the constraints on safe spacing, speed fluctuations,
and vehicle acceleration/deceleration limit are incorporated in
MPC-TS to guarantee safety, efficiency, comfort, and feasible
vehicle trajectories in real-world operations. Specifically, the
MPC-TS is formulated as follows.

k+Tp—1
3 el + ek, + Renif
. (12a)
st. x(i+1) = Ax(i) + Ba, (i) + Ean,—1(i) (12b)

an (i) = kp(el (i) + 0,(2)) + ku(ey (2) + 0,(2))
(12¢)

n—1(i) = ap_y(k)e O-ol=R)d] (12d)
YIS (i), v¥TS(4) from (11), (12b), (12c), (12d)

(12¢)
Lmin S :L’(Z) S Lmax (12f)
Amin < ap, (7/) < Qmax (12g)
where 7, is the optimization horizon. §(i) = [6,(i), 0, (i)] "

is the vector of control decision at time step 4, 6,(¢) and
(i) are the optimal shaped magnitudes to properly modify
the measured position and speed information of the preceding
vehicle n — 1, respectively. e, (i) = [eP(i),e’(i)] is the
vector of tracking errors with respect to the preceding vehicle,
eP (i) and e? (¢) are the actual discrete spacing error and speed
tracking error, respectively. €)™ (i) = [en'5(i), ey (7)) is
the tracking error with respect to the reference trajectory
generated by VTS, €5 (i) = py, ™S (i) — p, (i) is the difference
between actual position and the position produced by the origi-
nal ACC with VTS, )73 (i) = vy ™5 (i) — vy, (i) is the difference
between actual speed and the speed produced by the original
ACC with VTS. The acceleration of the preceding vehicle is

assumed to be an exponential decay function (12d) to enhance



safety and trajectory smoothness in the optimization horizon
[7]. This study sets T, = 10.

Given a vector y and

X, lyl% denotes the quadratic
_ wp/(hvﬁm -+ do) 0 . .
Q = r 0 W/ At is the normalized

weighting matrix to regulate e, (¢), where increasing wy
and w, will enforce spacing error and speed tracking

a positive-definite  matrix
form y'Xuy.

error decay to zeros faster. Qo = ’6 VTS is the
v

weighting matrix to regulate eyrs(i), where increasing
wy™ and wy™ will enforce the trajectory generated by
MPC-based TS to be more similar to that of VTS (more
string stable). R is the weighting coefficient to regulate
vehicle acceleration/deceleration. Increasing R will induce
more comfortable and smoother vehicle trajectories, while
potentially compromising other performance metrics (e.g.,
safety and efficiency). The first term of (12a) seeks to ensure
desired tracking performance and traffic efficiency, the second
term of (12a) aims at improving string stability, the third term
of (12a) is to enhance comfort and (potentially) fuel saving.
Note that the weighting of each objective can be adjusted
based on the requirements of real-world operations to balance
different control performance metrics.

In the constraints, x, (i) = [Ap, (i), e’ (i),v,(i)]T is the
vehicle state vector, Ap,, (i) = pp—1(4) — pn (i) is the spacing,
1 dt 0 —0.5dt” 0.5dt>
A=10 1 0f,B= —dt |, F = dt |[.dtis

0 0 1 dt 0

the step length, which is set as 0.1s in this study. ®ni, =
[do, —AvUmax, 0] " is the lower-bound of vehicle states, Zma =
[Rm + do, AVmax, viim] | is the upper-bound of vehicle states,
Avpmay is the maximum allowable speed difference to mitigate
speed fluctuations, vy, is the speed limit for enhancing safety,
hviim +dp is the maximum allowable spacing to ensure desired
tracking performance. apmi, and amax are the maximum vehicle
deceleration and acceleration, respectively. The constraints on
vehicle states and acceleration/deceleration are significant to
enhance the safety, efficiency, and feasibility of trajectories
computed by the TS-based method in real-world operations,
which are not explicitly factored in VTS.

Remark 2: The MPC-TS is formulated in a quadratic pro-
gramming fashion, which can be solved efficiently by ex-
isting solvers and will not induce significant computational
burdens on a vehicle. As the MPC-TS is executed on each
ACC-equipped vehicle distributedly, it will also support the
operation of a long platoon without incurring computational
concerns as centralized MPC methods. The feasibility of MPC-
TS is influenced by the initial conditions and constraints of
states and vehicle acceleration/deceleration. In addition, if the
initialization of the CF process does not violate constraints in
(12) and the preceding vehicle does not accelerate/decelerate
beyond the capability of the ego vehicle, the MPC-TS will
always be feasible.

IV. NUMERICAL EXPERIMENTS

This section presents two numerical experiments to validate
the CF performance of the TS-based method and compare it
to other baselines. The first experiment applies a synthesized
trapezoidal speed profile on the lead vehicle to evaluate the
control performance under abrupt acceleration/deceleration.
The second experiment applies naturalistic speed profiles from
the processed NGSIM trajectory dataset [29] to thoroughly
evaluate the control performance in real-world operations. In
both experiments, the MPC-TS is programmed in CVXPY [30]
and solved using OSQP solver [31]. Table I lists the parameters
of the MPC-TS and the CTH-RV model.

TABLE 1
PARAMETERS OF MPC-TS
Parameter | w,p Wy wXTS wyts R k1
Value 2 1 1 1 0.5 0.9
Parameter | ko h Amin Qmax Vlim Avmax
Value 03 | 1.25s | -6m/s® | 3m/s? | 30m/s | S5m/s

A. Abrupt Acceleration/Deceleration Case

The abrupt acceleration/deceleration case is frequently used
to provide insights on the stability, efficiency, and safety of
ACC systems [3]. As shown in Fig. 1, the lead vehicle executes
abrupt constant acceleration/deceleration for 2.5s and then
maintains a steady speed level, forming a trapezoidal speed
profile. The baseline ACC is simulated using the CTH-RV
model with parameters listed in Table I. Fig. 1(a) shows that
the three followers driven by the baseline ACC exhibit am-
plified speed fluctuations. By contrast, Fig. 1(b) illustrates the
effectiveness of VTS in alleviating string instability to dampen
traffic oscillations. Further, Fig. 1(c) shows that the proposed
MPC-TS can also achieve string stability and converge to
desired speed asymptotically. Moreover, the speed profiles
produced by MPC-TS are more compact compared to those
of VTS, indicating improved traffic efficiency (as the transient
gaps are reduced and vehicles form a tighter formation). This
is further validated by the average time headway shown in
Fig. 2, where we can observe that the average time headway
corresponding to the ACC with MPC-TS fluctuates less than
that of the baseline ACC, and stays closer to the desired value
(i.e., 1.25s) all the time. This manifests desired stability and
efficiency achieved by MPC-TS. By contrast, the average time
headway of the ACC with VTS deviates from the desired
value the most, especially when the lead vehicle conducts a
harsh brake (at around time step 900). In addition, Table II
shows the minimum time-to-collision (TTC) of each follower
in the CF process, which shows that the ACC with VTS yields
the smallest TTC, while the ACC with MPC-TS leads to the
largest TTC. The results indicate that although VTS can ensure
string stability, it will inevitably sacrifice traffic efficiency
and safety. The MPC-TS guarantees a desired balance among
string stability, efficiency, and safety.

Table III compares the computing time of three methods.
The computing time of MPC-TS (i.e., mean of 2.06ms,
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TABLE II
COMPARISON OF MINIMUM TTC
Follower 1 | Follower 2 | Follower 3
Baseline ACC 1.35 1.56 1.54
ACC w/ VTS 0.92 1.15 1.38
ACC w/ MPC-TS 1.50 1.62 1.71

standard deviation of 1.35ms) is greater than the computing
time of baseline ACC and ACC w/ VTS, as they both have
closed-form solutions. However, the computing time of MPC-
TS is still substantially smaller than the sampling time step
(i.e., 0.1s) of trajectory planning, which enables MPC-TS to
be implemented in real-world operations without incurring
computational concerns. Moreover, if MPC-TS is programmed
using a more efficient language (e.g., C++) and solved using
commercial solvers, its computing time will be even smaller.

The robustness of the proposed MPC-TS is then tested by
including errors to the parameters of the CTH-RV model, such
that the CTH-RV model in (12) cannot describe the actual CF
behavior of the real ACC system. First, we alter the k, and k,
of the real ACC system to 0.6 and 0.15, respectively. Fig. 3(a)
shows that if only control gains are inaccurate, the ACC with
MPC-TS can still maintain robust and stable operations (with
time headway slightly deviates from the desired one). Next,
we further reduce & of the real ACC system to 1s. As shown in
Fig. 3(b), the ACC with MPC-TS leads to unsafe operations
(spacings lose track of desired values and shrink to zeros).

This is because the ACC system seeks to maintain a different
time headway compared to the TS, leading to fundamentally
different CF behaviors and substantially large spacing errors.
Thus, it is significant to accurately identify the desired time
headway or spacing to implement the MPC-TS.

TABLE III
COMPARISON OF COMPUTING TIME
. ACC ACC
Method Baseline ACC w/ VIS | w/ MPC-TS
Computing time (ms) < 0.01 < 0.01 2.06 (1.35)
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B. Naturalistic Trajectory Case

This subsection applies 1341 naturalistic trajectories (con-
taining positions, speeds, and accelerations) from the pro-
cessed NGSIM dataset [29] to simulate the motion of the lead
vehicle in real-world operations. The average length of the
trajectories is around 24 seconds. The follower trajectory of
each lead vehicle is also extracted from the dataset as the
human driver baseline. Fig. 4 compares the CF performance
of the follower vehicle driven by human drivers (labeled
as human), the baseline ACC (labeled as ACC), the ACC
with VTS (labeled as VTS), and the ACC with MPC-TS
(labeled as MPC-TS). Fig. 4(a) shows that the ACC with
MPC-TS achieves the best traffic efficiency, followed by the
baseline ACC, the ACC with VTS, then the human driver. The
black error bars show the 95% confidence intervals. The error
bars with minimal overlapping regions indicate statistically
significant differences and validate that the ACC with MPC-
TS can improve traffic efficiency (achieving the smallest
time headway) in real-world operations. Fig. 4(b) illustrates
that the ACC with MPC-TS achieves the smallest standard
deviation (STD) of vehicle speed, followed by the ACC with
VTS, the baseline ACC, then the human driver baseline. The
overlapping confidence interval indicates the ACC with MPC-
TS achieves similar string stability performance to alleviate
traffic congestion compared to the ACC with VTS. Fig. 4(c)
shows that the ACC with MPC-TS can significantly improve
safety by increasing TTC in the CF process. Fig. 4(c) also
validates that the ACC with VTS will inevitably sacrifice
safety (i.e., smaller TTCs) compared to the baseline ACC. Fig.
4(d) illustrates that the ACC with VTS achieves the smallest
average acceleration/deceleration, then the ACC with MPC-
TS, followed by the baseline ACC and human driver. This
is because VTS only seeks to achieve string stability, which
enforces the ACC to use smaller acceleration/deceleration to
attain smoother trajectories. However, this sacrifices safety
and traffic efficiency (as shown in Figs. 4(a) and 4(c)).
By contrast, the ACC with MPC-TS applies slightly larger
acceleration/deceleration to balance the performance of string
stability, safety, and efficiency. Meanwhile, as the human
driver baseline and the baseline ACC are string-unstable, they
inevitably lead to amplified speed fluctuations and increased
acceleration/deceleration.

V. CONCLUDING COMMENTS

This study proposes the TS-based method to mitigate string
instability of commercially-available ACC systems. The pro-
posed MPC-TS leverages the VTS and MPC to achieve desired
string stability, safety, and traffic efficiency, given the original
ACC systems with undesired CF performance. In particular,
it functions as a signal filter to modify the sensor-measured
trajectory information of the preceding vehicle, which reduces
the costs of tuning and/or developing control algorithms to
benefit traffic operations. The MPC framework of MPC-TS
also enables ACC systems to achieve an optimal trade-off
among different CF performance metrics. This study points
to the following future directions: (i) design robust MPC to

—_
W

g =
=} n
—
8]

o

n
—
-

Average speed STD (m/s)

Average time headway (s)

o
=]
—_
=}

Human ACC VTS MPC-TS

Human ACC

VTS MPC-TS

(a) Average time headway (s)

(b) STD of speed (m/s)

175

S
o
o

S}

S
N
~

—_
(=]

Minimum TTC (s)
e
8]

Average acceleration (m/s?)

e
=]

0 Human ACC

VIS MPC-TS

Human ACC VTS MPC-TS

(c) Minimum TTC (s) (d) Average acceleration (m/s?)

Fig. 4. Comparison of CF performance

factor inaccurate dynamics model and measurement noise; (ii)
extend TS to cooperative ACC, while considering dynamic
communication channels [32]; and (iii) leverage TS in CF
advisory system (e.g., advisory speed via head-up display) to
stabilize human drivers in mixed-flow traffic.
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