
DDStore: Distributed Data Store for Scalable Training of Graph
Neural Networks on Large Atomistic Modeling Datasets

Jong Youl Choi, Massimiliano Lupo Pasini,
Pei Zhang, Kshitij Mehta, Frank Liu

Oak Ridge National Laboratory
Knoxville, TN, USA

Jonghyun Bae, Khaled Z. Ibrahim
Lawrence Berkeley National Laboratory

Berkeley, CA, USA

Abstract
Graph neural networks (GNNs) are a class of Deep Learning models
used in designing atomistic materials for effective screening of large
chemical spaces. To ensure robust prediction, GNN models must
be trained on large volumes of atomistic data on leadership class
supercomputers. Even with the advent of modern architectures that
consist of multiple storage layers that include node-local NVMe
devices in addition to device memory for caching large datasets,
extreme-scale model training faces I/O challenges at scale.

We present DDStore, an in-memory distributed data store de-
signed for GNN training on large-scale graph data. DDStore pro-
vides a hierarchical, distributed, data caching technique that com-
bines data chunking, replication, low-latency random access, and
high throughput communication. DDStore achieves near-linear scal-
ing for training a GNNmodel using up to 1000 GPUs on the Summit
and Perlmutter supercomputers, and reaches up to a 6.15x reduction
in GNN training time compared to state-of-the-art methodologies.

Keywords
Distributed Data Parallelism, Deep Learning, Graph Neural Net-
works, Atomistic Modeling, Inorganic Chemistry, Organic Chem-
istry, Quantum Chemistry

ACM Reference Format:
Jong Youl Choi, Massimiliano Lupo Pasini,, Pei Zhang, Kshitij Mehta, Frank
Liu and Jonghyun Bae, Khaled Z. Ibrahim. 2023. DDStore: Distributed Data
Store for Scalable Training of Graph Neural Networks on Large Atomistic
Modeling Datasets. InWorkshops of The International Conference on High
Performance Computing, Network, Storage, and Analysis (SC-W 2023), No-
vember 12–17, 2023, Denver, CO, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3624062.3624171

1 Introduction
Desiging organic and inorganic compounds with desired functional
properties is crucial to several scientific applications supported

*This manuscript has been authored in part by UT-Battelle, LLC, under contract
DE-AC05-00OR22725 with the US Department of Energy (DOE). The publisher, by
accepting the article for publication, acknowledges that the U.S. Government retains
a non-exclusive, paid up, irrevocable, world-wide license to publish or reproduce
the published form of the manuscript, or allow others to do so, for U.S. Government
purposes. The DOE will provide public access to these results in accordance with the
DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

This work is licensed under a Creative Commons Attribution International
4.0 License.

SC-W 2023, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0785-8/23/11.
https://doi.org/10.1145/3624062.3624171

by the US department of Energy (DoE). Such design process typi-
cally requires studying the behavior of the compounds at atomic
scales, which is necessary to assess the chemical stability of an
atomic structure of a compound, as well as to predict its electronic,
mechanical, thermal, and optical properties.

State-of-the-art atomistic modeling approaches require perform-
ing computationally expensive first-principle calculations to accu-
rately estimate the properties of compounds [10, 25, 34, 45, 48, 61].
However, the computational cost of these methods does not scale
well with respect to the numbers of atoms, and thereby precludes
an effective screening of large chemical regions of practical interest
in realistic scenarios, where the number of atoms in the structure
is in the order of thousands.

Deep learning (DL) has shown the potential to produce fast
and yet sufficiently accurate predictions of properties for organic
and inorganic compounds at a fraction of the time required by
first-principle calculations [5–7, 57, 62, 65], thereby enabling an
effective screening of large chemical regions. Among the differ-
ent classes of DL models for atomistic modeling, graph neural
networks (GNNs) [59] are especially promising for their expressive-
ness, which is enabled by the natural mapping of atomic structure
onto a graph, with atoms interpreted as nodes and interatomic
bonds as edges, and leveraging the graph structure to create mean-
ingful embedding features [13, 14, 19, 21, 24, 40, 50, 51, 56, 58, 60].
In contrast to social graph problems that involve one large graph
with millions of nodes (e.g., C-SAW [49]), atomistic modeling usu-
ally deal with a large number (in the order of millions) of relatively
small graph samples, each containing at most thousands of nodes
[12]. Therefore, large scale atomistic modeling datasets are charac-
terized by an inherent fine degree of granularity. In recent years,
the amount of large-scale atomistic information has expanded to
several terabytes and continues to increase.

As we need to explore a vast parameter space primarily dic-
tated by chemical composition, the number of atoms in the system,
and different atomic arrangements, the amount of data used to
train the GNN surrogate model must be sufficiently large to ensure
that the surrogate model maintains generalizability and robustness
throughout the entire design process. HPC systems have become
increasingly important for carrying out such data-intensive tasks.
To process large volumes of data, DL training must be free of I/O
bottlenecks and scale effectively on state-of-the-art HPC facilities.
While DL workloads have witnessed significant hardware accel-
eration over the past decade due to the evolution of new compu-
tational units such as multi-/many-core central processing units
(CPUs), graphic processing units (GPUs), and tensor processing
units (TPUs) [32], I/O components remain the slowest components

941

https://doi.org/10.1145/3624062.3624171
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3624062.3624171
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624062.3624171&domain=pdf&date_stamp=2023-11-12

SC-W 2023, November 12–17, 2023, Denver, CO, USA
Jong Youl Choi, Massimiliano Lupo Pasini,

Pei Zhang, Kshitij Mehta, Frank Liu and Jonghyun Bae, Khaled Z. Ibrahim

of a system, thereby causing I/O bottlenecks in data-intensive work-
loads such as DL applications at scale.

In recent years, supercomputing architectures have evolved to in-
clude tiered memory hierarchy that includes node-local SSD-based
non-volatile memory (NVMe) devices in addition to device RAM. In
principle, the fine-grained nature of large-scale atomistic modeling
data accommodates an effective use of NVMe devices to locally
store a large chunk of data (many graph samples) on each compute
node of the supercomputing cluster. However, some state-of-the-art
leadership class supercomputing facilities are not endowed with
sufficiently large local memory devices yet. Therefore, there is a
compelling need to develop distributed technologies for I/O of large
volumes of fine-grained datasets that can efficiently use hardware
and memory characteristics of different supercomputing systems.

In this work, we leverage the distinctive I/O patterns observed
in GNN training and develop an in-memory distributed data store
optimized for DL training to accommodate effective and scalable
reading of large volumes of graph data for HPC and supercomputing
architectures. The new in-memory distributed data store (DDStore)
technology can be effectively deployed on a broad class of HPC and
supercomputing facilities without necessarily requiring massive
inter-node memory storage capabilities.

The contributions of this paper are as follows:

• we identify challenges arising from the training of GNN
models over large-scale atomistic modeling datasets with
millions of atomic structures,

• we present the design and architecture of a high perfor-
mance, portable, in-memory data store, specifically tailored
for efficient random data retrieval during the data loading
processes involved in the distributed training of GNNs, and

• we demonstrate performance improvements of using our
in-memory store for large-scale training of a GNN model for
over 10 million molecules, and highlight various parameters
that can influence the performance of the system.

The rest of this paper is organized as follows: Section 2 discusses
HydraGNN (a scalable implementation of multi-headed GNN), dis-
tributed DL training, and associated I/O challenges. Section 3 in-
troduces our proposed solution, DDStore. Section 4 provides the
numerical results of DDStore compared to conventional data man-
agement methodologies. Finally, we conclude with an analysis of
this study and outline potential avenues for future research.

2 Background
In this section, we introduce HydraGNN, an open-source scalable
GNN implementation, and discuss the I/O challenges for distributed
data parallel (DDP) training in HPC environments.

2.1 HydraGNN
HydraGNN [43, 53] is an open-source scalable implementation of
multi-headed GNN, which can leverage HPC resources, achieving
linear scaling performance in distributed training for large volumes
of data [12]. HydraGNN has been used to predict energetic and
functional properties from atomic structures for various physical
systems including ferromagnetic alloys [53] and organic molecules
[9]. While numerous open-source GNNs often implement a single
specific message-passing technique, HydraGNN adopts an object-
oriented approach, enabling a variety of message passing policies

Iterative training

Data
Loading Forward Backward Optimization

Step

GPU
Memory

File system

CPU
Memory

Gradient
Aggregation

Data Batch

Figure 1: Iterative training with distributed data parallel (DDP).

tailored for feature engineering and multi-head feature training.
Furthermore, HydraGNN places a strong focus on scalability within
HPC environments. It has the capability to efficiently utilize thou-
sands of GPU devices in supercomputers, harnessing DDP to enable
large-scale training.

2.2 Distributed Data Parallel and Data Loading
DDP is one of the parallel methods commonly used in AI/DL to
train models using multiple processors or machines. Each pro-
cess handles only a subset of the data (or graphs) and executes
functions in parallel with others. When information needs to be
consolidated, such as for aggregated gradient updates, processes
communicate data using all-gather operations. Message Passing
Interface (MPI) [20, 23] and NVIDIA Collective Communications
Library (NCCL) [38] are well-known communication backends in
multi-node, multi-GPU HPC environments.

DDP provides several benefits, such as efficient use of computing
resources by providing fault tolerance, and enabling training on
large datasets through concurrent processing of batch data. DDP is
widely implemented in many DL frameworks such as PyTorch [55]
and TensorFlow [2] and is commonly used for applications such as
image recognition, natural language processing, and speech recog-
nition. HydraGNN extends the PyTorch’s DDP implementation
with enhancements targeting HPC environments.

Generally, DDP for model training involves the following five
steps (Fig. 1): i) The dataset is divided into smaller, non-overlapping
subsets called “batches”. A single batch consisting of 𝑁 samples is
loaded into each process (data loading). ii) Each process generates
predictions for the samples in the batch using local model (forward).
iii) Each process then assesses the loss between these predictions
and the actual values and subsequently computes gradients for the
model parameters based on the loss (backward). iv) Gradients from
all processes are aggregated, producing a consolidated gradient
(gradient aggregation). v) Each process updates its local model
parameters using the aggregated gradients (optimization).

Various methods have been developed to reduce overhead in
executing these training steps and ensure seamless integration for
optimal performance, such as data loading optimizations with la-
tency hiding on HPC systems. An example of these efforts is the
use of multi-threaded data loading and overlapping I/O and compu-
tation implemented in PyTorch’s parallel data loading module [55].
NVIDIA’s Data Loading Library (DALI) has been specifically devel-
oped to offload the data loading from the CPU to the GPU, effectively
minimizing overhead and enhancing training efficiency [68].

In DDP, data shuffling is another primary factor for optimal
performance. Data sharding with local shuffling [4] is one of the
common techniques used with DDP, and consists of splitting the
datasaset into chunks that are individually processed by each GPU.
Once loaded, shuffling is done within the local chunk. However,
it carries two serious performance implications when used with
large-scale DL models. First, it is important that the training data
stored in partitions on different nodes needs to be shuffled across

942

DDStore: Distributed Data Store for Scalable Training of Graph Neural Networks on Large Atomistic Modeling Datasets SC-W 2023, November 12–17, 2023, Denver, CO, USA

Meta data

(b) Containerized File Format

Parallel
File System Index lookup

Memory

CPU GPU

Memory

CPU GPU

Memory

CPU GPU

Memory

CPU GPU

Memory

CPU GPU

Memory

CPU GPU CPU GPU CPU GPU CPU GPU

(a) Per-object File Format (c) Distributed Data Store

Compute Nodes

Preload

One-side RMA

Figure 2: Data storing strategy and its common I/O access patterns in
deep learning (a) Per-object file format (b) Containerized file format
(c) Distributed data store.

successive epochs of the DL training to maintain model general-
ity and avoid overfitting [47]. Secondly, in situations where the
number of GPUs changes after a training session, like during hyper-
parameter optimization, the shared dataset must be restructured
to align with the updated GPU count, which is time consuming.
On the other hand, transferring data between distributed nodes
for global shuffling emerges as the optimal solution to enhance
the model’s generalizability. However, exchanging vast amounts of
data during each epoch poses scalability challenges for DL applica-
tions. DL training becomes I/O and communication bound and thus
incurs significant overhead due to data movement, which serves as
the primary motivation for our paper. A comprehensive overview
of these approaches is provided in the related work section.

2.3 Data Management in Deep Learning
In this section, we examine the data formats commonly employed
in DL applications. Fig. 2 shows the data access patterns used by
two commonly used file format types: per-object file formats (PFF)
and containerized file formats (CFF). Additionally, it also shows the
data access pattern employed by DDStore, our solution towards
mitigating the overhead of large data movement. The design and
architecture of DDStore are presented in the next section.

Per-object file format (PFF) The per-object file format serializes the
graph object structures and stores one sample per file. This is one of
the simpler approaches for storing graph data, but exerts significant
overhead on the underlying parallel file system as the number
of samples becomes large. Additionally, as training is performed
using tens of thousands of processes, concurrent access to the large
number of files from all processes causes a severe I/O bottleneck.

Containerized file format (CFF) Fig. 2 (b) shows an alternative
method of storing data using containerized file format libraries
such as HDF5 [35], ADIOS [22], WebDataset [1] and TFRecord [2].
In this approach, multiple samples are stored in a single file which
reduces the overhead on the file system. The data management
library manages metadata on behalf of the user and provides the
API to store and retrieve particular data samples. However, DL
training requires reading samples in a random or shuffled order
to enable unbiased training. Frequent, random, non-sequential I/O
accesses to CFF data can lead to a large number of accesses to the
file system, which is very inefficient. Additionally, concurrent I/O
access from multiple processes trying to read samples from the
same containerized file leads to congestion and high I/O times.

In-memory data caching Irrespective of the file format used for
storing training data, some solutions involve reading the entire
dataset into device memory or node-local storage systems such
as NVMe devices. However, these options may not be feasible for

large datasets, which are the primary concern of this paper. The
size of these datasets can surpass the capacity of a single node’s
memory or its node-local storage. Moreover, several HPC resources
(including some of the existing US-DoE supercomputers) are not
endowed with NVMe devices yet.

For those HPC architectures that cannot rely on node-local storage,
the only state-of-the-art methodologies that enable to scale the DL
training on large volumes of data are PFF and CFF techniques. Both
methodologies heavily rely on a frequent data movement between
file system and volatile node memory, which results in inefficient
data reading and causes severe I/O bottlenecks.

3 DDStore
To address challenges associated with efficient reading of data for
large-scale DL/GNN, we have designed DDStore, specifically ad-
dresses random, read-oriented, global shuffle operations.

3.1 Design
Our design of DDStore is driven by two main performance con-
siderations: 1) Can we minimize access to the file system during the
shuffling steps and make in-memory data accessible to other nodes? 2)
How do we design fast, efficient, and portable communication mecha-
nisms to provide high-performance shuffling operations for DL?

These considerations stem from the fact that parallel file systems
are shared resources on HPC clusters and are the slowest compo-
nent of the system. Applications that are I/O bound due to poor
performance of the file system typically experience severe chal-
lenges with scalability. At large scale, the communication overhead
can also become high due to contention in the network, which is
also a shared resource on HPC systems.

To address the first objective, DDStore splits data into chunks
and stores them in the device memory of compute nodes simi-
larly to data sharding. The dataset is read from the file system and
distributed across the device memories of compute nodes. All sub-
sequent accesses to samples in the dataset are made via in-memory
read transactions. Secondly, to reduce communication overhead
over the network during read operations, DDStore uses data repli-
cation to maintain multiple copies of the dataset in memory. This
is the novel component of DDStore with respect to all existing
state-of-the-art scalable data management methodologies, which
allows DDStore to internally partition application processes into
groups that are assigned a replica. This hierarchical design prevents
situations in which all processes access a single process’s memory
to obtain the next batch of data which can lead to communica-
tion bottlenecks. Finally, DDStore uses low-latency communication
functions such as the MPI Remote Memory Access (RMA) [16],
known as one-sided communication, to provide fast, non-blocking
read operations that are portable across different systems and ar-
chitectures (Fig. 2c).

We formally define DDStore as

𝐷𝑆 = (𝑐,𝑤, 𝑓)

where ‘𝑐’ is the number of chunks that a dataset is striped into, ‘𝑤 ’
represents the store width that controls the degree of replication
of data, and ‘𝑓 ’ represents the communication framework used for
transferring data between processes.

943

SC-W 2023, November 12–17, 2023, Denver, CO, USA
Jong Youl Choi, Massimiliano Lupo Pasini,

Pei Zhang, Kshitij Mehta, Frank Liu and Jonghyun Bae, Khaled Z. Ibrahim

Chunking To effectively utilize the memory available on com-
pute nodes of HPC systems, similarly to data sharding, DDStore
uses chunking to split a dataset and distribute the chunks evenly
amongst nodes. This avoids performing expensive accesses to the
file system to retrieve data during every shuffle operation. The
number of chunks ‘𝑐’ depends on the total size of the dataset ‘𝑇 ’
and the width ‘𝑤 ’ of DDStore.

𝑐 = 𝑇 /𝑤

The description of ‘𝑤 ’ below will clarify how the chunk size is calcu-
lated. By default, for a training using 𝑁 processes, DDStore stripes
the data into 𝑁 chunks and places one chunk on each process.

Replication The width ‘𝑤 ’ controls the degree of replication of
data chunks, which makes DDstore distinguishable from all the
other state-of-the-art scalable data management methodologies and
reduces the communication bottlenecks due to data shuffling across
consecutive epochs of DL training. DDStore divides application
processes internally into sub-groups where each sub-group holds
a full replica of the dataset. The width represents the cardinality
of these groups. To demonstrate how the width influences the
replication strategy, let 𝑁 = 1024 and𝑤 = 128. DDStore creates 8
groups (1024/128) of 128 processes each. Every process group holds
a full replica of the dataset. Processes within a group communicate
only with each other to exchange data. The number of replicas 𝑟 is
same as the number of process groups, and is represented by

𝑟 = 𝑁 /𝑤

In our example, there are 8 replicas of the dataset. The processes
within a group each hold𝑇 /128 chunks of the data. By default,𝑤 =

𝑁 , which creates a single replica of the dataset striped evenly over
all processes. The degree of replication is inversely proportional
to the width of the store; as we increase the width, we reduce the
number of replicas maintained in the system. As a result, larger
width values consume less memory as compared to smaller width
values. On the other hand, smaller values for width can help reduce
communication bottlenecks as increasing the number of process
groups can help distribute communication requests more evenly.
The width is configurable so that a user can tune.

Communication The communication framework ‘𝑓 ’ provides the
data plane and control mechanism for fetching data from the mem-
ory of other nodes. For the data plane, we considered several state-
of-the-art options such as 1) ZeroMQ [26], an asynchronous mes-
sage passing library for distributed applications, and 2) MPI’s block-
ing, non-blocking, and one-sided communication functions. For the
control plane, design options included 1) developing a message-
broker framework in which additional message brokers on each
node facilitate data exchange amongst themselves during the shuf-
fle operation, and 2) fully de-coupled and asynchronous communi-
cation without dedicated message brokers. To provide a scalable,
high-performant, and portable communication framework over our
use of MPI for parallelization, we selected MPI’s RMA one-sided
library functions for DDStore. The communication layer in the
DDStore Architecture discusses our use of the MPI RMA routines.

3.2 Architecture
We describe the main components of DDStore in details that allow
to efficiently perform frequent random shuffling of data distributed
across nodes to reduce communication bottlenecks.

DDStore is composed of four components: 1) a data preloader,
which reads data in various formats from a parallel file system
and loads it into the memory of deep learning applications, 2) a
data registry that manages the index of data chunks, 3) the data
loader that reads the next batch of data from other processes, and
4) the communication layer that leverages one-sided RMA to asyn-
chronously fetch data from remote processes. We delve into the
details of each component below.

Data Preloader The data preloader loads a dataset from the file sys-
tem and initializes the distributed store. Data may be stored in
per-sample or containerized file formats. DDStore provides plu-
gins for reading different data formats. Data is split into chunks
depending on the user-provided width or the number of replicas.

Data Registry After data is loaded into memory, each process reg-
isters its chunks. DDStore maintains a global registry of chunks on
each process. In order to read another data chunk from a remote
process, a process consults its registry to determine the location of
the data item and issues a read operation to fetch the data object.

Data Loader The data loader performs the main task of reading
data in-memory during the data loading operation (See Fig. 1).
Data samples in a batch can be a random distribution of samples
spread across processes. These form the set of data that are input
to the model during the forward step. To get the next set of data
items not in the process’s local memory, a process generates a list
of data items to be retrieved from remote locations and passes it
to DDStore. DDStore performs a lookup for the data items in its
internal sub-group of processes that the calling process belongs to.
It then starts initiating one-sided MPI_Get operations to fetch data
from remote processes. DDStore returns control to the application
when all requested data items have been read.

One-sided RMA Communication Layer The communication layer
performs the actual MPI RMA registration and read operations
for fetching remote data. During the registration step, each process
registers its memory region containing the data by calling MPI’s
MPI_Win_create function. In contrast to the tightly coupled MPI
send-receive paradigm used in two-sided MPI communications,
MPI’s RMA minimizes the target process’s involvement, helping to
increase throughput. However, it still requires a non-blocking lock-
unlock synchronization [63] to avoid data inconsistency arising
from contention between multiple processes. Among MPI RMA’s
multiple synchronization mechanisms [63], we employ a read lock
(MPI_Win_lock with MPI_LOCK_SHARED) and fence synchroniza-
tion (MPI_Win_fence) as a lightweight set of contention-avoiding
methods. The sequence of operations involved in MPI RMA are
shown in Figure 3.

We have integrated DDStore into PyTorch’s data li-
brary by creating a set of subclasses that inherit from
torch.utils.data.Dataset. This enables PyTorch’s data
loader torch.utils.data.DataLoader to directly interact with
our customized dataset. Our dataset classes extend basic data

944

DDStore: Distributed Data Store for Scalable Training of Graph Neural Networks on Large Atomistic Modeling Datasets SC-W 2023, November 12–17, 2023, Denver, CO, USA

MPI_Win_create
All gather index

MPI_Win_lock
MPI_Get

MPI_Win_unlock

MPI_Win_fence

MPI_Win_fence

Source Process Target Process

Time

MPI_Win_create

One-side RMA

MPI_Win_create

Target Process

MPI_Win_lock
MPI_Get

MPI_Win_unlock

One-side RMA

Ba
tc

h

MPI_Win_fence MPI_Win_fence

MPI_Win_fenceMPI_Win_fence

Figure 3: Example walk-through of DDStore’s RMA operations for a
batch size of 2.

readers for commonly used data formats and integrate them with
DDStore for preloading, as well as MPI RMA registration and
fetching.

4 Numerical results
In this section, we describe the hardware specifications, the datasets
used, the setup for the HydraGNN model, the numerical results
describing the training convergence, and the scalability of the train-
ing comparing the HPC-efficiency of different data management
methodologies for scalable I/O.

We evaluate the scaling performance of DDStore using two US-
DOE supercomputers - Summit at ORNL and Perlmutter at NERSC.
Each Summit node consists of two IBM POWER9 CPUs with 512 GB
of memory and six NVIDIA Volta GPUs with 16GB HBM2 memory.
Each Perlmutter GPU-accelerated node has single AMD EPYC 7763
CPU with 256 GB of memory, and four NVIDIA A100 with 40GB
HBM2 memory connected with NVLink-3.

4.1 Datasets
We utilize the following three datasets:

(1) Ising dataset: a synthetically generated dataset. Each atomic
configuration is characterized by 125 atoms in an unit cubic.
The orientation of the magnetic dipole moments of atomic spins
is selected randomly for each atom. The energy is calculated
with the closed analytical Hamiltonian formula that describes
the Ising model for ferromagnetic materials. This synthetic
dataset serves as a benchmark to anticipate future challenges
in the scalable GNN training for fast and accurate predictions
of material properties for ferromagnetic alloys [17, 41, 52, 53]
on large volumes of first-principle calculations.

(2) AISD HOMO-LUMO dataset [8]: a dataset providing the energy
gap between the highest occupied molecular orbital (HOMO)
and the lowest unoccupied molecular orbital (LUMO) [11] for
10.5 million organic molecules. The molecules are diverse for
chemical compositions and molecular size (the smallest mole-
cule contains 5 non-hydrogen atoms, and the largest molecule
contains 71 non-hydrogen atoms).

(3) ORNL AISD-Ex dataset [42]: one of the largest open-source
datasets available within the community, created to train the
high-dimensional UV-vis spectra of molecules in the AISD
HOMO-LUMO dataset. Based on the prediction approach, we
have two variants: discrete and smoothing datasets. The discrete
dataset is tailored to 50-dimensional peaks and intensities in the
UV-vis spectrum computed by DFTB, while the smooth dataset
features a 37,500-dimensional spectrum obtained by Gaussian

Table 1: Dataset description.
Graph Size File Size

Dataset #Graphs #Nodes #Edges #Feature PFF1 CFF2

Ising 1.2 M 151 M 840 M 3584 24 GB 19 GB
AISD HOMO-LUMO 10.5 M 550.6 M 1.1 B 1 90 GB 60 GB
AISD-Ex (Discrete) 10.5 M 550.6 M 1.1 B 2x50 83 GB 64 GB
AISD-Ex (Smooth) 10.5 M 550.6 M 1.1 B 37500 1.6 TB 1.5 TB
AISD-Ex (Smooth & Small)3 10.5 M 550.6 M 1.1 B 351 114 GB 74 GB

1PFF: Per-object File Format, 2CFF: Containerized File Format, 3Reduced to use on Perlmutter

smoothing of the original peaks computed by DFTB. The high
dimensionality of the smoothed UV-vis spectrum generates
about 20 times larger data files than the discrete one.

The main properties of these three datasets are summarized in Ta-
ble 1. AISD-Ex Smooth is the largest dataset (about 1.5 TB). We
process the full size on Summit but use a trimmed version on Perl-
mutter due to a disk quota limitation.

4.2 HydraGNN Setup
The HydraGNN architecture used for the numerical results is com-
posed of six Principal Neighborhood Aggregation (PNA) layers
[15], each with a hidden dimension of 200, and followed by three
fully connected hidden layers with 200 neurons each. The number
of neurons in the output layer is the same to the dimension of
output features in each dataset. Particularly, the output layer has
one neuron for predicting the energy of an atomic configuration in
the Ising dataset or the HOMO-LUMO gap of an molecule in the
AISD HOMO-LUMO dataset. For the ORNL_AISD-Ex dataset, the
output layer has 100 neurons for the location and the intensity of 50
peaks in the UV-vis spectrum of an organic molecules, whereas the
output layer has 37,500 neurons for the Gaussian smoothed UV-vis
spectrum. The ReLU activation function [3] is used for both PNA
and fully connected hidden layers. AdamW [39] optimizer with
the default parameter setting in PyTorch [54] is used for training.
The learning rate is adaptively adjusted with ReduceLROnPlateau,
a learning rate scheduler, based on validation loss with an initial
value equal to 1 × 10−3. The training has been conducted for three
epochs for performance data collection and 100 epochs for training
error convergence, respectively, on 80% of the data, whereas the
other 20% is split equally for validation and testing.

4.3 Data Management Methodologies
We compare the performance of DDStore with two distinct state-of-
the-art data management approaches for HPC and supercomputing
architecture that are not endowed with NVMe capabilities: i) PFF
using Pickle, in which every sample is saved in Python’s Pickle
binary format, and ii) CFF utilizing ADIOS [22]. ADIOS manages
containerized subfiles, each containing multiple data objects, as
well as a data index for easy retrieval.

4.4 Performance Evaluation
Overview: Fig. 4 shows the normalized end-to-end training

throughput. The training throughput is evaluated using a fixed
batch size of 128, and normalized to PFF. The reported number is
an average of three training runs. Compared to the PFF, DDStore
improves the end-to-end training throughput by 2.93× (up to 4.23×
on AISD-ex discrete) and 4.69× (up to 6.15× on AISD) on average
for Summit and Perlmutter, respectively. Furthermore, DDStore
outperforms CFF by a factor of 5.09× and 6.13× for the same super-
computers. Thus, DDStore achieves substantially higher training

945

SC-W 2023, November 12–17, 2023, Denver, CO, USA
Jong Youl Choi, Massimiliano Lupo Pasini,

Pei Zhang, Kshitij Mehta, Frank Liu and Jonghyun Bae, Khaled Z. Ibrahim

Table 2: 50th, 95th, and 99th percentile of graph loading latency from Fig. 6

Percentile Ising AISD HOMO-LUMO ORNL AISD-Ex (Discrete) ORNL AISD-Ex (Smooth)
PFF CFF DDStore PFF CFF DDStore PFF CFF DDStore PFF CFF DDStore

50th 2.25 ms 0.19 ms 0.24 ms 2.78 ms 9.69 ms 0.39 ms 2.76 ms 4.09 ms 0.44 ms 2.41 ms 3.19 ms 0.42 ms
95th 2.79 ms 1.23 ms 0.48 ms 4.22 ms 13.29 ms 0.67 ms 3.69 ms 5.03 ms 0.68 ms 3.21 ms 3.89 ms 0.64 ms
99th 3.43 ms 1.3 ms 0.58 ms 11.26 ms 15.68 ms 2.17 ms 4.17 ms 5.71 ms 0.89 ms 3.63 ms 4.39 ms 0.86 ms

(b) 64 GPUs on Perlmutter

0
1
2
3
4
5
6

N
or

m
al

iz
ed

sp

ee
du

p

(a) 384 GPUs on Summit

0
1
2
3
4

N
or

m
al

iz
ed

sp

ee
du

p

PFF CFF DDStore

Ising AISD AISD-ex
(Discrete)

AISD-ex
(Smooth)

Geomean

Ising AISD AISD-ex
(Discrete)

AISD-ex
(Smooth)

Geomean

Figure 4: Normalized end-to-end training speedup comparison us-
ing (a) 384 GPUs on Summit (b) 64 GPUs on Perlmutter. Geomean
represents the geometric mean of speedup across all four datasets.

(a) Ising (b) AISD HOMO-LUO
PFF

CPU GPU
CFF

CPU GPU
DDStore

CPU GPU
PFF

CPU GPU
CFF

CPU GPU
DDStore

CPU GPU

(c) ORNL AISD-Ex (Discrete)

PFF
CPU GPU

CFF
CPU GPU

DDStore
CPU GPU

(d) ORNL AISD-Ex (Smooth)

PFF
CPU GPU

CFF
CPU GPU

DDStore
CPU GPU

Ex
ec

ut
io

n
tim

e
(s

ec
)

Ex
ec

ut
io

n
tim

e
(s

ec
)

Ex
ec

ut
io

n
tim

e
(s

ec
)

Ex
ec

ut
io

n
tim

e
(s

ec
)

CPU-Loading CPU-Batching CPU-Etc

GPU-Forward GPU-Backward GPU-Opt GPU-EtcGPU-Comm

0

20

40

60

80

100

0
500

1000
1500
2000
2500
3000
3500

0

400

800

1200

1600

0

300

600

900

1200

1500

Figure 5: End-to-end training time breakdown of PFF, CFF, and
DDStore using 64 GPUs on Perlmutter.

throughput than all the other file formats independent of the dataset
size.

Source of Performance Improvement: Overall, DDStore benefits
from distributed in-memory cache with one-side RMA communi-
cation. Fig. 5 shows the execution time breakdown of end-to-end
training for each dataset on Perlmutter. Since the next mini-batch
data preparation on CPUs overlaps with the current batch’s gra-
dient computation on GPUs, the figure represents the CPU and
GPU operation with different stacked bars. Note that CPU-Loading
represents the data loading time, and CPU-Batching is a processing
time for grouping loaded samples into a unified representation.
From GPU, GPU-comm refers to the communication time for model
synchronization including communication stall time.

(a) Ising (b) AISD HOMO-LUMO

(c) ORNL AISD-Ex (Discrete)

0
0.2
0.4
0.6
0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
D

F

Latency (ms)

≈ 0
0.2
0.4
0.6
0.8

1

0 2 4 6 8 10 12 14 16

C
D

F

Latency (ms)

≈

0
0.2
0.4
0.6
0.8

1

0 1 2 3 4 5 6 7 8

C
D

F

Latency (ms)

≈

PFF CFF DDStore

(d) ORNL AISD-Ex (Smooth)

0
0.2
0.4
0.6
0.8

1

0 1 2 3 4 5 6 7 8

C
D

F

Latency (ms)

≈

Figure 6: Graph loading latency CDF using 64 GPUs on Perlmutter.

0 10 20 30 40
Time [sec]

zero_grad
MPI_Get
opt_step

backward
MPI_Win_unlock
MPI_Win_fence

MPI_Win_lock
forward

dataload
train

MPI
user

Figure 7: Profiling HydraGNN and DDStore using Score-P [33].

Compared to PFF and CFF, the figure shows that the most of
time reduction by DDStore comes from CPU-Loading. By using
the distributed in-memory cache, DDStore reduces CPU-Loading
time by 90.68% and 84.31% on average compared to the PFF and
CFF, respectively. For more details, Fig. 6 shows the cumulative
distribution function (CDF) of the graph loading latency, and Table 2
shows the 50th, 90th, and 99th percentile of these latencies on each
dataset. As shown in the figure and table, in CFF, 99% of graphs
(or samples) are loaded within 1.3 ms, 15.68 ms, 5.71 ms, and 4.39
ms on each dataset. Note that in Ising, the dataset is small and
containerized which is easy to prefetch (e.g, read-ahead) and cache
(e.g., buffer cache) by the OS. Therefore, most of the graphs are
loaded from memory, not from disk. As a result, 50% of graph
batches in CFF are loaded within 0.19 ms, which is close to the
latency of DDStore (0.24 ms). However, DDStore loads 99% of graph
batches in Ising within 0.58 ms, while CFF needs 1.3 ms. In PFF, 99%
of the graphs are loaded within 3.43 ms, 11.26 ms, 4.17 ms, and 3.63
ms in each dataset, respectively. On the other hand, DDStore loads
99% of the graphs within up to 2.17 ms by performing in-memory
data management and optimized one-side RMA communication.

Furthermore, reducing the CPU-Loading time affects GPU-
Comm time reduction. The main reason for the large GPU-Comm
time in PFF and CFF is the imbalanced data loading time. If data
preparation is delayed due to the tail latency of graph loading, the
other tasks wait for the completion of the delayed task’s training

946

DDStore: Distributed Data Store for Scalable Training of Graph Neural Networks on Large Atomistic Modeling Datasets SC-W 2023, November 12–17, 2023, Denver, CO, USA

100

101

102

103

Ti
m

e
[s

ec
]

Summit

PFF CFF DDStore

Perlmutter

discrete

32 64 128 256 512 1024
100

101

102

103

32 64 128 256 512 1024
Num. of GPUs

sm
ooth

Figure 8: The scaling performance of DDStore using a fixed batch size
of 128. The grey area illustrates the variability in the measurements.

0

200

400

600

Ti
m

e
(s

ec
)

Summit

Dataload Forward Backward Opt step Other

Perlmutter

discrete

24 48 96 192 384 768 1536
0

200

400

600

16 32 64 128 256 512 1024
Num. of GPUs

sm
ooth

Figure 9: The performance breakdown of functions involved in train-
ing with DDStore using the same settings in Fig. 8.

48 96 192 384 768 1536
100

101

102

103

Ti
m

e
[s

ec
]

Summit

PFF CFF DDStore

32 64 128 256 512 1024
Num. of GPUs

Perlmutter

discrete

Figure 10: The scaling performance using a globally fixed batch size
(6144 on Summit and 4096 on Perlmutter) for AISD-ex discrete.

iteration for model synchronization. DDStore minimizes the wait-
ing during model synchronization by loading 99% of graphs in less
than 3 ms.

In Fig. 7, we present a profiling outcome using Score-P [33]
for HydraGNN training on the AISD-Ex discrete dataset with 64
Summit nodes. The results indicate the time distribution between
MPI functions and individual training steps in a single epoch. Data
loading accounts for approximately 67% of the training duration,
while MPI RMA functions contribute to about 35% of the overall
time spent in training.

4.5 Scaling Performance
In order to assess the scalability of DDStore, we conduct HydraGNN
training using two extensive datasets, AISD-ex discrete and smooth,
with and without a fixed batch size. The number of nodes used is
consistent across both Summit and Perlmutter, ranging from 8 to

12 24 48 96 192 384
0

10

20

30

40

Ti
m

e
[s

ec
]

Summit
discrete

Dataload Forward Backward Opt step Other

8 16 32 64 128 256
Size of Width [Processes]

Perlmutter
smooth

Figure 11: The performance with varying the width parameter.

0
0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8

C
D

F

Latency (ms)

0
0.2
0.4
0.6
0.8

1

0 0.3 0.6 0.9 1.2

C
D

F
Latency (ms)

(c) ORNL AISD-Ex (Discrete)

≈

0
0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8

C
D

F

Latency (ms)
(b) AISD HOMO-LUMO

≈

(a) Ising

≈

0
0.2
0.4
0.6
0.8

1

0 0.3 0.6 0.9 1.2

C
D

F

Latency (ms)
(d) ORNL AISD-Ex (Smooth)

≈

width = 64 width = 2

Figure 12: Impact of the width parameter on the graph loading la-
tency. Figure shows the CDF with the default width (width=64) vs.
width=2, using 64 GPUs (16 nodes) on Perlmutter.

256. However, the quantity of GPUs differs, with Summit having
48 to 1536 GPUs and Perlmutter having 32 to 1024 GPUs due to
varying GPUs per node.

Initially, we perform the tests with a fixed batch size of 128, re-
gardless of the number of nodes being used. As a result, the effective
global batch size changes as the number of GPUs increase, similar
to weak-scaling performance. The findings are displayed in Fig. 8.
On both machines, DDStore exhibits a nearly linear performance
as the number of GPUs doubles. The grey area represents the vari-
ability in the measurements. Although PFF and CFF exhibit higher
variability, DDStore demonstrates consistent performance. Fig. 9
presents the durations of different functions in the training process
using DDStore under identical configurations.

Subsequently, we execute HydraGNN with DDStore using vary-
ing batch sizes while maintaining a fixed global batch size (6144
on Summit and 4096 on Perlmutter). This approach is frequently
employed by application scientists in data parallel modeling. The
results are presented in Fig. 10. As the number of nodes increases,
the local batch size decreases. Generally, a small local batch size
leads to underutilization of GPUs and reduces efficiency. It is im-
portant to note that the performance disparity between DDStore
and other methods (CFF and PFF) diminishes on Perlmutter, which
can be attributed to the inefficiency caused by the smaller batch
size as well as the differences in topology.

4.6 DDStore Width
We introduce a performance parameter that users can adjust to
optimize the performance of DDStore. The DDStore width is a
parameter used to determine the number of processes accessible
by a MPI RMA group. We examine the effects of modifying the

947

SC-W 2023, November 12–17, 2023, Denver, CO, USA
Jong Youl Choi, Massimiliano Lupo Pasini,

Pei Zhang, Kshitij Mehta, Frank Liu and Jonghyun Bae, Khaled Z. Ibrahim

Table 3: 50th percentile of graph loading latency using width=64
(default) and width=2 from Fig. 12

width=64 width=2
Time reduction

compared to width=64
Ising 0.24 ms 0.05 ms 79.17%
AISD HOMO-LUMO 0.39 ms 0.05 ms 87.18%
ORNL AISD-Ex Discrete 0.44 ms 0.06 ms 86.36%
ORNL AISD-Ex Smooth 0.42 ms 0.05 ms 85.71%

0 25 50 75 100
Epoch

0.002

0.003

0.004

0.005

0.006

M
SE

 L
os

s

Train
Validation
Test

Figure 13: Convergence of training/validation/test loss.

DDStore width parameter on performance when processing the
AISD-ex discrete dataset. On Summit, we adjust the DDStore width
from 12 to 384, and on Perlmutter, from 8 to 256, utilizing 64 nodes in
both cases. The entire dataset is evenly distributed among the width
processes. Our findings can be observed in Fig. 11. For more details,
Fig. 12 and Table 3 compare the cumulative distribution function
with varying width parameter. Each performance is evaluated using
16 Perlmutter nodes, which means that the default width value is
64. As shown in the figure, half of the graphs are loaded much faster
on "width=2" compared to the default. As shown in Table 3, the
50th percentile latency can be reduced by up to 87.18% compared
to the default. The DDStore width does influence the performance,
though the change is not significant in Fig. 11, resulting in less than
a 10% variability in performance. Users can take advantage of this
to further optimize the performance of training using DDStore.

4.7 Convergence
Our performance evaluation concludes by showcasing the conver-
gence outcome as a high-level appraisal of DDStore. We performed
a full-scale HydraGNN training for UV-vis spectrum analysis using
the AISD-Ex (Smooth) dataset on Summit. This training took about
one hour with 128 Summit nodes and a batch size of 128 for 100
epochs. During the training, we employed a learning rate scheduler
named ReduceLROnPlateau, which adaptively modifies the learn-
ing rate based on validation loss. Fig. 13 shows the convergence
of the mean square error (MSE) loss for the training, validation,
and test sets. The abrupt rise in loss observed at Epoch 26 is due
to the learning rate shifting from 1 × 10−3 to 5 × 10−4. It can be
observed that the training reaches convergence after approximately
90 epochs, resulting in an MSE loss between 0.015 and 0.016.

5 Related work
GNN: The advent of accelerator technologies, such as TPU [32],
Tensor Core [44], Cerebras [18], GraphCore [31], has significantly
enhanced the processing speed of DL workloads by using high-
arithmetic-intensity kernel routines. Recent studies [27, 29] showed
that these DL accelerators require higher arithmetic intensity for
optimal performance thanwhat is existing in DLworkloads, shifting
the challenge to the data movement. The problem is exacerbated

with the increase in the integration level of accelerators within
a compute node, which put excessive pressure on the I/O system
and the interconnect [27, 28]. These studies show that scientific
learning workloads, such as DeepCAM [36] and CosmoFlow [46],
can be I/O bound when samples are not efficiently compressed or
cached within the memory hierarchy [28].

Data loading optimization: I/O optimization in DL has been an
active research area. Studies by C. Jia et al. [30] and J. Xue et
al. [64] investigated the application of RDMA with TensorFlow
for DL training, emphasizing efficient message passing within a
distributed setting. The work most closely related to ours is DeepIO
by Yue Zhu et al. [66, 67], which focuses on optimizing data shuf-
fling by using RDMA for in situ data movement. This approach
is implemented within the TensorFlow environment. In contrast,
our DDStore method relies on the portable MPI’s RMA library
and is integrated with PyTorch’s data loading method. NVIDIA’s
Data Loading Library (DALI)1 is specifically designed to optimize
data loading to effectively minimize overhead and boost training
efficiency. It emphasizes creating flexible data pipelines for train-
ing and employs multi-thread approaches to support multi-GPU
training, whereas our work concentrates on using an HPC-friendly
memory caching method. FFCV [37] is a data loading tool that
offers functionalities similar to DALI and various data processing
pipeline techniques. Our DDStore and FFCV differ in data shuffling,
with FFCV not providing explicit distributed data shuffling while
DDStore facilitating global memory-to-memory data shuffling.

6 Conclusion
Despite recent advancements in computing hardware and DL tools,
large-scale graph training remains challenging, particularly in I/O
management. Traditional science applications executed on super-
computers are characterized by massive, write-intensive, sequential
I/O patterns. In contrast, AI and DL workflows exhibit read-focused,
frequent, random access I/O patterns, as demonstrated in our molec-
ular design application. Although some supercomputing facilities
provide massive NVMe SSD memory storage capabilities on each
compute node to accommodate the intra-node storage of large vol-
umes of data, such capabilities are still not broadly supported on
many state-of-the-art HPC and some supercomputing facilities.
Therefore, there is still a compelling need to develop scalable I/O
techniques for effective data reading in GNN models that do not
rely heavily on specific memory storage hardware.

To address these challenges, we developed DDStore, a tool de-
signed to enhance data loading efficiency for distributed GNN train-
ing using one-sided communication in HPC. DDStore employs MPI,
a widely-used HPC tool for data communication, and its one-sided
communication paradigm to enable access to data stored in the
distributed memory of remote processes. This approach allows data
to be efficiently loaded into the memories of parallel processes with
minimal overhead. We showcase the performance enhancement of
DDStore in HydraGNN training, observing up to 4.23× and 6.15×
improvement over traditional file-based approaches on Summit and
Perlmutter, respectively—two DOE HPC machines.

In summary, DDStore facilitates rapid data exchange during shuf-
fled data loading operations involved in the distributed training

1Available at https://developer.nvidia.com/dali

948

DDStore: Distributed Data Store for Scalable Training of Graph Neural Networks on Large Atomistic Modeling Datasets SC-W 2023, November 12–17, 2023, Denver, CO, USA

process. By implementing DDStore, we can accelerate the train-
ing process of GNN models for high-dimensional UV-spectrum
prediction, enabling more accurate and efficient molecular design
efforts. This breakthrough not only addresses the challenges posed
by large-scale graph training but also lays the foundation for further
innovations in the field of molecular design and DL applications.

Acknowledgments
This research is sponsored by the Artificial Intelligence Initiative
as part of the Laboratory Directed Research and Development
(LDRD) Program of Oak Ridge National Laboratory, managed by
UT-Battelle, LLC, for the US Department of Energy under con-
tract DE-AC05-00OR22725. This work has been supported by the
SciDAC Institute for Computer Science, Data, and Artificial Intelli-
gence (RAPIDS), Lawrence Berkeley National Laboratory, which is
operated by the University of California for the U.S. Department of
Energy under contract DE-AC02-05CH11231. This research used re-
sources of the Oak Ridge Leadership Computing Facility at the Oak
Ridge National Laboratory and the National Energy Research Scien-
tific Computing Center (NERSC), which is supported by the Office
of Science of the U.S. Department of Energy under Contract No.
DE-AC05-00OR22725 and No. DE-AC02-05CH11231 using NERSC
award ASCR-ERCAP0025216, respectively.

References
[1] 2020. WebDataset library. https://github.com/webdataset/webdataset. Accessed:

2023/07.
[2] Martín Abadi. 2016. TensorFlow: learning functions at scale. In Proceedings of the

21st ACM SIGPLAN International Conference on Functional Programming. 1–1.
[3] Abien Fred Agarap. 2018. Deep learning using rectified linear units (relu). arXiv

preprint arXiv:1803.08375 (2018).
[4] Alex Aizman, Gavin Maltby, and Thomas Breuel. 2019. High performance I/O

for large scale deep learning. In 2019 IEEE International Conference on Big Data
(Big Data). IEEE, 5965–5967.

[5] Roman M. Balabin and Ekaterina I. Lomakina. 2009. Neural network approach
to quantum-chemistry data: Accurate prediction of density functional theory
energies. J. Chem. Phys. 131, 7 (2009), 074104. https://doi.org/10.1063/1.3206326

[6] Chandler A. Becker, Francesca Tavazza, Zachary T. Trautt, and Robert A. Buar-
que de Macedo. 2013. Considerations for choosing and using force fields and
interatomic potentials in materials science and engineering. Curr. Opin. Solid State
Mater. Sci. 17, 6 (Dec. 2013), 277–283. https://doi.org/10.1016/j.cossms.2013.10.001

[7] Jörg Behler and Michele Parrinello. 2007. Generalized Neural-Network Repre-
sentation of High-Dimensional Potential-Energy Surfaces. Phys. Rev. Lett. 98, 14
(April 2007), 146401. https://doi.org/10.1103/PhysRevLett.98.146401

[8] Andrew Blanchard, John Gounley, Debsindhu Bhowmik, Pilsun Yoo, and Stephan
Irle. 2022. AISD HOMO-LUMO. (5 2022). https://doi.org/10.13139/ORNLNCCS/
1869409

[9] Andrew E Blanchard, Pei Zhang, Debsindhu Bhowmik, Kshitij Mehta, John
Gounley, Samuel Temple Reeve, Stephan Irle, and Massimiliano Lupo Pasini.
2023. ComputationalWorkflow for AcceleratedMolecular Design Using Quantum
Chemical Simulations and Deep Learning Models. In Accelerating Science and
Engineering Discoveries Through Integrated Research Infrastructure for Experiment,
Big Data, Modeling and Simulation: 22nd SmokyMountains Computational Sciences
and Engineering Conference, SMC 2022, Virtual Event, August 23–25, 2022, Revised
Selected Papers. Springer, 3–19.

[10] Roberto Car and Michele Parrinello. 1985. Unified Approach for Molecular
Dynamics and Density-Functional Theory. Phys. Rev. Lett. 55 (1985), 2471–2474.
https://doi.org/10.1103/PhysRevLett.55.2471

[11] Chi Chen, Weike Ye, Yunxing Zuo, Chen Zheng, and Shyue Ping Ong. 2019.
Graph networks as a universal machine learning framework for molecules and
crystals. Chemistry of Materials 31, 9 (2019), 3564–3572.

[12] Jong Youl Choi, Pei Zhang, Kshitij Mehta, Andrew Blanchard, and Massimiliano
Lupo Pasini. 2022. Scalable training of graph convolutional neural networks
for fast and accurate predictions of HOMO-LUMO gap in molecules. Journal of
Cheminformatics 14, 1 (2022), 1–10.

[13] Kamal Choudhary and Brian DeCost. 2021. Atomistic Line Graph Neural Network
for improved materials property predictions. npj Computational Materials 7, 1
(2021), 1–8.

[14] Kamal Choudhary, Brian DeCost, Chi Chen, Anubhav Jain, Francesca Tavazza,
Ryan Cohn, CheolWooPark, Alok Choudhary, Ankit Agrawal, Simon J. L. Billinge,

Elizabeth Holm, Shyue Ping Ong, and Chris Wolverton. 2022. Recent Advances
and Applications of Deep Learning Methods in Materials Science. npj Computa-
tional Materials 8, 59 (2022). https://doi.org/10.1007/978-3-031-23606-8_5

[15] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković.
2020. Principal Neighbourhood Aggregation for Graph Nets. arXiv:2004.05718
[cs, stat] (Dec. 2020). http://arxiv.org/abs/2004.05718 arXiv: 2004.05718.

[16] James Dinan, Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, and
Rajeev Thakur. 2016. An implementation and evaluation of the MPI 3.0 one-sided
communication interface. Concurrency and Computation: Practice and Experience
28, 17 (2016), 4385–4404.

[17] Markus. Eisenbach, Mariia. Karabin, Massimiliano. Lupo Pasini, and Junqi. Yin.
2022. Machine Learning for First Principles Calculations of Material Properties
for Ferromagnetic Materials. In Accelerating Science and Engineering Discoveries
Through Integrated Research Infrastructure for Experiment, Big Data, Modeling
and Simulation, Kothe Doug, Geist Al, Swaroop Pophale, Hong Liu, and Suzanne
Parete-Koon (Eds.). Springer Nature Switzerland, Cham, 75–86.

[18] Jean-Philippe Fricker. 2022. The Cerebras CS-2: Designing an AI Accelerator
around the World’s Largest 2.6 Trillion Transistor Chip. In Proceedings of the
2022 International Symposium on Physical Design (Virtual Event, Canada) (ISPD
’22). Association for Computing Machinery, New York, NY, USA, 71. https:
//doi.org/10.1145/3505170.3511036

[19] Victor Fung, Jiaxin Zhang, and Bobby G. Sumpter. 2021. Benchmarking graph
neural networks for materials chemistry. npj Computational Materials 7, 84 (2021).
https://doi.org/10.1038/s41524-021-00554-0

[20] Edgar Gabriel, Graham E Fagg, George Bosilca, Thara Angskun, Jack J Dongarra,
Jeffrey M Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew
Lumsdaine, et al. 2004. Open MPI: Goals, concept, and design of a next generation
MPI implementation. In Recent Advances in Parallel Virtual Machine and Message
Passing Interface: 11th European PVM/MPI Users’ GroupMeeting Budapest, Hungary,
September 19-22, 2004. Proceedings 11. Springer, 97–104.

[21] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.
Dahl. 2017. Neural Message Passing for Quantum Chemistry. arXiv:1704.01212
[cs] (June 2017). http://arxiv.org/abs/1704.01212 arXiv: 1704.01212.

[22] William F. Godoy, Norbert Podhorszki, Ruonan Wang, Chuck Atkins, Greg Eisen-
hauer, Junmin Gu, Philip Davis, Jong Choi, Kai Germaschewski, Kevin Huck,
et al. 2020. Adios 2: The adaptable input output system. a framework for high-
performance data management. SoftwareX 12 (2020), 100561.

[23] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. 1996. A high-
performance, portable implementation of the MPI message passing interface
standard. Parallel computing 22, 6 (1996), 789–828.

[24] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Proceedings of the 31st International Conference on
Neural Information Processing Systems. 1025–1035.

[25] Brian L. Hammond, William A. Lester, and Peter James Reynolds. 1994. Monte
Carlo Methods in Ab Initio Quantum Chemistry. Singapore: World Scientific.

[26] Pieter Hintjens. 2013. ZeroMQ: messaging for many applications. O’Reilly Media,
Inc.

[27] Khaled Z. Ibrahim, Tan Nguyen, Hai Ah Nam, Wahid Bhimji, Steven Farrell,
Leonid Oliker, Michael Rowan, Nicholas J. Wright, and Samuel Williams. 2021.
Architectural Requirements for Deep Learning Workloads in HPC Environments.
In 2021 International Workshop on Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems (PMBS). 7–17. https://doi.org/
10.1109/PMBS54543.2021.00007

[28] Khaled Z. Ibrahim and Leonid Oliker. 2022. Preprocessing Pipeline Optimization
for Scientific Deep Learning Workloads. In 2022 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). 1118–1128. https://doi.org/10.1109/
IPDPS53621.2022.00112

[29] Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Shigang Li, and Torsten Hoefler.
2021. Data Movement Is All You Need: A Case Study on Optimizing Transformers.
arXiv:2007.00072 [cs.LG]

[30] Chengfan Jia, Junnan Liu, Xu Jin, Han Lin, Hong An, Wenting Han, Zheng Wu,
and Mengxian Chi. 2018. Improving the performance of distributed tensorflow
with RDMA. International Journal of Parallel Programming 46 (2018), 674–685.

[31] Zhe Jia, Blake Tillman, Marco Maggioni, and Daniele Paolo Scarpazza. 2019.
Dissecting the Graphcore IPU Architecture via Microbenchmarking. CoRR
abs/1912.03413 (2019). arXiv:1912.03413 http://arxiv.org/abs/1912.03413

[32] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. 2017.
In-datacenter performance analysis of a tensor processing unit. In Proceedings of
the 44th annual international symposium on computer architecture. 1–12.

[33] Andreas Knüpfer, Christian Rössel, Dieter an Mey, Scott Biersdorff, Kai Diethelm,
Dominic Eschweiler, Markus Geimer, Michael Gerndt, Daniel Lorenz, Allen Mal-
ony, et al. 2012. Score-p: A joint performance measurement run-time infras-
tructure for periscope, scalasca, tau, and vampir. In Tools for High Performance
Computing 2011: Proceedings of the 5th International Workshop on Parallel Tools
for High Performance Computing, September 2011, ZIH, Dresden. Springer, 79–91.

[34] Walter Kohn and Lu Jeu Sham. 1965. Self-consistent equations including exchange
and correlation effects. Phys. Rev. 140 (1965), A1133–A1138. https://doi.org/10.

949

https://github.com/webdataset/webdataset
https://doi.org/10.1063/1.3206326
https://doi.org/10.1016/j.cossms.2013.10.001
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.13139/ORNLNCCS/1869409
https://doi.org/10.13139/ORNLNCCS/1869409
https://doi.org/10.1103/PhysRevLett.55.2471
https://doi.org/10.1007/978-3-031-23606-8_5
http://arxiv.org/abs/2004.05718
https://doi.org/10.1145/3505170.3511036
https://doi.org/10.1145/3505170.3511036
https://doi.org/10.1038/s41524-021-00554-0
http://arxiv.org/abs/1704.01212
https://doi.org/10.1109/PMBS54543.2021.00007
https://doi.org/10.1109/PMBS54543.2021.00007
https://doi.org/10.1109/IPDPS53621.2022.00112
https://doi.org/10.1109/IPDPS53621.2022.00112
https://arxiv.org/abs/2007.00072
https://arxiv.org/abs/1912.03413
http://arxiv.org/abs/1912.03413
https://doi.org/10.1103/physrev.140.a1133
https://doi.org/10.1103/physrev.140.a1133

SC-W 2023, November 12–17, 2023, Denver, CO, USA
Jong Youl Choi, Massimiliano Lupo Pasini,

Pei Zhang, Kshitij Mehta, Frank Liu and Jonghyun Bae, Khaled Z. Ibrahim

1103/physrev.140.a1133
[35] Quincey Koziol, Dana Robinson, and USDOE Office of Science. 2018. HDF5.

https://doi.org/10.11578/dc.20180330.1
[36] Thorsten Kurth, Sean Treichler, Joshua Romero,MayurMudigonda, Nathan Luehr,

Everett Phillips, Ankur Mahesh, Michael Matheson, Jack Deslippe, Massimiliano
Fatica, Prabhat, and Michael Houston. 2018. Exascale Deep Learning for Climate
Analytics. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis (Dallas, Texas) (SC ’18). IEEE Press,
Article 51, 12 pages.

[37] Guillaume Leclerc, Andrew Ilyas, Logan Engstrom, Sung Min Park, Hadi Salman,
and Aleksander Mądry. 2023. FFCV: Accelerating training by removing data
bottlenecks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 12011–12020.

[38] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li,
Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, et al. 2020. Pytorch
distributed: Experiences on accelerating data parallel training. arXiv preprint
arXiv:2006.15704 (2020).

[39] Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101 (2017).

[40] Steph-Yve Louis, Yong Zhao, Alireza Nasiri, Xiran Wong, Yuqi Song, Fei Liu, and
Jianjun Hu. 2020. Graph convolutional neural networks with global attention for
improved materials property prediction. Physical Chemistry Chemical Physics 22,
32 (2020), 18141–18148.

[41] Massimiliano. Lupo Pasini, Marco. Burĉul, Samuel Temple Reeve, Markus. Eisen-
bach, and Simona Perotto. 2021. Fast and accurate predictions of total energy for
solid solution alloys with graph convolutional neural networks. Springer Journal
of Communications in Computer and Information Science 1512 (Sept. 2021).

[42] Massimiliano Lupo Pasini, Kshitij Mehta, Pilsun Yoo, and Stephan Irle. 2023.
ORNL_AISD-Ex: Quantum chemical prediction of UV/Vis absorption spectra for
over 10 million organic molecules. https://doi.org/doi:10.13139/OLCF/1907919

[43] Massimiliano Lupo Pasini, Samuel Temple Reeve, Pei Zhang, Jong Youl Choi,
Massimiliano Lupo Pasini, Samuel Temple Reeve, Pei Zhang, Jong Youl Choi, and
USDOE. 2021. HydraGNN, Version 1.0. https://doi.org/10.11578/dc.20211019.2

[44] Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng, and Jeffrey S
Vetter. 2018. NVIDIA Tensor Core Programmability, Performance & Precision.
arXiv preprint arXiv:1803.04014 (2018). https://arxiv.org/abs/1803.04014

[45] Dominik Marx and Jürg Hutter. 2012. Ab Initio Molecular Dynamics, Basic Theory
and Advanced Methods. Cambridge University Press New York, New York, USA.

[46] Amrita Mathuriya, Deborah Bard, Peter Mendygral, Lawrence Meadows, James
Arnemann, Lei Shao, Siyu He, Tuomas Kärnä, Diana Moise, Simon J Pennycook,
et al. 2018. CosmoFlow: Using deep learning to learn the universe at scale. In SC18:
International Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE, 819–829.

[47] Truong Thao Nguyen, François Trahay, Jens Domke, Aleksandr Drozd, Emil Vatai,
Jianwei Liao, Mohamed Wahib, and Balazs Gerofi. 2022. Why globally re-shuffle?
Revisiting data shuffling in large scale deep learning. In 2022 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 1085–1096.

[48] M. P. Nightingale and Cyrus J. Umrigar. 1999. Quantum Monte Carlo methods in
physics and chemistry. Springer.

[49] Santosh Pandey, Lingda Li, Adolfy Hoisie, Xiaoye S Li, and Hang Liu. 2020. C-
SAW: A framework for graph sampling and random walk on GPUs. In SC20:
International Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE, 1–15.

[50] Cheol Woo Park, Mordechai Kornbluth, Jonathan Vandermause, Chris Wolverton,
Boris Kozinsky, and Jonathan P. Mailoa. 2021. Accurate and scalable multi-
element graph neural network force field and molecular dynamics with direct
force architecture. npj Computational Materials 7, 73 (August 2021). https:
//doi.org/0.1038/s41524-021-00543-3

[51] Cheol Woo Park and Chris Wolverton. 2020. Developing an improved crystal
graph convolutional neural network framework for accelerated materials discov-
ery. Phys. Rev. Materials 4 (Jun 2020), 063801. Issue 6. https://doi.org/10.1103/
PhysRevMaterials.4.063801

[52] Massimiliano Lupo Pasini, Ying Wai Li, Junqi Yin, Jiaxin Zhang, Kipton Barros,
andMarkus Eisenbach. 2020. Fast and stable deep-learning predictions of material
properties for solid solution alloys. J. Phys.: Condens. Matter 33, 8 (Dec. 2020),
084005. https://doi.org/10.1088/1361-648X/abcb10 Publisher: IOP Publishing.

[53] Massimiliano Lupo Pasini, Pei Zhang, Samuel Temple Reeve, and Jong Youl Choi.
2022. Multi-task graph neural networks for simultaneous prediction of global
and atomic properties in ferromagnetic systems. Machine Learning: Science and
Technology 3, 2 (2022), 025007.

[54] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in PyTorch. In NIPS-W.

[55] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[56] Patrick Reiser, Marlen Neubert, André Eberhard, Luca Torresi, Chen Zhou, Chen
Shao, Houssam Metni, Clint van Hoesel, Henrik Schopmans, Timo Sommer,
and Pascal Friederich. 2022. Graph neural networks for materials science and
chemistry. Communications Materials 3, 93 (2022). https://doi.org/10.1038/s43246-
022-00315-6

[57] Kevin Ryczko, David Strubbe, and Isaac Tamblyn. 2019. Deep Learning and
Density Functional Theory. Phys. Rev. A 100, 022512 (2019). https://doi.org/doi/
10.1103/PhysRevA.100.022512

[58] Soumya Sanyal, Janakiraman Balachandran, Naganand Yadati, Abhishek Ku-
mar, Padmini Rajagopalan, Suchismita Sanyal, and Partha Talukdar. 2018. MT-
CGCNN: Integrating Crystal Graph Convolutional Neural Network with Mul-
titask Learning for Material Property Prediction. ArXiv abs/1811.05660 (2018).
arXiv:1811.05660 http://arxiv.org/abs/1811.05660

[59] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele
Monfardini. 2008. The graph neural network model. IEEE transactions on neural
networks 20, 1 (2008), 61–80.

[60] Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela,
Alexandre Tkatchenko, and Klaus-Robert Müller. 2017. Schnet: A continuous-
filter convolutional neural network for modeling quantum interactions. Advances
in neural information processing systems 30 (2017).

[61] David Sholl and Janice Steckel. 2009. Density Functional Theory: a Practical
Introduction - Chapter 1. John Wiley and Sons, Inc. Publication.

[62] Justin S. Smith, Olexandr Isayev, and Adrian E. Roitberg. 2017. ANI-1: an exten-
sible neural network potential with DFT accuracy at force field computational
cost. Chemical science 8, 4 (2017), 3192–3203.

[63] Rajeev Thakur, William Gropp, and Brian Toonen. 2005. Optimizing the synchro-
nization operations in message passing interface one-sided communication. The
International Journal of High Performance Computing Applications 19, 2 (2005),
119–128.

[64] Jilong Xue, Youshan Miao, Cheng Chen, Ming Wu, Lintao Zhang, and Lidong
Zhou. 2019. Fast distributed deep learning over rdma. In Proceedings of the
Fourteenth EuroSys Conference 2019. 1–14.

[65] Linfeng Zhang, Jiequn Han, Han Wang, Roberto Car, and Weinan E. 2018. Deep
Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum
Mechanics. Phys. Rev. Lett. 120, 14 (April 2018), 143001. https://doi.org/10.1103/
PhysRevLett.120.143001

[66] Yue Zhu, Fahim Chowdhury, Huansong Fu, Adam Moody, Kathryn Mohror,
Kento Sato, and Weikuan Yu. 2018. Entropy-aware I/O pipelining for large-scale
deep learning on HPC systems. In 2018 IEEE 26th International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS). IEEE, 145–156.

[67] Yue Zhu, Fahim Chowdhury, Huansong Fu, AdamMoody, KathrynMohror, Kento
Sato, and Weikuan Yu. 2018. Multi-client DeepIO for large-scale deep learning on
HPC systems. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (SC 2018).

[68] Mahdi Zolnouri, Xinlin Li, and Vahid Partovi Nia. 2020. Importance of data
loading pipeline in training deep neural networks. arXiv preprint arXiv:2005.02130
(2020).

950

https://doi.org/10.1103/physrev.140.a1133
https://doi.org/10.11578/dc.20180330.1
https://doi.org/doi:10.13139/OLCF/1907919
https://doi.org/10.11578/dc.20211019.2
https://arxiv.org/abs/1803.04014
https://doi.org/0.1038/s41524-021-00543-3
https://doi.org/0.1038/s41524-021-00543-3
https://doi.org/10.1103/PhysRevMaterials.4.063801
https://doi.org/10.1103/PhysRevMaterials.4.063801
https://doi.org/10.1088/1361-648X/abcb10
https://doi.org/10.1038/s43246-022-00315-6
https://doi.org/10.1038/s43246-022-00315-6
https://doi.org/doi/10.1103/PhysRevA.100.022512
https://doi.org/doi/10.1103/PhysRevA.100.022512
https://arxiv.org/abs/1811.05660
http://arxiv.org/abs/1811.05660
https://doi.org/10.1103/PhysRevLett.120.143001
https://doi.org/10.1103/PhysRevLett.120.143001

	Abstract
	1 Introduction
	2 Background
	2.1 HydraGNN
	2.2 Distributed Data Parallel and Data Loading
	2.3 Data Management in Deep Learning

	3 DDStore
	3.1 Design
	3.2 Architecture

	4 Numerical results
	4.1 Datasets
	4.2 HydraGNN Setup
	4.3 Data Management Methodologies
	4.4 Performance Evaluation
	4.5 Scaling Performance
	4.6 DDStore Width
	4.7 Convergence

	5 Related work
	6 Conclusion
	Acknowledgments
	References

