
Abstract— Torque-vectoring technology demonstrates great 

potential in improving the safety and performance of ground 

vehicles.  In this paper, a novel generalized forces and moment 

governor for torque vectoring is suggested. The proposed 

solution strategically combines prescribed performance control, 

noncertainty equivalent adaptive control design, and a smooth 

projection operator. The main advantage of the proposed 

control strategy lies in its capability to guarantee both the 

transient performance and prompt recovery of the desired 

deterministic behavior of the closed-loop adaptive system, even 

in the presence of parametric uncertainties. ASM simulation 

results are presented to validate the efficacy of the proposed 

generalized forces and moment governor and to demonstrate its 

superiority over a baseline solution. 

Keywords—Adaptive Control, Motion Control, Prescribed 

Performance Control, Smooth Projection, Torque Vectoring 

I. INTRODUCTION

A. Background

With the advancement of vehicle actuation and sensing

technologies, vehicle motion control systems are continually 

evolving [1]-[3]. Whereas traditional ground vehicles rely on 

hand-steering and accelerator/brake pedals to control 

yaw/lateral and longitudinal motions, next-generation 

vehicles will incorporate multiple x-by-wire and intelligently 

controlled subsystems. These subsystems will have 

overlapping control authorities, leading to fully/redundantly 

actuated systems with augmented safety and flexibility.  

Torque vectoring [1] is a prime example of such 

redundantly actuated vehicular systems. It allows individual 

wheels or groups of wheels to receive different levels of 

driving torque, and when used in conjunction with active 

steering, has shown significant potential for enhancing the 

vehicle's safety and performance, particularly under 

challenging road conditions like sharp turns or slippery 

surfaces. Moreover, torque vectoring is beneficial to 

automated/autonomous driving systems, as it can enhance the 

vehicle's stability and maneuverability in various driving 

scenarios. 

As a de facto practice, the control system for torque 

vectoring adopts a trio-loop hierarchical structure [4], which 

consists of a high-level generalized forces and moment 

(GFM) governor responsible for controlling planar vehicle 

motions, a mid-level control allocation scheme that 

(optimally) distributes the GFM commands to actuators (e.g., 

the steering motor), and low-level servo controllers to ensure 

that the given commands are properly executed. The focus of 

this paper is on the design of the high-level GFM governor. 

B. Literature Overview

Nonlinear control methodologies are commonly used in

the design for GFM governors, as the (planar) vehicle 

dynamic model is inherently nonlinear [1]. In this paradigm, 

GFM governors can be clustered into two subclasses, one 

based on nonlinear deterministic robust control (NDRC), and 

the other based on nonlinear adaptive control (NAC).   

The NDRC-based GFM governors are usually designed 

based on the sliding-mode control technique [1] or the 

nonlinear composite control method [5]. Although NDRC 

can provide guaranteed robustness against bounded 

uncertainties/disturbances, it comes with an intrinsic 

drawback. Namely, when dealing with large-scale model 

uncertainties, the NDRC design may generate overly 

conservative control laws [6]. This conservativeness can lead 

to excessive control action (so-called the high-gain 

paradigm), which may not be appropriate for vehicular 

implementation [7].  

On the other hand, another subclass of GFM governors 

employs the NAC approach, which tackles model 

uncertainties through online adaptation and learning, thereby 

sidestepping the conservatism issue in the NDRC design 

framework. Commonly employed NAC techniques for the 

GFM governor design include model reference adaptive 

control [8], adaptive backstepping control [9], and adaptive 

sliding-model control [10]. 

C. Research Gaps and Contributions of Our Work

While the aforementioned NAC-based GFM governors

have demonstrated their efficacy, there is still considerable 

room for improving the control system's performance. Our 

contribution in this paper focuses on three key areas for 

further enhancements. 

First off, the majority, if not all, of NAC-based GFM 

governors in the literature possess asymptotic stability and 

signal convergence properties at best. However, transient 

behaviors, which are equally if not more important than their 

steady-state counterpart, are often overlooked. Consequently, 

existing adaptive GFM governors may exhibit inadequate 

transient performance, such as slow tracking-error 

convergence, oscillatory responses, and substantial 

overshoots. This paper aims to address this research gap by 

formulating an adaptive GFM governor with prescribed 

performance control (PPC) [11][16]. In a nutshell, the 
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proposed adaptive PPC solution will guarantee the forward 

invariance of tracking errors inside certain prespecified 

funnels (usually exponentially convergent).  

Second, virtually all existing adaptive GFM governors are 

based on the standard certainty-equivalent (CE) adaptive 

control principle, which has a potential concern of degrading 

closed-loop performance during adaptation [12]. As a radical 

departure, this paper proposes to address this issue by 

adopting the noncertainty equivalent (NCE) adaptive control 

design method. In contrast to the CE scheme, the NCE 

method can guarantee prompt recovery of the ideal 

determinist closed-loop behaviors, which ultimately leads to 

improved transient performance [13].  

Third, some previous studies employed the projection 

operator to ensure the boundedness of control parameters 

during online adaptation [4], but the projection operators used 

were generally discontinuous and, at best, Lipschitz 

continuous [14]. This may induce non-smooth control laws 

which can be troublesome for low-level servomechanisms 

and/or adversely excite unmodelled high-frequency 

dynamics. In such a respect, this paper will introduce a novel 

smooth projection operator and integrate it into the parameter 

adaptation mechanism.     

D. Paper Organization

The structure of this paper is organized as follows: Section

II establishes the theoretical basis for the design of the control 

system. Section III outlines the design of the control-oriented 

model and the adaptive generalized forces and moment 

(GFM) governor. Section IV presents the numerical results 

from the dSPACE-ASM simulation study. Finally, Section V 

serves as the conclusion for this paper. 

II. THEORETICAL FOUNDATION

A. Control-Oriented Model

For the scope of this paper, a class of first-order, nonlinear,

single-input, parametrically uncertain, dynamic systems in 

the following form (�, � ∈ ℝ) is considered:

�� = � 	
�
��, 
��

�� + ��, �1�

where 
 ∈ ℝ�  is a measurable exogenous vector, �
�•,•�: ℝ × ℝ� → ℝ  are known continuously differentiable

regressor functions. Besides, 	
 ∈ ℝ and � ∈ ℝ are unknown

parameters that are constant or slow-time-varying. We make 

the further assumption that �  is non-zero and its sign is

known within the system's operating range, in order to ensure 

the controllability of the system. The rudimentary target here 

is to command the control input �  such that �  can track a

sufficiently smooth and bounded reference trajectory �  as

closely as possible. In such a respect, one can define the 

following tracking-error dynamics (� ≜ � − �):

�� = � 	
�
��, 
����

�� + ��, �2�

where 	��� ≜ 1 and ������, 
� = −�� are an additional pair

of parameter-regressor. Note that � and its time derivative are

absorbed into the exogenous vector 
  in the above

expression. Equation �2�  can be further transformed into:

�� = � !� "
�
��, 
����

�� + �# , �3�

where "
 ≜ 	
/�.

To foster the guaranteed transient convergence for the 

tracking error �, the PPC scheme is adopted here. To do so,

we would like � to strictly stay inside a prescribed funnel

throughout its forward evolution in time, namely, ∀' ∈ ℝ�, ()�'� < ��'� < (+�'�, �4�
where (+�'� > ()�'�, ∀' ∈ ℝ� . As a standard practice,(+�'�  and ()�'�  are chosen to be symmetrical ( ()�'� =−(+�'� = (�'� ∈ ℝ�) as well as exponentially convergent

[11]. In particular, one can specify:(�'� = �(. − (/� exp�−3'� + (/, �5�
where (. > (/ ∈ ℝ�  and 3 ∈ ℝ�  are user-specified

constants. By employing this funnel design, the exponential 

convergence of the transient response of � can be achieved,

and its steady-state value can be regulated within a 

predetermined terminal set. 

Remark 1: The minimum undershoot and maximum 

overshoot of �  are constrained by the magnitude of (.
( sup7∈ℝ8|��'�| ≤ (. ), while the corresponding acceptable

steady-state error is tunable by the magnitude of (/
( |��∞�| ≤ (/ ). The exponential decay rate of �  is

determined by the parameter 3. By adjusting the values of(. , (/ , and 3 in (�'�, both the transient and steady-state

performance of �  can be pre-designed. It is important to

notice that (. shall be specified such that it is greater than|��0�|. In other words, the initial width of the prescribed

funnel is inherently limited by the initial tracking error. 

A nonlinear transformation is employed to transform the 

constrained PPC control problem (as governed by �3� -�4�)

into an equivalent unconstrained counterpart. To do so, we 

introduce the following nonlinear smooth mapping: tanh�A� = �(B��'�. �6�
This mapping is bijective if and only if � strictly stays within

the prescribed funnel, i.e., −(�'� < � < (�'� . In other

words, any constrained �  can be uniquely and smoothly

mapped to an unconstrained variable A ∈ ℝ. Thus, A can be

expressed as a nonlinear function of �:A = 12 ln F1 + �(B��'�1 − �(B��'�G , �7�
whose domain is the prescribed funnel |��'�| < (�'�, ∀' ∈ℝ�. Differentiating A with respect to time yields,A� = 11 − �I(BI�'� F ��(�'� − �(� �'�(I�'�G . �8�

By invoking �’s dynamics as presented in �3�, equation�8� can be further expanded as,A� = 1K1 − �I(BI�'�L M�N∑ "
�
��, 
����
�� + �P(�'� − �(� �'�(I�'�Q . �9�
Equation �9� can be equivalently transformed into,

A� = −SA + � !� "
T
�A, �, 
��

�� + �U# , �10�

where S ∈ ℝ� , �U ≜ T+��, 
��  is the transformed input,

and, 



T+��, 
� ≜ 1(�'�K1 − �I(BI�'�L , �11�
T
�A, �, 
� ≜ �
��, 
�(�'�K1 − �I(BI�'�L , ∀V ∈ ⟦1, X⟧, �12�
T����A, �, 
� ≜ ������, 
� − �(� �'�(B��'� + Z(�'�K1 − �I(BI�'�L , �13�

where Z = (�'�K1 − �I(BI�'�LSA in �13�.

At this point, the equation �10�  is referred to as the

control-oriented model. Evidently, so long as A  remains

bounded, the tracking error �  will be restricted within the

prespecified funnel, and T+�A, �, 
� will be nonzero so the

system in �10� retains the controllability. Furthermore, if A is

reduced to zero, � will also be zero (the bijective mapping is

symmetric about the origin). If "
  is perfectly known, the

feedback-linearizing control law �U = − ∑ "
T
�A, �, 
����
��
can fulfill such an objective, namely, A and � under such a

control law will converge to zero exponentially fast. In 

practice, it is however nearly impossible to achieve the 

perfect cancellation of uncertainties in "
  using such an

idealized feedback-linearizing law. Accordingly, to achieve 

the PPC objective in the presence of parametric uncertainties, 

we will employ a noncertainty-equivalent adaptive control 

scheme. To begin with, a smooth projection operator will be 

introduced. 

B. Smooth Projection Operator

The control-oriented model in �10�  involves uncertain

model parameters "
 . In practice, it is possible to estimate

their bounds ["
 , "
\  by leveraging certain physical

knowledge. This information can then be incorporated into 

the parameter adaptation mechanism using a smooth 

projection operator, which could bring about two advantages. 

First off, the closed-loop adaptive system becomes more 

robust, as the projection scheme can prevent unbounded 

parameter drift caused by disturbances or noise. Secondly, the 

pre-estimated projection bounds confine the admissible 

region for adapting control parameters. This leads to 

improved parameter adaptation by avoiding unnecessary 

parameter learning efforts that occur outside the admissible 

parameter regions. This paper introduces a smooth projection 

operator that utilizes the hyperbolic tangent function [15]. 

This projection operator aims to project an unconstrained 

parameter ] ∈ ℝ onto a confined interval [^, ^\,^ = Π[`,`\�]� = ^ + 12 Δ`�tanh�]� + 1�. �14�
where and Δ` ≜ K^ − ^L . The smooth projection scheme

introduced in equation �14�  is characterized by three key

properties. Firstly, it is infinitely differentiable �b/�, which

sets it apart from conventional projection operators (such as 

those discussed in [14] and related literature) that only 

possess finite-order differentiability at best. Secondly, this 

one-piece operator does not require gradient computation or 

boundary layer construction, which makes it a conveniently 

implementable option for practitioners. The third property of 

the proposed hyperbolic tangent function-based smooth 

projection operator is that it is more versatile than 

conventional projection operators. While traditional 

operators are only compatible with the CE adaptive control 

scheme, the proposed operator can work with both CE and 

NCE schemes, allowing for greater flexibility in its 

application. In what follows, an NCE adaptive PPC strategy 

based on such a smooth projection scheme will be delineated. 

C. Control Law Formulation

An adaptive control strategy aiming to accomplish the PPC

objective is proposed as follows: 

� = − 1T+��, 
� � "c
T
�A, �, 
����

�� . �15�

The following algorithms are used to perform real-time 

adaptations for unknown parameters "
:

⎩⎪⎪
⎨⎪
⎪⎧"c
 = Π[hi,hi\�j
 + k
�j
 = l
sgn��� n T
�l, �, 
�olp

.k�
 = qrj
rA rj
r� rj
r
 s t SA−��−
� u
, �16�

where j
 , k
 ∈ ℝ are NCE control parameters, l
 ∈ ℝ� rates

of adaptation. 

Remark 2: The conventional projection operators used in CE 

adaptive control design, such as those in [14], can only 

project the parameters via altering their time-integration 

process (i.e., ceasing the integration process if parameters are 

out of their projection bounds). However, the update of j
 in�16� involves an analytical computation that uses a definite

integral with respect to the state � instead of time (so-called

NCE proportional adaptation), which makes traditional 

methods nonapplicable here. This is yet another motivation 

to devise the smooth projection operator in �14�, which is

capable of modifying the NCE proportional adaptation.  

D. Closed-loop Stability Analysis

To begin with, errors due to the control parameters’

adaptation ("v
 ≜ "c
 − "
) can be parametrized in terms of j
,k
, and w
: "v
 = Π[hi,hi\�j
 + k
� − Π[hi,hi\�w
�= 12 ∆"
Ntanh�j
 + k
� − tanh�w
�P, �17�
where w
 ≜ Π[hi,hi\B� �"
� . The associated before-projection

parameter error is as: y
 ≜ j
 + k
 − w
 . �18�
Evidently, "v
  is related to y
  via the following nonlinear

relationship: "v
 = 12 ∆"
Ntanh�y
 + w
� − tanh�w
�P. �19�
By applying the control law described in �15�, the closed-

loop dynamics can be expressed as: 

A� = −SA − � � "v
T
�A, �, 
����

�� . �20�

Here, a proposition is presented to illustrate the manifold-

attractivity attribute of the suggested NCE adaptive control 

strategy as well as facilitate the presentation of the main 

theorem in the sequel. 

Proposition 1. If A ∈ z/ , the manifold defined by { ≜



|�A, "v
, 
� ∈ ℝ × ℝ��� × ℝ�| ∑ "v
T
�A, �, 
����
�� = 0} is an

attractor. 

Proof: 

First off, we define a Lyapunov-like function: 

~� ≜ |�| � 12 ∆"
Ξ�y
�l

���

�� , �21�

where, Ξ�y
� ≜ lnNcosh�y
 + w
�P − tanh�w
�y
 . �22�
Showing that Ξ�y
� is a lower bounded scalar function is a

straightforward task [15]. This leads to the conclusion that ~�
is also lower bounded. Differentiating Ξ�y
� with respect toy
  yields: ∂∂y
  Ξ�y
� = tanh�y
 + w
� − tanh�w
� . �23�
With this and �19�, one can work out the time derivative of~�:

~�� = |�| � 12 ∆"
l

∂∂y
  Ξ�y
�y�
���


�� =
|�| � 12 ∆"
l
 Ntanh�y
 + w
� − tanh�w
�PKj� 
 + k�
L���


��
= |k| � "v�w� Kj� 
 + k�
L�����

��� . �24�
By invoking the parameter updating algorithms as proposed 

in �16�, �24� can be further written carried out as:

j� 
 + k�
 =
⎝
⎜⎜⎛

rj
rArj
r�rj
r
 ⎠
⎟⎟⎞

�
�t A���−
� u + t SA−��−
� u�

= −� rj
r� � "v
T
�A, �, 
����

�� . �25�

The NCE proportional adaptation law for j
  as in �16�
indicates that 

��i�� = l
sgn���T
�A, �, 
�, which yields:

j� 
 + k�
 = −l
T
�A, �, 
�|�| � "v
T
�A, �, 
����

�� . �26�

At this point, ~��  can be readily carried out as:

~�� = −|�| � "v
T
�A, �, 
����

�� |�| t� "v
T
�A, �, 
����


�� u
= −�I t� "v
T
�A, �, 
����


�� uI ≤ 0. �27�
Given that ~�  is a lower bounded scalar function, it follows

that ~� , y
 , "v
 ∈ �/ . Plus, due to the negative semi-

definiteness of ~�� , ~�  will converge to a finite constant~��∞� . Next, the fact that � ~���'�o'/. = K~��0� −~��∞�L ∈ �/  reveals the quadratic integrability of∑ "v
T
�A, �, 
����
�� , namely, ∑ "v
T
�A, �, 
����
�� ∈ �I . In

addition, by examining the boundedness of ~��  (by utilizing

the A ∈ z/  condition), it can be concluded that

��7 ∑ "v
T
�A, �, 
����
�� ∈ �/. By combining these observations

with the corollary of Barbalat's Lemma, it can be eventually 

deduced that lim7→/ ∑ "v
T
�A, �, 
����
�� = 0 so that { is indeed

attractive. ∎
Proposition 1 forms the basis for proving the following 

theorem. 

Theorem 1. The adaptive closed-loop system composed of �10�, �15�, and �16� is globally stable with the following

characteristics: a) ∀' ∈ ℝ�, ()�'� < ��'� < (+�'�  andlim7→/ A�'�, ��'� = 0 ; b) The extended state-space �A, "v
� ∈ℝ × ℝ���  will be attracted to the manifold {  defined in

Proposition 1; c) Regardless of the adaptation, "c
 are strictly 

confined within pre-estimated ["
, "
\.
Proof: 

We consider the following lower-bounded, Lyapunov-like 

function ~ composed of a quadratic term respecting A and ~�
defined in Proposition 1: ~ = 12 AI + �~� , �28�
where � ∈ ℝ�. The derivative of ~ with respect to time along

the trajectory of �20� can be rolled out as:

~� = −SAI − A� � "v
T
�A, �, 
� + �~�����

��

≤ −SAI + |A| �� � "v
T
�A, �, 
����

�� �

−��I t� "v
T
�A, �, 
����

�� uI . �29�

The inequality in �29� is a result of Proposition 1 and the

Cauchy-Schwarz inequality.  

To facilitate the subsequent analysis, we choose (�� ∈ ℝ�):

� = �� + √2√S , �30�
which leads to: 

~� ≤ −SAI − ℳI − ���I t� "v
T
�A, �, 
����

�� uI

≤ −SAI − ���I t� "v
T
�A, �, 
����

�� uI . �31�

In �31� , ℳI = F|A|��I − �I |�|�∑ "v
T
�A, �, 
����
�� ��I�GI
results from the completion of the square. ~� ≤ 0 immediately

demonstrates that the closed-loop system is globally stable, 

and all signals are bounded. Thus, the boundedness of A
reveals the realization of the PPC objective ( ∀' ∈ℝ�, ()�'� < ��'� < (+�'� ), which ensures the guaranteed

prescribed transient behavior of the tracking error �. Besides,

we can conclude that lim7→/ A�'�, ��'�, ∑ "v
T
�A, �, 
����
�� = 0
by following the standard signal boundedness and 

convergence analysis (as conducted in proving Lemma 1). 

Therefore, we show that the error-tracking error can be 

rendered zero in the face of parametric uncertainties, and the 

extended state-space �A, "v
� ∈ ℝ × ℝ��� will converge to the



manifold { . Last but not least, the smooth projection

operator ascertains that "c� ∈ ["�, "�\. The proof for Theorem

1 is now complete. ∎
Remark 3: The proposed NCE adaptive PPC scheme offers 

two key attributes for respecting transient performance. First 

and foremost, the tracking error is strictly confined to a 

prescribed exponentially converging funnel, which offers the 

guaranteed transient performance to the closed-loop adaptive 

system. The second major attribute of the proposed control 

strategy is its ability to achieve arbitrarily fast asymptotic 

convergence of parameter error-induced term ∑ "v
T
�A, �, 
����
�� , with the convergence speed tunable byl
 . This leads to the prompt recovery of desired

(exponentially stable) deterministic closed-loop dynamics, 

which fosters a superior transient performance. 

III. APPLICATION TO GFM DESIGN

A. Vehicle Planar Dynamics

Ground vehicles equipped with torque vectoring feature

independent torque and active steering controls for all 

wheels. In this paper, we consider a four-wheel vehicle (e.g., 

a sedan) whose planar vehicle dynamics can be modeled as 

[1] (assuming negligible pitch and roll motion):oo' t��� ¡pu = �� ¡p − ¢2£ b¤¥¦��I−��¡p0 � + Λ � �̈̈ £p� , �32�
where Λ = diag�£B�, £B�, ªppB��. In �32�, ��, � , and ¡p are

the vehicle’s longitudinal and lateral velocities and yaw rate 

(all in the vehicle body-fixed frame), respectively. £ and ªpp
are vehicle mass and yaw inertia, respectively. ¢, b¤, and ¥¦
are parameters associated with longitudinal aerodynamic 

resistance. �̈ ,  ̈ , and £p  are generalized longitudinal and

lateral forces and yaw moment, respectively, which are 

treated as virtual controls to the planar vehicle dynamic 

model. In practice, �� and ¡p are “cheap” to be measured via

sensors (e.g., IMU). �  , on the other hand, should be

estimated with observers/estimators.  

B. GFM Governor Design

Since the system is fully actuated, i.e., the number of

control inputs equal to the number of states, we can decouple 

it into three single-input–single-output (SISO), nonlinear, 

first-order systems, namely, 

«��� = 	�����K�  , ¡pL + 	�I��I���� + �� �̈��  = 	 � ���, ¡p� + �   ̈¡� p = �p£p
, �33�

where 	�� = 	  = 1, 	�I = ¬I� b¤¥¦, �� = �  = £B�, �p =ªppB�, ��� = � ¡p, ��I = −��I, and �  = −��¡p. At this point,

we notice that the first-order dynamics in �33� are written in

the form as in �1�. Therefore, one can readily exploit the

theoretical result derived in Section II to design the GFM 

governor to control vehicle motion signals �� , �  , and ¡p .

For illustration, we will present the design for the vehicle yaw 

rate controller here. In a nutshell, we desire ¡U (the yaw rate

tracking error) to be regulated within the funnel |¡U�'�| ≜|¡p�'� − �­�'�| < (p�'�, ∀' ∈ ℝ�  where (p�'� = �(p. −(p/� exp�−3p'� + (p/ and �­�'� is the reference yaw rate

(sufficiently smooth). To enforce such a control objective in 

spite of the parametric uncertainty stemming from ªpp (which

almost always presents due to vehicular payload and weight 

distribution variations), the following NCE adaptive PPC 

strategy is enforced to generate the desired generalized yaw 

moment command: £p = −"cpTp�Ap , ¡p , �, ���. �34�
In �34�,TpKA  , �� , ¡pL = −��­�'� − ¡U(�p(pB� + Zp(p�'��1 − ¡UI(pBI� , �35�
where Zp =  (p�1 − ¡UI(pBI�SpAp  and Ap = �I ln ®��­¯°±²³�B­¯°±²³´ .

Besides, the "cp is updated via: 

⎩⎪⎪
⎨
⎪⎪⎧

"cp = Π[h±,h±\�jp + kp�
jp = lpsgn��p� n Tp�l, ¡p , �, ���olp±

.
k�p = qrjprAp

rjpr¡p
rjpr� rjpr�� s µSpAp−¡� p−��−�� ¶

, �36�
where lp , Sp ∈ ℝ�  are design parameters. The GFM

governor based on such a control design can ensure both the 

prescribed transient performance as well as the recovery of 

the desired deterministic behavior of the closed-loop vehicle 

yaw dynamics despite the uncertain parameter �p.

Remark 4: Although not presented here, the same procedure 

can be straightforwardly extended to design governing laws 

to control the vehicle's longitudinal and lateral velocities 

(which will produce desired generalized longitudinal and 

lateral force commands).  

Figure 1. Reference step yaw rate tracking comparison. 

IV. SIMULATION STUDY

In this section, results from the ASM-based simulation 

study are presented to justify the proposed control strategy 

(ASM employed here is a high-fidelity simulation software 

widely utilized in the automotive industry to simulate 

different aspects of vehicle behavior and performance). For 

demonstration, we will control the vehicle to track both step 

(whose magnitude is 0.5 �	o/· ) and sinusoidal yaw rate

(with an amplitude of 0.5 �	o/· and a frequency of 0.5 ¸A)

commands at a cruising speed of 25 ¹/·. The reference for�  is zero. We will compare our NCE adaptive PPC with a

baseline quadratic-Lyapunov-function-based MRAC from 

[7]. We adopt the solution in [5] as the control allocation 

scheme that distributes the GFM commands to actuators. The 

prescribed funnel function for the yaw rate tracking error is 

specified as (p�'� = 0.03 exp�−0.1'� + 0.01 . The "cp  is



initialized based on ªºpp = 1800 ST ∙ ¹I whereas the ground

truth is ªpp = 2000 ST ∙ ¹I. The projection bound for "cp is

set as N1/2500,1/1500P.

Figure 2. Reference sinusoidal yaw rate tracking 

As demonstrated in Figures 1 and 2, both the NCE adaptive 

PPC and the baseline controller have been effective in 

stabilizing the closed-loop systems for both step and 

sinusoidal yaw rate tracking. However, our approach has 

demonstrated superior performance compared to the baseline 

strategy in several aspects. Evidently, the NCE adaptive PPC 

exhibits significantly better transient performance. Our 

solution strictly confines ¡U  within the prescribed funnel,

leading to the prompt convergence of the yaw rate tracking 

error. On the contrary, the baseline controller, while able to 

stabilize the error dynamics, exhibits poor transient 

performance as evidenced by the slow and oscillatory 

convergence of ¡U.

V. CONCLUSION

This paper articulates a novel control approach that 

combines PPC, NCE adaptive control design, and a 

hyperbolic tangent function-based smooth projection 

operator. The proposed control strategy is exploited to design 

the GFM governor for torque vectoring in ground vehicles. 

The suggested solution has a significant advantage in 

ensuring guaranteed transient performance and recovery of 

the deterministic desired behavior of the closed-loop adaptive 

system, even in the presence of parametric uncertainties. The 

efficacy of the proposed control strategy is validated through 

simulations using ASM, and its superiority over a baseline 

adaptive control solution is demonstrated. Future studies will 

focus on experimenting with the proposed GFM governor 

using real vehicles. Further, the theoretical findings will be 

extended to systems with higher orders and other canonical 

structures. 
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