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Abstract— Torque-vectoring technology demonstrates great
potential in improving the safety and performance of ground
vehicles. In this paper, a novel generalized forces and moment
governor for torque vectoring is suggested. The proposed
solution strategically combines prescribed performance control,
noncertainty equivalent adaptive control design, and a smooth
projection operator. The main advantage of the proposed
control strategy lies in its capability to guarantee both the
transient performance and prompt recovery of the desired
deterministic behavior of the closed-loop adaptive system, even
in the presence of parametric uncertainties. ASM simulation
results are presented to validate the efficacy of the proposed
generalized forces and moment governor and to demonstrate its
superiority over a baseline solution.
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1. INTRODUCTION

A. Background

With the advancement of vehicle actuation and sensing
technologies, vehicle motion control systems are continually
evolving [1]-[3]. Whereas traditional ground vehicles rely on
hand-steering and accelerator/brake pedals to control
yaw/lateral and longitudinal motions, next-generation
vehicles will incorporate multiple x-by-wire and intelligently
controlled subsystems. These subsystems will have
overlapping control authorities, leading to fully/redundantly
actuated systems with augmented safety and flexibility.

Torque vectoring [1] is a prime example of such
redundantly actuated vehicular systems. It allows individual
wheels or groups of wheels to receive different levels of
driving torque, and when used in conjunction with active
steering, has shown significant potential for enhancing the
vehicle's safety and performance, particularly under
challenging road conditions like sharp turns or slippery
surfaces. Moreover, torque vectoring is beneficial to
automated/autonomous driving systems, as it can enhance the
vehicle's stability and maneuverability in various driving
scenarios.

As a de facto practice, the control system for torque
vectoring adopts a trio-loop hierarchical structure [4], which
consists of a high-level generalized forces and moment
(GFM) governor responsible for controlling planar vehicle
motions, a mid-level control allocation scheme that
(optimally) distributes the GFM commands to actuators (e.g.,
the steering motor), and low-level servo controllers to ensure

that the given commands are properly executed. The focus of
this paper is on the design of the high-level GFM governor.

B. Literature Overview

Nonlinear control methodologies are commonly used in
the design for GFM governors, as the (planar) vehicle
dynamic model is inherently nonlinear [1]. In this paradigm,
GFM governors can be clustered into two subclasses, one
based on nonlinear deterministic robust control (NDRC), and
the other based on nonlinear adaptive control (NAC).

The NDRC-based GFM governors are usually designed
based on the sliding-mode control technique [1] or the
nonlinear composite control method [5]. Although NDRC
can provide guaranteed robustness against bounded
uncertainties/disturbances, it comes with an intrinsic
drawback. Namely, when dealing with large-scale model
uncertainties, the NDRC design may generate overly
conservative control laws [6]. This conservativeness can lead
to excessive control action (so-called the high-gain
paradigm), which may not be appropriate for vehicular
implementation [7].

On the other hand, another subclass of GFM governors
employs the NAC approach, which tackles model
uncertainties through online adaptation and learning, thereby
sidestepping the conservatism issue in the NDRC design
framework. Commonly employed NAC techniques for the
GFM governor design include model reference adaptive
control [8], adaptive backstepping control [9], and adaptive
sliding-model control [10].

C. Research Gaps and Contributions of Our Work

While the aforementioned NAC-based GFM governors
have demonstrated their efficacy, there is still considerable
room for improving the control system's performance. Our
contribution in this paper focuses on three key areas for
further enhancements.

First off, the majority, if not all, of NAC-based GFM
governors in the literature possess asymptotic stability and
signal convergence properties at best. However, transient
behaviors, which are equally if not more important than their
steady-state counterpart, are often overlooked. Consequently,
existing adaptive GFM governors may exhibit inadequate
transient performance, such as slow tracking-error
convergence, oscillatory responses, and substantial
overshoots. This paper aims to address this research gap by
formulating an adaptive GFM governor with prescribed
performance control (PPC) [11][16]. In a nutshell, the



proposed adaptive PPC solution will guarantee the forward
invariance of tracking errors inside certain prespecified
funnels (usually exponentially convergent).

Second, virtually all existing adaptive GFM governors are
based on the standard certainty-equivalent (CE) adaptive
control principle, which has a potential concern of degrading
closed-loop performance during adaptation [12]. As a radical
departure, this paper proposes to address this issue by
adopting the noncertainty equivalent (NCE) adaptive control
design method. In contrast to the CE scheme, the NCE
method can guarantee prompt recovery of the ideal
determinist closed-loop behaviors, which ultimately leads to
improved transient performance [13].

Third, some previous studies employed the projection
operator to ensure the boundedness of control parameters
during online adaptation [4], but the projection operators used
were generally discontinuous and, at best, Lipschitz
continuous [14]. This may induce non-smooth control laws
which can be troublesome for low-level servomechanisms
and/or adversely excite unmodelled high-frequency
dynamics. In such a respect, this paper will introduce a novel
smooth projection operator and integrate it into the parameter
adaptation mechanism.

D. Paper Organization

The structure of this paper is organized as follows: Section
II establishes the theoretical basis for the design of the control
system. Section III outlines the design of the control-oriented
model and the adaptive generalized forces and moment
(GFM) governor. Section IV presents the numerical results
from the dSPACE-ASM simulation study. Finally, Section V
serves as the conclusion for this paper.

II.  THEORETICAL FOUNDATION

A. Control-Oriented Model

For the scope of this paper, a class of first-order, nonlinear,
single-input, parametrically uncertain, dynamic systems in

the following form (x, u € R) is considered:
N

X = Z a;f;(x,w) + bu, (€))]
i=1

where w € R™ is a measurable exogenous vector, f;(e,e®
)2RXR™—> R are known continuously differentiable
regressor functions. Besides, a; € R and b € R are unknown
parameters that are constant or slow-time-varying. We make
the further assumption that b is non-zero and its sign is
known within the system's operating range, in order to ensure
the controllability of the system. The rudimentary target here
is to command the control input u such that x can track a
sufficiently smooth and bounded reference trajectory r as
closely as possible. In such a respect, one can define the
following tracking-error dynamics (e £ x —1):

N+1
é= Z a;f;(x,w) + bu, (2)

i=1
where ay,q 2 1 and fy,,(x,w) = —7 are an additional pair

of parameter-regressor. Note that r and its time derivative are
absorbed into the exogenous vector w in the above
expression. Equation (2) can be further transformed into:

N+1

é=b[z 0,f:(x, w) + ul, 3)
i=1

where 6; £ a;/b.

To foster the guaranteed transient convergence for the
tracking error e, the PPC scheme is adopted here. To do so,
we would like e to strictly stay inside a prescribed funnel
throughout its forward evolution in time, namely,

vVt € R+' (pl(t) < e(t) < (Pu(t), (4)
where @, (t) > ¢,(t),Vt € R* . As a standard practice,
@, (t) and ¢,;(t) are chosen to be symmetrical (¢;(t) =
—@,(t) = @(t) € R") as well as exponentially convergent
[11]. In particular, one can specify:

() = (@9 — 9) eXp(—Kt) + P, (5)
where @, > @, €E Rt and k € R* are user-specified
constants. By employing this funnel design, the exponential
convergence of the transient response of e can be achieved,
and its steady-state value can be regulated within a
predetermined terminal set.

Remark 1: The minimum undershoot and maximum

overshoot of e are constrained by the magnitude of ¢,

( sup le(t)] < ¢y ), while the corresponding acceptable
teR

steady-state error is tunable by the magnitude of ¢,
(le(©)| < ¢ ). The exponential decay rate of e is
determined by the parameter k. By adjusting the values of
Po> P, and k in @(t), both the transient and steady-state
performance of e can be pre-designed. It is important to
notice that ¢ shall be specified such that it is greater than
le(0)]. In other words, the initial width of the prescribed
funnel is inherently limited by the initial tracking error.

A nonlinear transformation is employed to transform the
constrained PPC control problem (as governed by (3) -(4))
into an equivalent unconstrained counterpart. To do so, we
introduce the following nonlinear smooth mapping:

tanh(z) = e@~1(t). (6)

This mapping is bijective if and only if e strictly stays within
the prescribed funnel, i.e., —@(t) <e < @(t). In other
words, any constrained e can be uniquely and smoothly
mapped to an unconstrained variable z € R. Thus, z can be
expressed as a nonlinear function of e:
1 1 -1
- ( +ep (t))’ )
whose domain is the prescribed funnel |e(t)| < @(t),Vt €
R*. Differentiating z with respect to time yields,

5 1 _ ( é _eqo(t)). @)

1-e?p2(O\e®) ¢*@)

By invoking e’s dynamics as presented in (3), equation
(8) can be further expanded as,

. 1 {b[zr:f 0,f;(x, ) + 1] eq)(t)}
zZ= — .(9)

(1-e29p2(t)) @(t) @*(t)
Equation (9) can be equivalently transformed into,

N

z 0;9:(z,x,w) +u,
i=1

where k € RY, u, 2 g,(x,w)u is the transformed input,
and,

i=—kz+b ) (10)
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gu(xl W) é (p(t)(l _ ez(p—z(t))' (11)

arwy e —TCM ey, a2
p(O(1 - e29=2(1))

Iner W) & fver(ow) —ep(®e™ () + (' (13)

() (1 - e2p2(1))
where ¢ = p(t)(1 — e2¢72(t) )kz in (13).

At this point, the equation (10) is referred to as the
control-oriented model. Evidently, so long as z remains
bounded, the tracking error e will be restricted within the
prespecified funnel, and g, (z, x, w) will be nonzero so the
system in (10) retains the controllability. Furthermore, if z is
reduced to zero, e will also be zero (the bijective mapping is
symmetric about the origin). If 8; is perfectly known, the
feedback-linearizing control law u, = —Y¥*10,9,(z, x,w)
can fulfill such an objective, namely, z and e under such a
control law will converge to zero exponentially fast. In
practice, it is however nearly impossible to achieve the
perfect cancellation of uncertainties in 6; using such an
idealized feedback-linearizing law. Accordingly, to achieve
the PPC objective in the presence of parametric uncertainties,
we will employ a noncertainty-equivalent adaptive control
scheme. To begin with, a smooth projection operator will be
introduced.

B. Smooth Projection Operator

The control-oriented model in (10) involves uncertain
model parameters 6;. In practice, it is possible to estimate
their bounds [QL-,EL-] by leveraging certain physical
knowledge. This information can then be incorporated into
the parameter adaptation mechanism using a smooth
projection operator, which could bring about two advantages.
First off, the closed-loop adaptive system becomes more
robust, as the projection scheme can prevent unbounded
parameter drift caused by disturbances or noise. Secondly, the
pre-estimated projection bounds confine the admissible
region for adapting control parameters. This leads to
improved parameter adaptation by avoiding unnecessary
parameter learning efforts that occur outside the admissible
parameter regions. This paper introduces a smooth projection
operator that utilizes the hyperbolic tangent function [15].
This projection operator aims to project an unconstrained
parameter A € R onto a confined interval [y, V],

v =1y MD=v+ %Av (tanh(1) + 1). (14)

where and A, = (V - y). The smooth projection scheme
introduced in equation (14) is characterized by three key
properties. Firstly, it is infinitely differentiable (C*), which
sets it apart from conventional projection operators (such as
those discussed in [14] and related literature) that only
possess finite-order differentiability at best. Secondly, this
one-piece operator does not require gradient computation or
boundary layer construction, which makes it a conveniently
implementable option for practitioners. The third property of
the proposed hyperbolic tangent function-based smooth
projection operator is that it is more versatile than
conventional projection operators. While traditional

operators are only compatible with the CE adaptive control
scheme, the proposed operator can work with both CE and
NCE schemes, allowing for greater flexibility in its
application. In what follows, an NCE adaptive PPC strategy
based on such a smooth projection scheme will be delineated.

C. Control Law Formulation

An adaptive control strategy aiming to accomplish the PPC

objective is proposed as follows:
N+1

1 z A
U= ——— 0,9i(z,x,w).
gu(x,w) py I

The following algorithms are used to perform real-time
adaptations for unknown parameters 6;:

I(éi = Mg, 5(a: + B)
a; = Cisgn(b)f 9i(¢, x,w)dg
0 )

o= (e 2 0oy ( 5
' Vez ax aw/\_

(15)

(16)

where a;, §; € R are NCE control parameters, ¢; € R, rates
of adaptation.

Remark 2: The conventional projection operators used in CE
adaptive control design, such as those in [14], can only
project the parameters via altering their time-integration
process (i.e., ceasing the integration process if parameters are
out of their projection bounds). However, the update of «; in
(16) involves an analytical computation that uses a definite
integral with respect to the state x instead of time (so-called
NCE proportional adaptation), which makes traditional
methods nonapplicable here. This is yet another motivation
to devise the smooth projection operator in (14), which is
capable of modifying the NCE proportional adaptation.

D. Closed-loop Stability Analysis
To begin with, errors due to the control parameters’
adaptation (f; 2 8; — 6;) can be parametrized in terms of a;,
B, and y;:
0 = Mg, (i + i) = Mjg 5, (i)

1

= §A9i [tanh(a; + B;) — tanh(y)],
_1_
(6,6
parameter error is as:

~ Xizai+Bi—vi (18)
Evidently, 8; is related to y; via the following nonlinear
relationship:

0, = %Aei [tanh(y; + ¥;) — tanh(y;)]. (19)

By applying the control law described in (15), the closed-

loop dynamics can be expressed as:
N+1

z=—-kz—b Z 0:9:(z, x,w).
i=1
Here, a proposition is presented to illustrate the manifold-
attractivity attribute of the suggested NCE adaptive control
strategy as well as facilitate the presentation of the main
theorem in the sequel.
Proposition 1. If z € [*, the manifold defined by W =

(17)

where y; £ 1 i](Gi). The associated before-projection

(20)



{(z,0;,w) e Rx RNt x R™| ¥¥*'8,g;(z,x,w) = 0} is an
attractor.

Proof:
First off, we define a Lyapunov-like function:
1, -
O 2 A0.E0)
Vy & |b|2—, (21)
— Ci
i=1
where,
E(x:) 2 In[cosh(x; +v;)] — tanh(yy)x; . (22)

Showing that Z(y;) is a lower bounded scalar function is a
straightforward task [15]. This leads to the conclusion that V,
is also lower bounded. Differentiating Z(y;) with respect to
X; yields:

0
o E(xi) = tanh(y; +y;) — tanh(y,). (23)
l

With this and (19), one can work out the time derivative of
Vy:

v |b|NZ+1%A9i % 2
— - .X.:
x = G oxi s

N+11

76 .
b1 2 Itanh(r, + ) — tanh ()] + )
i=1 Ot

N+M+1 ~

O . . .
=181 ) ().
= Yk
By invoking the parameter updating algorithms as proposed
in (16), (24) can be further written carried out as:
aw

aai T
Z kz
—-w —Ww

N+1

0z
6ai ~
= —bazl Bigi(Z,X,W) .
i=

| 0a; |
The NCE proportional adaptation law for a; as in (16)

(24)

Gthi=| 5 |
60:L~

(25)

indicates that % = ¢;sgn(b)g;(z, x,w), which yields:
N+1

G+ fr = —5igiz 2 Wbl Y Gigizxw).  (26)
i=1
At this point, V- can be readily carried out as:
N+1 N+1
Vy = —|b| Z 6:9:(z,x,w) |b| (Z 6:9:(z,x, W))
i=1 i=1
N+1 2
= —bz <z éigi(z, X, W)) <0. (27)
i=1

Given that V- is a lower bounded scalar function, it follows
that Vy,x;,0; € L® . Plus, due to the negative semi-
definiteness of Vi, Vy will converge to a finite constant
V() . Next, the fact that [~ Vy(t)dt = (Vy(0) -
VX(OO)) € L® reveals the quadratic integrability of
YN+19,9,(z,x,w) , namely, ¥¥*10,9,(z,x,w) € L> . In
addition, by examining the boundedness of V- (by utilizing
the z €l® condition), it can be concluded that

%Zf’:ll 0;9:(z,x,w) € L*. By combining these observations
with the corollary of Barbalat's Lemma, it can be eventually
deduced that gl_)rg YN+18,9;(z,x,w) = 0 so that W is indeed
attractive. m

Proposition 1 forms the basis for proving the following
theorem.
Theorem 1. The adaptive closed-loop system composed of
(10), (15), and (16) is globally stable with the following
characteristics: a) Vt € RY,¢;(t) <e(t) < ¢,(t) and
tll)rg> z(t),e(t) =0; b) The extended state-space (z,8;) €
R x RV*1 will be attracted to the manifold W defined in
Proposition 1; ¢) Regardless of the adaptation, ; are strictly
confined within pre-estimated [Qi, §i].
Proof:

We consider the following lower-bounded, Lyapunov-like
function V composed of a quadratic term respecting z and Vy
defined in Proposition 1:

(28)

where € € R,.. The derivative of V with respect to time along
the trajectory of (20) can be rolled out as:

1
V= 522 + &Vy,

N+1
V =—kz>—2zb Z 0:9:(z, x,w) + eVy
i=1
N+1
< —kz?+|z||b Z 0:9:(z, x,w)
i=1

2

N+1
—eb? <z 0:9:(z,x, w)) :
i=1

The inequality in (29) is a result of Proposition 1 and the
Cauchy-Schwarz inequality.
To facilitate the subsequent analysis, we choose (5 € R,):

(29)

V2
E=&+—, 30
st (30)
which leads to:
N+1 2
V < —kz? — M? — gb? <z 0:9:(z, x, w))
i=1
N+1 2
< —kz? — g,b? (Z 0:9:(z, x, W)) . (31)
i=1

2
k ~
In (31) , M? =(|z| 5—%|b||Z§V=+119igi(z,x,w)|\/%>

results from the completion of the square. V < 0 immediately
demonstrates that the closed-loop system is globally stable,
and all signals are bounded. Thus, the boundedness of z
reveals the realization of the PPC objective ( Vt €
R*, ¢, (t) < e(t) < ¢, (t)), which ensures the guaranteed
prescribed transient behavior of the tracking error e. Besides,
we can conclude that }1_&10 z(t),e(), YN 0,9,(z,x,w) =0
by following the standard signal boundedness and
convergence analysis (as conducted in proving Lemma 1).
Therefore, we show that the error-tracking error can be
rendered zero in the face of parametric uncertainties, and the

extended state-space (z,8;) € R x R¥*! will converge to the



manifold W . Last but not least, the smooth projection
operator ascertains that ), € [Qk, gk]. The proof for Theorem
1 is now complete. m
Remark 3: The proposed NCE adaptive PPC scheme offers
two key attributes for respecting transient performance. First
and foremost, the tracking error is strictly confined to a
prescribed exponentially converging funnel, which offers the
guaranteed transient performance to the closed-loop adaptive
system. The second major attribute of the proposed control
strategy is its ability to achieve arbitrarily fast asymptotic
convergence of  parameter error-induced term
N+10,g:(z,x,w), with the convergence speed tunable by
¢; . This leads to the prompt recovery of desired
(exponentially stable) deterministic closed-loop dynamics,
which fosters a superior transient performance.

III.  APPLICATION TO GFM DESIGN

A. Vehicle Planar Dynamics

Ground vehicles equipped with torque vectoring feature
independent torque and active steering controls for all
wheels. In this paper, we consider a four-wheel vehicle (e.g.,
a sedan) whose planar vehicle dynamics can be modeled as
[1] (assuming negligible pitch and roll motion):

p 2 F

d [V* Vyw, — 5 CaApv x
= =[7" 2M 1+l F ), @32

dt w Uy Wy M

Z 0 z

where A = diag(M~',M~%,1;,;"). In (32), v, vy, and w, are
the vehicle’s longitudinal and lateral velocities and yaw rate
(all in the vehicle body-fixed frame), respectively. M and I,
are vehicle mass and yaw inertia, respectively. p, Cy, and A
are parameters associated with longitudinal aerodynamic
resistance. Fy, F,, and M, are generalized longitudinal and
lateral forces and yaw moment, respectively, which are
treated as virtual controls to the planar vehicle dynamic
model. In practice, v, and w, are “cheap” to be measured via
sensors (e.g., IMU). v, , on the other hand, should be
estimated with observers/estimators.

B. GFM Governor Design
Since the system is fully actuated, i.e., the number of
control inputs equal to the number of states, we can decouple
it into three single-input-single-output (SISO), nonlinear,
first-order systems, namely,
Uy = axlfxl (vy' wz) + axzfxz (vx) + bxe
v, = ay f, (vy, w,) + byF, )
w, = b,M,
where @y = ay, =1, ay, = %CdAf, by=b,=M",b, =

(33)

I, fr1 = vyw,, fr, = —v£, and f, = —v,w,. At this point,
we notice that the first-order dynamics in (33) are written in
the form as in (1). Therefore, one can readily exploit the
theoretical result derived in Section II to design the GFM
governor to control vehicle motion signals vy, v),, and w,.
For illustration, we will present the design for the vehicle yaw
rate controller here. In a nutshell, we desire w, (the yaw rate
tracking error) to be regulated within the funnel |w,(t)| £
|wz(t) - ra)(t)l < (pz(t):Vt € R* where (pz(t) = (‘on -
Pz00) €Xp(—K,t) + @0 and 1, (t) is the reference yaw rate
(sufficiently smooth). To enforce such a control objective in

spite of the parametric uncertainty stemming from I,, (which
almost always presents due to vehicular payload and weight
distribution variations), the following NCE adaptive PPC
strategy is enforced to generate the desired generalized yaw
moment command:

MZ = _ézgz(zz' Wz, T, T') (34)
In (34),
_f'w (t) - we¢z¢2_1 + (z
Zy, Uy, W,) = , 35
o) ==, Da-wten - &
- 1 1 ePz
where {, = ¢,(1 — w2@;*)k,z, and z, = SIn (;:—ez;l)'
Besides, the 8, is updated via:
92 = H[Qzﬁz](az + ﬁz)
Zz
a, = ¢;sgn(b,) f 928, g, 7, 7)dg
0
] k,z,\ " (36)
j = (aaz da, OJda, aaz) -,
Z \dz, Ow, Or Or -7
—i
where ¢, k, € R, are design parameters. The GFM

governor based on such a control design can ensure both the
prescribed transient performance as well as the recovery of
the desired deterministic behavior of the closed-loop vehicle
yaw dynamics despite the uncertain parameter b,.

Remark 4: Although not presented here, the same procedure
can be straightforwardly extended to design governing laws
to control the vehicle's longitudinal and lateral velocities
(which will produce desired generalized longitudinal and
lateral force commands).

0.02
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O H .
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0 5 10 15 20
Time (s)
Figure 1. Reference step yaw rate tracking comparison.

IV. SIMULATION STUDY

In this section, results from the ASM-based simulation
study are presented to justify the proposed control strategy
(ASM employed here is a high-fidelity simulation software
widely utilized in the automotive industry to simulate
different aspects of vehicle behavior and performance). For
demonstration, we will control the vehicle to track both step
(whose magnitude is 0.5rad/s) and sinusoidal yaw rate
(with an amplitude of 0.5 rad/s and a frequency of 0.5 Hz)
commands at a cruising speed of 25 m/s. The reference for
v, is zero. We will compare our NCE adaptive PPC with a
baseline quadratic-Lyapunov-function-based MRAC from
[7]. We adopt the solution in [5] as the control allocation
scheme that distributes the GFM commands to actuators. The
prescribed funnel function for the yaw rate tracking error is
specified as @,(t) = 0.03 exp(—0.1t) + 0.01. The 8, is



initialized based on [, = 1800 kg - m? whereas the ground
truth is I, = 2000 kg - m?. The projection bound for 8, is
setas [1/2500,1/1500].

0.05¢
0
3 OR-
<
5
T — Baseline -
--—-- NCE Adaptive PPC

Time (s)

Figure 2. Reference sinusoidal yaw rate tracking

As demonstrated in Figures 1 and 2, both the NCE adaptive
PPC and the baseline controller have been effective in
stabilizing the closed-loop systems for both step and
sinusoidal yaw rate tracking. However, our approach has
demonstrated superior performance compared to the baseline
strategy in several aspects. Evidently, the NCE adaptive PPC
exhibits significantly better transient performance. Our
solution strictly confines w, within the prescribed funnel,
leading to the prompt convergence of the yaw rate tracking
error. On the contrary, the baseline controller, while able to
stabilize the error dynamics, exhibits poor transient
performance as evidenced by the slow and oscillatory
convergence of w,.

V. CONCLUSION

This paper articulates a novel control approach that
combines PPC, NCE adaptive control design, and a
hyperbolic tangent function-based smooth projection
operator. The proposed control strategy is exploited to design
the GFM governor for torque vectoring in ground vehicles.
The suggested solution has a significant advantage in
ensuring guaranteed transient performance and recovery of
the deterministic desired behavior of the closed-loop adaptive
system, even in the presence of parametric uncertainties. The
efficacy of the proposed control strategy is validated through
simulations using ASM, and its superiority over a baseline
adaptive control solution is demonstrated. Future studies will
focus on experimenting with the proposed GFM governor
using real vehicles. Further, the theoretical findings will be
extended to systems with higher orders and other canonical
structures.
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