
Abstract— The application of adaptive control techniques in 

the development of control systems for intelligent vehicles, 

especially for ground vehicle path-following controllers, has 

gained popularity due to their ability to handle large-scale 

parametric uncertainties. However, the use of a standard 

quadratic Lyapunov function in existing adaptive control-based 

path-following controllers can lead to poor transient 

performance, such as slow convergence and/or large overshoot. 

To address this limitation, this study proposes the use of a 

switching non-quadratic Lyapunov function to design a model 

reference adaptive path-following controller that aims to 

provide superior transient performance.  The stability and 

signal convergence of the closed-loop system are demonstrated 

through a Lyapunov-like analysis. Through dSPACE ASM 

simulation, the effectiveness of the proposed controller is 

illustrated, which confirms improved tracking performance 

over a baseline solution. 

Keywords—Adaptive Control, Autonomous Driving, Path 

Following, Switching Non-Quadratic Lyapunov Function 

I. INTRODUCTION

A. Background

In recent times, the development of modern intelligent

vehicles (IV) has been greatly propelled by the synergy of 

cutting-edge hardware, software, and artificial intelligence 

[1], [2]. Notably, autonomous/automated driving systems 

(ADS), the backbone technology of IV, have gained 

significant attention due to their numerous societal and 

economic benefits [3]. Among the foundational subsystems 

of ADS, the path-following control design has emerged as a 

critical research area. 

In essence, the path-following control system is 

responsible for guiding a vehicle to follow a dynamically 

feasible path produced by the path-planning subsystem [4]. 

As a primary design objective, the lateral and heading errors 

with respect to the reference path shall be regulated as small 

as possible for a good tracking performance [4]. Typically, 

the design of the path-following control system relies on a 

process dynamic model (e.g., the vehicle lateral dynamic 

model). However, model uncertainties, especially (large-

scale) parametric uncertainties, make this task challenging. 

As reported in [5],[6], vehicle parameters, such as tire 

stiffness and payload mass, are contingent on both vehicle 

configurations and environmental factors, rendering them 

subject to variation over time and from vehicle to vehicle. 

Inadequate compensation of these uncertainties may result in 

degradation of the tracking performance and, in severe cases, 

destabilization of the closed-loop system. Therefore, it is 

crucial to address parametric uncertainties with caution when 

developing a path-following control system. 

B. Literature Overview

When it comes to dealing with parametric uncertainties in

vehicle dynamic models, two general approaches for 

controller synthesis exist. The first is the robust control (RC) 

theory, which aims to stabilize the closed-loop system under 

worst-case model parameter uncertainties with fixed control 

laws (see [7] and references therein). The second approach 

hinges upon the adaptive control (AC) method, which yields 

online adjusted control strategies and may offer two 

advantages over RC (see [8] and references therein). First off, 

the RC method requires prior knowledge of the uncertain 

model parameter bounds, while AC does not rely on such 

information and is capable of intelligently identifying and 

learning the model parameters in real-time. Secondly, large-

scale parametric uncertainties can induce conservative 

control laws with RC synthesis. Such conservativeness may 

result in excessively large control effort and/or inadequate 

performance [9], which may be unsuitable for the path-

following control system. In contrast, the AC framework does 

not have this drawback.  

In this respect, a multitude of research efforts has focused 

on developing path-following controllers leveraging the AC 

theory. For instance, ref. [8],[10],[11] utilized the model 

reference adaptive control (MRAC) design to synthesize 

path-following controllers. More recently, Lyapunov-based 

adaptation mechanisms have been synergized with various 

emergent path-following control methods, leading to the 

development of the adaptive data-driven controller [1], the 

adaptive model predictive controller [12], the adaptive 

steering-backlash compensator [13], among others. 

C. Our Work’s Novelty and Contribution

The mainstream adaptive path-following controllers for

ground vehicles rely on quadratic Lyapunov functions (QLF) 

[8]. Although effective, these controllers can only guarantee 

global stability and signal boundedness of the closed-loop 

system in theory, and at best, can ensure asymptotic 

convergence of tracking errors. However, QLF-based 

solutions have been criticized for their arbitrary transient 

performance, which may exhibit sub-standard signs such as 

slow convergence of tracking errors and large 

over/undershoot.  
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To address the limitations of QLF-based controllers, this 

paper proposes a new method for achieving path-following 

targets in ground vehicles. The approach utilizes an MRAC 

with a switching non-quadratic Lyapunov function (SNQLF) 

design, which offers a core benefit over the conventional QLF 

counterpart. Specifically, the SNQLF design can dynamically 

improve the parameter-adaptation process, resulting in better 

tracking performance. Overall, the proposed path-following 

control strategy utilizes a hierarchical control structure that 

divides the control objective into two sub-levels: kinematic-

error regulation and reference yaw-rate tracking. The high-

level control module, which is based on ��  robust control

theory, regulates kinematic tracking errors and generates a 

reference yaw rate trajectory (which serves as the virtual 

control input to the high-level control loop). The low-level 

control system, implemented as an SNQLF-based MRAC, is 

responsible for the reference yaw rate tracking. To further 

enhance both the robustness and efficiency of the parameter 

learning process, a projection scheme is integrated into the 

parameter update laws. 

D. Paper Outline

A summary of the remaining sections of this paper is as

follows. Section II introduces the system model and the 

design of the hierarchical control architecture. In Section III, 

a ��  robust controller is proposed as the high-level

kinematic-error controller to regulate the lateral and yaw 

angle errors. Section IV delineates the development of the 

low-level SNQLF-based MRAC with a projection scheme to 

track the reference yaw rate trajectory. Section V presents the 

validation results using dSPACE ASM. Finally, Section VI 

provides the conclusion of this paper. 

II. MODELING AND CONTROL SYSTEM DESIGN

This section provides an introduction to the kinematic error 

model for vehicle path following and the linear vehicle 

single-track model. Additionally, the design principles of the 

duo-loop hierarchical control architecture are presented. 

Figure 1. Path-following kinematics 

A. Path-Following Kinematic Error Model

The nonlinear differential equations for the kinematic path-

following error model are expressed as per [14]: ���� � �	 sin
��� � �� cos
������ � �� � ��� . �1�
As visualized in Figure 1, ��  represents the lateral error

between the vehicle's COG and the reference path, �� and ���
are the heading angle error and the reference yaw rate 

respectively, and �� is the vehicle yaw rate.

B. Linear Single-Track Vehicle Lateral Dynamics

Given the strong linearity of vehicle dynamics during

normal driving conditions, it is sensible to model the vehicle's 

lateral dynamics with the well-known linear single-track 

model [15],[16]. The state vector of this model is given by � � �� ����. �� � �� �  !, �2�
where, 

⎩⎪⎪
⎨
⎪⎪⎧� �

⎝
⎜⎛ � +, � +�-�	 �1 � .�+� � .,+,-�	/.�+� � .,+,0� � .�/+� � .,/+,0��	 ⎠

⎟⎞
� 4 +,-�	

.,+,0� 5�
. �3�

The linear single-track vehicle model in �2� � �3�  is

characterized by the following parameters: the vehicle mass, 

denoted by -, the front and rear wheelbases, represented by., and .�  respectively, the tire cornering stiffness of the front

and rear axles, denoted by +, and +�  respectively, and the

vehicle’s yaw inertia, denoted by 0�. The control input for this

model is the front road-wheel angle ! (so-called active front

steering control). 

C. Hierarchical Control Architecture

Inspired by [8], a hierarchical control framework is

introduced, comprising a high-level kinematic-error regulator 

and a low-level controller for tracking the yaw rate reference 

trajectory produced by the former. The ��  robust control

theory is utilized to design the high-level controller, which 

provides guaranteed 7/ -to- 7/  attenuation from external

disturbances to the performance output. The low-level control 

system, on the other hand, is formulated as an SNQLF-based 

MRAC. Such a hierarchical control construction is suggested 

based on the following considerations: First off, as the 

kinematic errors in equation (1) are not subject to parametric 

uncertainties, controlling the path-following error vector �89 :9� can be achieved through deterministic control laws,

reducing the complexity of the adaptive system, and making 

the design and analysis of the adaptive control more feasible. 

Besides, some motion-planning modules documented in the 

literature can provide reference yaw rate trajectories directly, 

enabling our SNQLF-based MRAC to be employed 

straightforwardly for achieving yaw rate tracking. 

III. �� ROBUST KINEMATIC-ERROR REGULATOR

A ��  robust controller (for regulating path-following

kinematic errors) is formulated in terms of linear matrix 

inequalities (LMI). Additionally, we consider the time-

varying longitudinal velocity of the vehicle in the controller 

synthesis and employ a self-scheduling scheme to account for 

this.  

A. �� Robust Controller

Linearization of the nonlinear vehicle path-following



kinematic error model in �1� can be performed around the

operating point �89 :9� � �0 0� , resulting in the

following linear model: 4������5 � <0 �	0 0 = <����= � <01= �� � <01= ���⟺ ?� � �9? �  9�� � @9��� . �4�
In �4�, it is assumed that the low-level yaw-rate servo loop

has a sufficiently high bandwidth (with reference to the high-

level control loop) such that �� ≈ ��  (��  is treated as a

virtual control input). For the robust control objective, the 

performance output is defined as C ≝ E9?,E9 � 
Γ9G Γ9H�, �5�
where Γ�J , Γ�J ∈ ℝM  are positive weighting factors. The

primary aim of the state-feedback ��  robust controller,

which operates with �� � N? � �	O , is to minimize the

energy-to-energy induced gain from ���  to the performance

output C, while satisfying other constraints. In other words,

across the entire frequency spectrum of ���, the devised ��
can ensure the least sensitivity from P���P/ to ‖C‖/. Prior to

deriving the ��  robust controller, a lemma is presented as

follows regarding the LMI-based eigenvalue assignment. The 

eigenvalue assignment criterion is implemented in the robust 

controller synthesis to shape the high-level control loop’s 

transient performance as well as restrain its bandwidth.  

Lemma 1. [17] For a linear-time-invariant (LTI) system 

governed by R� � SR  where S ∈ ℝT×T, R ∈ ℝT , all of its

eigenvalues lie inside a circular region V with a radius of W
(in the complex plane) and centered around X ∈ ℂ/  if and

only if ∃ \ ∈ ]MMT  such that,<�W\ X\ � \S∗ �W\ = < 0. �6�
More explicitly, the circular region V is characterized by,V � ab ∈ ℂ/: ‖b � X‖ < W d, �7�
Theorem 1. Pf�� g→�Pij < k ∈ ℝM 
‖C‖lm < n‖o‖lm�  and

all closed-loop poles are enclosed inside the region V if and

only if ∃ p ∈ ]MM/ , k ∈ ℝM such that,

⎩⎪⎨
⎪⎧qℋs�9p �  9tu @9 pE9�∗ �k0 0∗ ∗ �k0 v < 0

<�Wp Xp � �9p �  9t∗ �Wp = < 0 , �8�
where ℋ�•� ≝ •  � •�.

Proof: 

Applying the Kalman–Yakubovich–Popov lemma in [17], 

the criterion Pf�� g→�Pij < k ∈ ℝM is satisfied if and only if∃ y ∈ ]MM/  and k ∈ ℝM such that,

qℋsy��9 �  9N�u y@9 E9�∗ �k0 0∗ ∗ �k0v < 0. �9�
Through multiplying diag�y~�, 0, 0� on both sides of �9� and

encoding y~� � p, Np � t , the first LMI in �8�  is

established. 

Next, the criterion for V-regional eigenvalue placement, as

described in Lemma 1, states that all the closed-loop 

eigenvalues are located within V if and only if there exists a

matrix ∃ \ ∈ ]MM/  satisfying the LMI,

<�W\ X\ � \��� �  �N�∗ �W\ = < 0. �10�
Accordingly, the second LMI in �8� can be established by

applying another congruent transformation on �10�, which

involves multiplying both sides by diag�\~�, \~��, and then

making the change-of-variables \~� � p and Np � t.

The �� robust control gain N matrix can be carried out by,N � tp~�. �11�
This completes the proof for Theorem 1. ∎
B. Self-Scheduling Scheme

The proposed ��  robust control law at its current state

considers �	  being constant. However, to maintain the

closed-loop robust stability in the presence of potentially 

time-varying �	 , modifying the feedback control gain N  is

required to account for variations in �	. One effective way is

to adopt a polytopic gain-scheduling approach, where �	 is

regarded as a measurable scheduling signal. Assuming �	 is

enclosed inside the interval, �	 ∈ s�	 �	u, �	 ∈ ℝM, �12�
the state-space form f��	� of the closed-loop system can be

expressed as a convex combination of individual state-space 

realizations at two interval endpoints, i.e.,  f��	�  � �f��	� � �f��	�. �13�
Factors � and � can be carried out as,� ≝ �	 � �	�	 � �	 , � ≝ �	 � �	�	 � �	 . �14�
Thus, the self-scheduled (respecting �	 ) feedback control

gain N is acquired as the convex sum of control gain matricesN��	� and N��	�, which are synthesized with identical p (to

ensure the quadratic stability of the closed-loop system 

against the bounded �	) at the endpoints �	 and �	, i.e.,N � ON��	� � ON��	�. �15�
IV. SNQLF-MRAC SYNTHESIS

This section presents the design of an output-feedback 

MRAC using SNQLF, aimed at achieving asymptotic 

tracking of the yaw rate reference command produced by the 

high-level ��  robust kinematic-error controller.

Additionally, an analysis of the adaptive closed-loop system's 

stability and signal convergence is presented. 

A. Linear Single-Track Vehicle Lateral Dynamic Model

The linear state-space representation as in �2� � �3� can

be readily converted to a transfer function ( � ∈ ℂ  is the

Laplace variable): 

f� →�� � �-�	� � +, � +� +,.,+, � .�+� .,+,�
��-�	� � +, � +� -�	 � 
.,+, � .�+���	.,+, � .�+� 0�� � 
.,/+, � .�/+���	

��
. �16�

In line with [8], the subsequent variables are designated as 

follows,



⎩⎪⎪
⎨
⎪⎪⎧� ≝ � �
��+�~�g+g�
��M�g�m+�+g�T ≝ 
��M�g��� �+�+g��� �1 � ��	/�

� ≝ �<��m+�M�gm+g=M��
+�M+g�
/
��M�g�����+�+g
�M���m�

. �17�
By utilizing the stability factor �, natural frequency �T, and

damping ratio �, as defined in �17�, the transfer function in�16� can be simplified as follows:f� →�� � +� � � f�~��/ � 2��T� � �T/ � +� yTy� . �18�
The transfer function’s high-frequency gain is denoted as +� ≝ ������m��M���m����M�g�, and the time constant of the f� →�� ’s

zero dynamics is symbolized as f� ≝ �����+g
��M�g� . It is 

reasonable to assume the vehicle is under-steered (i.e., � ∈ℝM) as most commercial vehicle manufacturers design their

vehicles this way [15]. As a result, the transfer function is 

minimum-phase and has a relative degree of one.  In addition, 

the sign of the high-frequency gain +�  is always positive.

Based on these facts, the following certainty-equivalence 

MRAC law can be employed to achieve the yaw-rate tracking 

objective: ! � ����� � ����� �  ����� � ��/�/, �19�
where Θ� ≜ ���� ���  ��� ��/�� ∈ ℝ� are estimated control

parameters (their update laws are to be derived), �� and �/ are

two auxiliary signals acquired through low-pass filtering !
and �� respectively,������ � ℱ����!����/��� � ℱ/�������� . �20�

Transfer functions for these exponentially stable low-pass 

filters (as   ∈ ℝM) can be designed identically (O ∈ ℝM),ℱ����  � ℱ/���  � nTn� � O� �   . �21�
The reference model's transfer function can be designed as, f�g →�¡ � 1�¢� � 1 � 1£� �22�
where ¢� ∈ ℝM is the reference model's bandwidth.

According to the MRAC design's matching condition, ∃ Θ ≜ ��� �� �� �/�� ∈ ℝ� such that,���n� � �/nT�+�yT � ��nTy�� �n����+�nT£� � y��. �23�
When Θ is perfectly known, i.e., Θ� � Θ, the MRAC proposed

in �19� reduces to a deterministic model-reference controller

(DMRC). The DMRC can guarantee that the yaw-rate 

tracking error ( �9 ≝ �� � �� , defined as the difference

between the output of the reference model (�� ) and the

actual output ( �� ) converges to zero exponentially fast,

namely,  �9�¤� � �9�¤�� exps�¢��¤ � ¤��u , ∀¤ ≥ ¤�. �24�
However, in practical applications, it is rare for Θ  to be

precisely known and it may be subject to variations over time. 

To address such parametric uncertainties, a real-time 

adaptation scheme based on a projection-modified SNQLF is 

proposed to learn Θ: ∀ ª � «, 0,1,2,

��¬ � Proj°±²,±²³
�́¬� � µ�́¬ , ∀ �́¬ ∈ 
�¬ , �¬��¬ , ∀ �́¬ ∈ 
�∞, �¬��¬ , ∀ �́¬ ∈ 
�¬ , ∞� , �25�
where �¬ and �¬ denotes the lower and upper bounds of the

control parameter �¬.
Remark 1: For vehicle dynamics, it is feasible to estimate the 

bounds °�¬, �¬³ of the control parameters Θ (please refer to

[8] for details on this). These bounds can be integrated into

the parameter adaptation mechanism using the projection

operator as in �25�, providing two key benefits. Firstly, the

projection scheme can prevent unbounded parameter drift

due to noise or disturbances, thereby improving the

robustness of the closed-loop adaptive system. Secondly, by

restricting the admissible parameter regions with pre-

estimated projection bounds, the parameter adaptation

process can be improved by avoiding unnecessary learning

efforts that occur outside the admissible parameter regions.

This enhances the overall effectiveness of the adaptation

mechanism.

The �́¬ is real-time updated as: �́�¬ � �?¬sgn�+��|�9|¸�|�J|�sgn��9�Ψº¬ � ℓ¬ . �26�
where ℓ¬ ≝ ¼¬
�́¬ � ��¬� is a leakage term and,Ψ ≝ 1 � ��|�9|� � ½��|�9|�½|�9| |�9|ln�|�9|� , �27�
and ?¬ ∈ ℝM is the rate of learning, ¼¬ ∈ ℝM is the projection

operator’s rate of leakage (to ensure the boundedness of �́¬), 
and º  is a regressor vector defined as º ≝��� �� ¿� ¿/�� . Moreover, the switching function��|�9|� is defined as:��|�9|� ≝ ¢ � 12 �À � ¢�atanhs«¸�|�9| � 1�u � 1d, �28�
where ¢ ∈ �0,1� , À ∈ �1, ∞� ,  and «¸ ∈ ℝM are design

parameters. By design, ��|�9|� is lower bounded by ¢ and is

thus positive. It is vital to note that the value of «¸  in the

switching function should be selected to be large enough to 

guarantee rapid switching between the values ¢ and À of the

function. 

Remark 2: The control parameter adaptation law governed by �26� � �28� dynamically speeds up the parameter learning

process. Namely, �́�¬  is positively related to the factor |�9|¸�|�J|�. The value of ��|�9|� switches to À when |�9| >1, and to ¢ when |�9| < 1. On the other hand, the adaptation

law for control parameters based on QLF is linear in �9 in

comparison. Thus, the SNQLF design ensures that |�9|¸�|�J|�sgn��9� is generally greater than |�9|, fostering

faster learning irrespective of the magnitude of |�9|. This

dynamically accelerated adaptation can bring about a 

superior transient response of the closed-loop system. 

Another important comment to make is that although ln�|�9|�  becomes unbounded when |�9|  approaches zero,

the value of Ψ stays bounded since lim|�J|→�|�9| ln�|�9|� � 0.

To avoid numerical overflow, we can replace ln�|�9|� withln�|�9| � Å¸� where Å¸  is a sufficiently small positive real

number. Finally yet importantly, it can be demonstrated that Ψ is always positive if «¸ is chosen sufficiently large.



B. Adaptive Closed-loop Stability Analysis

The parameter adaptation error can be compactly denoted

as ΘÆ ≝ �Θ� � Θ�. The time derivative of the tracking error �9
(with respect to the reference model) can be succinctly 

expressed as follows: �� 9 � �¢��9 � +�ΘÆ�º. �29�
Lemma 2. The following function is lower bounded by zero, ÇÈÆ ≝ É |+�|2?¬ Ê
�́¬ � �¬�/ � 
�́¬ � ��¬�/Ë¬ . �30�
Proof: 

If �́¬ ∈ 
�¬ , �¬�, one can see that ��¬ � �́¬ , meaning ÇÈÆ �∑ �/Í² 
�́¬ � �¬�/¬  which is clearly lower bounded by zero. 

For �́¬ ∉ 
�¬ , �¬�, one can re-express ÇÈÆ  in an equivalent

form as follows: ÇÈÆ � É |+�|2?¬ 
2�́¬ � �¬ � ��¬�
��¬ � �¬�¬ . �31�
If �́¬ ∈ 
�∞, �¬�, it follows that 
2�́¬ � �¬ � ��¬� ≤ 0 and
��¬ � �¬� ≤ 0, thereby implying that ÇÈÆ  is non-negative. On

the other hand, if �́¬ ∈ 
�¬, ∞�, we have 
2�́¬ � �¬ � ��¬� ≥ 0
and 
��¬ � �¬� ≥ 0, which once again leads to the conclusion

thatÇÈÆ  is greater or equal to zero. In summary, the fact thatÇÈÆ  is lower bounded by zero is proved. ∎
Theorem 2. Respecting the adaptive closed-loop system 

composed of �25� � �29� , one can conclude thatlimÐ→��9�¤� � 0 all the boundedness of all closed-loop signals.

Proof:   

First off, an SNQLF is coined as follows: Ç ≝ |�9|�M¸�|�J|� � ÇÈÆ . �32�
It is evident that Ç is bounded from below by zero (Lemma 1

already establishes the fact that ÇÈÆ ≥ 0). The exponent of|�9|  adjusts its magnitude dynamically based on the

magnitude of |�9|, which amounts to a significant shift from

the conventional QLF-based adaptive control paradigm 

wherein this exponent is a constant value.   

By the chain rule, we differentiate Ç with respect to time¤, which leads to,Ç� � Ψ|�9|¸�|�J|�sgn��9��� 9 � Ç�ÈÆ �Ψ|�9|¸�|�J|�sgn��9�
�¢��9 � +�ΘÆ�º�� É |+�|?¬ Ê
��¬ � �¬��́�¬ � 
�́¬ � ��¬����¬Ë¬ . �33�
By substituting the update law of �́�¬ as stated in �26� � �27�
to �33�, we have,Ç� � �¢�Ψ|�9|�M¸�|�J|�

� É |N�|?¬ Ê�¼¬
��¬ � �¬�
�́¬ � ��¬� � 
�́¬ � ��¬����¬Ë¬ . �34�
It is easy to verify that both Ñ and Ò as defined in �27�  are

non-negative. If �́¬ ∈ 
�¬, �¬� , we have �́¬ � ��¬ � 0  which

implies that Ç� � �¢�Ψ|�9| ≤ 0 . If �́¬ ∈ 
�∞, �¬� , it

follows from the construction of the projection operator that ���¬ � 0 and ��¬ � �¬  as well as ��¬ � �¬ ≤ 0 and �́¬ � ��¬ ≤ 0.

Therefore, Ç� ≤ �¢�Ψ|�9|�M¸�|�J|� ≤ 0 . Similarly, if �́¬ ∈
�∞, �¬� , we can infer that ���¬ � 0  and ��¬ � �¬  as well as��¬ � �¬ ≥ 0  and �́¬ � ��¬ ≥ 0 , which leads to the same

conclusion that Ç� ≤ �¢�Ψ|�9|�M¸�|�J|� ≤ 0. Summarizing,

the conclusion of Ç� ≤ �¢�Ψ|�9|�M¸�|�J|� ≤ 0  can be

reached regardless of the specific values of �́¬ , which 

immediately proves the global stability and boundedness of 

all signals of the closed-loop systems. In addition, it is not 

hard to show that ÇÓ  is bounded thus inferring the uniform

continuity of Ç� . Therefore, we can conclude that Ç is lower

bounded and Ç�  is negative semidefinite and uniformly

continuous, resulting in limÐ→�Ç� �¤� � 0 and limÐ→��9�¤� � 0, as

demonstrated by the Lyapunov-like Lemma in [18],[19]. This 

completes the proof for Theorem 2. ∎
Remark 3: If there is a bounded fast-time-varying disturbance o (e.g., wind gusts) presented in the error dynamics �29�, the

asymptotical convergence of �9 is lost. Instead, it can only

be concluded that �9  is uniformly ultimately bounded.

meaning that it will eventually converge to an invariant setÔ � Õ�9Ö|�9| < ¢�~�o̅ Ø  where o̅ � max|o| . Namely, |�9|
may drift near zero but is ultimately confined within Ô.

Figure 2. Path-following lateral offset 

Figure 3. Path-following heading angle error comparison. 

V. ASM SIMULATION RESULTS

The proposed control solution is evaluated through a lane-

changing simulation in dSPACE ASM and compared against 

a baseline QLF-based strategy from [8], with the vehicle's 

longitudinal velocity ranging between 20 -/� and 30 -/�.

The control parameters Θ� are intentionally initialized to be 

about 25% higher than their actual values Θ (noting that Θ
can be computed via the matching condition as derived in 

[8]), while the projection bounds °�¬ , �¬³ for these parameters



are set to ±50%  of their true values, i.e., �¬ � 0.5�¬  and�¬ � 1.5�¬. The gain of the high-level self-scheduled robust��  kinematic error regulator is obtained using the MATLAB

LMI solver. To ensure fairness in the comparative study, the 

SNQLF and QLF MRACs are configured with equivalent 

learning rates and incorporate identical high-level robust ��
controllers. The ASM simulation results displayed in Figures 

2 and 3 indicate that, during the transient period, the SNQLF-

based MRAC exhibits superior performance over the QLF-

MRAC with regard to lateral offset and heading angle error. 

To be specific, the SNQLF-based MRAC generates a lateral 

offset that undershoots by less than 0.02 - , whereas the

QLF-MRAC produces an overshoot that is twice as large. 

Meanwhile, the SNQLF-based MRAC exhibits significantly 

less peak error in the heading angle response compared to the 

QLF-based baseline. The convergence speed of our proposed 

SNQLF-based solution is significantly faster than the QLF-

based baseline counterpart for both error responses, 

showcasing the superior transient performance of our 

solution. 

VI. CONCLUSION

This study presents a hierarchical nested-loop control 

architecture for designing an adaptive path-following 

controller for automated/autonomous ground vehicles. The 

proposed design divides the path-following task into 

kinematic-error regulation and yaw-rate tracking sub-levels. 

A robust self-scheduled ��  controller is developed for

kinematic-error regulation and reference yaw rate trajectory 

generation. A projection-modified SNQLF-based MRAC is 

synthesized to track the reference command. A Lyapunov-

like analysis is conducted to investigate the closed-loop 

stability, with a focus on proving the asymptotic convergence 

of the tracking error respecting the reference yaw rate 

trajectory. The proposed SNQLF-based MRAC is evaluated 

through dSPACE ASM simulations, showing its superiority 

over the traditional QLF-based design. 

Potential directions for future research could involve 

testing the proposed control strategy on actual vehicular 

platforms, such as scaled cars. Additionally, the theoretical 

results obtained through the SNQLF design could be 

generalized to other nonlinear systems, providing new 

insights into the design of adaptive control strategies for a 

wider range of practical applications. 
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