Adaptive Path-Following Control For Ground
Vehicles Using A Switching Non-Quadratic
Lyapunov Function

Xingyu Zhou*, Zejiang Wang', and Junmin Wang*

*Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, USA
foak Ridge National Laboratory, Oak Ridge, TN, USA
Email: {xingyu.zhou, jwang} @austin.utexas.edu, wangz2@ornl.gov

Abstract— The application of adaptive control techniques in
the development of control systems for intelligent vehicles,
especially for ground vehicle path-following controllers, has
gained popularity due to their ability to handle large-scale
parametric uncertainties. However, the use of a standard
quadratic Lyapunov function in existing adaptive control-based
path-following controllers can lead to poor transient
performance, such as slow convergence and/or large overshoot.
To address this limitation, this study proposes the use of a
switching non-quadratic Lyapunov function to design a model
reference adaptive path-following controller that aims to
provide superior transient performance. The stability and
signal convergence of the closed-loop system are demonstrated
through a Lyapunov-like analysis. Through dSPACE ASM
simulation, the effectiveness of the proposed controller is
illustrated, which confirms improved tracking performance
over a baseline solution.
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Following, Switching Non-Quadratic Lyapunov Function

1. INTRODUCTION

A. Background

In recent times, the development of modern intelligent
vehicles (IV) has been greatly propelled by the synergy of
cutting-edge hardware, software, and artificial intelligence
[1], [2]. Notably, autonomous/automated driving systems
(ADS), the backbone technology of IV, have gained
significant attention due to their numerous societal and
economic benefits [3]. Among the foundational subsystems
of ADS, the path-following control design has emerged as a
critical research area.

In essence, the path-following control system is
responsible for guiding a vehicle to follow a dynamically
feasible path produced by the path-planning subsystem [4].
As a primary design objective, the lateral and heading errors
with respect to the reference path shall be regulated as small
as possible for a good tracking performance [4]. Typically,
the design of the path-following control system relies on a
process dynamic model (e.g., the vehicle lateral dynamic
model). However, model uncertainties, especially (large-
scale) parametric uncertainties, make this task challenging.
As reported in [5],[6], vehicle parameters, such as tire
stiffness and payload mass, are contingent on both vehicle
configurations and environmental factors, rendering them
subject to variation over time and from vehicle to vehicle.
Inadequate compensation of these uncertainties may result in

degradation of the tracking performance and, in severe cases,
destabilization of the closed-loop system. Therefore, it is
crucial to address parametric uncertainties with caution when
developing a path-following control system.

B. Literature Overview

When it comes to dealing with parametric uncertainties in
vehicle dynamic models, two general approaches for
controller synthesis exist. The first is the robust control (RC)
theory, which aims to stabilize the closed-loop system under
worst-case model parameter uncertainties with fixed control
laws (see [7] and references therein). The second approach
hinges upon the adaptive control (AC) method, which yields
online adjusted control strategies and may offer two
advantages over RC (see [8] and references therein). First off,
the RC method requires prior knowledge of the uncertain
model parameter bounds, while AC does not rely on such
information and is capable of intelligently identifying and
learning the model parameters in real-time. Secondly, large-
scale parametric uncertainties can induce conservative
control laws with RC synthesis. Such conservativeness may
result in excessively large control effort and/or inadequate
performance [9], which may be unsuitable for the path-
following control system. In contrast, the AC framework does
not have this drawback.

In this respect, a multitude of research efforts has focused
on developing path-following controllers leveraging the AC
theory. For instance, ref. [8],[10],[11] utilized the model
reference adaptive control (MRAC) design to synthesize
path-following controllers. More recently, Lyapunov-based
adaptation mechanisms have been synergized with various
emergent path-following control methods, leading to the
development of the adaptive data-driven controller [1], the
adaptive model predictive controller [12], the adaptive
steering-backlash compensator [13], among others.

C. Our Work’s Novelty and Contribution

The mainstream adaptive path-following controllers for
ground vehicles rely on quadratic Lyapunov functions (QLF)
[8]. Although effective, these controllers can only guarantee
global stability and signal boundedness of the closed-loop
system in theory, and at best, can ensure asymptotic
convergence of tracking errors. However, QLF-based
solutions have been criticized for their arbitrary transient
performance, which may exhibit sub-standard signs such as
slow convergence of tracking errors and large
over/undershoot.



To address the limitations of QLF-based controllers, this
paper proposes a new method for achieving path-following
targets in ground vehicles. The approach utilizes an MRAC
with a switching non-quadratic Lyapunov function (SNQLF)
design, which offers a core benefit over the conventional QLF
counterpart. Specifically, the SNQLF design can dynamically
improve the parameter-adaptation process, resulting in better
tracking performance. Overall, the proposed path-following
control strategy utilizes a hierarchical control structure that
divides the control objective into two sub-levels: kinematic-
error regulation and reference yaw-rate tracking. The high-
level control module, which is based on H,, robust control
theory, regulates kinematic tracking errors and generates a
reference yaw rate trajectory (which serves as the virtual
control input to the high-level control loop). The low-level
control system, implemented as an SNQLF-based MRAC, is
responsible for the reference yaw rate tracking. To further
enhance both the robustness and efficiency of the parameter
learning process, a projection scheme is integrated into the
parameter update laws.

D. Paper Outline

A summary of the remaining sections of this paper is as
follows. Section II introduces the system model and the
design of the hierarchical control architecture. In Section 111,
a H, robust controller is proposed as the high-level
kinematic-error controller to regulate the lateral and yaw
angle errors. Section IV delineates the development of the
low-level SNQLF-based MRAC with a projection scheme to
track the reference yaw rate trajectory. Section V presents the
validation results using dSPACE ASM. Finally, Section VI
provides the conclusion of this paper.

II.  MODELING AND CONTROL SYSTEM DESIGN

This section provides an introduction to the kinematic error
model for vehicle path following and the linear vehicle
single-track model. Additionally, the design principles of the
duo-loop hierarchical control architecture are presented.
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Figure 1. Path-following kinematics

A. Path-Following Kinematic Error Model
The nonlinear differential equations for the kinematic path-
following error model are expressed as per [14]:
{éy =, sin(ew) + v, cos(ew) %
élp =Wz — lpr '
As visualized in Figure 1, e, represents the lateral error

between the vehicle's COG and the reference path, e, and P,
are the heading angle error and the reference yaw rate
respectively, and w, is the vehicle yaw rate.

B. Linear Single-Track Vehicle Lateral Dynamics

Given the strong linearity of vehicle dynamics during
normal driving conditions, it is sensible to model the vehicle's
lateral dynamics with the well-known linear single-track
model [15],[16]. The state vector of this model is given by

x=(B o)

% = Ax + BS, )
where,
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The linear single-track vehicle model in (2) — (3) is
characterized by the following parameters: the vehicle mass,
denoted by m, the front and rear wheelbases, represented by
l and [, respectively, the tire cornering stiffness of the front
and rear axles, denoted by X and X, respectively, and the
vehicle’s yaw inertia, denoted by I,. The control input for this
model is the front road-wheel angle § (so-called active front
steering control).

C. Hierarchical Control Architecture

Inspired by [8], a hierarchical control framework is
introduced, comprising a high-level kinematic-error regulator
and a low-level controller for tracking the yaw rate reference
trajectory produced by the former. The H,, robust control
theory is utilized to design the high-level controller, which
provides guaranteed L, -to- L, attenuation from external
disturbances to the performance output. The low-level control
system, on the other hand, is formulated as an SNQLF-based
MRAC. Such a hierarchical control construction is suggested
based on the following considerations: First off, as the
kinematic errors in equation (1) are not subject to parametric
uncertainties, controlling the path-following error vector
(Je @e) canbe achieved through deterministic control laws,
reducing the complexity of the adaptive system, and making
the design and analysis of the adaptive control more feasible.
Besides, some motion-planning modules documented in the
literature can provide reference yaw rate trajectories directly,
enabling our SNQLF-based MRAC to be employed
straightforwardly for achieving yaw rate tracking.

III. H, ROBUST KINEMATIC-ERROR REGULATOR

A H, robust controller (for regulating path-following
kinematic errors) is formulated in terms of linear matrix
inequalities (LMI). Additionally, we consider the time-
varying longitudinal velocity of the vehicle in the controller
synthesis and employ a self-scheduling scheme to account for
this.

A. Hy, Robust Controller
Linearization of the nonlinear vehicle path-following



kinematic error model in (1) can be performed around the

operating point (Ve ®e)=(0 0) , resulting in the
following linear model:

&\ _ (0 v\ (%, (0 0y
(éw) = (o 0 ) (%) + (1) @r + (1) ¥r

Sy =4,y +Bw, + Eeljjr- (4’)

In (4), it is assumed that the low-level yaw-rate servo loop

has a sufficiently high bandwidth (with reference to the high-

level control loop) such that w, = w, (w, is treated as a

virtual control input). For the robust control objective, the

def

performance output is defined as z & C.,y,

Ce = (Fey Few)' (5)
where T, , T, € R* are positive weighting factors. The
primary aim of the state-feedback H, robust controller,
which operates with w, = Ky + v,k , is to minimize the
energy-to-energy induced gain from v, to the performance
output z, while satisfying other constraints. In other words,
across the entire frequency spectrum of ¥, the devised Ho,
can ensure the least sensitivity from ||t,l)r||2 to ||z||,. Prior to

deriving the H,, robust controller, a lemma is presented as
follows regarding the LMI-based eigenvalue assignment. The
eigenvalue assignment criterion is implemented in the robust
controller synthesis to shape the high-level control loop’s
transient performance as well as restrain its bandwidth.
Lemma 1. [17] For a linear-time-invariant (LTI) system
governed by 1 = Nn where N € R™™, n € R", all of its
eigenvalues lie inside a circular region C with a radius of r
(in the complex plane) and centered around ¢ € C? if and
only if 3 M € S%, such that,

—-rM c¢M + MN
( ' iy ) <0. )
More explicitly, the circular region C is characterized by,
c={peclp+cli<r} @

Theorem 1. ||T11)r—>2”H <eeR* (|lzlly, < Alldll,) and

all closed-loop poles are enclosed inside the region C if and
onlyif3X € §2,,€ € R* such that,

H[AX +B,Y] E, XCT
* —el 0 |<0

X * —el
| (7

cX +A.X+B,Y
-rX
where H (o) & o + o,
Proof:
Applying the Kalman—Yakubovich-Popov lemma in [17],
< € € RY is satisfied if and only if

(8)
)<0

the criterion || Ty s ||H
0

3P € S$%, and € € R* such that,
H[P(A, + B,K)] PE, CI
< * —el 0 ) <0. €)
* *  —€l
Through multiplying diag(P~1,1,I) on both sides of (9) and
encoding P"' =X, KX=Y , the first LMI in (8) is
established.

Next, the criterion for C-regional eigenvalue placement, as
described in Lemma 1, states that all the closed-loop
eigenvalues are located within C if and only if there exists a
matrix 3 M € S$2, satisfying the LMI,

(—rM cM + M(A; + BkK)) <0. (10)
* —rM

Accordingly, the second LMI in (8) can be established by
applying another congruent transformation on (10), which
involves multiplying both sides by diag(M~1, M~1), and then
making the change-of-variables M~ = X and KX =Y.
The H,, robust control gain K matrix can be carried out by,
K=Yx1 (1)
This completes the proof for Theorem 1. m

B. Self-Scheduling Scheme

The proposed H,, robust control law at its current state
considers v, being constant. However, to maintain the
closed-loop robust stability in the presence of potentially
time-varying v,, modifying the feedback control gain K is
required to account for variations in v,. One effective way is
to adopt a polytopic gain-scheduling approach, where v, is
regarded as a measurable scheduling signal. Assuming v, is
enclosed inside the interval,

vy € [ve Vil v ERY, (12)
the state-space form T (v,) of the closed-loop system can be
expressed as a convex combination of individual state-space
realizations at two interval endpoints, i.e.,

T(vy) =T (W) + €T (Vx). (13)
Factors & and € can be carried out as,
Vy —V Uy — UV
gt XX gaw XX (14)
T U T U Ve = Ux

Thus, the self-scheduled (respecting v, ) feedback control
gain K is acquired as the convex sum of control gain matrices
K (v,) and K (v,.), which are synthesized with identical X (to
ensure the quadratic stability of the closed-loop system
against the bounded v,.) at the endpoints v, and v, i.e.,

K = kK (v,) + KK (T). (15)

IV. SNQLF-MRAC SYNTHESIS

This section presents the design of an output-feedback
MRAC wusing SNQLF, aimed at achieving asymptotic
tracking of the yaw rate reference command produced by the
high-level H,,  robust kinematic-error  controller.
Additionally, an analysis of the adaptive closed-loop system's
stability and signal convergence is presented.

A. Linear Single-Track Vehicle Lateral Dynamic Model

The linear state-space representation as in (2) — (3) can
be readily converted to a transfer function (s € C is the
Laplace variable):

muv,s + Ky + K, K;
L3 — LXK, L3¢ |
TS—»wZ — (vl reer N (16)

LK, — LK,)|
muv,s + Kr + K, mvx+(ffv—xrr)

123¢, — 12X,
lf.?(f - l,ﬂ(r IZS + W
In line with [8], the subsequent variables are designated as
follows,




def m(lﬂcf—lﬂ(r)
- (lf+l‘r)27(f](‘r

le+ly) |KeKy
<wn"=“(fvx) / A+ zv)) (17)

» m(t}xfﬂry(r)ﬂz(acfwcr)
B Z(lf+lr)\/mlz.7(f7(r(1+2v§)
By utilizing the stability factor S, natural frequency w,,, and
damping ratio , as defined in (17), the transfer function in
(16) can be simplified as follows:
s+T;1 B

h - =X =

s2 + 2{w,s + w3 Py
The transfer function’s high-frequency gain is denoted as

def 1JxTz“"rzl
= arsvd)ap+in)’

zero dynamics is symbolized as T, &

T5 —wy = (18)

and the time constant of the Ts_,,,’s

mlevy
Hr(lp+ly)
reasonable to assume the vehicle is under-steered (i.e., S €
R*) as most commercial vehicle manufacturers design their
vehicles this way [15]. As a result, the transfer function is
minimum-phase and has a relative degree of one. In addition,
the sign of the high-frequency gain K, is always positive.
Based on these facts, the following certainty-equivalence
MRAC law can be employed to achieve the yaw-rate tracking
objective:

It is

8 = Oyw, + 0w, + 0,7, + 6,7, (19)
where ® 2 (6, 6, 0; 6,)" € R*are estimated control
parameters (their update laws are to be derived), 7; and 7, are
two auxiliary signals acquired through low-pass filtering &
and w, respectively,

{Tl (s) = F1(s)8(s)
T3(s) = Fr(s)w,(s)
Transfer functions for these exponentially stable low-pass
filters (as p € R*) can be designed identically (k € R*),

(20)

K
Fi(s) = Fa(s) =/1_n=s+p- (21)
The reference model's transfer function can be designed as,
1 1
Ty o0, =—<——=— 22
Wy >Wm i 1 Rr ( )
am

where a,, € R* is the reference model's bandwidth.

According to the MRAC design's matching condition,

02, 0, 0; 6,7 €R*such that,

(90/111 + Gzln)j(‘hpn + Gl)lnpd
= _Ad(ekKhArLRr — Pa). (23)

When 0 is perfectly known, i.e., @ = 0, the MRAC proposed
in (19) reduces to a deterministic model-reference controller
(DMRC). The DMRC can guarantee that the yaw-rate
tracking error (w, ¥ w, — w,,, defined as the difference
between the output of the reference model (w,,) and the
actual output (w,) converges to zero exponentially fast,
namely,

We (t) = We (to) exp[—anm(t —tp)], Vt = t,. (24‘)
However, in practical applications, it is rare for © to be
precisely known and it may be subject to variations over time.
To address such parametric uncertainties, a real-time
adaptation scheme based on a projection-modified SNQLF is
proposed to learn ®: Vi = k,0,1,2,

6 = Proj[ﬂiﬁi](éi) =18V 6 € (_Oo 6:), (25)

where 6; and 0 denotes the lower and upper bounds of the
control parameter 6;.
Remark 1: For vehicle dynamics, it is feasible to estimate the
bounds [Q,.,Ei] of the control parameters O (please refer to
[8] for details on this). These bounds can be integrated into
the parameter adaptation mechanism using the projection
operator as in (25), providing two key benefits. Firstly, the
projection scheme can prevent unbounded parameter drift
due to noise or disturbances, thereby improving the
robustness of the closed-loop adaptive system. Secondly, by
restricting the admissible parameter regions with pre-
estimated projection bounds, the parameter adaptation
process can be improved by avoiding unnecessary learning
efforts that occur outside the admissible parameter regions.
This enhances the overall effectiveness of the adaptation
mechanism.
The 6; is real-time updated as:

0; = —yisgn(XKy)|we|*1°Psgn(w ) WG, — €. (26)
where ¢; ¥ o; (éi - éi) is a leakage term and,
0s(|w
e welintloc), @)
and y; € R* is the rate of learning, g; € R* is the projection
operator’s rate of leakage (to ensure the boundedness of 8;),
and G is a regressor vector defined as G«
(wr w, @y )T Moreover, the switching function

Y1+ s(|w|) +

s(Jw,|) is defined as:
(o, 2 a + 7 (b~ a)ftanhlk (o, | - D] + 1), (28)

where a € (0,1), b€ (1,o), and k; € R* are design
parameters. By design, s(|w,|) is lower bounded by a and is
thus positive. It is vital to note that the value of kg in the
switching function should be selected to be large enough to
guarantee rapid switching between the values a and b of the
function.

Remark 2: The control parameter adaptation law governed by
(26) — (28) dynamically speeds up the parameter learning

process. Namely, 8; is positively related to the factor
|w,|$U@eD . The value of s(|w,|) switches to b when |w,| >
1, and to @ when |w,| < 1. On the other hand, the adaptation
law for control parameters based on QLF is linear in w, in
comparison. Thus, the SNQLF design ensures that
|w, |*U?ePsgn(w,) is generally greater than |w,|, fostering
faster learning irrespective of the magnitude of |w,|. This
dynamically accelerated adaptation can bring about a
superior transient response of the closed-loop system.
Another important comment to make is that although
In(Jw,|) becomes unbounded when |w,| approaches zero,
the value of W stays bounded since |al)ir|no|w3| In(Jw|) = 0.
ol

To avoid numerical overflow, we can replace In(|w,|) with
In(Jw,| + v5) where v is a sufficiently small positive real
number. Finally yet importantly, it can be demonstrated that
Y is always positive if k; is chosen sufficiently large.



B. Adaptive Closed-loop Stability Analysis
The parameter adaptation error can be compactly denoted
as © & (O — ©). The time derivative of the tracking error w,
(with respect to the reference model) can be succinctly
expressed as follows:
W = —Aw, + K,07G. (29)
Lemma 2. The followmg function is lower bounded by zero,

v s Z 1| [(0 6) - (@.-6)]. @30
Proof:
If 6; € ( 5) one can see that §; = §;, meaning Vg =
Yi— 2 ( —6; ) which is clearly lower bounded by zero.

For 0; ¢ (Ql-, Hi), one can re-express Vg in an equivalent
form as follows:

|7Ch

Vs = (29—9—9)(9—9) (31)

If; € (—00,_1), 1t follows that (291 -0, — 01) < 0and
(éi - Bi) < 0, thereby implying that Vg is non-negative. On
the other hand, if §; € (8;, ), we have (26, — 8; — 8;) = 0
and (éi - Hl-) = 0, which once again leads to the conclusion
thatVg is greater or equal to zero. In summary, the fact that
V5 is lower bounded by zero is proved. m
Theorem 2. Respecting the adaptive closed-loop system
composed of (25)—(29) , one can conclude that
tll)rg> w, (t) = 0 all the boundedness of all closed-loop signals.
Proof:

First off, an SNQLF is coined as follows:

V& |, |tHsUweD g, (32)
It is evident that V is bounded from below by zero (Lemma 1
already establishes the fact that Vg = 0). The exponent of
|w,| adjusts its magnitude dynamically based on the
magnitude of |w, |, which amounts to a significant shift from
the conventional QLF-based adaptive control paradigm
wherein this exponent is a constant value.

By the chain rule, we differentiate V with respect to time
t, which leads to,

V = ¥|w,|*1®Dsgn(w,)w, + Vg =
lplwe|S(lmel)Sgn(we)(_amwe + jch@Tg)

+Zi|yl|[(0 — 6,)6; — (6: — 9,)6).

By substituting the update law of Gi as stated in (26) — (27)
to (33), we have,

V = —a,¥|w, | s0weD
+ZM —oi(0, - 0) (B - 0) - (B - B8] 3o
It is easy to verify that both X and Y as defined in (27) are
non-negative. If §; € (@,E), we have §; — 8; = 0 which
implies that V = —a,¥|w,| < 0. If §; € (—»,0,) , it
follows from the construction of the projection operator that
9 =0and f; =0; as well as §; — 0; <0 and §; — §; < 0.
Therefore, V < amll’la)el”s(l“’e') < 0. Similarly, if 6; €
(—OO,QL-), we can infer that éi =0 and §; = 6; as well as
6;—6,>0 and §;,— 9, > 0, which leads to the same

(33)

conclusion that V < —a,,¥|w, | *5U%eD < 0. Summarizing,
the conclusion of V < —a,,W|w,|'**(®D <0 can be
reached regardless of the specific values of 8;, which
immediately proves the global stability and boundedness of
all signals of the closed-loop systems. In addition, it is not
hard to show that V is bounded thus inferring the uniform
continuity of V. Therefore, we can conclude that V is lower
bounded and V is negative semidefinite and uniformly
continuous, resulting in }Lrg V(t) = 0and }Lrglowe () =0, as
demonstrated by the Lyapunov-like Lemma in [18],[19]. This
completes the proof for Theorem 2. m

Remark 3: If there is a bounded fast-time-varying disturbance
d (e.g., wind gusts) presented in the error dynamics (29), the
asymptotical convergence of w, is lost. Instead, it can only
be concluded that w, is uniformly ultimately bounded.
meaning that it will eventually converge to an invariant set
X = {we|lwe| < ap'd } where d = max|d|. Namely, |w,|
may drift near zero but is ultimately confined within y.
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V. ASM SIMULATION RESULTS

The proposed control solution is evaluated through a lane-
changing simulation in dSPACE ASM and compared against
a baseline QLF-based strategy from [8], with the vehicle's
longitudinal velocity ranging between 20 m/s and 30 m/s.
The control parameters © are intentionally initialized to be
about 25% higher than their actual values O (noting that ©
can be computed via the matching condition as derived in

[8]), while the projection bounds [Ql-, 51-] for these parameters



are set to £50% of their true values, i.e., 8; = 0.56; and

6; = 1.56;. The gain of the high-level self-scheduled robust
H,, kinematic error regulator is obtained using the MATLAB
LMI solver. To ensure fairness in the comparative study, the
SNQLF and QLF MRACSs are configured with equivalent
learning rates and incorporate identical high-level robust H,
controllers. The ASM simulation results displayed in Figures
2 and 3 indicate that, during the transient period, the SNQLF-
based MRAC exhibits superior performance over the QLF-
MRAC with regard to lateral offset and heading angle error.
To be specific, the SNQLF-based MRAC generates a lateral
offset that undershoots by less than 0.02 m, whereas the
QLF-MRAC produces an overshoot that is twice as large.
Meanwhile, the SNQLF-based MRAC exhibits significantly
less peak error in the heading angle response compared to the
QLF-based baseline. The convergence speed of our proposed
SNQLF-based solution is significantly faster than the QLF-
based baseline counterpart for both error responses,
showcasing the superior transient performance of our
solution.

VI. CONCLUSION

This study presents a hierarchical nested-loop control
architecture for designing an adaptive path-following
controller for automated/autonomous ground vehicles. The
proposed design divides the path-following task into
kinematic-error regulation and yaw-rate tracking sub-levels.
A robust self-scheduled H,, controller is developed for
kinematic-error regulation and reference yaw rate trajectory
generation. A projection-modified SNQLF-based MRAC is
synthesized to track the reference command. A Lyapunov-
like analysis is conducted to investigate the closed-loop
stability, with a focus on proving the asymptotic convergence
of the tracking error respecting the reference yaw rate
trajectory. The proposed SNQLF-based MRAC is evaluated
through dSPACE ASM simulations, showing its superiority
over the traditional QLF-based design.

Potential directions for future research could involve
testing the proposed control strategy on actual vehicular
platforms, such as scaled cars. Additionally, the theoretical
results obtained through the SNQLF design could be
generalized to other nonlinear systems, providing new
insights into the design of adaptive control strategies for a
wider range of practical applications.
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