

LA-UR-95-4488

CONF-9604116-1

Title:

**VALIDATION OF NESTLE AGAINST
STATIC REACTOR BENCHMARK
PROBLEMS**

Author(s):

Russell D. Mosteller

RECEIVED

FEB 15 1996

OSTI

Submitted to:

**To be presented at the
1996 Annual Meeting of the American
Nuclear Society
Reno, NV**

Los Alamos
NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

MASTER

Form No. 836 R5
ST 2629 10/91

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

VALIDATION OF NESTLE AGAINST STATIC REACTOR BENCHMARK PROBLEMS

Russell D. Mosteller

Nuclear Systems Design and Analysis Group
Technology and Safety Assessment Division
Los Alamos National Laboratory

To Be Submitted for Presentation at the
1996 Annual Meeting of the American Nuclear Society
June 16-20, 1996 Reno, NV

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

The NESTLE advanced nodal code¹ was developed at North Carolina State University with support from Los Alamos National Laboratory and Idaho National Engineering Laboratory. It recently has been benchmarked successfully against measured data from pressurized water reactors (PWRs).² However, NESTLE's geometric capabilities are very flexible, and it can be applied to a variety of other types of reactors. This study presents comparisons of NESTLE results with those from other codes for static benchmark problems for PWRs, boiling water reactors (BWRs), high-temperature gas-cooled reactors (HTGRs) and CANDU heavy-water reactors (HWRs).

For steady-state cases, NESTLE solves the multigroup neutron diffusion equations using the nodal expansion method (NEM) in conjunction with a nonlinear iterative method.³ The formulation is such, however, that the solution degenerates to the finite-difference method (FDM) if the nonlinear iterations are omitted. This feature allows the validation of NESTLE to proceed in two steps: (1) comparison of its FDM solution with other FDM solutions, and (2) comparison of its NEM solution with the reference solution.

DESCRIPTION OF CASES

The IAEA benchmark problem is a PWR with 177 assemblies and octant symmetry. The two-dimensional case⁴ has nine controlled assemblies, while the three-dimensional case⁵ has nine assemblies with control rods fully inserted and four assemblies with control rods partially inserted.

The static LRA problem is an axially uniform BWR with 712 bundles and octant symmetry. The only difference between the two-dimensional⁶ and three-dimensional⁷ cases is that the latter is axially finite.

The static CANDU problem contains an inner core, an outer core, and a reflector. The only difference between the two-dimensional⁸ and three-dimensional⁹ cases is that the latter is axially finite.

The two-dimensional HTGR problem¹⁰ is a sextant-symmetric HTGR with 247 fuel channels and 180 reflector channels. The specifications for this problem differ from the others described herein in two important respects: the geometry is hexagonal rather than Cartesian, and there are four energy groups rather than two.

The three-dimensional static LMW problem¹¹ contains 81 fuel assemblies and is octant symmetric. Four of the assemblies have control rods that are partially inserted. The problem is non-physical in the sense that controlled fuel assemblies extend beyond the top of the core, but it is a severe test for a code because of the sharp flux gradients that occur.

OVERVIEW OF OTHER CODES

The descriptions of these benchmarks each report results from several codes. For the sake of brevity, the NESTLE results will be compared only to a subset of the reported results. Those results were obtained with the VENTURE,¹² QUANDRY,¹³ CERKIN,¹⁴ and/or CERBERUS codes.¹⁵ VENTURE, CERKIN, and CERBERUS all use the FDM to solve multigroup neutron diffusion equations, while QUANDRY¹³ employs the analytic nodal method (ANM) for the same purpose.

RESULTS

The values that NESTLE calculates for k_{eff} for the two-dimensional cases are compared with those from other codes in Table I. Similarly, results for the three-dimensional cases are presented in Table II. Excellent and consistent agreement is achieved for all cases.

In addition, although not shown herein because of space constraints, NESTLE produces excellent agreement with the power distributions from the FDM and reference solutions.

CONCLUSIONS

These results demonstrate that NESTLE FDM calculations replicate the FDM calculations from other FDM codes almost identically and that the NESTLE NEM calculations produce excellent agreement with reference solutions. As expected, NEM produces accurate results with mesh spacings that are much larger than those required for accurate FDM calculations. Furthermore, NESTLE produces accurate results not only for PWR geometries but also for BWR, HTGR, and CANDU geometries. This behavior provides assurance that, after steady-state thermal-hydraulics modules for BWRs, HTGRs, and CANDUs are installed in NESTLE, it can be used with confidence for calculations for those types of reactors.

References

1. P. J. Turinsky, R. M. K. Al-Chalabi, P. Engrand, H. N. Sarsour, F. X. Faure, and W. Guo, "NESTLE: A Few-Group Neutron Diffusion Equation Solver Utilizing the Nodal Expansion Method for Eigenvalue, Adjoint, Fixed-Source Steady-State and Transient Problems," Idaho National Engineering Laboratory report EGG-NRE-11406 (June 1994).
2. Russell D. Mosteller, "Benchmarking of NESTLE Against Measured PWR Data at Beginning of Life," *Trans. Am. Nucl. Soc.*, **73**, 369 (October 1995).
3. P. R. Engrand, G. I. Maldonado, R. Al-Chalabi, and P. J. Turinsky, "Non-Linear Iterative Strategy for NEM: Refinement and Extension," *Trans. Am. Nucl. Soc.*, **65**, 221 (June 1992).

4. R. R. Lee, D. Meneley, B. Micheelson, D. R. Vondy, M. R. Wagner, and W. Werner, "Benchmark Problem 11-A2: Two-Dimensional LWR Problem, (also 2D IAEA Problem)," in "Argonne Code Center: Benchmark Problem Book," Argonne National Laboratory report ANL-7416, Supplement 2 (June 1977).
5. R. R. Lee, D. Meneley, B. Micheelson, D. R. Vondy, M. R. Wagner, and W. Werner, "Benchmark Problem 11-A1: Three-Dimensional LWR Problem, (also 3D IAEA Problem)," in "Argonne Code Center: Benchmark Problem Book," Argonne National Laboratory report ANL-7416, Supplement 2 (June 1977).
6. S. Langenbuch and W. Werner, "Benchmark Problem 14-A1: Super Prompt-Critical Transient: Two-Dimensional, Two-Group Diffusion Problem, with Adiabatic Heatup and Doppler Feedback in Thermal Reactor," in "Argonne Code Center: Benchmark Problem Book," Argonne National Laboratory report ANL-7416, Supplement 2 (June 1977).
7. W. Maurer and W. Werner, "Benchmark Problem 14-A2: Super Prompt-Critical Transient: Three-Dimensional, Two-Group Diffusion Problem, with Adiabatic Heatup and Doppler Feedback in Thermal Reactor," in "Argonne Code Center: Benchmark Problem Book," Argonne National Laboratory report ANL-7416, Supplement 3 (December 1985).
8. F. N. McDonnell and A. P. Baudoin, "Benchmark Problem 17-A1: Two-Dimensional Kinetics Benchmark Problem in a Heavy Water Reactor," in "Argonne Code Center: Benchmark Problem Book," Argonne National Laboratory report ANL-7416, Supplement 3 (December 1985).

9. R. A. Judd and B. Reuben, "Benchmark Problem 17-A2: Three-Dimensional Kinetics Benchmark Problem in a Heavy Water Reactor," in "Argonne Code Center: Benchmark Problem Book," Argonne National Laboratory report ANL-7416, Supplement 3 (December 1985).
10. R. G. Steinke, "Benchmark Problem 9-A1: Few-Group, Two-Dimensional Hexagonal Geometry HTGR Problem," in "Argonne Code Center: Benchmark Problem Book," Argonne National Laboratory report ANL-7416, Supplement 2 (June 1977).
11. S. Langenbuch, W. Maurer, and W. Werner, "Coarse-Mesh Flux-Expansion Method for the Analysis of Space-Time Effects in Large Light Water Reactor Cores," *Nucl. Sci. Eng.*, **63**, pp. 437-456 (August 1977).
12. D. R. Vondy, T. B. Fowler, and G. W. Cunningham, "VENTURE: A Code Block for Solving Multigroup Neutronics Problems Applying the Finite-Difference Diffusion-Theory Approximation to Neutron Transport," Oak Ridge National Laboratory report ORNL-5062 (October 1975).
13. Kord S. Smith, "An Analytic Nodal Method for Solving the Two-Group, Multidimensional, Static and Transient Neutron Diffusion Equations," N. E. and M. Sc. thesis, Massachusetts Institute of Technology (March 1979).
14. A. P. Baudouin, "CERKIN – A Multi-Dimensional Reactor Kinetics Code," Chalk River Laboratories report CRNL-1696 (September 1977).
15. B. Rouben, "Improvements in Numerical and Computational Techniques for CANDU Neutronics," *International Journal of Modeling and Simulation*, **1**, No. 3, p. 207 (1981).

TABLE I
Results for Two-Dimensional Static Benchmark Problems

Problem	Code	Method	Mesh Spacing (cm)	k_{eff}
IAEA PWR	VENTURE	FDM	20	1.03208
			Extrap.	1.02959
	NESTLE	FDM	20	1.03201
			20	1.02951
		NEM	5	1.02959
LRA BWR	QUANDRY	ANM	15	0.99641
	NESTLE	NEM	15	0.99628
CANDU HWR	CERKIN	FDM	NR	0.98119
	NESTLE	FDM	15	0.98113
		NEM	15	0.98141
	HTGR	VENTURE	36.2	1.12725
			Extrap.	1.11835
		NESTLE	36.2	1.12722
			36.2	1.11852

NR = Not Reported

TABLE II
Results for 3-Dimensional Static Benchmark Problems

Problem	Code	Method	Mesh Spacing (cm)		k_{eff}
			Planar	Axial	
IAEA PWR	VENTURE	FDM	5	10	1.02864
			Extrap.	Extrap.	1.02903
	NESTLE	FDM	5	10	1.02864
			5	10	1.02907
		NEM	20	20	1.02899
LMW LWR	QUANDRY	ANM	20	20	0.99974
	NESTLE	NEM	20	20	0.99960
			5	5	0.99968
LRA BWR	QUANDRY	ANM	15	25*	0.99644
	NESTLE	NEM	15	15	0.99627
			7.5	7.5	0.99638
CANDU HWR	CERKIN	FDM	NR	NR	1.00355
	CERBERUS	FDM	30/60**	60	1.00356
	NESTLE	FDM	30	60	1.00315
		NEM	30	60	1.00357
			15	60	1.00351

NR = Not Reported

*15 cm in Axial Reflector

**30 cm near Fuel/Reflector Interface, 60 cm Elsewhere