SHANO0S-2433 ¢

CONF -Po0b b --|

A Fast and Robust Algorithm for General Inequality/Equality Constrained Minimum Time Problems

B. Driessen® and N. Sadegh

School of Mechanical Engineering

RECEIVED
NOV 17 1995

Georgia Institute of Technology, Atlanta, GA 30332

Abstract

This paper presents a new algorithm for solving
general inequality/equality constrained minimum time
problems. The algorithm’s solution time is linear in the
number of Runge-Kutta steps and the number of parameters
used to discretize the control input history.

The method is being applied to a three link
redundant robotic arm with torque bounds, joint angle
bounds, and a specified tip path. It solves case after case
within a graphical user interface in which the user chooses
the initial joint angles and the tip path with a mouse. Solve
times are from 30 to 120 seconds on a hewlett packard
workstation. A zero torque history is always used in the
initial guess, and the algorithm has never crashed,
indicating its robustness.

The algorithm solves for a feasible solution for
large trajectory execution time ¢ ; and then reduces t, bya
small amount and re-solves. The fixed time re-solve uses a
new method of finding a near-minimum-2-norm solution to
a set of linear equations and inequalities that achieves
quadratic convergence to a feasible solution of the full
nonlinear problem.

1. Introduction

One of the primary attributes of an intelligent
control system is its ability to automatically generate the
desired state and/or output trajectory that the plant or plants
under its control must follow. The determination of the
desired trajectory is often performed in order to minimize a
certain performance index while satisfying the required
state and/or input constraints. A frequently used
performance index in many motion control applications is
the "time" required to perform a certain task.

Most of the work in minimum-time trajectory
planning has been for rigid, non-redundant, completely
actuated manijpulators, where non-redundant means the end
cffector path completely determines the path in joint space
(to within a finite number of possibilities). Exemplary is
the work of Bobrow [2] and Shin and McKay [13, 12, 16,
14]. Here, the trajectory of the system along this path can
be completely specified using a single path parameter
“s(t)." Bobrow [2] first constructed an infeasible region in

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED i

STI

the state space (s, §) (regions for which the appropriate
input torques for keeping the system on the path are not
available) and then utilized a trial and error procedure for
finding switching curves in the state space. Shin and
McKay extended Bobrow's work, and later removed trial
and error from the method by doing dynamic programming
while utilizing a discretization of the state space (s, §)
[14]. Since there are only two state variables, Bellman's
curse of dimensionality (see Larson and Casti [9]) was not
too burdensome computationally speaking,

Clearly the above approach will not be useful for
a redundant robotic arm.

There has been some work for the case where
there are no path constraints and only the terminal state is
specified. This scenario allows for the use of only
switching times as parameters if the state equation of the
dynamic system is linear in the inputs and the inputs have
explicit upper and lower bounds. (This can be proved with
the Pontryagin Minimum Principle {see Ho and Bryson [8]
and Lewis [10]}.) Exemplary is the work of Meier and
Bryson [11] and Byers and Vadali [4].

However the method of using switching times
first requires a very good initial guess, and one must know
not only where to guess the switching times but also how
many there are, and what to switch between, i.e., which
vertices of a hyper cube or polytope in input space. Such
guesses require the use of a discretized input history as part
of the optimization variables before switching times can be
used exclusively as optimization variables.

Wie et al. [16] solved a minimum time pointing
control problem using the necessary conditions that can be
found in (Ho and Bryson [8], Lewis [10], etc.). The
optimization parameters used were the initial values of the
costate variables. These researchers noted the fact that this
approach requires an extremely good initial guess for the
costate variables.

Geering et. al [7] is yet another example of
attempts to use the shooting method, and they reported that
they were unable to obtain solutions for an IBM robot using
the shooting method alone.

On the other hand, our method, applied to the
three-link-arm path constrained problem described in the
Abstract and Section 3.2.8, solves case after case, each
within 30 to 120 seconds, within a graphical user interface
in which the user selects the tip path with a mouse, and the
initial guess always has a zero torque history.

An interesting contrast to the above methods was
presented by Zimmerman and Layton [18]. To generate a

- s I
This vrork mvﬁgim? United
completed in part at Sandia National Laboratories, Albuquerque, NM States Depa oy thder

Contract DE-ACN4-94AL85000,

sub-optimal minimum time trajectory, they used a genetic
algorithm with the actual system in the optimization loop.
Since they were dealing with a system with noisy sensors (a
flexible system with strain gauge sensors), a gradient based
approach presented difficulty. They reportedly achieved
good results. Unfortunately, this approach does not easily
handle general constraints.

Byers et al. [3] investigated near minimum time
closed loop slewing maneuvers of flexible spacecraft.
These researchers first neglected the flexibility of the craft
to obtain the switching (min/max) input history for a rigid
model of the craft and smoothed the history out by
replacing the sign function by a hyperbolic tangent
approximation. Their work was based on the observation
that such an approach yielded a final state that was very
close to the desired final state for large angle maneuvers of
craft with fairly small flexibility. Then more standard
control methods were used to remove the residual error in
the final state,

General robotic arm minimum time problems are
historically known to be very difficult and historically
require good initial guesses. This is due to the highly
nonlinear nature of the equations of motion of the arm, the
parameters and algorithms used in past research, and the
difficult character of the minimum time problem itself.

Yet our algorithm is solving the above mentioned
three link arm problem in times comparable to the solve
times for much simpler problems solved with the Order(N)
method of Wright [16], even though our problem is much
more difficult because it is a highly nonlinear problem,
with many active inequality constraints at the solution,
typical of minimum time problems.

2. Problem Statement and Formulation

Given a nonlinear time invariant dynamic system
whose state equation is:

¥=fx) o
where f is typically linear in # and highly nonlinear in X
for mechanical problems, and with initial condition:

x(0)=%x,)
and equality path constraints:

§(xu)=0 3)
and inequality path constraints:

h(%7)<0 @)
and terminal equality constraints:

é(f(’f):7(‘/)) =0 ®

the objective is to find %(r) (and X(r)) that satisfies
constraints (1) through (5), and minimizes the total
trajectory execution time ¢ Iz

The terminal equality constraints (5) must be
such that (E(t,),ﬁ(t,)) is a feasible equilibrium point of the
dynamic system. This will allow us to argue that if the
system cannot satisfy all constraints with 1 =t,°, then it
cannot satisfy them for r < t}’ (because otherwise the system
could just stay at its equilibrium point until t=t} and
hence satisfy all constraints with 1 =t}’-a contradiction).
This type of terminal constraint then allows us to declare a

problem infeasible, for all practical purposes, if it cannot be
solved with large ¢ Iz

3. Algorithm Description

By applying a Runge-Kutta formula to Eqn. (1),
we obtain:

Xn=fx.n), (k=1,..,N+1) (6)
and equations (2) throngh (5) become, respectively:
x, =X(0))]
8(%,,14)=0,(k=1,...,N) ®)
h(x,,13)<0, (k=1,..,N+1))]

G(ENH’EN-H) =0 (10)
where the (N+1)th path equality constraint in Eqn. (8) is
taken care of by the set of terminal constraints in Eqn. (10).
For example, in the three link arm problem, the terminal
position of the tip must be at the endpoint of the tip path;
this automatically ensures that the tip is on the path at
t=1,. The other terminal constraints for the three link arm

problem are that the angular velocities must be zero.
3.1. Overview of the Algorithm

Now that the problem has been discretized, it is
approachable with math programming techniques. In the
following description, comments in curly braces indicate
values used for solving the three-link arm problem
described in the Abstract above and section 3.2.8.
Numerical Results. Our method starts with a large fixed
final time {r, =30secfor the three-link arm}, and solves
for a feasible solution. It then reduces the final time by a
small amount {5 sec.'s} and tries to re-solve for a feasible
solution, given the last torque history as an initial guess,
and declaring success if all constraints (in Eqn.'s (8), (9),
and (10)) are satisfied to within a tolerance {107}, If it
takes too many iterations {10}, i.e., forward integrations, to
re-solve, it reduces At, by a factor of two and tries again to

re-solve. If a successful re-solve occurs, it doubles Ar, for

the next final time reduction.

3.2. Method of Solving for a Feasible Solution
for Fixed Final Time

We will Jet

v={g" 5 .. gL} a1
and let a change in U be denoted by:

A= o) (12)

(thus defining u,, (k=1,...,.N+1)).

The method used is one whose solution time is
Order(N) and that converges quadratically to a feasible
solution by finding a change AU in the torque history that
is feasible with respect to a linear approximation of the
problem about the current trajectory and where AU is close
to the minimum 2-norm solution of the corresponding set of
linear equations and linear inequalities.

The method to obtain this AU is described in the
sections 3.2.1. Overview of the Method for Obtaining
the Quadratically Convergent AU and 3.2.5.
Quadratically Convergent AU Details (Newton
Rhapson Method).

Since the Newton Rhapson method can
sometimes fail to produce quick convergence due to ill-
conditioning of the jacobian matrices or large distance from
a feasible solution, a backup method for reducing the total
constraint violation is used. This method of obtaining this
backup AU is described in the section 3.2.6. Convergence
Assuring AU Details.

In particular, if the banded matrix solver indicates
singularity in the process of trying to reduce the total
(linear) constraint violation within the linear subproblem,
the backup method for obtaining AU takes over, and either
begins where the first method left off if the first method
obtained improvement, or starts over with AU =0,
otherwise. Also, if the first method takes more than a
certain number of iterations {5} without producing
improvement within the linear subproblem, the second
method begins (with AU =0). This method is also given a
maximum number of iterations, except that it must make at
least one improving step within the subproblem before AU
is used on the full problem.

(It is common practice in math programming to
not take the subproblem to its entire completion before
trying AU on the full nonlinear problem, as doing so would
often be wasteful of CPU time.)

Once a AU is found, regardless of which method
it came from, a halve/double step-size selection is used as
follows:

U, = U,y + kAU, k7 €[0,1] (13)

The value of k7™ is set to 1 at the beginning of a fixed-
final-time solve; after that, its value is determined by the
following rules:

Every time a AU fails to produce improvement in

the merit function, k™ is halved (at which point %AU is

tried), and every time a k™ AU produces improvement, ol
is doubled for the next AU. Thus we achieve some
adaptive step-sizing.

An exception is that if the algorithm has just
switched from a second method AU to a first method
(Newton Rhapson) AU, k7 is set back to 1.

The merit function used for determining whether
a step is good is:

1
Zau=g Xle) (14)
where the e; are violations of the ith constraint, where i

runs over all constraints in equations (8), (9), and (10).
That is, a step must reduce Z:*, or it is not accepted and is
reduced in size by the two factor.

A key point to notice is that if we do not reduce
1, too much, we will still be close to a feasible solution,
with the last feasible U as our guess, so that the Newton

Rhapson AU should converge quickly.

3.2.1. Overview of the Method for Obtaining
the Quadratically Convergent AU

This is a new method for finding a Near-
Minimum-2-Norm solution to a set of linear equations and
linear inequalities, that to our knowledge has never been
discovered nor presented prior to the work described in this
paper.

The details of this method are given in the section
3.2.5. Quadratically Convergent AU Details (Newton
Rhapson Method). This method solves the linear
equalities exactly while trying to minimize one-half the
sum of the squares of the linear inequality constraint
violations. But, in each of the steps within this
subproblem, the hessian matrices with respect to the u, (in
AU={uT uf u,,’;l}r) are taken to be the usual
hessian plus €/ {€=10""} where I is the identity matrix
of proper dimension. This £/ keeps the hessians positive
definite and also prevents too large a move from occurring
in each step within the subproblem. The halve-double step-
size selection method (same as that described in the section
3.2. Method of Solving for a Feasible Solution for Fixed
Final Time) is employed in the one-dimensional searches
within the linear subproblem.

This approach, if taken to convergence, results in
astep AU that is close to the minimum 2-norm solution to
the set of linear equations and linear inequalities, which is
especially useful when one is close to a feasible solution in
the full problem. A minimum 2-norm solution of the set of
linear equalities and linear inequalities is known to produce
quadratic convergence to a feasible solution of the full
nonlinear problem with nonlinear equality constraints and
nonlinear inequality constraints. The "Near-Minimum-2-
Norm" solution found by the method above produces the
same quadratic convergence.

3.2.2. Achieving Order(N) Solution Time

The algorithm's Order(N) solution time, where
again N is the number of input variables used to
parametrize the torque history, is achieved through two
avenues. One is the use of a banded matrix approach, and
the other is the way that the inequalities are treated in the
linear subproblems, as is described in the Sections 3.2.5.
Quadratically Convergent AU Details (Newton
Rhapson Method) and 3.2.6. Convergence Assuring AU
Details, namely the lumping together of the squares of all
the inequality violations into one quantity.

First, clearly the solution of a problem Jv=Db is
Order(N) in the number of elements of the vector V if J is
a banded matrix whose band width is independent of N.
Second, the treatment of the inequalities by squaring them
and Jumping them into one sum prevents the number of
iterations from growing linearly with N, whereas standard
simplex and active set procedures necessarily have
Order(N) iterations since they "stop and restart” when a
new inequality constraint becomes active. For example, in
the simplex method for solving Linear Programs [5] and
Quadratic Programs [1, pp. 494-509], the number of pivots
is observed to be linear in the number of inequalities.
Hence, for these standard methods, the number of iterations
being Order (N) and the cost of one iteration being
Order(N) yields a total cost that is of course Order(N?).

3.2.3. Achieving Robustness

Robustness of the algorithm is achieved partly by
the way it handles the final time variable t,. More

standard approaches use !, as one of the variables, and

typically what happens is that the SQP algorithm will
reduce 1, too far to infeasible values during its search and

fail to ever find a feasible solution, much less a minimum
time solution. Or, even worse, they crash ¢ ;, S0 small that

singular matrices occur and they come back with a singular

error message, at which time the program crashes. Our
program has never crashed.

Many SQP codes crash when singularity of the
constraint jacobian matrix occurs. As will be described
shortly, our method includes a backup algorithm for
assuring convergence, and this backup algorithm has a
coefficient matrix that can be proven to be never singular.

3.2.4. Notation for the Linearization

Let changes in X, be denoted by

x, =A%, (k=1,..,N+1) (15)
Note: This is just for the subproblem notations; we do not
use AX, to update X,. Instead, we let the forward
integration find the X, ,(k=1..,N+1) from the
u, (k=1,..,N).
Linearizing Eqn. (6), we obtain

Xy =AX + B, (k=1,...,N) (16)
where of course,

O Guii) , _3f(Fu)
9x, 't o,
Likewise, linearizing Eqn. (8), we obtain

Dyx, +Cu, =d,, (k=1,..,N+1) (18)
where of course d, = —g(%,.7,).
and likewise Eqn. (9) gives

A= an

Ex, +Fu <s, 19
and Eqn. (10) gives
Sty +Tity, =2 (20)

where A, B,, C, D,, d,, E,, F, s5;,, S, and T are of
course constants for a given linearization.

The above derivatives for the three link example
problem were obtain analytically, with Mathematica. We
will note that the algorithm uses only first order derivative
information from the model's state equation.

Let changes in u, within the subproblem be

denoted by

o =Ay, (k=1.,N+1) (21)
and likewise changes in x, by

X =Ax,,(k=2,..,N+1) (22)

3.2.5. Quadratically Convergent AU Details
(Newton Rhapson Method)

Figure 4 shows the matrix and right hand side
used to solve for the X, and & in each iteration in the

subproblem. The captions under Figure 4 explain the
notation used in the figure. The A% are the Lagrange

Multipliers associated with the state equation constraints,
such as equations 1, 4, and 8 in the figure. The 2.'; are

those associated with the equality path constraints

(equations 3 and 7 in Figure 4) and A, that associated
with the terminal equality constraint (equation 13 in
Figure 4).

We note from the figure that we have a right hand
side associated with the linear equality constraints (even for
the linearized state equation). Ideally, these right hand
sides will always be zero, but due to occasional round off
errors they can become nonzero. By not blindly assuming
they are zero, we effectively provide some iterative
refinement to hold down any possible round off errors that
would otherwise result in not satisfying the linear equalities
accurately, In Figure 4, these errors that should ideally be
zero are denoted by e} (linear state equation violation), q
(linear path equality constraint violation), and 9, (linear
terminal equality constraint violation). We recognize these
right hand sides corresponding to linear equality constraints
as the negative of the violations of these linear equality
constraints. We recognize the f* and f* as the derivatives

of our cost function:

Zlm - %Z (eineqva'iryi)2 23)

with respect to x, and u,, respectively, where Cinquatiyy 1S

the violation of the ith (scalar) linear inequality constraint.
The merit function used for the halve/double one-
dimensional searches is one half the sum the squares of all
linear constraint violations, both equality and inequality:

Zn= '%‘ Z (eiuequalily,'z + ezqualilxz) @9

With infinite precision arithmetic, this is the same as (23),
but not when round off errors exist. As mentioned in the
section 2.1.1. Method of Solving for a Feasible Solution
for a Fixed Final Time, if after a certain number of
iterations {5}, the x, and u, fail to produce a solution that
has a smaller Z%. than (x, =0, Vk;u, =0, VK), (or if

meng
singularity ever occurs in the matrix of Figure 4), the
second method, i.e. the Convergence Assuring method for
AU takes over.

3.2.6. Convergence Assuring AU Details

Here, instead of solving the linear equalities
exactly, we simply include the sum of the squares of their
violations into the cost function Z™, so that now Z* is:

2 =5 i ') 09
where the €’eutiy; means all linear equalities except the
linearized state equations. Z™_
method of section 3.2.5. The matrix and right hand sides
for these iterations within the subproblem are given in
Figure 5 for the case of N=3. Figure 5 can be derived
similarly to Figure 4.

is the same as in the

Again, the same halve/double step-size selection
method that was described in section 3.2.1 is employed
with the X, and &, when updating the x, and u,.

It can be shown that the matrix of coefficients for
this method is never singular.
3.2.7. Termination Criterion

Two criterion are used for determining when the
final time ¢, is small enough. There are two parameters

A7 (=01) and A1 {=.0001}. If |Ar,|<Ar™ and the

theoretical saturation of the inputs have been achieved, we
terminate. Also, if IAt,|<At}':‘, we terminate.

3.2.8. Numerical Results--Three Link Redundant Arm

Figure 1 shows a schematic of the problem.

~—

Figure 1

Joint angles are measured counterclockwise (ccw), and
their values for Figure 1 are: 6, =0, 6,=1.57/2 rad,

08,=1.57 rad, which represent the initial position of the arm.
The arm is initially at rest. The dashed line in Figure 1
represents the straight line tip path that the arm's tip must
stay on. Torques are also measured ccw and their bounds
are: w, =25Nm,w, . =.09Nmn, u;__=.05Nm, and

Uy, = Uy, Vi. The tip must move from its current

position if Figure 1 to the endpoint of the line segment.
The joint angle bounds are: 0, =2.618rad,

I =-;£md, 830, =2.2rad and 8, =—6__ Vi. The

final required position of the arm tip is:
X =-1.4108695652173910m

y = 1.9576271186440690m
The maneuver is required to terminate at rest, i.e., zero
terminal velocity.
Gravity does not act in the plane of the arm.
The parameters of the arm are: m, =1kgVi,

L =1mVi, Tc-. =-—1—m.L2 Vi, L, =L /2Vi, where I is
] 12 (i} 3 (] d
the centroidal rotational inertia of the ith link and L is the
centroidal position of link i, measured from the base of link

i

This problem was solved for N=50 in 70 seconds
on a hewlett packard workstation, and the solve time for
N=100 was 135 seconds, as illustrated in Table 1 below,

thus demonstrating the Order(N) complexity of the
algorithm,

N Solve Time

50 70 seconds

100 135 seconds
Table 1

The minimum time was found to be 1,=11.42

seconds. The minimum time torque history is plotted in
Figure 2 and the joint angle and joint angle velocities
plotted in Figure 3. As expected from the Pontryagin
Maximum Principle, two out of the three torques are
saturated at each time point for which the joint angle
bounds are not saturated. The second joint angle bound
saturates at about time=5 seconds, as seen in Figure 3,
explaining why only one of the three torques is saturated at
that time, as seen in Figure 2.

0.4
0.2} (—_\ﬂ /'\
oM
0.2
4 5 10 15

Figure 2 Torques(Nm) Versus Time (Sec)

1.5¢

0.5}

0

-0.5 . :

0 5 10 15

Figure 3: Joint Angles(rad) and Joint Rates (rad/s) Versus
Time (Sec)

4. Conclusion

We have presented and demonstrated a new fast
and robust algorithm for solving general inequality/equality
constrained minimum time problems. The method has
solution time that is linear in the number of Runge-Kutta
steps and the number of parameters used to parametrize the
control history. Its robustness has also been demonstrated.

The speed is achieved by the quadratic
convergence of the fixed-final-time re-solves and the
Order(N) complexity of the algorithm. The quadratic
convergence is achieved in turn by a new Order(N)
algorithm that finds a near-minimum-2-norm solution to a
set of linear equations and inequalities. The Order (N)
solution time is due to the banded matrix approach and the
special way that the inequalities are handled by lumping
them into a single sum-of-the-squares error quantity.

The robustness of the algorithm is achieved by
the way it treats the final time variable to be minimized, in
particular by reducing the final time a small amount and re-
solving for a feasible solution given the last torque history
for the previous (larger) final time. Robustness is also
achieved by the backup approach which assures
convergence of the fixed-final-time iterations.

The algorithm conveniently uses only first order
derivative information from the state equation of the
dynamic system.

References

[1] Bazarra, M.S. and Shetty, C.M., Nonlinear
Programming, New York: John Wiley and Sons,

1979.

Bobrow, J.E. et al., "On the Optimal Control of
Robotic Manipulators with Actuator Constraints,"
Proceedings of the 1983 American Control
conference, vol. 2, pp. 782-787, 1983.

Byers, et al., "Near-Minimum Time, Closed Loop
Slewing of Flexible Spacecraft," Jonrnal of Guidance,
Control, and Dynamics, vol. 13, No. 1, Jan.-Feb.,
1990.

Byers, RM. and Vadali, S.R., "Quasi-Closed-Form
Solution to the Time-Optimal Rigid Spacecraft
Reorientation Problem," Journal of Guidance,
Control, and Dynamics, vol. 16, No.3, May-June
1993.

Chvatal, V., Linear Programming, New York: W.H.
Freeman and Company, 1983.

Geering, H.P. et al. 1986 IEEE Transactions on
Automatic Control, vol. AC-31, No. 6, June 1986,

"Time-Optimal Motions of Robots in Assembly
Tasks."

Ho, Y. and Bryson, A.E., Applied Optimal Control,
New York: Hemisphere Publishing Corporation, 1975.
Larson, R.E. and Casti, J.L., Principles of Dynamic
Programming, Part II, Advanced Theory and
Applications. New York: Marcel Dekker, Inc., 1982,

[10] Lewis, F.L., Optimal Control, New York: John Wiley

and Sons, Inc., 1986.

[11] Meier, E. and Bryson, A.E., "Efficient Algorithm for
Time-Optimal Control of a Two-Link Manipulator,"

{21

(31

[4]

5]
[71

(8
ol

Journal of Guidance, Control, and Dynamics, vol. 13,
No. 5, Sept.-Oct., 1990.

[12] Shin, K.G and McKay, N.D., "Minimum-Time Control
of Robotic Manipulators with Geometric Paths," JEEE
Transactions on Automatic Control, vol. AC-30, No.
6, June 1985.

[13] Shin, K.G and McKay, N.D., "Open-Loop Minimum-
Time Control of Mechanical Manipulators and its
Application,” Conference Proceedings of the 1984
American Control Conference, vol. 3, pp. 1231-1236.

[14] Shin, K.G. and McKay, N.D.,, "A Dynamic
Programming Approach to Trajectory Planning of
Robotic Manipulators,” IEEE Transactions on
Automatic Control, vol. AC-31, No. 6, June 1986,

[15] Shin, K.G. and McKay, N.D., "Selection of Near-
Minimum Time Geometric Paths for Robotic
Manipulators,” IEEE Transactions on Automatic
Control, vol. AC-31, NO. 6, June 1986.

[16] Wie, B. and Sunkel, J. 1990 Journal of Guidance,
Control, and Dynamics, vol. 13, No. 5, Sept.-
Oct., 1990, pp. 867-873, "Minimum-Time Pointing
Control of a Two-Link Manipulator.”

[17] Wright, S., "Structure Interior Point Methods for
Optimal Control,” Proceedings of the 30th Conference
on Decision and Control, Brighton England, Dec.,
1991, pp. 1711-1716.

(18] Zimmerman, D.C. and Layton, D.S., "Large Angle
Slewing Maneuvers Using Performance Driven
Darwinian Learning Controllers: Theory and
Experiment," The 34th AIAA / ASME / ASCE / AHS /
ASC / Structures, Structural Dynamics, and Materials
Conference, AIAAJASME Adaptive Structures Forum,
Part 6, April 19-22, 1993, pp. 3540-3550.

K % i, Y % i A X i, Aene
N = Bmm) =]«
2 |-H.| B 0 =| F(Fy-s5), [=| 1
3 b, G =| ADx,+Cu-d)) |=] g,
4 4 5 9]0 -1 =| {4x+Bu-x) |=|
5 -I"|(-E]E,), [(E]E)_| DT A] 0 =|E(Ex, +Fy-s), [=] f7
§ (-F,'E,)“ ~HL A 0 = | B (R +Exy-5), [=] 2
7 D, [=| -Dx+Cu-d) |=] g
8 Ay B, 0l o0 =/ =| -(Ax+Bu,-x) |= <
9 -I'|(-E[E), |-EF)_ (D74 0 =| Ej(Ex, + Fuy-sy), =] 2
10 CFE). | -B. || B 0 =| F(fu+Ex-s), |=| £
11 -I" |(-EE) |EE) | 57 |=|EfEx+Fu-s), |=]| I
12 CRE), | H. |7 [=|FFu~Ex-35) [=|]
13 s T 0 |=| LSx+Tu,-2) |[=|qu

Figure 4: Matrix and Right Hand Side for N=3, for Quadratically Convergent Iterations. Note: (V), means:

0ifV.<0
V,, otherwis

()

e}’ (i=1,...,8) , where Ve R®. Note: (EZ F;)”means treat as identically zero the rows of E,

and F, that correspond to linear inequalities that are not violated by x, and u,, or, equivalently, when treating E] F,

as the sum of vector outer products, leave out those outer products corresponding to unviolated linear inequalities.
Likewise for (E[E,) , ete. H!, = (F'R) +ele=107, (k=1...N+1=4).

o %5 & [K% [w [B]%] 4
1|5 0] = —(By, -x,) =le
2|~Ha| B | © = E (B, =s,), =7
3 4 | B |0 |- = (4% +Bi—x,) =&
4 S| -H | -HL | A = | E(Ex+Ey—s) +Dj(Dx, +Cu—4,) [=[2
5 -Hy | -H. | B =| BBy +Ex—s), +GDx+Gu-4) | =| 72
6 4 | B |0 = ~{Ay + By, —x,) =|¢
7 =17 | -Hy |- A = | E(Exs+ By —s,), + D] (Dyxy + Cuiy =) [= | 2
8 ~Ha |-H. | B =| B (B +Ex~-s5), + G D% +Cu—dy) [=| 7
9 =I" | -H, | ~H}, |=| E[(Ex,+Fu,=s,) +5 (Sx,+Tu,~d,) |= A
10 -H, |-H, |=| Fl(Fu,+Ex,—s) +T (Sx,+Tu,~d,) |=|1*

Figure 5: Matrix and Right Hand Side for N=3, for Convergence Assuring Iterations. Note:
£
H.=(E[E,) +DID, (k=1..N=3); H: =(EE) +DIC, (k=1...N=3); B’ = (HLY, (k=1,..,N+1=4);

H.,=(ETE), +C[G +ele=10", (k=1...N=3); H¥ =(EL E,..) +57S; H¥" =(ET, F,) +STT; H" = (HE);
HY = (F:,,F,,,,,)“ +T'T+el,e=10". See Figure 4 caption for definition of (E[F,',) .ete. and (V). .

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

