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Abstract: The wavelet extrema representation originated by Stéphane Mallat is a unique
framework for low-level and intermediate-level (feature) processing. In this paper, we present
a new form of wavelet extrema representation generalizing Mallat’s original work. The
generalized wavelet extrema representation is a feature-based multiscale representation. For
a particular choice of wavelet, our scheme can be interpreted as representing a signal or image
by its edges, and peaks and valleys at multiple scales. Such a representation is shown to be
stable—the original signal or image can be reconstructed with very good quality. It is further
shown that-a signal or image can be modeled as piecewise monotonic, with all turning points
between monotonic segments given by the wavelet extrema. A new projection operator is
introduced to enforce piecewise monotonicity of a signal in its reconstruction. This leads to
an enhancement to previously developed algorithms in preventing artifacts in reconstructed
signal.
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A Generalized Wavelet Extrema Representation

Abstract: The wavelet extrema representation originated by Stéphane Mallat is a unique
framework for low-level and intermediate-level (feature) processing. In this paper, we present
a new form of wavelet extrema representation generalizing Mallat’s original work. The
generalized wavelet extrema representation is a feature-based multiscale representation. For
a particular choice of wavelet, our scheme can be interpreted as representing a signal or image
by its edges, and peaks and valleys at multiple scales. Such a representation is shown to be
stable—the original signal or image can be reconstructed with very good quality. It is further
shown that a signal or image can be modeled as piecewise monotonic, with all turning points
between monotonic segments given by the wavelet extrema. A new projection operator is
introduced to enforce piecewise monotonicity of a signal in its reconstruction. This leads to
an enhancement to previously developed ‘algorithms in preventing artifacts in reconstructed
signal.




Summary

1. What is the original contribution of this work?

The original contribution of our work is: (1) given a new form of signal representation
using the local extrema of a wavelet transform, and given the representation a perceptual
interpretation; (2) conceptualized modeling of a signal as piecewise monotonic, described an
algorithm enforcing piecewise monotonicity, and used the concept and algorithm to improve
the performance of signal reconstruction from the wavelet extrema.

2. Why should this contribution be considered important?

Edges, and peaks and valleys are important features in visual perception. Our scheme
of signal representation in 2-D suggests essentially that these features, when observed at
multiple scales, form a stable and accurate representation. We have a virtually reversible
intermediate-level representation. This result is important to the understanding of the mech-
anism of image representation in biological vision, and the design of machine vision systems.
The concept of modeling a signal or image as piecewise monotonic and the algorithm to en-
force piecewise monotonicity are also important; their applications can go beyond the scope
of wavelet extrema, representation to solve problems such as image restoration and surface
reconstruction.

3. What is the most closely relqted work by others and how does this work differ?

As suggested in the title, this work is a generalization to some previous one by others,
particularly the work by Stéphane Mallat[17]. Overall, our work is complementary to the
existing one, offering an alternative with new interpretations and improved performance.
Nevertheless, the use of piecewise monotonicity as a constraint to reconstruction is completely
new. We have provided a rigorous way to prevent artifacts resulting from spurious wavelet
extrema in the reconstructed signal.

4. How can other researchers make use of the results of this work?

The wavelet extrema representation provides a framework for signal and image processing,
and pattern analysis. Previous work based on this framework included image coding, denois-
ing, contrast enhancement, stereo matching, edge and pattern classifications, and transient
detection and removal. The continuing development of these applications and new ones will
benefit from our improved framework of wavelet extrema representation. The perceptual
interpretation we give to the wavelet extrema representation is also of interest to researchers
who study biological vision.

This work has not been previously presented at or submitted to other conferences, work-
shops, or journals.




1 Introduction

The wavelet extrema representation originated by Stéphane Mallat is a new framework for
image analysis and processing. It is an intermediate-level representation built on a wavelet
transform of an image: only local extrema of the wavelet transform, or wavelet ezxtrema for
short, are kept to form a representation set. Depending on the wavelet used, the wavelet
extrema often have some physical and perceptual meanings such as “edges” or “ridges” of
the image.

Mallat and his colleagues have studied particularly the wavelet maxima representation[17],
a special form of the wavelet extrema representation. Their work was motivated by Marr’s
conjecture that the edges at multiple scales may form a complete representation of an
image[19]. By using a wavelet similar to the derivative of a Gaussian, Mallat and Zhong[17]
showed that a signal or image can be represented effectively and efficiently by the wavelet
maxima. They called it the multiscale edge representation. Meyer[20] showed that the
multiscale edge representation is not complete in mathematical sense. However, signals and
images reconstructed from their multiscale edges are often visually indistinguishable from the
originals, making the multiscale edge representation, or more generally the wavelet extrema
representation, a practical framework for signal and image analysis and processing.

It is notable that one can reconstruct the low-level sample representation of an image
from its wavelet extrema without significant loss of information. This makes the wavelet ex-
trema representation different from many other intermediate-level (feature) representations
which cannot run reversely. Indeed, the traditional process of obtaining an intermediate-level
representation is often a bottom-up abstraction; one cannot go back to the raw samples from
the extracted features. A particular virtue of a reversible wavelet extrema representation
is that in addition to the bottom-up feature extraction and analysis, one can process the
original image by manipulating its wavelet extrema. As such, a wavelet extrema represen-
tation is a suitable framework for both low- and intermediate-level processing. Even better,
such a framework makes it possible to combine low- and intermediate-level processing, with
each benefiting from one another. Additionally, the use of wavelets enables one to extract,
analyze, and manipulate these features at multiple scales with a computationally efficient
wavelet transform. To date, the wavelet extrema representation has been successfully used in
low- and intermediate-level signal and image processing. These applications include image
coding[18, 10}, denoising[16, 13, 11], contrast enhancement[12], edge classification[16, 23],
shape description[21], and transient detection and removal(4].

In this paper, we present a new form of the wavelet extrema representation generalizing
Mallat’s original work. The generalized wavelet extrema representation is a feature-based
multiscale representation. The “features” can have different physical and perceptual mean-
ings depending on the choice of wavelet. We designed an algorithm for reconstructing a signal
or image from the generalized wavelet extrema representation. The algorithm, based on the
previous work developed by others, offers an improvement on the quality of reconstruction.
In particular, our algorithm incorporates a new projection operator that provides a rigorous
solution to the problems of inconsistency and artifacts caused by spurious wavelet extrema.

In the presentation to follow, we will first introduce in Section 2 the basic concepts of
wavelet extrema, and the wavelet extrema representation developed by Mallat. Some related
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work by others on the reconstruction problem is also reviewed. In Section 3, we present our
generalized form of wavelet extrema representation. We give some intuitive ideas motivating
and interpreting such representation, and introduce a new way for modeling and enforcing
data consistency with the wavelet extrema. This leads to a refined reconstruction algorithm.
Experimental results are presented in Section 4; we demonstrate the generalized wavelet
representation with a test 1-D signal and a 2-D image. The quality of the reconstruction is
evaluated. Finally, Section 5 concludes our presentation.

2 Wavelet Transform, Wavelet Extrema, and Associ-
ated Representations

In this section, we review the basics of wavelet transform, wavelet extrema and the associated
representations. Because all the representations for 2-D images are generalized from those
for 1-D signals, we will go through 1-D representations in sufficient detail. Our review is
selective, however, with a purpose to provide a ground for the presentation in the following
sections. References are provided for readers who are interested in a more comprehensive
investigation of related work.

2.1 Finite-Scale Wavelet Transform Representation
Let ¢(z) € L*(R) be an admissible dyadic wavelet and ¢(z) € L?*(R) be a scaling function
associated with [20]. The dilatien of 9 and ¢ by s = {27} ¢z is defined as

dor(a) = (),

and

xr

b9 (x) = ‘2'1;¢(§j-

It is well-known that {1 (z)}jcz have the characteristics of bandpass filters and {¢oi ()} ez
of lowpass filters. The approximations to a 1-D signal f(z) by ¥, and ¢y are given by

Waoi f(z) = f * s (2), | (1)
and

Soi f(z) = [ * ¢ (@), )
where “*” denotes convolution operation. In practice, the observation of any signal is limited

between a nonzero small (fine) scale and a finitely large (coarse) scale. Without loss of
generality, the smallest scale can be normalized to 1; the largest scale is 27 where J is




determined by the size of the observation. A wavelet transform representation of f(z) on
the finite range of scales, 1 < s < 27, is given by

WS = {(Wy f(2))1<j<s, Sos f (@)} ()

where W is a dyadic wavelet transform operator. Eq. (3) is interpreted as a multiresolution
representation. The information lost in smoothing Spj-1 f(z) to Sy f () is stored in Wy; f(x),
called the “detail signal”[14]. The original signal f(z) can be recovered by an inverse wavelet
transform operation W~1[14]. The W~! starts with Sys f(z) at scale 27 and adds details
Wai f(x) recursively at each, increasingly finer scale.

In two dimensions, oriented wavelets can be used to generate the wavelet transform
representation[15]. We are particularly interested in constructing a representation using
two perpendicularly oriented wavelets ¥!(z, ), ¥*(z,y), and the associated scaling function
¢(z,y). To simplify the discussion, we express the two perpendicularly oriented wavelets in
a vector form, ¥(z,y) = [¥'(z,y), ¥*(z,y)]'. The dilation of the 2-D wavelet and scaling
function are defined in a similar way to 1-D:

sen- 4633583

Vhetfe

and
1 T ¥y,
| Pz, y) = 55;4’(5, 5;-)-

For an image f(z,y) € L?(R?), its bandpass approximations by the oriented wavelets, and
lowpass approximation by the scaling function at scale 2/ are defined by

whew=[T4E0 ][ 1136 8

and

A wavelet transform representation of f(z,y) on a finite range of scales, 1 < s < 27, is given
by
Wf = {(sz3 (z,¥)h<j<s, S F(z,9)}- (6)

We refer readers to {7, 14, 15, 20] for an extensive coverage of wavelet theory and details of
computing wavelet transforms.




2.2 Wavelet Extrema Representation

A wavelet extrema representation of a signal or image is built upon the wavelet transform.
We first consider a 1-D signal in its wavelet transform representation (3). Let Ay be the set
of the wavelet extrema at scale 27:

Ay [f(z)] = {[z:, Woi f(z:)] : | Was f(z) has local extrema at = z;}. (7)

Then the collection

{Ax[f(@)1<jcs, Sov f(2)} (8)

is called a wavelet extrema representation of f (z). Note that the representation set includes
wavelet extrema at all scales plus the lowpass approximation of f(z) at the coarsest scale,
27.

—
In two dimensions, we first define the length and angle of Wy f(z,y) by

— 2 2
o f @9) & Wt @9 = | (WhF(,0) + (W2 £(z,0)) (9)
and
W3 f(z,y)
05 f(z,y) ¥ arctan {—7’7——’——— . 10
2Jf( y) W%,f(fc,y) ( )
The set of 2-D extrema at scale 27 is
‘ _ o ———},) 1. | £y f(=mi3:) haslocal extrema at
A?J {f(za y)] - {[(xn yt): WZ’ (.‘171, yz)] - (a?i, yi) along the direction ezif(xi, yi) (11)
Finally, thé wavelet extrema representation of image f(z,y) is given by
{As[f(z, ¥)h<j<a, Sor fz,9)} (12)

A special form of the wavelet extrema representation, called the wavelet mazima repre-
sentation, has been studied extensively by Mallat and his colleagues[17, 16], and others(1, 20].
Many applications have also been developed based on the wavelet maxima representation
[16, 10, 13, 12]. The representation set in a wavelet maxima representation is a subset of the

wavelet extrema set defined by (7) or (11): only local maxima of |Ws; f(z)| or {Wy ;(:z;, )|
are used. Mallat and Zhong designed a special family of wavelets such that

¥(@) = L)

in 1-D and




b(z,y) = V(cb(x)d)(y))——-(fv)¢(y)+¢($) (y)

in 2-D. It can be shown that with these wavelets, the wavelet transform defined by (1) or
(4) generates “multiscale gradients”[11]. Then, the wavelet maxima are the local maxima
of the multiscale gradients along the gradient angle. The local maxima of gradients are the
points of sharp variations in signal or image intensity; they are “edge points”. Indeed, if
#(z) is a Gaussian, the process of obtaining the wavelet maxima is similar to applying the
Canny edge detector[2] at dyadic scales. This is why the wavelet maxima representation is
also called the “multiscale edge representation”[17].

Although the wavelet maxima are sufficient to characterize a signal, it adds no burden
to adopt the superset—the wavelet extrema. There are additional advantages to work with
the extrema. instead of only the maxima. In the rest of the paper, we shall address mainly
the wavelet extrema representation. Most algorithms associated with the wavelet extrema
representation can be used with the wavelet maxima representation with a little modification.

2.3 Signal Reconstruction from Wavelet Extrema

A fundamental issue in the development of the wavelet extrema representation is the accurate
and stable reconstruction of a signal from its wavelet extrema representation (8) or (12).
This reconstruction process can be broken down into two steps: First, the wavelet transform
representation of the signal is reconstructed from the wavelet extrema representation; then
an inverse wavelet transform is computed The key to the reconstruction is in the first step.
Note that the lowpass part, Sys f, of the wavelet transform representation is retained in the
wavelet extrema representation. Therefore, we need to reconstruct only the highpass part
of the wavelet transform. In the 1-D case, this amounts to finding a sequence of functions
{9i(z)}1<j<s- Then the reconstructed wavelet transform representation can be written as

Q% {(g5(x)1<i<s, Sor F(2)]}.

Generally speaking, two constraints can be imposed on the reconstruction. The first of
these states that since € is a wavelet transform representation, it must be in the range space
of the wavelet transform for a particular choide of wavelet. The second constraint imposes
that {g;(x) }1<j<s in © has exactly the same extrema as Ay [f(z)]1<j<s in (8). For the ease of
computation, the second constraint is often further decomposed into two sub-constraints such
that one imposes that {g;(x)}1<j<s pass all points in Ayi[f(z)]1<j<s and the other requires
these points to be the extrema, and the only extrema of {g;(z)}i<j<s. Mathematically, a
constraint may be used to define a set consisting of all functions satisfying the constramt
Thus we have up to three sets:

V: the range space of the wavelet transform, containing all sequences of functions {v;(z) }1<;j<s

such that v;(z) satisfies the reproducing kernel equation for the chosen wavelet[17];
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I': the set of all sequences of functions {h;(z)}i<;<s satisfying
V(zi, Wos £ (2)) € Ans[f (@)hsica, hilai) = Was F(z); (13)
Z: the set of all sequences of functions {z;(z)}1<j<s such that

Vz; € Agi|f(z)]i<j<s, 2;(z)haslocal extrema at and only at z = ;. (14)

An admissible solution {g;(z)}1<j<s to the reconstruction problem must lie in the in-
tersection of V, I', and Z. A common way to compute the intersection of multiple sets
is to project alternately onto these sets. The convergence of this alternating projection is
guaranteed if all sets are convex and closed[24]. It can be shown that both V' and T are
closed convex sets; Z is convex if Ay[f(z)]i<j<s is the extrema set and nonconvex if it is
the maxima set.

Denote by P,, P, and P, the orthogonal projection operators to V, I', and Z, re-
spectively. It has been shown[6] that for properly chosen synthesis wavelets, P, can be
conveniently built as a composition of the inverse and forward wavelet transform operators,
ie.,

P, =WoW™ (15)

For a sequence of functions {g;(z)}i<;j<J, the orthogonal projection to set I' or Z amounts
to finding in I or Z the nearest point to {g;j(z)}i<j<s- Therefore, P. and P, can be
implemented as solving some mlmmxzatlon problems. More specifically, in implementing P_,
we solve

J
min (; @](hj(:r,) - gj(m))) for h](lﬂ) er. (16)

where ©;(f) is a cost functional that must be defined. In [17], Mallat and Zhong defined a
cost functional as

0;(f) = [17(@)P dv + 291 j(a)P dx. 17)

Then, h;(z) in (16) is obtained by solving piecewisely Euler equations with boundaries
defined by the wavelet extrema[17, 25]. In [6], Cvetkovi¢ and Vetterli used a least-squares
cost functional

0;(N=0(f)= [If@fFd. (18)

Computation of hj(z) is extremely simple with ©; defined by (18): one simply modifies g;(z)
by replacing g;(z;) with the value of the wavelet extrema in Ay;i{f(z)].

The set Z has not been studied extensively and the implementation of P, is often ad
hoc. This is probably because that Z is difficult to analyze and that applying P, and P.
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alone seems to produce very good reconstruction results. Carmona[3] showed the equivalence
between alternating projections by P,, and P, and the solution of an optimization problem,
resulting in a noniterative reconstruction algorithm. The use of P, is for removing spurious
extrema created in the process of projecting to V and I'. For example, Mallat and Zhong used
clipping to remove spurious extrema/maxima[17] in the reconstructed sequence {g;(z)}1<j<s
after each iteration of projections onto V and I'. The clipping turns {g;(z) }1<j<s into a new
sequence belonging to Z. However, this new sequence is not necessarily the closest one
to {g;(z)}h<j<s in Z. Cvetkovié and Vetterli[6] used neighborhood averaging to remove
spurious extrema. These authors did not consider the case that neighborhood averaging
creates new, clustered extrema, therefore, their scheme cannot always transform {g;(z)}1<j<s
into a sequence in Z. We shall further study Z and P, in the next section.

In two dimensions, the three constraints and the asscoiated sets can be similarly defined.
If we use the same notations as in 1-D, the P, in 2-D has exactly the same form as in (15).
The implementation of P, in 2-D depends on the choice of the cost functional ©;. If (18)
is chosen, we can use a straightforward generalization from 1-D implementation. If (17) is
chosen, P, can be implemented by minimizing (16) along x for W; f(z,y), and along y for
W2 f(z,y). Thus we have two separate 1-D minimization problems. The P, is often not
considered in 2-D[17].

3 Generalized Wavelet Extrema Representation

We want to have a feature based representation where features are a sparse set of data
extracted from the “raw data” and have some physical and perceptual meanings. The set
of wavelet extrema at some scale 2/, Ay;[f], is certainly a feature set. But the lowpass
approximation of f at scale 27, S,sf, is not a feature set because it retains every sample. -
This side information is included in the wavelet extrema representations (8) and (12) because
they are finite-scale representation. Indeed, if J can go infinitely large, Sys f will vanish[14],
and (8) and (12) will contain only the wavelet extrema. In this section, we will show that it is
possible to replace S,s f with some other features extracted from the wavelet transform and
arrive at an all-feature representation on a finite range of scales, called a generalized wavelet
extrema representation (GWER). Furthermore, we will provide a model for functions in set
Z, and the associated projection operator P,. Finally, a new reconstruction algorithm for
GWER using P, , P., and P, is presented.

3.1 Generalized Wavelet Extrema and GWER

We would like to extract some other features from the wavelet transform to replace the low-
pass part S,z f in the wavelet extrema representation. These features should be informative,
revealing some important characteristics of the signal; they should be restraining, providing
sufficient constraint as S,s f does to the reconstruction; they should have reasonable require-
ment for data storage, preferably on the same order as that for S, f. We are led to consider
the local extrema of Sy; f for 1 < j < J.




Let us recall that S,; f is the lowpass approximation of f by ¢,i, and Wai f is the detail
of the signal lost in smoothing from Syi-1 f to Sai f. Thus S,i f and Wy f are complementary
to each other in representing and recovering Syi-1f. The local extrema of Sy; f, like those of
Was f, are important features characterizing f. In the 1-D case, the local extrema of S,; f are
located between two consecutive extrema of opposite signs of Wy f. If we have 9(z) = %(x),
the locations of local extrema in Sy f are zero-crossing points in Wa; f between two consecu-
tive local extrema of opposite signs. In the 2-D case, the local extrema of Sy; f are the locally
lightest and darkest points in the image. These points are important in shading analysis and
help characterize the shape of the image surface. Because the local extrema of Sy f contain
important information about f, they provide an additional constraint supplementary to that
imposed by the local extrema of Wa; f for the reconstruction.

We illustrate the complementary nature of the local extrema of S, f and Wy f by an
image f(z,y) in Figure 1. In this example we use the local maxima representation. Recall

that the local maxima of Wy f(x,y) are defined by (11) as the local maxima of |Wy; ;(:c, y)|

along the direction of m(x, y). In Figure 1, the local maxima of W—yf)(:v, y) and Sy f(z, y)
(7 = 1 for illustration) correspond to, respectively, the boundary and the highlight points
of a ball. Obviously, these points are all perceptually very important in recognizing the
shape and dimension of the object. We are hoping to be able to reconstruct the light
intensity distribution of the ball from the information of the local maxima. If we have

only the boundary information from the local maxima of H/—gj}(x,y), the reconstruction
has tremendous uncertainty because too little information is available about shading in the
interior. The uncertainty will be reduced considerably if we specify the highlight point in
the interior by the local maxima of Sy f(z,y)-

Let us define the set of local extrema of Sy; f(z) for a 1-D signal f(z) as

Boi[f(z)] = {[zi, Soi f{z:)] + | Sai f(x) has local extrema at z = z;}. (19)

The collection

{A2[f(z)), By[f(z)]h<jcu | (20)

is called the generalized wavelet extrema representation (GWER) of f(z).
The above definitions can be extended to 2-D in a straightforward way. We define

Boi[f(z,y)), the set of local extrema of Sy f(z,y) and the 2-D GWER by
B?j [f(x§ y)] = {{(mi’ yi)’ Sﬁf(xiv yl)] : l S?J f(ma y) has local extrema at (x'b yi)}‘ (21)
and

{42 [/ (z,y)], Bu[f(z,, v) heics (22)

We note that Sy f is readily available from the computation of the discrete wavelet
transform (DWT) using a recursive pyramid algorithm[17]. Therefore, compared to Mallat’s
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wavelet extrema representation, the only additional computation required for the GWER is
to extract the local extrema in Sy; f when the latter becomes available during the computa-
tion of the DWT.

3.2 Piecewise Monotonicity as a Model and Constraint

We mentioned in §2.3 that the set Z has not been well characterized and the implementation
of P, is inadequate. In this section, we provide a general model for a signal of which the local
extrema are known. This model rigorously characterizes set Z and defines a projection op-
erator P,. Furthermore, there exists a highly efficient scheme for numerical implementation
of P,.

Let us now re-examize the set Z defined by (14) in §2.3. The key to the establishment
of a new model for Z is to realize that any function z;(z) in Z can be segmented in a way
such that on each segment z;(z) is monotonic. A point «; joining two consecutive monotonic
segments is called a turing point of z;(x). Obviously, a turning point is where z;(z) attains
a local extremum. Therefore, z;(z) can be viewed as consisting of piecewise monotonic
segments; the turning points are the extremal points of z;(z). We have arrived at a new
definition for set Z:

Z: the set of all sequences of functions {z;(z)}1<j<s such that z;(z) is piecewise monotonic
with turning points located at {z;} € A [f(z)].

It can be shown that Z is a convex set. The projection of an arbitrary sequence of
functions {g;(z)} to Z is to find in Z a closest approximation to {g;(z)}. The projection
operator Pz can be implemented as a constrained minimization solving

min (Zl (—)j(zj(m) - gj(m))> for h](IL') € Z, (23)

where the cost functional ©;(f) can be defined by either (17) or (18). Note that this min-
imization problem can be divided into separate, independent minimization of ©; over each
monotonic segment of z;(z). Therefore, for two consecutive extremal points z; and 41, we
minimize ©; subject to the constraint that z;(z) is monotonic on interval {z;, z;1]. We do
the same type of minimization for every monotonic segment defined by the extremal points
in Ayi[f(z)]. The extremal values at z; and z;4; will determine if z;(z) is monotomcally
increasing or decreasing on a particular segment.

It turns out that the key to implementing Pz is to compute minimum-error monotonic
approximation to a function. This problem has been studied in depth by Powell[22], Cullinan
and Powell[5}, Demetriou[8], and Demetriou and Powell[9]. These authors developed efficient
algorithms for computing best discrete monotonic approximation under £, £2, and ¢ norms.
The £%-algorithm is particularly interesting to us. It can be directly used for numerical
implementation of P, with the cost functional defined by (17) or (18). The algorithm has
o(n) time complexity, where n is the number of points in a monotonic segment.




Demetriou and Powell’s algorithm can also be used in signal reconstruction from the
wavelet maxima representation. In the ecase that two consecutive wavelet maxima at z; and
Z;4+1 have the same sign, there exist two monotonic segments that are divided by a non-
zero local minimum in [z;, z;4;]. Demetriou and Powell’s algorithm can be used to obtain
a piecewise monotonic approximation. The location of the local minimum in [z;, z;41) is an
independent variable in the least-squares minimization and will be optimally determined.
We refer readers to [9] for the implementation details of Demetriou and Powell’s algorithm.

In two dimensions, the generalization of our method would imply modeling an image
f(z,y) as consisting of piecewise monotonic surfaces. Unfortunately, the wavelet extrema do

—
not segment |Wa; f(z, y)| into piecewise monotonic surfaces. We take a suboptimal approach
by applying the 1-D P, independently to W,; f(z,y) along = and W, f(z, y) along y.

3.3 Outline of Reconstruction Algorithm

The reconstruction algorithm for recovering a signal from the GWER defined by (20) is
a modification of the schemes described in §2.3. The set I" now contains all sequences of
functions defined by the generalized wavelet extrema, including the local extrema of both
(Wi f(x))1<j<s and (Sai f(x))1<j<s- The projection to set Z by P, described in §3.2 is also
incorporated in the reconstruction process. We summarize the steps of our reconstruction
algorithm for obtaining an estimate f (z).

Reconstruction Algorithm

1 Set initial values of (W f (%))1<j<s and (Sy f (z))1<j<s to zero for all z.
2 For j from J decrementing to 1, do recursively: N
2.1 Apply P.: Update W f (z) and Soi f (z) by computing (16)
2.2 Apply P,: Update Wos f (z) and Sy f (z) by computing (23)
2.3 indaEe\ Sy f (z) by computing a one-step inverse wavelet transform from W f (z)
and Sy f(x).
At the end of Step 2, we obtain an estimate S f(z) = f(x).

3 Apply wavelet transform (W) to f(z) to obtain an new estimate of (Wa; f (@sicy
and (Sy f(z))1<j<s-

4 Repeat Steps 2 and 3 for a number of iterations. The final estimate of f| (z) is given at
the end of Step 2 of the last iteration.

The above algorithm can be directly used in two dimensions with slight modifications
in Steps 2.1 and 2.2. In Step 2.1, we must use the cost functional ©; defined by (18). In
Step 2.2, we compute (23) for rows of Wy; f(z,y), columns of W f(z, y), and both rows and
columns of Sy; f(x,y).
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4 Experiments

We have tested GWER with a large number of 1-D signals and 2-D images. We present
two cases here. In both cases, we used a cubic spline wavelet. This wavelet is among a
family of wavelet multiscale edge detectors designed by Mallat and Zhong[17]. Therefore, the
generalized wavelet extrema can be interpreted as edges, and peaks and valleys at multiple
scales.

Figure 2 shows a 1-D test signal and a reconstruction of the signal from its GWER. The
signal consists of different edge profiles (step, ramp, and exponential) embedded in Gaussian
white noise. The number of samples is 256, therefore, the largest scale J = log,(256) =
8. The GWER of the signal is shown in Figure 3. The reconstructed signal shown was
obtained with 50 iterations, reaching a SNR of 33.9 dB. The dependency of the reconstruction
performance on the number of iterations is shown in Figure 4. In general, 20 iterations seem
to be sufficient for most applications. In Figure 4, we also compared the performance of
reconstructions with and without using P,. We found the quality of reconstruction using
P, is consistently better, by a margin of about 1.5 dB over that without using P,. This
confirms the effectiveness of P,. ‘

Figure 5 is a 2-D case. The original image is a 128 x 128 x 8 Lenna. Its GWER is shown
—
for J = 7 dyadic scales. Note that Woy; f is vector-valued, so are its local extrema. In Figure

—
5, the magnitude of the local extrema of {Wsi f}1<j<7 is shown on the first column, the angle
on the second column. The local extrema of {S,; f}1<j<7 are shown on the third column. A
reconstructed image, obtained with 20 iterations and shown on the upper right, has a SNR
of 29.0 dB.

Our results from other test signals and images are consistent with the results shown
here. These results suggests that the GWER is a stable representation; signals and images
can be reconstructed from their GWER with sufficient quality for practical applications. In
fact, the reconstructed signals and images are visually indistinguishable from the originals.
We also observed that the number of wavelet extrema decreases rapidly as scale becomes
coarse. This suggests that a GWER using fewer scales (J < log,(N)) may suffice in many
applications.

5 Conclusion

We have presented a new form of wavelet extrema representation for 1-D signals and 2-D
images. We illustrate that the local extrema of S,; f in a wavelet transform are important
features and can be used to replace S,sf in the previously developed schemes of wavelet
extrema representation. This leads to a generalized multiscale feature representation. For a
particular choice of wavelet, the GWER in 2-D has an interpretation of representing an image
by its edges, and peaks and valleys at multiple scales. Our experimental results suggest that
the GWER is a stable representation. The quality of signals and images reconstructed from
their GWER is sufficiently good for practical applications; we have a virtually reversible
intermediate-level (feature) representation. We also developed a new projection operator

that has further enhanced the reconstruction quality. This work was performed under
:the auspices of the U.S. Dept. of Energy at LLNL under Comntract No. W-7405-
Eng-48.
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(a)

Figure 1: A synthetic image and its wavelet maxima at scale 2. (a) An image of a ball; (b)

the local maxima of Wa -f), which are the edges of the'ball; only the magnitude of the local
maxima is shown; (c) the local maxima of Sy f, which are the highlight points of the ball.

Obviously, the local maxima of Wy f and Sy f are both important features in perception.
The combination of them is a special form of our generalized wavelet extrema representation.

a

(@) MMW/JMM\VL M V‘M#WMUL M f(z)
| (2) (b)

Figure 2: Reconstruction of a 1-D signal from its GWER. (a) the original signal (256 sam-
ples); (b) a reconstruction from the GWER with 50 iterations; SNR = 33.9dB. The GWER

of the signal is shown in Figure 3.
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Figure 3: The GWER of the signal in Figure 2(a). The local extrema of (Wa;i f)i<j<s and
(S92 f)1<j<s are shown on left and right columns, respectively.
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Figure 4: Reconstruction performance vs. number of iterations in the reconstruction of the
signal in Figure 2. A comparison is made between reconstructions with and without using
p i
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Reconstructed

{Continued on next page)

Figure 5: Representation and reconstruction of an image from its generalized wavelet ex-
trema. The first image on the top row is the original, Lenna, 128 x 128 x &; the second
is a reconstruction from the GWER which is shown by rows 2-8. The first column of the

—
GWER shows the magnitude images of the local extrema of {W; f }1<;<7; the second col-
umn shows the angle images; the third column shows the local extrema of {Sy f }1<j<7. The
reconstructed image, obtained with 20 iterations, has a SNR of 29.0 dB.
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