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ABSTRACT

We summarize recent theoretical advances in the description of
the evolution of Rydberg atoms subject to ultrashort pulses extend-
ing only a fraction of an optical cycle. We have performed classical.
semiclassical and full quantum calculations in order to delineate the
classical-quantum correspondence for impulsively perturbed atomic
systems. We observe classical and quantum (or semiclassical) oscil-
lations in excitation and ionization which depend on the initial state
of atoms and on the strength of the perturbation. These predictions
can be experimentally tested.

1. Introduction

Very recently, the generation of subpicosecond ‘half-cycle’ electromag-
netic pulses has been achieved both in the terahertz [1] and in the gigahertz
regime {2]. In contrast to short laser pulses which extend over several optical
cycles. half-cycle pulses are characterized by a strong unidirectional electrical
field confined to a very short time interval corresponding to only a fraction of
a cycle. These characteristics make half-cycle pulses very similar to the elec-
tric field pulse generated by the passing-by projectile in an ion-atom collision.
Thus. the study of the dynamics of Rydberg atoms subject to these pulses
is of practical importance in problems such as transport of ions and atoms
through solids (e.g. [3-4]) or plasma modelling and diagnostics of high tem-
perature fusion plasmas ([5] and references therein). These new experimental
developments have stimulated a number of theoretical studies [6-10]. From a
more fundamental point of view, Rydberg atoms subject to short strong pulses
provide an interesting case for the study of classical-quantum correspondence.
The classical limit of quantum dynamics can formally be recovered as the limit
h—o0. However. this limit is highly singular and non-uniform. The complexity
manifests itself in the non- commutativity of the limits of long times t—oco and
h—0. No matter how small &, for times t long compared to the Heisenberg
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time t* =h/AE where AE is the typical level spacing of the system, classi-
cal and quantum dynamics display discordance i11]. Since in Rydberg atoms
the limit of large n—oo is equivalent to the limit #—0 and the duration of
the pulse, Tp, of the order of the Heisenberg time (in a.u.) t*~27n® can be
experimentally achieved, impulsively driven Rydberg atoms provide an ex-
perimentzl and theoretical testing ground for the classical limit of quantum
dynamics. The above estimate for ¢*, which agrees with the classical orbital
period, T, is strictly valid only for 2 one-dimensional hydrogen atom. In the
3D case, substate splittings introduce new and longer time scales which play
an important role in further delineating the classical-quantum correspondence.

We briefly review in the following results of fully classical, semiclassical.
and fully quantum calculations. We illustrate the quantum-classical corre-
spondence as a function of the pulse duration, Tp, and of the pulse amplitude
and point out possible experimental tests. The dependence on the initial state
is shown to be crucial in identifying the classical and semiclassical origin of
oscillations in the time evolution of the Rydberg atom.

2. Theory

A hydrogen atom subject to a pulsed electric field is described by the

Hamiltonian )
H=Z2-— 14 F(1)=. (1)

where F(t) denotes an external electric pulse which is directed towards the
positive z-axis. = is coordinate of the electron along this axis, and 7 and 7
are the momentum and position of the electron. respectively. Atomic units
are used throughout unless otherwise stated. We consider in the following
a rectangular pulse F(t)=F, with 0<t<T}, F, being the peak field strength.
Other pulse shapes can be treated similarly. The classical evolution of an
electron with the Hamiltonian in Eq. 1 is calculated within the framework
of a classical trajectory Monte Cario (CTMC) approach [12]. Briefly, this
approach consists of sampling a large ensemble of electronic initial condi-
tions from a phase-space probability density which mimics the corresponding
quantal position and momentum distributions of the atom and of numerically
solving the cooresponding classical Hamilton equations of motion for each ini-
tial condition. The excitation and ionization probabilities can be obtained
from the number of electrons which lie after the interaction with the pulse
in the “target” bin of classical actions I, around the final quantum number
ng, ng—1/2<I;<ny+1/2. Details of our initial phase-space distribution can
be found elsewhere [13,14].

Our quanium mechanical calculations uses an expansion of the wave-
function of the electron in a basis of about 103 states composed of hydrogenic
bound states and Sturmian pseudo states representing the continuum. Our nu-
merical solution of the time-dependent Schrédinger equation associated with




Eq. 1 is based on the fact that the smooth field F(t) can be represented
by a sequence of a large number N of infinitesimal ‘kicks’ or instantaneous
momentum transfers Ap; =T, F(iT, /N)/N, i.e.

F)= 37 Apib(t—iTy/N) (2)

where N is increased until the ionization probability converges (typically,
102<N<10%) and F(iT,/N) describes the pulse shape of the field. This tech-
nique is equivalent to the split-operator algorithm for the calculation of the
evolution operator [15]. If U(tx41,tx) denotes the evolution operator that
evolves the state of the electron |¥(¢)) from an instant of time tx=kT, /N just
before the kt* kick to an instant of time ti4; just before the k+1t* kick, then

U(tet1,te) (3)

N-=1

vt =110

with
U(tk+1’tk)=e-—iHoTplNel'zApk (4)

where H, is the unperturbed Hamiltonian of the atom. A more detailed
description of the method can be found elsewhere [16].

Unlike our classical and quantal calculations, the semiclassical analysis
is performed for an effectively one-degree of freedom problem. We use the
semiclassical S matrix formulation of Miller [17]. The transition amplitude
from an initial state n; to a final state ny is given by

1/2
iy = (e 250) T eep [ [} aamro0 ] (9)

where I(t) is the action of the classical orbit starting at t=0 with a value
I(0)=n; and ending at the conclusion of the pulse with I(t;=T,)==n,. The
conjugate angle is denoted by 6 and the sum extends over 2ll initial angles
3; which serve as starting points of trajectories connecting the integer values
n; and ny. If more than the one path connects n; and ny, semiclassical path
interferences occur. The action-angle variable representation is valid only for
bound-bound transitions. However. ionization probabilities can be estimated
from the probability flux to very high ny >> n; for times t<T,. Eq.(5)
represents the primitive, i.e. non-uniform semiclassical approximation. It does
not contain contributions from dynamical tunneling and possesses unphysical
singularities at caustics.

The semiclassical approximation (Eq.(5)) is only valid in those cases for
which the 3D classical mechanics is effectively dvnamically confined to one “re-
action coordinate” which turns out to be the parabolic coodinate n=r—z and
which describes the motion across the potential barrier of the time-dependent
Stark effect. We employ 3D classical trajectories but include only those for
which the other parabolic coordinate. (=r+z, remains small compared to the



size of the orbit during the evolution. In terms of parabolic actions (or quan-
tum numbers) we choose the maximum value n;(t=0)=n~1 and the minimal
value n,(t=0)=0. We include all conjugate initial angles 6; and 8, which lead
to the desired outcome of an effective quasi- one dimensional transition to
I;(t=Tp)=ny-1 and I (t=T;)=0. In our 3D calculation the final action I,(T})
is not exactly zero, and we accept the trajectories as a desired outcome pro-
vided I ;(Tp) lies in a bin near zero, I;(T,)<0.5. The action-angle variables
entering explicitly the one-degree of freedom formula (Eq.(5)) are therefore I,
and 6..

The approach to the classical limit starting from Eq.(5) involves two
steps. One first disregards all cross terms in the double sum over classical
paths in the probability Pn;,n» g =ltnin, [?> based on the argument that is the
limit A—0 they oscillate infinitely rapidly. This amounts to an averaging over
a small interval of the final action I, whose size tends to zero as 4—0. The
classical limit is given by an incoherent sum over contributions from all pathes

P"x'v"f =3lr- Z.‘ %(07:‘?—);‘ (6)
!

The classical Monte Carlo method is recovered from Eq.(6) by summing
over all events for which the final action is not 3 well-defined integer but
lies in the interval ny—1/2<I(T;)<ns+1/2. This -“binning” can be made to
preserve microreversibility if both initial and final actions are binned in a
symmetrical form. It should be noted that only in the limit Al ;/ny ;—0 the
CTMC method is asymptotically equivalent to the classical limit of vanishing
bin size (Eq.(6)). For large but finite n the equivalence is only approximate.
“Binning” corresponds to an averaging over I;,; of probabilities (as opposed
to amplitudes).

3. Stark beats

The excitation dynamics of the Hamiltonian (Eq.1) depends strongly on
the initial state. We stress the fact that the origin of semiclassical (or classical)
oscillations in the excitation function are different for initial states which are
spherical eigenstates wnsm of the zero-field Hamiltonian and those which are
eigenstates of the Stark Hamiltonian in presence of a static electric field. i.e.
parabolic states @¥n,n,m. The reasons for the difference are twofold: spher-
cal states are. unlike parabolic states. intrinsically three-dimensional and the
reduction in terms of one “reaction coordinate” is not valid. In fact, only one
extreme parabolic state which resides near the saddle (see Fig. 4 below) can
be approximated in terms of an effective 1D system. The second reason is the
presence of additional Stark “beat” frequencies due to the lifting of the n shell
degeneracy which introduced new time scales larger than the 1D Heisenberg
time t*=27n>. These Stark oscillations tend to overshadow oscillations due to




the coupling of different n levels, or equivalently, of path interferences between
n changing trajectories.

Excited states of hydrogen with energy levels E,=—1/(2n?), are energet-
ically split due to the linear Stark effect

Enyony = Ent+3n(ni—ny)F, (7

where na,n, denote parabolic quantum numbers (n=n,+ns+|mj+1,m being
the magnetic quantum number). Accordingly, the wavefunction of hydrogen
prepared in an initial state |n;,4;,m) and exposed to a half cycle pulse, F(t),
during a time interval 0<t<T} is given in the limit of weak fields by

[¥(Tp))=exp(—iEaT) )

nyna (n1 1n21mlni1£i,m)ln1,n2ym)

(8)

exp[—in(n1—n2)Ap]

where the sum extends over all parabolic states within the shell n;. In the
following we focus on m=0 for the polarization of the fields (laser and half-
cycle pulse) parallel to the z axis. The evolution phase accumulated between
t=0 and t=T, depends on the time integral over the field strength

' Ap= foT” dtF(t) 9)

(the product F,T, for a rectangular pulse if F(t)=F, for 0<t<T;) rather than
the field strength and the time separately. In the limit of ultrashort pulses,
the variable Ap represents the momentum transferred to the electron by the
pulse.

The expectation values of dynamical variables (¥(#)[A[¥(t)) display oscil-
lations as a function of time (*Stark beats’) due to the time evolution factors
exp(£i®n.x) ([18] and references therein)

®.x(Ap)=3nkAp=3nkFp,T,  k=1.2...(n—|m|-1). (10)

The precondition for the appearance of Stark oscillations is that the initial
state is a coherent superposition of different eigenstates of the Stark Hamilto-
nian. i.e. of different parabolic states (see Eq. (8)). A spherical state wnim is
a realization of such a coherent superposition.

The appearance of Stark beats as a consequence of coherent superposition
of quantum states should not obscure the fact that Stark beats are of semi-
classical. those with the fundamental period even of classical origin [18]. Beats
with the fundamental period are described by secular perturbation theory for
adiabatic invariants [19]. We use the two classicai pseudospin vectors

ji,2 = 1(E=a) (11)



which are linear combinations of the angular momentum L and the normalized
Runge-Lenz vector @&=% A where

—=1?x;—2§. (12)

In the presence of a weak electric field, F, the two pseudospin vectors
precess about the electric field vector according to the Bloch equations (Fig.
1),

7, =ax7
. : (13)
3c)2 = —EXT72
with
o= -g-nﬁ. (14)

P e Ty
- - -
- - -

- -

Fig. 1: Precession of the classical pseudospins 71,2 = 1(L+d) about the
electric field F vector.

In view of Eq.(11), the pseudospin precession results in a periodic fluctu-
ation in L and A. If at t=0 the two pseudospins lie in the z—z plane and with
j1.2>0 and j2.z>0 the vector L has its maximum length |L|. At t=33¢ the
two vectors j, and j» have precessed into the y—=z plane pointing in opposite
directions (j1,y<0, j2,y >0 or vice versa). In this configuration the length of
Z has reached its maximum value while |L| is at its minimum. After a pe-
riod of t,=2w/w, = z2% ,|L| has reached its second maximum, with the two
pseudospin lying in the z—=z plane and both z components ji,z, j2,- negative.
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Fig. 2: Time evolution of the population of all £ states in the n=16
manifold after H(16do) is exposed to a rectangular pulse with F,=1kV cm™!:
quantum (a) and classical (b).

This recurrence time corresponds to the fundamental Stark period (or beat fre-
quecy w,=3nF (see Eq. (10)). Fig. 2 displays both the quantum and classical
evolution of a initial 16d m=0 state in hydrogen in angular momentum space
under an influence of a half cycle pulse with a strength F,=1 kV/ cm in the
perturbative regime. While the fundamental beat periods for Stark beats with
frequency w, of the wavepackets agree very well. the quantal evolution shows
oscillations with all 15 harmonics (k¥=1,... n—|m|—1). This frequency spec-
trum can be recovered by semiclassical quantization of the pseudospins J1.2.



It can be shown that the Stark-like beat pattern persists for much higher
field strength well into the regime of overlapping n manifold (FZFC=§n‘5 or
equivalently, and for a scaled field Fo=4;, where Fo=Fn*). For short pulses.
it also applies to non-hydrogenic systems, as long as the avoided crossings are
still predominately traversed diabatically [18]. The experimentally observed
oscillations in the survival probability of Na(16d) for pulses with Fp <10kV/cm
[20] can therefore be identified as Stark beats.

4. Oscillations in the Excitation Probability
of Parabolic States

When adjacent » manifolds strongly overlap, oscillations with frequencies
associated with the energy spacing AE,=n"2 and the 1D Heisenberg time be-
gin to show up. However, they are overshadowed by the large number of Stark
frequencies. A different situation occurs for parabolic initial states and strong
fields. Parabolic states diagonalize the evolution operator for a static field.
Therefore, the coherent superposition (Eq.(8)) and the Stark beats are absent
and only couplings between different n manifolds govern the spectrum of oscil-
lation frequencies in the excitation function. Because of the dynamical sym-
metry of hydrogen in a presence of an electric field, the number of couplings
is. however, limited. Most of the crossings between states of different » mani-
folds are strictly diabatic. The most “redshifted” Stark state (nz=n—1, n,=0)
with the lowest energy and which lies closest to the potential saddle plays
an exceptional role. After traversing all other states of the adjacent lower
manifold n'=n-1 diabatically, this state undergoes a broad avoided crossing
with the lowest member of the n’ manifold with quantum number n;=n'—1
and n,=0. The avoided crossing occurs at a field strength close to static field
jonization threshold Fe=1/9n* (or Fo=1/9). Near this broad avoided crossing
strong couplings to many other n levels and to the continuum occur. At this
field strength which is large compared to the Stark beat regime (FS 55) the
excitation function of the extremal (“downhill”) state possesses oscillations
which are associated with path interferences [8] between different » chang-
ing pathes. It is the proximity in both energy and coordinate space to the
saddle that renders the dynamics quasi-one dimensional with the parabolic
coordinate n=r—z as reaction coordinate. Path interferences can therefore
be deseribed in terms of the one-dimensional semiclassical transition matrix

tEq.(3)).
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Fig. 3: Quantum (reduced basis set) and semiclassical population
dyvnamics of excited states of a hydrogen atom initially in a “downhill”
n=20.n,=19.m=0 state as a function of time. Binding energy and time are
expressed in units of the initial ionization potential and orbital period, respec-
tively (Eo=E/|Enil,To=T}/Tni)-

Fig. 3 presents the comparison for the time evolution in energy space of
an initial n=20.n,=19 state in the presence of a electric field of F=5x10"%
a.u. (scaled field Fo = 0.8) using both the semiclassical transition matrix
(Eq.3)) and the solution of the Schrédinger equation. Since the dynamics is
quasi- one-dimensional we have included only the n,=0 states in a reduced
basis which allows to subtend both the near threshold regime and the contin-
uum with a finer energy grid as compared to the full 3D calculation. In the



semiclassical calculation we have removed the singularities which are caused
by the primitive (i.e. non-uniform) treatment of the caustics. The agreement
between the semiclassical and quantal calculation is very good. While in its
current form (Eq.(5)) not directly applicable to ionization, the semiclassical
analysis has the advantage that the origin of the oscillations can be understood
as an interference between one path approaching the nucleus with high speed
and being strongly perturbed by the field and another path starting close to
the saddle and being driven to other n or even to the continuum by the time-
dependence of the saddle potential (Fig. 4). The oscillations observed in Fig.
3 extend to positive energies E>0 indicating that not only bound state ex-
citation but also the ionization probability displays oscillations as a function
of time or field strength. On the other hand. ionization of the other extreme
parabolic state (n2=0,n1=n—1), the most blue shifted or “uphill” state, does
not display oscillations in the ionization probability as a function of F. This
state resides near the repulsive wall (Fig. 4). The classical orbits in the re-
gion of phase space are not confined to one reaction coordinate but explore
the plane perpendicular to the field direction. The simplified 1D semiclassical
analysis (Eq.(5)) is therefore not applicable. The 3D classical dynamics fea-
tures, however, classical beats as a function of the time with the period of the
Heisenberg time t*.

Fig. 4: Typical interfering trajectories leading to ionization of the quasi-
one-dimensional “downhill” state of hydrogen in a strong electric field. E;:
initial orbital energy, solid line: instantaneous potential in the field F(t) along
the z coordinate. schematically.




It is important to realize that the semiclassical path interference can be
observed only for pulse durations comparable to the classical orbital period.
In the ultrashort pulse limit (T,,—.o) the energy and momentum transfer is
purely impulsive,

AE=Ap?/2+F(r)Ap (15)

and the solution of Eq. (15) is unique, i.e. only one initial condition 7 for the
trajectory features the correct orbital momentum # to transfer the required
energy AE. In this impulsive limit ionization becomes completely classical
provided that the momentum transfer Ap is sufficiently large [6,21].

5. Discussion

We have delineated two distinct regimes in which excitation and ioniza-
tion of Rydberg atoms by short electric half-cycle pulses displays oscillations.
One regime refers to spherical initial states and field strength comparable
to fields sufficient for n manifold overlap (F~—5-, Fo=3%), the other to one
extreme parabolic initial state and field strengths near the static ionization
threshold (F~Fo /9). In each case some (but not all) oscillatory structures in-
dicate that quantum mechanics or semiclassical mechanics diverges from clas-
sical mechanics since the time scales involved are of the order of the Heisenberg
times t* where the existence of discrete energy levels leaves its mark on the
dynamical evolution. On the other hand. in the impulsive limit, T'<<t*, clas-
sical mechanics can mimic quantum dynamics quite well. Short times are,
however. only a necessary but not a sufficient condition. A second condition
to be fulfilled is that the transfer of momentum Ap must be sufficiently large
[21].

Apn?>1 (16)

This relation can be simply understood in terms of the uncertainty principle.
The De Broglie wavelength A=1/Ap associated with the momentum transfer
should be small compared to the size of the orbit (xn?). In this limit the
internal structure of the atom is resolved and the energy transfer proceeds via
localized interactions between the electron and the field conserving energy and
momentum. rather than by classically forbidden dipole transitions by virtual
photon absorption. The predictions of the present theory can be tested by
current experiments [1,2] and should provide detailed insight into classical-
quantumn correspondence and the approach to the classical limit.
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