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Abstract

Rayleigh Scattering and Nonlinear
Inversion of Elastic Waves
by
Roland Gritto
Doctor of Philosophy in Geophysics
University of California at Berkeley

Professor Lane R. Johnson, Chair

Rayleigh scattering of elastic waves by an inclusion is investigated and the
limitations determined. In the near field of the inhomogeneity, the scattered
waves are up to a factor of 300 stronger than in the far field, excluding the
application of the far field Rayleigh approximation for this range. The investi-
gation of the relative error as a function of parameter perturbation shows a range
of applicability broader than previously assumed, with errors of 37% and 17%
for perturbations of -100% and +100%, respectively. The validity range for the
Rayleigh limit is controlled by large inequalities, and therefore, the exact limit
is determined as a function of various parameter configurations, resulting in
surprisingly high values of up to k,B = 0.9. The nonlinear scattering problem
can be solved by inverting for equivalent source terms (moments) of the scat-
terer, before the elastic parameters are determined. The nonlinear dependence
between the moments and the elastic parameters reveals a strong asymmetry
around the origin, which will produce different results for weak scattering ap-
proximations depending on the sign of the anomaly. Numerical modeling of
cross hole situations shows that near field terms are important to yield correct
estimates of the inhomogeneities in the vicinity of the receivers, while a few well
positioned sources and.-receivers considerably increase the angular coverage, and
thus the model resolution of the inversion parameters. The pattern of scattered
energy by an inhomogeneity is complicated and varies depending on the ob-

ject, the wavelength of the incident wave, and the elastic parameters involved.



Therefore, it is necessary to investigate the direction of scattered amplitudes
to determine the best survey geometry. The inversion of a cross hole dataset
to determine the location and elastic parameters of a fracture zone reveals the
following results. The bulk modulus appears to be sensitive to voids and welded
contacts, whereas the density is mostly affected by fractured zones. The shear
modulus is least constrained, possibly due to the absence of S wave anisotropy
information. However, P wave anisotropy is included and prevents the collapse

of linear features into block-like structures during the inversion.
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Chapter 1

Introduction

Elastic waves propagating through the Earth are affected by structures on
all scale lengths. These scale lengths range from several hundreds of kilometers
for e.g. the core mantle boundary and subducting slabs, over several tens of
kilometers for crustal structures, to a meter or less in heterogeneous surface
layers.

The waves are affected by the inhomogeneities in several ways. Their travel
time is delayed or advanced, depending on the nature of the inhomogeneity
(Peterson, 1986; Nolet, 1987), and energy is sca.tfered throughout the medium
arriving at different times at the point of observation (Aki and Chouet, 1975).
Furthermore, the direction of propagation is changed for most of the propagat-
ing energy every time the waves are reflected or refracted by inhomogeneities.
In addition, zones of anelastic attenuation decrease the amplitude of the waves
and dissipate their energy throughout the medium. The degree to which the
waves are affected is a function of their wavelength in relation to the size of the
inhomogeneities. The problem of propagating waves with small wavelengths
through inhomogeneities of large scale length can be treated, to a certain de-
gree, as wave propagation through a blockwise hor.nogeneous medium, whereas
waves with wavelengths on the scale of the inhomogeneities are best treated
as scattering at the interfaces. Therefore, the question of which process best
describes wave propagation through a medium depends on the frequencies and
scale lengths under investigation.

~ Seismologists use the different effects on wave propagation to deduce pa-

rameters of the medium. Travel time changes are employed to derive velocity
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perturbations (Aki et al.; 1976, Toomey et al., 1989), while changes in the am-
plitudes are used to determine elastic properties, such as the elastic moduli and
the density, as well as intrinsic attenuation (Scherbaum, 1990; Romero, 1995).
However, in recent years the demand to use seismic waves as a diagnostic tool
to estimate high resolution models of the subsurface and to extract a variety
of parameters, which can further be used to model subsurface processes, has
increased. Despite this need to determine parameters beyond elastic wave ve-
locities, most waveform approaches that utilize amplitude information solve for
velocities rather than the elastic parameters of the medium (Wu et al., 1987, Lo
et al., 1988; Tura et al., 1992). However, medium parameters, as represented by
the elastic moduli, may not be correctly determined by velocities, as the moduli
may cancel or reduce their effect in the equations of the velocities (Gritto et al.,
1995b). Consequently the magnitude of changes in the subsurface structures
may be larger in the elastic moduli. Therefore, the intention of this work is to
study elastic wave scattering .and to use scattered wavefields to invert for the
elastic parameters mentioned above.

The present work is not submitted as a finished study; rather it is an at-
tempt to investigate the feasibility to extract information from scattered waves
that may provide more insight into the elastic parameters of the medium. In
the past, various inversion techniques have been developed, each of which is ap-
plicable to certain conditions under which it works most favorably. Travel time
tomography utilizes the first arrival time of the direct wave to determine the
velocity structure of the medium. In order to invert for attenuation properties,
the amplitudes of the first arrival are estimated to determine its variation over
the path of propagation. These techniques use the properties of the direct wave
in éei_émograms. In contrast, waveform algorithms are based on amplitude infor-
mation evident in later phases, to determine the velocity structure and anelastic
properties of the medium. However, these methods almost never use the full
content of information present in the seismogram, but rather use the properties
of P and S waves. All of these methods have in common that they neglect

phases that appear after the main arrival of the direct body waves, although .




these late phases may carry information about the medium properties. There-
fore, a thorough study of the scattered phases is essential to determine whether
their properties can reveal a more detailed picture of the subsurface s-tructure.
The present approach differs from other inversion techniques by the fact that
it does not use the first direct arrival, but incorporates all scattered phases
that appear at later times in the seismogram, and therefore, it is Important to
remove this energy before a successful inversion can be performed.

The techniques utilizing the scattered phases in seismograms are often re-
ferred to as diffraction tomography. The goal of these techniques is the location
and determination of elastic parameters of the medium (Devaney, 1984; Wood-
ward, 1992), and in this sense they are similar to the present approach. The
advantage of these techniques is that their mathematical treatment is based on
simplified far field Green functions. The inversion is performed in the frequency
wavenumber (f-k) domain, where the resolving power of the inversion operator
can be studied and the experimental design adjusted accordingly (Tura et al.,
1993). However, the disadvantage of these techniques is that they rely on regu-
lar source and receiver spacing to allow the transformation into the £k domain.
In contrast, the present approach is based on an analytical solution that pro-
vides a more complete treatment of the scattering process. In addition, it does
not rely on a regular source receiver geometry, but is capable of treating -any
irregular sized 3-dimensional geometry.

A commonly used imaging technique in exploration seismology is seismic
migration. The idéa. is to determine the origin of reflected phases in seismogram
sections. The amplitudes of these reflected phases are integrated along the
reflection hyperbola (;ver many traces and the result collapsed, or migrated,
into the point of origin (Tygel et al. 1994, Yilmaz, 1987). Thus, assuming a
background velocity model, interfaces reflecting energy in the subsurface can be
pointwise reconstructed. The analogy to the technique presented in this thesis
is that the inversion of scattered waves can be interpreted as integration along
the hyperbola of scattered phases, and the result, under the assumption that the

background parameters are known, collapsed into the location of the scattering




object. In addition to the location, the present method estimates the elastic
parameters as well. However, in a strict sense, this approach is not a seismic
migration technique. '

The process of wave scattering by an inhomogeneous medium is of a com-
plicated nature, and therefore, a thorough investigation is essential before scat-
tered amplitudes can be converted to information of the subsurface structure.
Consequently this study first investigates the problems arising in elastic wave
scattering and incorporates the results to improve the inversion for medium
parameters.

In order to evaluate the scattering of elastic waves by inhomogeneities, exact
solutions are needed, some of which are available for simplified geometﬁes. But
even for these cases, as the exact solutions are difficult to implement, asymp-
totic approximations are developed. However, most of these approximations are
based on assumptions which do not have fixed limits, and therefore, it is not
always clear when the results are valid.

Chapter 2 investigates the validity range and the limitation of the low fre-
quency Rayleigh approximation to the amalytic solution for the scattering of
elastic waves by a sphere shaped inhomogeneity. The Rayleigh approximation
is a widely applied tool in waveform inversion algorithms, as it provides a means
to linearize the inherently nonlinear problem of solving for the elastic parame-
ters of the inhomogeneity. However, thus far no attempt has been undertaken to
establish limitations for this approximation and strong inequalities are used to
justify its application. Therefore, in order to qualify results determined through
the use of the Rayleigh approximation, its limitations are tested and determined.

.Once the process of scattering is better understood and limitations are es-
tablished, information of the scattered amplitudes can be used to determine the
properties of the inhomogeneity. Although this process is nonlinear in terms
of the elastic parameters, Chapter 3 offers a direct solution to this problem
based on the low frequency Rayleigh approximation under the assumption that
. scatterers can be represented by simplified geometries. The advantage of this

method is a fast and direct way to solve for the elastic parameters without




limitations on the scatterer strength. Additionally, a time consuming iterative
process to solve for strong contrasts can be avoided. Although this theory opens
the field for a wider class of scatterers, it requires a better und_erstandiﬁg of the
scattering process. It will be shown that near field terms play an important
role in cross hole geometries if the Rayleigh approximation is applied to invert
the scattered wavefield. The direction of the scattered energy strongly depends
on the strengths of the inhomogeneity and consequently, a successful field ex-
periment requires a thorough study of the scattering process to optimize source
and receiver geometries. Based on this fact, various numerical experiments are
presented to address the asp'ect of optimum source and receiver geometries. The
case of a high velocity inclusion with a reduction in density only, will be used to
study the resolving power of the inversion to solve for a single elastic parameter
without affecting the constant parameters.

Finally, Chapter 4 applies this new approach to a field experiment where the
objective is to determine the location and the elastic parameters of a fractured
zone in an otherwise undisturbed host rock. The challenge in this problem lies
in the fact that the fracture zone, based on the theory, has to be modeled by a
series of small inhomogeneities each representing a single scatterer. The success
of such an experiment could lead to the treatment of a completely new class of
irregularly shaped inhomogeneities represented by a series of single scatterers

for the inversion of full waveform data.




Chapter 2

Low-Frequency Elastic Wave Scattering

by an Inclusion

2.1 Introduction

Scattering of seismic waves is a fundamental process in the propagation of
waves through the Earth. In recent years, numerous authors have turned to
the theory of scattering to describe the complicated nature of seismograms that
occur in various places, believed to be caused by inhomogeneities and sequences
of layering within the structure of the Earth. Different scale lengths are the
focus of attention, varying from mantle (Haddon and Cleary, 1974; Doornbos,
1976; Aki, 1980), over crustal (Aki, 1969; Wu, 1982; Sato, 1984), to regional

-and even local scales on the order of a few meters (Wu and Aki, 1985; Her-
raiz and Espinosa, 1987; Sams and Goldberg, 1990). The common objective of
these studies is to apply statistical approaches to determine the heterogeneity
and the elastic parameters of the medium and to distinguish between differ-
ent attenuation processes like intrinsic and scattering attenuation (Frankel and
Clayton, 1986; Frankel and Wennerberg, 1987; Frankel, 1991). Lately, the the-
ory of localization, well established in quantum mechanics, solid state physics
and optics, was introduced to seismology (O’Doherty and Anstey, 1971) to in-
vestigate scattering processes during propagation, and to determine possible
Limits in wave propagation (Richards and Menke, 1983; White, Sheng, Zang
and Papanicolaou, 1987; White, Sheng and Nair, 1990), although presently it is

unclear whether the common approach of treating the Earth as a self averaged




random medium is valid (Shapiro and Zien, 1993).

As an alternative to statistical methods, deterministic approaches are a valu-
able tool to estimate local parameters by measuring their propertiés in the
medium. Such approaches require exact solutions for the scattering problem,
but only a few exist for special cases. Even though these cases are based on
simplified geometries for the numerous shapes and sizes of inhomogeneities that
are present in the Earth, they are difficult to implement, and hence solutions
in terms of asymptotic approximations are developed. The assumptions used
in the derivation of asymptotic solutions are usually expressed in the form of
strong inequalities where some combination of parameters is assumed to be
much less or much larger than unity. For instance, for the case of Rayleigh
scattering it is assumed that the parameter kR, where k is the wavenumber of ‘
the incident wave and R is the radius of the scatterer, satisfies the condition
kR < 1. In the same manner, for the case of linearizing the inverse problem,
we assume ”very small” relative deviations of elastic parameters and density.
Such assumptions are convenient at the stage of mathematical development, but
they present problems when attempting to determine the actual bounds on pa~’
rameters during application of the results. Indeed, in realistic situations while
operating with parameters having finite values, there is always a problem in jus-
tifying the validity of the approximation and determining the accuracy of the
solution. What is the actual difference between the exact solution and the ap-
proximation which has been used? What are the upper limits of the parameters
which can be used and still retain a specified level of accuracy in the solution?
For the case of Rayleigh scattering of elastic waves, it appears that the limits of
the approximation have not yet been quantified.- An additional problem occurs
when more than one assumption is involved in that they may be contradictory.
This is a possibility for the case of Rayleigh scattering (w — 0) in the far field
(r — 00), where the parameter (wr)/(V}) is assumed to be large. The intention
of this chapter is to investigate the accuracy of several asymptotic solutions
and quantify the limits under which these approximations are applicable. The

study presents the error for the application of the asymptotic solutions as a



function of various parameters and estimates under which conditions a given
approximation provides an acceptable solution to the scattering problem.
Recently, Korneev and Johnson (1993a, 1993b) derived a solution for the
scattering of an elastic P wave by a spherical inclusion of arbitrary contrast and
developed asymptotic solutions for this problem. Their low frequency Rayleigh
approximation which is valid for an arbitrary distance between the observation
point and the inhomogeneity is being investigated and compared to the solutions
based on near field and far field approximations. The validity range for these
limited approximations is presented with respect to the distance of observation
and the relative contributions of the near and far field terms to the complete
Rayleigh approximation is discussed. It should be noted here that, while these
approximations were derived from the exact solution for a sphere, they depend
only upon the volume of the scatterer and not upon its shape, and thus should
be valid for the general class of inclusions with approximately equal dimensions.
The Rayleigh approximation can be used to model the scattering process
of low frequency waves by an inhomogeneity. A common goal in seismology
is to determine the elastic properties of this inhomogeneity by inversion tech-
niques. However, since the dependence of the solution on the elastic parameters
is nonlinear, the inversion of the data often is preceded by a linearization of
the problem. For this purpose, a linearized solution in terms of the elastic pa-
rameters is derived and the error as a function of their perturbations assessed. -
Furthermore, the improvement of the approximation by accounting for higher
order terms is investigated. The determination of the relative error is based on
the parameter values of the inhomogeneity and the background medium. Often
these values are unavailable, particularly in the planing stage of an experiment
when anticipated errors play an important role. Therefore, an equation for the
approximate error due to linearization of the problem is developed which is
based entirely on the estimated parameter perturbations from the background
values. Finally, the upper limit for the Rayleigh approximation (kR<K 1) asa

function of parameter perturbation is investigated.
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2.2 Rayleigh Approximation for an Elastic Sphere
of Arbitrary Contrast |

A derivation of the exact scattering solution for a homogeneous elastic sphere
was given by Korneev and Johnson (1993a, 1993b). In their second paper they
derive a low frequency approximation for a spherical inclusion. However, be-
cause of its low frequency character, this approximation simultaneously provides
a solution for a wide range of arbitrary shaped 3-dimensional structures. For
reasons of clarity, the exact solution is restated followed by their derivation of
the low frequency approximation.

The investigated scattering problem consists of an elastic inclusion defined
by the parameters A, p; and p; (in the following, the index v = 1 denotes the
medjum of the inclusion) embedded in a homogeneous medium with constant
parameters Az, pz and p, (in the following, the index v = 2 refers to the back-
ground medium). The geometry for this situation is shown in Figure 2.1. A
joint Cartesian (z,y, 2) and spherical (r,, #) coordinate system with its origin
at the center of the inclusion is considered.

An incident plane P wave of the form
Uy = e0-#/V2)z = Ypeivt (2.1)

which is traveling in the background medium in a positive direction along the
z-axis is considered in the following investigations. U, denotes the Fourier
transform of the incident wave. However, at the end of this section, a factor
that accounts for an incident spherical wave generated by a point pressure source
will be provided.

In the frequency domain, the total solution to the scattering problem can

be written as a sum of the incident and the scattered fields

U = Ue"t = (Up + U, + U, ) (2.2)
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where U, and U, denote the scattered P and S waves, respectively.
For the case of a plane P wave impinging upon a sphere of radius R, the

total scattered field can be represented as

ch = UP+US

o el (g 1){a, [((z+ n2n) g, r)) Py(cost)

hzlgkrr) aBgc;se) ] {l(l_*_l)h,(k )P(cosﬂ)r
+ (hz_1(k . hz(ljrr))aﬂf;;se) }}, 23

where hi(z) are spherical Hankel functions of the second kind and P, are the
Legendre functions. The coefficients a; and b; depend upon the properties of the
sphere as well as the background medium. They also depend on the wavenum-
ber of the scattered fields. For a detailed discussion of the derivation refer to
Korneev and Johnson (1993a).

For the development of the low frequency approximation, only those terms of
the exact solution are used that are of lowest degree in frequency. These terms
(w®) are of third order and appear only in the first three coefficients (I = 0,1,2)

of the exact solution.

2_3%(/\1 = Xo)+p — o
6 %(%M + 1) + po

3 3
o = _if_(&_l), bl:z-n_(e_l_l)
9 \p2 9 \p

4 7 .32 (m\ 71
_ s34 — 3
a, = — (ﬂz - 1) D b, = —in T (#2 D (2.4)

Qg =
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Scattered Wave

Inhomogeneity

Y

Background

Incident Plane Wave

Figure 2.1: Geometry of the problem. The properties of the inhomogeneity and
the background are denoted by v = 1 and v = 2, respectively. A plane wave
is incident in the positive z direction, while the oberservation of the scattered
wave is a function of # and 8.
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with

A+ 2p, Ly w w
Vi - - V;uz DR k =35 ks=
B Py Pv P I/pz I/sz

V.

§ = KR, n=kR, y=:2

7 Ver
D = 1+2(B_1)@+2p) (2.5)

15 \ po

Thus, a low frequency approximation with no restrictions upon the elastic pa-

rameters is obtained as:

U..=U,+U,

with

Up = (Up)r":"'(Up)aé

1300 — A2) + 1 — oo (P1 )
= A |—=2 WE(Z,) + | = — 1| WE(Z,)cosb
(|t g + (2 - 1) W)

21\ 2w — 3cos26)|#
+ 3 (#2 1) DW2"(ZP)(1 3cos“0)|#

2 ~
— |- (2 -1) Wh(Z)sind +2 (2 —1) Lwz(2,)sin20|6}  (26)
P2 L2 D .

U, = (U,),#+(U,),0
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2
= B{ [2 (ﬁl - 1) W;.(Z.)cosd + 2 (ﬂ - 1) Y s (2.)(3cos%0 — 1)}ﬁ
P2 123 D

+ [_ (-"—1 - 1) Wiy(Z.)sinf + (ﬂ - 1) lW;B(Zs)sinZH}é} (2.7)
p2 P2 D

The new functions are defined as follows

V 6—ikpr 174 e—ik,r
—_ 27 = — L2
A=k, B=k " (2.8)

where V is the volume of the inclusion, and

Wi (Zp) = I—Z

WE(Z,) = 1-27 ;;,_ZP . M%) =14 2= 4§ =92

WiZ) = 1- 1‘2;28 . Wi(Z)=1+3%= ZZ —2Z,
I =

Wi (Z) = * ;ZZ S (X0 A P ZZZZ_ 3 (2.9)
with

Zy = kpr = % y Zo=kio= I“,’Z . (2.10)
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based on the assumption that

wR

kmazR = Vmin

<1, (2.11)

where V,,;, denotes the minimum velocity and k.. represents the corresponding
wavenumber. This result, generally known as the Rayleigh approximation, does
not depend upon the shape of the inclusion but only upon its volume.

The W functions in equation (2.9) contain the distance dependence of the
observation point from the center of the sphere and are valid for all values of
r > R. Thus, the expression in equations (2.6) and (2.7) is a complete solution
containing near and far field contributions. From this solution it is evident that
the P wave of the scattered field contains a contribution in the -direction, while
the S wave contains a factor in the #-direction. Thus, the P and S waves are
not decoupled and their polarization is complicated in the near field. However,

as the distance of observation increases, the relative contributions of the W

" functions change in such a way that the solution takes on the form of the far

field approximation.

.To obtain the far field approximation, we have to satisfy the following con-
ditions for the W functions in their limits: = -

(WE(Zo)| = L, IWE(Z,)| =~ L, IWE(Z,)| = 1, [Wig(Ze)| = 1, |W;5(Z:)| ~ 1 (2.12)

[Wis(Zp)| = 0,[W3y(Zp)| = 0,|W3(Z:)| = 0, [W;,(Z:)| ~ 0. (2-13)

In this limit, the scattered field can be divided into an #- and a é-component,
both revealing a 1/r dependence for scattered waves in the far field:

V e~iker 1 Q(Al - /\2) -+ g — U2 P
U, = E— {—— 2 -l-’(—-£ - 1) cosf
? 2 $CGM+ )+ pe P2
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2(m 7 29 L
o S NS 2.
+ 3 (#2 1) D(l 3cos 9)}1- (2.14)
Ir e_ikaf pl . ul 'Y N
-_— 2-—- — — — s — y.
U, = ks47r - { (pz 1) sind + (ﬂz 1 Dsm20 6. (2.15)

The natural polarization in the #- and #-direction for the P and S wave, re-
spectively, is evident. _

The effect on the amplitude of the scattered field of the ratio between R and
the wavelength A, of the incident P wave can easily be addressed by putting
the solution (2.6) and (2.7) in the form

U, + U, = (kB) F(Z,,0) = (2«%)3 ¥(Z,,6) (2.16)

(using Z, = vZ;) where the function F(Z,,6) also depends upon the parameter
perturbations, but does not depend on the radius R of the inclusion. Thus,
when R — ), the azﬁp]itudes increase, until the approximation reaches its
limit at (k,R)im (Rayleigh limit).

In the near field where Z, < 1.0, 7, < 1.0 the P and S components of the
scattered field may be combined to form an asymptotic solution depending on
both # and 8, by expanding e~ and e~*+" in equation (2.8) and keeping only
the lowest degree in Z,. '

|4 Pi3(M = Ag) +p — o 1 (p 72
. = : Zy+= (2 6
Uc 47{'7‘3{[2 %(%Al‘*‘ﬂl)'{'ﬂg p+’)’ 1 PCOS

+ (1 - "?) (}% —~ 1) Z2 (3c0s?0 — 1)]

1 +7) 2 2y Zp 5
- [_2’_75__ o — 1| Z2sinf + iy? . -1 —D—szn20 6 (2.17)
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With the definitions for Z, and Z; in equation (2.10), it becomes apparent that
the amplitude for the near field approximation contains components which are
proportional to 1/r and 1/r2. The sum of the # and -component indicates the
complicated polarization, as the P and S-wave are not decoupled yet.

So far, the scattering problem involving considering an incident plane P
wave with a source located at infinity has been treated. However, the problem
can as well be addressed for the case of an inhomogeneity in the near or far field

of a point pressure source exciting a spherical P wave

e—ikpro

Uy=-V , ) (2.18)
To

where 7g is the distance between the point source and the center of the inclusion.
The consideration of a spherical incident wave introduces additional func-

tions for the distance dependence of the scattered field of the form

N

(=]

—1
Cl = —Po____

Po

22 — 3iZ,, — 3

C, = (2.19)
’ Zgo
with
k, wry
2 - =2 . 2.20
q 0 ? P pT0 V;, " ( )

The C; have to be multiplied onto those W; functions in equation (2.9) that

have the same degree in [ to provide the correct distance dependent functions
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for the case of a single point pressure source at an arbitrary distance from the
inhomogeneity. However, in this chapter the problem of an incident plane P
wave is treated only. This restriction permits all of the displacement ﬁeids to be
represented in terms of unitless values for the purpose of simplicity in presenting

numerical results.

2.3 Comparison Between Low Frequency To-
tal Solution and the Approximations in the

Near and Far Field

For the comparison of the various approximations listed ab ove, the scattered
amplitude for a given spherical inclusion with radius R along a profile of ob-
servation extending from r = R (near field) to r 3> R (far field) is computed.
The profiles are determined for various scattering angles between § = 0° and
6 = 180° (symmetry exists along the 0° — 180° axis of incidence) to present
a qualitative view of the angular dependence. Thé results are computed for
an inhomogeneity with a 10% increase in Vp and V; velocity as well as density
with respect to the background. The structure (eq. 2.16) of the scattered field
makes it possible to investigate the unitless function F independently of the
radius R of the inclusion, thus producing results with more universal applica-
tion. In Figure 2.2 (a,b,c) absolute values of the r-component of ¥(Z,,0) are
plotted as functions of Z, = k,r of the incident wave for three different angles
0 = 0%(a), 90°(b), 180°(c). In order to compare results of a different geometry
with these curves, the minimum value of the parameter k,R has to be deter-
mined for the new geometry, and subsequently the normalized amplitudes to
the right of the new limit on the abscissa will be comparable after multiplica-
tion by the corresponding value of (kpR)®. This minimum should be equal to,
or less than the Rayleigh limit (k,R)sm, which depends upon the parameter
perturbations. A detailed discussion on the validity range of the Rayleigh limit
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is presented in section 2.5.

For each value of § in Figure 2.2 (a,b,c) three curves are shown, representing
the #-component of the total field (solid line, egs. 2.6 and 2.7), the near field
(dashed line, eq. 2.17), and the far field (dotted line, eqs. 2.14 and 2.15) of
the Rayleigh approximation. The graphs are plotted using a logarithmic scale
for both axis. Thus, the far field solution with a distance dependence of 1/r
appears as a straight line with a slope of -1, whereas the near field solution
revealing both a 1/r and 1/7* dependence produces two constant slopes. In the
very near field the 1/r2 term is dominant, creating a slope of —2, while for larger
distances the dominance of the 1/r term is apparent by a change in slope to —1.
The transition between these two slopes is defined by contributions from both
factors. However, the application of the approximations at various distances of
observation requires a careful investigation of their validity range. All curves
are computed between k,r = 1072 (r = 1R) and k,r = 10° (r = 10°R), although
only the fotal field is valid for the whole range, as found from comparison with
the exact solution for the sphere. “The near field solution is applicable in the
vicinity of the inhomogeneity, whereas the far field yields correct values at a
greater distance from the inhomogeneity only. This is supported by Figure
2.2a). The total field solution coincides very well with the near field solution for
small values of k,r, whereas the discrepancy becomes larger for greater distances
of observation. Similarly, it differs from the far field solution in the near field,
while asymptotically, the two solutions merge in the far field. The oscillatory.
nature of the total solution in the #- and the @-component is based on the near
field contribution of the S wave (ks vector in the #-component) and P wave
(kp vector in the f-component), respectively. The interference between both
components is present in the near field only and decreases in the far field.

The most intriguing result is the large amplitude difference between the total
and the far field solution of magnitude (= 300) for the very near field k,r = 10~2
(r = R). This difference decays continuously until good agreement is reached
at a distance of approximately k,r = 4w (r =~ 2)). Between k,r = 1072 and
kyr = 4w /10 (v = 0.2), the near field provides a better approximation than
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Figure 2.2: Normalized modulus of amplitude factor ¥(Z,, 8) (eq. 2.16). Radial
component of the low-frequency scattered fields for a high velocity and high
density inclusion of +10%.




20

the far field solution. In between these distances (0.2A < r < 2}), a range
that is referred to as the mid field, both .solutions present an alternating fit to
the total field because of its oscillatory behavior. Figure 2.2a) presents pure
forward scattering (6 = 0°), while Figures 2.2b) and 2.2¢) show the results for
a scattering angle of § = 90° and 6 = 180° (backscattering), respectively. It
is evident that the main features described above still apply in these cases,
although the amplitude difference between total and far field for r = R decrease
by one order of magnitude for § = 90°, before it regains the initial value for

.0 = 180°. For the scattering angle of 8 = 90°, a drop in amplitude of the near

field solution below the values of the far field solution is noticeable yet without
bearing as the solution is not valid in this range.

The §-components of the same fields are presented in Figures 2.3a) - 2.3c).
Because the amplitude of the é—component is zero for 8 = 0° and § = 180°, the
results for 8 = 45°, 8 = 90° and 6 =-135° are shown. Again, the total field
coincides well with the near and the far field solution in the near and far field
range, respectively. However, it is evident that the amplitude difference in the
near field decreases to a factor of 15 for § = 45° and 6 = 135°, and shows no
significant difference for § = 90°, while the amplitudes are slightly larger for
the far field solution. The mid field region is characterized by a misfit for both
near field and far field solutions, although the total field solution reveals less
oscillations.

The oscillatory nature of the total field solution causes similar oscillations
of the relative error between the total field and the far or near field solutions.
Because of this it is useful to define the mean value of the error as the smooth
trend through the residuals which me.m.lzes the effect of the rapidly ﬂuct'uating
values. For the relative error in the #-component, a mean value of 15% at a
distance of 2) is found. However, the oscillations around this value can be as
high as 35% and as low as 2%. At a distance of 10, for example, the mean
error has decreased to 5% with variations between 8% and 2%. The values for
the @-component reveal a smaller error over the entire distance of observation.

At 2), the mean value of the relative error is 2%, with fluctuations between 4%
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and 0%, and this decreases gradually with increasing distance of observation.

The comparison between the total and far field solution indicates the advantage
of near field components in the total field solution. The high amplitudés of the
scattered waves in the near field suggest an improvement for the determination
of the elastic properties, under the assumption that corrections for the incident
field can be applied. Thus the deployment of recording instrumentation in the
vicinity of inhomogeneities together with the observation of the incident field
could improve the results for inverting scattered emergy. In addition the limit
for the validity of the far field solution indicates that for an observation distance
less than 2), this solution produces wrong results, while it can be applied to
distances greater than 2.

The presented results are computed for an inhomogeneity with a 10% in-
crease in V;, and V; velocities as well as in its density with respect to the back-
ground. Because the modulus of the amplitudes is computed in this study,
JInvestigations of a negative perturbation produce the same shape and relations
of the amplitude curves for equal magnitude of perturbation. To determine the
sign of the perturbation, the separate use of real and imaginary part is more
appropriate. However, the investigation of scattering diagrams as a function of
combinations of parameter perturbations is beyond the purpose of this work,
and are treated by Sato (1984), Wu and Aki (1985), and Tarantola (1986).

2.4 Extension and Evaluation of the Rayleigh-

Born Approximation

Thus far, scattering solutions for arbitrary contrast in the elastic parame-
ters have been treated only. In equation (2.4) the coefficients are nonlinear in
terms of the elastic parameters A and p. This can be problematic, if a solution
for the inversion of the scattering problem in terms of the elastic parameters
is sought. A common practice, therefore, is to solve the linearized inversion

problem. This linearization is often referred to as the Born approximation. The
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Figure 2.3: Normalized modulus of amplitude factor ¥(Z,,6) (eq. 2.16). Az-
imuthal component of the low-frequency scattered fields for a high velocity and
high density inclusion of +10%.
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actual conditions for the validity of the Born approximation include the size
of the inclusion, the perturbation of its elastic parameters with respect to the
background, and the phase shift between different scattered phases (Hudson
and Heritage, 1991). In the Rayleigh scattering regime, the wavelength is large
compared to the scatterer size, and for the case of a weak inhomogeneity, the
consideration of a possible phase shift can be neglected. Thus, for this case,
the Born approximation is valid, and is often referred to as the Rayleigh-Born
approximation. To linearize the problem, the coefficients are expressed in a con-
verging binomial series expansion assuming the perturbations in the parameters
are smaller than the background values. The approximate solution is found by
keeping the linear term of the series expansion while disregarding higher orders.
This step is valid only for small perturbations.

oA A=A ] - o -
[6A] _ [M 2|<<1, 0p] _ lm ﬂ2|<<1’ 60] _ los pel o1

2.21
A2 Az J12) U2 P2 P2 (221)

Expanding the coefficients in equation (2.4) in terms of the elastic parameters
and keeping the first terms only yields a linearized solution to the scattering
problem which has the form

U =ud +u®

with

1 26)\+6p 6p
uw A{ [-— 2 WE(Z,) + —WP.(Z,)cos
P 2%(%)\1 + 1) + g2 o 2 P2 1+ (Zp)cos

+ g6—'11")'2W2§’r(Zp)(1 - 3c0320)] 7
3 p2

- [—%er(zp)sinH + 2‘;—”72W§’9 (Zp)sin20] é} (2.22)
2 2
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) 0P s Ot oerrs 2 N
Uy’ = B{ |2—Wrf.cos0 + 2—v*W; .(Z,)(3cos’0 — 1)|#
P2 Ha
op._. .o ) op . A ‘
+ | = —W5(Zs)sind + —yWs,(Z,)sin26| 6 . (2.23)
P2 2 :
In order to evaluate the error made by applying the linearized solution, both
the linear and the quadratic term of the expansion for the coefficients in equa-

tion (2.4) are used and a more exact approximation to the nonlinear solution,

referred to as the quadratic approximation, is derived. This gives
U® =UP +U?

where

3 §'6A+5lj,)2
v = A{ [—1 T WE(Z
P ( (/\2+I—L2)+,u2 2(%(%>‘2+l‘2)+#2)2 $-(2p)

+ 5"’ ~2WE,(Zp)cost

L2

+ ;3; (é& 2 (M) (3+2~,2)) WEZ(Z,)(1 —-3c0329)]ﬁ

- [—-@W o(Zp)sinb

L2 L

+ 2 <5‘£ ~ (‘5“) 3+ 272)) ;e(zp)sz'nze] é} (2.24)

v® = B{ [2%2Wfrcose
2
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(.5_8 _ Izg (isfi)z 3+ 272)) 7W2‘9(Zs)sin29] é}. (2-25)

Equations (2.6), (2.7), (2-22), (2.23), (2.24) and (2.25) are the basis for the
evaluation of the error in approximating the nonlinear solution. The evaluations
are undertaken in the far field of the inhomogeneity, allowing the application
of the commonly used far field approximation. First, the error is evaluated in
terms of the scattering angle to investigate the possible effects of the scattering
direction. Therefore, the amplitude of the scattered field are determined for all
angles between 0° and 360° using the three equations mentioned above. The
result is given in Figure 2.4. For both components, the amplitude values of
the linear approximation exceeds the nornlinear solution, while the quadratic
approximation underestimates it. This is-caused by the alternating sign in the
series expansion with increasing order.

A problem for the estimation of the relative error between the approxi-
mations and the nonlinear solution for every scattering angle arises from the
vanishing amplitude values at 6 =~ 0°, 75°, 180°, 285°, 360°. These singularities
produce unphysically high values for the relative error. Therefore, the error in

the #- and é-component will be related to the mean square amplitude
_— 1 T
T =5 /0 |U.(6)[? sinbd. (2.26)

Here, ¢ = 7,8 denotes the components of the scattered wave. Hence the relative

error becomes
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A = ((U§z>(e) - Usc(o)ﬁ)‘”, 22

(Uec)2

where ¢ = 1, 2 represents the linear and quadratic Rayleigh-Born approximation,
while Ug,(6) and U,.(9) denote the scattered field of equations (2.22), (2.23),
(2.24), (2.25), (2.6) and (2.7), respectively. Thus, the error is normalized for
each component by the average scattered amplitude of the same component.
Figure 2.5 reveals the results. For the #-component, a relatively smooth dis-
tribution of the error can be seen. The scattering problem is symmetric along
the 0°-180° axis. One evident feature is the decrease of the error between the
forward and the 90° scattering direction by a factor of ~ 3. Mher, it can be
seen that for this particular example of a velocity and density perturbation of
+10%, the introduction of the quadratic term in the series expansion reduces
the error compa-.red to the linear approximation by a factor of more than 5. The
same improvement is found for the -component. Distinct lobes at angles of
approximately 45° to both sides of the axis of wave incidence are visible. For
both components no particular difference between forward and backscattering
is evident. This representation of the error reveals the strong dependence on
the scattering angle and provides some insight in the improvement to be gained
by taking into account the quadratic term in the series expansion.

Next, in order to estimate the error as a function of perturbation in the
elastic parameters, the difference between the Rayleigh-Born and the nonlinear

approximation is integrated over all scattering angles

U9 U, p=1 / " o) - Us.:(e)|2 sinfdd, (2.28)

2 Jo

and related to the nonlinear approximate solution integrated over all scattering

angles 8
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29

UL = % i " |Usel? sindds. (2.29)
A .

This allows to compare the total average scattered amplitude for the nonlinear
and the approximate solution and to investigate it as a function of parameter

perturbation. Hence the error becomes

€ — 7. )2\ Y2
Ael®) = ((ij__—_—U—)) , (2-30)
Uz

where the notation is equivalent to equations (2.26) and (2.27). The result is
shown in Figure 2.6 for positive and negative parameter perturbations in ), g
and p. The quadratic approximation reveals a smaller error compared to the
linear approximation over the entiré range for both cases of a positive and nega-
tive perturbation. However, the best improvement is achieved for perturbations
less than 20%. While —100% constitutes a lower limit for the error, it was
found that above a perturbation of +200%, the error for the linear approxi-
mation becomes less than for the quadratic approximation (although physically
this is an acceptable statement, mathematically the extension beyond 4-100% is
incorrect, since the assumption for the series expansion of the elastic parameters
(eq. 2.21) was that the absolute value of the relative parameter perturbation
remains smaller than one).

It should be noted that the solution in equations (2.6) and (2.7) depends
linearly on the perturbation in density. Therefore, the scattering problem for
an inhomogeneity with a change in density only, can be exactly described by
the linear approximation in equations (2.22) and (2.23).

The difference in the errors between the linear and quadratic Rayleigh-Born
approximation can be used in the inversion of a linearized problem. After the
first iteration of the inversion, the quadratic Rayleigh-Born approximation is

computed and the difference from the linear approximation can be applied to
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approximation as a function of parameter perturbation.
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adjust the first preliminary result. The corrected result will be the input for
the second iteration. This scheme, should ensure a faster converging solution
to the problem of inverting for the parameters of a scatterer.

In the following, a quantitative estimation of the relative error of the linear
approximation based purely on the relative perturbations in the elastic param-
eters from the background values is presented. This provides an important
estimate for the error due to linearization of an experiment where no absolute
values are available, except for assumed perturbations of the inhomogeneity

from the background. The error is based on the equation (2.30)

Aot _ (U2 =T\ (0@ - gy
m ) U )

(2.31)
This has the advantage that only perturbation terms of the elastic parameters

remain in the resulting equation. Assuming equal perturbation for

oA ou bp ‘ Ve /1
—_——= 3 ——._'—..C', —:nC and = —-——= = 2.32
Az K2 P2 K Vo 3 (232)

it is found that

I

At = 2
2v/3n? 41

(2.33)

Thus for the case of similar perturbations in the density and the elastic param-
eters (n = 1) this yields C/4, whereas no density contrast (n ='0) produces
an error of C/2. .The dependence of this error on the perturbation in elastic
parameters is shown in Figure 2.6 (dashed line). A good agreement between
the linear approximation and the estimated error is found up to a parameter

.perturbation of 20%. The derived equation provides a means to estimate the
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minimum error in the total averaged scattered amplitude due to the lineariza-
tion of the problem. It should be mentioned that for the case of an inversion,
additional errors associate with ill conditioning of the experiment and poor sig-

nal to noise ratios, for example, will increase the total error for the estimated

parameters of the inclusion.

2.5 Investigation and Evaluation of the Rayleigh
Limit

The Rayleigh approximation generally is based on the assumption that the
parameter k,R is small compared to 1,

BbR=— <1, - (2.34)

although the actual magnitude of the limit is not known. The value of k,R
depends not only on the wavelength, the velocity of the background, and the
dimensions of the scatterer, but also on the.perturbations in the elastic pa-
rameters from the background values. Therefore, the Rayleigh limit of k,R is .
investigated as a function of perturbation in the elastic parameters. F;)r a given
perturbation and fixed value of k,R, the average square amplitude is computed
over all scattering angles, for the exact solution for the spherer (eq. 2.3) and
for the Rayleigh approximation in the far field (egs. 2.14 and 2.15‘). The two
solutions tend to deviate with increasing k,R -for a fixed perturbation value.
The Rayleigh limit is determined from the value of k,R that is reached for a
predefined maximum deviation of these two solutions. The result is shown in
Figure 2.7. The maximum deviation between the two solutions is set to 5%, 10%
and 20%, while the parameter perturbation was chosen to vary, when possible,
between —100% and +300%. Three different relations between the perturba-

tions of elastic moduli and density were selected. In addition, the velocity and
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density ratios are indicated to demonstrate the effect of the parameter pertur-
bations. In the presented examples, the sign and increase in perturbation are
kept equal for A and 4, while the associated change in p varies in sign and mag-
nitude. Figure 2.7a) denotes the situation of a 50% reduced density increase
in relation to the other parameters. The curves for the Rayleigh limit show a
paralle] trend for the different errors, with a smooth flat level between —75%
and +100%. For higher perturbations a slow decrease in the Rayleigh limit is
observable. However, towards —100% the limit drops steeply, indicating a small
value for the Rayleigh limit of a very low-velocity inclusion. This result has
a natural explanation in the fact that k,R inside the inclusion becomes large
and violates the Rayleigh limit condition. Changing the relation between the
parameter perturbations will affect the shape of the curves as seen in the next
examples. In Figure 2.7b), the density is kept at a constant level which pro-
duced a maximum in the Rayleigh limit for perturbations between —25% and
—50%. This maximum is caused by the mutual influence of an underestimation
of the behavior of the Rayleigh solution for low-ve_locity obstacles in the Mie
diffraction region (k,R = 1) and a general overestimation of the trend of the so-
lution at high frequencies. At some point these two processes compensate each
other. Numerical examples illustrating this phenomena and a discussion may be
found in Korneev and Johnson (1993b). For a third relation between the elastic
parameters (Fig. 2.7c)), the maximum is reached for a lower negative pertur-
bation with a different amplitude. In both cases the trend of the curves for
positive perturbations remains the same, indicating a continuously increasing
deviation between the Rayleigh approximation and the exact solution.

The results clearly suggest that the Rayleigh limit has a more flexible in-
terpretation than indicated by condition (2.34). Depending on the acceptable
error between the Rayleigh approximation and the exact solution, values for
the Rayleigh limit vary between 0.3 and 0.8 for a positive increase in parameter
perturbation, and the limits reaches values of up to 0.9 for negative perturba-
tions. The constant shift between the graphs for the three errors over the entire

range of perturbation indicates a relation between the error and the Rayleigh
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Figure 2.7: Rayleigh limit for the parameter k,R as a function of parameter
perturbation. The three curves correspond to three investigated error limits of
5%, 10% and 20%. Also plotted are the velocity and density ratios associated
with the chosen relation between the elastic parameters.
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limit (k,R),;,. which can be found from the equation
Ae =d (kpR)%ns (2.35)

where Ae is the allowed error, and d a constant, defined by the perturbation
in the elastic parameters from the background. In order to approximate the
magnitude of d, the exact solution for the sphere (eq. 2.3) is chosen, and a low
frequency approximation is derived based on frequency terms up to fifth order
(w®), thus using the first four coefficients (I = 0, 1,2, 3) of the exact solution. By
comparing the parameter k,R of this improved approximation and the Raj}leigh
approximation based on third order terms (eqs. 2.6 and 2.7), we are able to
evaluate d. The notation and assumptions from equation (2.32) yield in the

vicinity of zero perturbation

(2.36)

. 2 1/2
404 <7n +5n+2)

6.4n% + 1.6

Thus, for the low frequency Rayleigh approximation (egs. 2.6 and 2.7), equation
(2.35) provides a means to estimate the error of the Rayleigh limit with a

minimum knowledge of the parameters involved.

2.6 Conclusions

The intention of this chapter was to investigate the accuracy of several
asymptotic solutions to the problem of low frequency elastic wave scattering
and to provide means to evaluate scattering experiments in their planing stage.
The results were kept in universal format, allowing for a convenient application

to various scattering problems in seismology, varying from local over crustal to
mantle scale lengths.
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A low frequency total field solution to the problem of elastic Rayleigh scat-
tering was investigated and produced, within the Rayleigh limits, exact results
over the entire distance range of observation. This solution was subsequently
compared to pure near and far field solutions. The generally used far field
solution cannot be applied to the case of an inhomogeneity situated within a
distance less than two wavelengths from the point of observation. Within this
distance, the near field terms dominate the amplitude of the scattered wave, and
P and S waves cannot be separated. This case, dependent on the wavelength of
the incident wave, may arise in cross hole experiments when the inhomogeneity
is located close to the observation well (Chapter 3.5) and in experiments where
the scattering object is sited in the uppermost crust beneath the detecting sys-
tem. The inversion for the perturbation in the elastic parameters will fail if a
Green function is applied that does not contain the appropriate near field terms.
However, at a distance farther than 2), the near field terms have decayed suf-
ficiently and the far field solution can be applied. At this distance, the mean -
value of the relative error between total and far field solution is 15% and 2%
for the # and 6-components, respectively. The generalized amplitude distance
relations (Figs. 2.2, 2.3) can be used to determine the scattered amplitudes
for any case of low frequency elastic wave scattering as long as the results are
normalized by the actual experiment parameter k,R.

The availability of an exact solution made it possible to compute errors
for the application of the Rayleigh approximation and associated solutions and
to investigate them as a function of various parameters. The representation
of the nonlinear Rayleigh approximation as a linear and quadratic Rayleigh-

Born approximation revealed, for the relative error, a strong dependence on

the scattering angle for both the #- and é-comj;onent. For a fixed parameter

’ perturbation, it was found that the #-component incurs a larger error for forward

scattering than for scattering perpendicular to the direction of incidence. Four
distinct lobes about 45° off the axis of wave incidence developed for the error in
the @-component. In both cases the application of the quadratic Rayleigh-Born
approximation reduced this error by a factor of 5. These results suggest that if
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the orientation of primary source, scatterer and receiver are known, then it is
possible to estimate the accuracy of the approximation due to linearigation of
the problem.

The increase in magnitude of parameter perturbation caused increasing mag-
nitudes in the relative error for linear.and quadratic approximations, although
the exact amount depends on the sign of the perturbation. For a positive in-
crease of 100%, the maximum error amounts to 9% and 17% for the quadratic
and linear Rayleigh-Born approximation, respectively. A decrease in elastic pa-
rameters caused a larger error. For the case of a void (—100%), the deviation
was determined to be 19% for the quadratic and 37% for the linear approxi-
mation. As a consequence, a more flexible interpretation of the magnitude of
parameter perturbation is justified. As could be seen, the inequality (eq. 2.21)
represents a very conservative limit, whereas a linearization in the case of per-
turbations below ~ 20% should produce reliable results. In the case of inversion
for the parameter perturbations, the difference between the linear and quadratic
Rayleigh-Born approximation can be applied to correct the result after every
iteration in the inversion procedure. A faster and more stable algorithm should
be the result.

In order to facilitate the estimation of the relative error due to linearization
of the problem, an approximation of the error was derived, entirely based on the
deviations in the elastic parameters from the background. This enables one to
estimate the error prior to an experiment based on a minimum of information
and may help to improve the planing of the investigations. It was found that the
equation provides an adequate representation of the relative error in the linear
Rayleigh-Born approximation for a parameter perturbation of up to £20%.

’ One of the assumptions of the Rayleigh approximation is that the value
of kR is small compared to 1. However, thus far no exact evaluation of this
limit has been performed. The investigation of the Rayleigh limit for k,R as a
function of perturbation in the elastic .para.meters (allowing for various errors
between the exact solution and Rayleigh approximation) produced surprisingly

high values for the limit over almost the entire range of perturbation between
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—100% and +300%. Maximum values of more than 0.9 were reached. A relation
between the Rayleigh limit and the accepted error as a function of parameter
perturbation was found. The high values for the Rayleigh limit allow the 'validity
of Rayleigh scattering (eq. 2.34) to be extended further toward the range of Mie
scattering (R — 1), and thus open a broader range for the application of elastic
wave Rayleigh scattering.

The results of this chapter have direct consequences for the planing stage and
the successful conduction of seismic experiments in which scattered waves are
measured and inverted to determine subsurface properties. The investigation
of the near field limit for the influence of a scatterer is important for cross-
hole experiments (e.g.), where the sources may be close to an inhomogeneity
of unknown location. If a Green function containing near field terms is avail-
able, the placement of receivers within a distance of 2 from the inhomogeneity
could prove beneficial as large scattered amplitudes can be recorded. The pos-.
sible extension of the Rayleigh limit to higher values is an advantage for the
parametrization of inversion techniques. Most inversion techniques inverting
scattered data rely on the Rayleigh approximation as a means to linearize the
problem which implies that the inhomogeneities are point scatterers. Therefore
a fine discretization of the medium is necessary to meet the requirement of a long
wavelength relative to the scatterer size. However, the new results relax this
limit and consequently a coarser grid spacing or, similarly, higher frequencies
could be applied to the inversion technique. The investigation of these factors

is the subject of the following chapter.
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Chapter 3

Theory and Numerical Inversion of the

Nonlinear Scattering Problem

3.1 Imntroduction

The inversion of scattered elastic waves to determine subsurface structutres
has become an active area of research in recent years. The need to determine
medium properties like elastic constants, scattering and anelastic attenuation
(Lees et al., 1994), to detect and locate fracture zone (Vasco et al. 1995),
partially molten zones (Zucca et al., 1989; Romero et al., 1993) and hydro-
carbon deposits, for example, led to the development of waveform inversion in
addition to travel time tomography techniques.

Elastic waves propagating through an inhomogeneous medium are affected
in two ways. Their travel time is delayed or advanced depending on the nature of
the inhomogeneities, and energy from the incident wave is scattered throughout
the medium arriving at different times at the point of observation. The bulk of
this scattered energy is delayed and becomes evident as various phéses arriving
after the direct wave in the seismogram (Aki, 1969; Korn, 1996). This energy is
generally referred to as coda. However, the coda contains valuable information
about the medium and is the target of waveform inversion techniques (Tura,
1990).

Although the determination of the velocity structure by travel time inversion
is a viable tool to subsurface imaging, it lacks the ability to estimate elastic

properties, e.g. revealing information on the state of anelastic attenuation in
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the medium. Furthermore, a problem which may arise in the use of velocities
is that effects present in the elastic moduli and density may be diminished by
the tendency to cancel each other in the equations for the P wave and S wave
velocity, \/m and \/;/—p, respectively. Gritto et al. (1995 b) showed
that the bimodal character of a medium, deduced from borehole data, is only
weakly observable in the velocity logs, but clearly evident in the bulk and shear
modulus as well as the density. Therefore, it could prove advantageous fo invert
for the elastic moduli, as they may be more sensitive to changes of the subsurface
structure.

Recently, Korneev and Johnson (1993 a,b) derived a solution for the scat-
tering of an elastic P wave by a spherical inclusion of arbitrary contrast. In this
section an asymptotic solution for this problem, the low frequency Rayleigh
approximation investigated in Chapter 2, will be used to solve the problem of
inverting for the location and elastic parameters of inhomogeneities. This ap-
proximation offers several advantages. As presented by Gritto et al. (1995 a), it
was shown that near field terms of the Rayleigh approximation dominate over .
far field terms up to a distance of 2 A of the incident wave from the inhomogene-
ity. Thus, for the case of a typical cross hole experiment, where the target often
is an inhomogeneity with unknown location, the use of long wavelengths may
cause the receiver to be within 2 A of the inhomogeneity. Therefore, near field
terms become necessary and are considered in the present formulation. Simul-
taneously, because of the long wavelengths, the solution to the problem becomes
less dependent on the shape of the inhomogeneity and should be applicable to
a wider class of scatterers. '

'Ihe problem of inverting for the elastic parameters of inhomogeneities is
inherently nonlinear. Therefore, in the past the problem has been linearized
assuming small perturbations in the elastic properties with respect to the back-
ground medium which generally limits the application to the treatment of weak
inhomogeneities (Chapter 2.4) (Lo et al., 1988). As shown in Chapter 2, this
weak scattering assumption can be relaxed to a certain degree without tolerat-

ing too large errors. However, in many cases encountered in subsurface imaging
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the inhomogeneities reveal strong contrasts, and therefore the linearized inver-
sion fails to produce reliable results. The Rayleigh approximation, as stated in
equations (2.6) and (2.7), exhibits a practical feature that can be used to solve
this problem. As will be shown in the present chapter, it is possible to solve
the scattered wavefield for the elastic parameters in an exact and direct way,
therefore, extending the applicability of the inversion to a completely new class
of strong inhomogeneities in the subsurface.

The degree of nonlinearity of the elastic parameters as a function of pertur-
bation varies considerably over the magnitude of perturbation encountered in
inversion problems. This relationship is investigated and conclusions for linear
and nonlinear inversions are drawn.

Various techniques are available to solve inverse problems. In many cases of
tomographic inversion a discretization of the model space is chosen to express
the problem in matrix formulation. This work is based on the same principle
using singular value decomposition (SVD) to invert the matrix describing the
problem. The disadvantage of this time consuming inversion process is balanced
by the insight gained in understanding the inversion which is essential in the
process of developing a new approach. Using SVD, important problems like
resolving power, variance of the result, stability of the inversion, and related
questions will be studied for various geometries.

Chapter 2 addressed the importance of near field terms in the vicinity of
inhomogeneities. The influence of near field terms on the quality of the inversion
of cross hole data will be shown for a typical underground geometry. Results
include inversions based on Green functions with and without near field terms.
The model resolution for these two cases is investigated and results indicate a
possible source of misinterpretation for the case of a far field Green function,
if the final interpretation is based on the model resolution. Furthermore, the
importance of sufficient coverage of well placed sources and receivers to achieve
best resolution will be addressed.

The case of strong nonlinear scattering will be investigated using the model

of a cavity representing a strong scatterer. The feasibility to resolve the strong
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contrast between the cavity and the surrounding medium will be tested. The

3-dimensional scattering of energy by an inclusion is a function of many param-

eters. The distribution of energy can vary greatly depending on the incident.

wave, its wavelegths in relation to the size of the inhomogeneity, the distance
of observation from the inclusion, and the elastic parameters of the medium.
Thus it is essential to study the scattering properties of the medium under in-
vestigation first, before a successful survey can be planed. For the case of a
cavity, it will be shown which typical survey geometries are most favorable for

the inversion of scattered waves.

3.2 The Non-Linear Inversion Problem

The solution to the scattering problem outlined in Chapter 2 will be the
basis for the 3-dimensional inversion for the location and the elastic parame-
ters of an inhomogeneity. The inversion is based on the assumptions that the
locations of sources and receivers are known as well as the elastic parameters
of the background medium. However, mathematically there is no restriction
on the location and the spacing between receivers and source locations. In the
following, a point pressure source exciting P waves and a receiver located at
distances of 7 and r, respectively, from the center of the inclusion are assumed
(Figure 3.1).

In Chapter 2, the equation governing the scattering process, are expressed
in terms of the Lamé parameter A, the shear modulus u, and the density p.
For a better understanding of the physical processes describing the scattering
problem, the Lamé parameter henceforce will be substituted by the bulk mod-
ulus K which facilitates the description and the understanding of the nonlinear
scattering case. This substitution provides a means to decompose the scatterer
into equivalent force terms and to relate them to the physics of the proialem.

Thus rewriting equations (2.6) and (2.7) in terms of K, p and p yields
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Figure 3.1: Geometry of the problem. The properties of the inhomogeneity and
the background are denoted by » = 1 and v = 2, respectively. A spherical
wave, generated by a point pressure source, is incident upon the inhomogeneity.
Again, the scattered wave is a function of # and 6.
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using the definitions of equations (2.8), (2.9), (2.10), (2.19) and (2.20).

From equations (3.1) and (3.2) it is obvious that the scattered amplitude is
nonlinear in terms of K and u. However, because of the similar structure of the
coefficients ay and b, in equation (2.4) which is based on the symmetry in the

shape of the scatterer, it is possible to introduce the substitution

(- )
mg = - _fz( 2 1), ax = (1 - 5'72) (3.3)
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m, = (% - 1) (3.5)

which yields a system of equations which is linear in the new nondimensional

parameters mg, m, and m,

Up = (Up)rﬁ‘l'(Up)oé

= A{ [-chowg,(z,,) +m,CiWE,(Z,)cos8 + ng%ﬁczwg;(zp)(l — 3¢0526) |
"

- [m,,Cleo(Zp)sinﬁ + 272%7'&02W2"9(Zp)$in20] é} (3.6)
©

U, = (U.),#+(U.)d

= B{ [2m,,C’1Wf,.cosg + 27%C'2W§’9 (Z.)(3cos?6 — 1)] 7
°

+ [ — m,CiW5(Z,)sind + 'y%CzW{g(Zs)sin%] é} (3.7)
"

In the following m, m, and m, will be referred to as moments, although
they must not be confused with the common seismological definition of a mo-

ment of an earthquake as a measure of size. However, the term moment is
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justified as reference to a source excitation mechanism in the sense that mg is
responsible for a volume change, and therefore, excites scattered P waves only,
whereas m, and m, represent a force couple and a single force, respéctively,
exciting both, scattered P and S waves (Wu and Aki, 1985; Tarantola, 1986).
Equations (3.6) and (3.7), revealing a linear relation between the scattered
amplitudes and mg, m, and m,, can easily be inverted to solve for the mo-
ments. The substitution in equations (3.3) and (3.4) introduced a closed form
of the functions including mg and K, and m, and p;, and therefore, once the
moments mg, m,, and m, are found, equations (3.3), (3.4), and (3.5) can be

transformed to solve for the moduli and the density, yielding

K= (QK i S 1) K, , (3.8)
1- Mg
- My '
g = (q,; T—m, + 1) K2 . (3-.9)
pr = (m,+1)p,. (3.10)

The advantage of solving for the moments, rather than the elastic parame-
ters directly, is two-fold. The first and foremost benefit is the option to solve the
nonlinear scattering problem in a direct and exact way. Arbitrarily large con-
trasts can be calculated exactly without much computational effort by solving
for the elastic parameters directly, greatly increasing the applicability beyond
conventional methods relying on linearized solutions. Second, the moments
mg, m, and m, are dimensionless quantities, therefore producing functions of

comparable magnitudes, which results in a more stable inversion process. In
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contrast, solving for the elastic parameters directly, which by comparison re-
veal a difference in magnitude of 10° (e.g. bulk or shear modulus compared
to density), can cause unstable inversion conditions even for well conditioned

cases.

3.3 Characterization of the Nonlinear Depen-
dence of the Elastic Parameters on the Mo-

ments

The characterization of the nonlinear nature of the scattering problem pro-
vides an insight into the difficulties that may occur if a linearized approximation
is applied. Equations (3.8) and (3.9) can be transformed to relate dimensionless
properties of the elastic parameters to the dimensionless moments mg and M.
Rewriting equations (3.8) and (3.9) in terms of the relative perturbations in

K and g, it is possible to derive an equivalent dependence for both moments,
yielding

oK

0 .

B o= g, F(m,), (3.12)
H2

where the nonlinear dependence for both moduli is represented by the same
function

F(m) = %%- _ (3.13)

and m denotes the inversion parameters mg and m,.
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This function is plotted in Figure 3.2. The values for m range from —co to
1.0. At m = 1.0 the solid line approaches the physical limit. For this case, the
moduli of the inhomogeneity are much greater than those of the background.
The limit is represented by a rigid body that does not deform under loading (e.g.
the displacement vanishes). Decreasing m between 1 and 0 rapidly decreases
the value for the moduli and the inhomogeneity gradually becomes weaker. At
m = 0 the moduli of the inhomogeneity and the background have equal values
(homogeneous medium). For m < 0, the moduli continue to decrease until they
vanish for m — —oo, representing the case of a vacuum.

The curvature of the graph clearly indicates the asymmefry about m = 0.
For m — 1 the graph becomes strongly nonlinear and overly sensitive to small
changes in m, whereas for m — —oo the graph becomes approximately linear.
This has two implications. First, the common problem of inverting waveforms
scattered by small deviations about.m = 0 is complicated by the fact that small
negative perturbations have a different dependence on s than small positive
perturbations. Therefore, linearized approximations of the inversion problem
will have a distinct performance depending on the sign of the perturbation.
Second, since the dependence of the elastic parameters on the moments becomes
almost linear for extreme negative perturbations, e.g. a cavity, large changes in
the moments produce small changes in the elastic properties only. Therefore, it
could prove difficult to distinguish, based on scattered waves, between a cavity
and a low density yet solid inhomogeneity. Simultaneously, for large positive
perturbations small changes in the moments produce large changes in the elastic
parameters, and thus the inversion of large positive contrasts may not be reliable

due to unstable results.
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Figure 3.2: Nonlinear dependence of the deviation in the elastic moduli with
respect to the moments mg, and m,. The deviation in the moduli is represented

by F(m), while the moments are given by m.
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3.4 Matrix Formulation of the Scattering Prob-
lem and the Solution by Singular Value De-
composition

In Chapter 3.2 the scattering problem was formulated in terms of the mo-
ments mg, m, and m, as functions of the spherical coordinates # and ] (egs.
3.6 and 3.7 ) This section is concerned with reformulating the problem in matrix
form and subsequently solving it by singular value decomposition (SVD). Since
all of the seismic field data are recorded by components arranged in cartesian
coordinates, a rotation from spherical to cartesian coordinates is applied prior
to the matrix formulation. _ '

Combining equations (3.6) and (3.7) yields the total scattered field

U?;fﬁe = UP:""O + US,T,O' (3.14)

Introducing functions containing all distance dependences the scattered field

can be written as

U, = HEmxd + KZmg -+ kP,
+ EBmb6 + km,6

+ KEmA 4 Em,d

+ Kemf + koym,8 (3.15)
with

r

kf{? = ACOWé’r(ZP) ) kgf = ACIW]I.:'(ZP)COSO
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2
—ACYWP(Z,)sind , k2 = —2AT C, W2, (Z,)sin20
10\“p (1] q 20\<p

"

2BC,W;,(Z.)cos0 , kPt = 2Bq102
©

5-(Z5)(3cos?d — 1)

~BC1W5,(Z5)sinb , “G—B C’szg(Zp)szn29 (3.16)

The rotation between the two coordinate systems is achieved by introducing

direction cosines ¢ rotating the components # and 8 to &, ¥ and 2, yielding

t

56,2,,2

= Up,z,y,z + Usaz:yaz

k},{pr mg Cry g

k,;pf mp Cry g

kKR my, Gy d
kig my Coy G
kg my Coy §
K mp Gy
ke My Gy G
kbs m, Coy G

kZ; my CGy Y

+ KR mk G 2
+ kPm, G 2
+ KPmy (. 2

+ kg m, Co: 2
+ kigmy o 2
+ krmp (o 2
+ ki my G 2

+ kﬁ;mPCezi

+ ko my Go: 2. (3.17)



52

Finally combining the distance dependent functions and direction cosines yields

tot - PN
Usc,z = (cKz My + Cpz My + Cpz mp) (s
tot  __ .
Ugy = (cxymi +Cuymy +cpymy) §
tot ~
U2, = (cx-mx +cuzmy +cpmy) 2 (3.18)

where the ¢ functions are defined as

Cxkz = kfr?,. Cr::
Cky = kg{Pr Cry
Crz = k?{pr Crz

Cuz = KIE Goo + kpoCoz + KB Gz + kg Coz
Coy = KIE Gy + kiploy + Kb Goy + Ebp Coy
Cux = K7 G+ kioCo: + ki Gz + Kjg Cos
Cor = KX Go + kglor + KX Gz + KE (oo
Coy = KiF Gy + Kifloy + KX Gy + KE Coy

Coz = kgf (rz -+ kﬁgCoz + k,’;fp, Crz + k-,,;;

e Coz-

(3.19)

At this point it is convenient to rewrite equation (3.17) in matrix form as
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Ui, Cmze Cmye Cmpe | | M _

UL | = | Cmuy Cmpy Cmpy | | ™ (3.20)
tot

Usg,z c’nKz c’"’l“ C’T‘pz mP

or in short form

G
il

CM. : (3.21)

Asssuming a typical cross borehole experiment with M source receiver combina-
tions and a background medium which is parametrized into N volume elements
(voxels), the matrix U is of dimensions 3M x 1, while C and M have dimensions
3M x 3N and 3N X 1, respectively.

Since equation (3.20) is linear in mg, m, and m,, these moments can easily

be computed by inverting the matrix C
M= C™'U. (3.22)

A variety of methods exist to invert the matrix C, however, the method chosen
here is SVD as it provides good diagnostic insight into the inversion problem.

The C matrix can be decomposed into the product of three matrices (Menke,
1989)

C=WAVT (3.23)

where W is 2 matrix of orthogonal eigenvectors spaning the data space, while
similarly V is a matrix of eigenvectors that span the model space. The matrix

A is the diagonal matrix of non negative elements called singular values. The
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singular values are arranged in decreasing order with the possibility of zero val-
ues. However, before the inverse can be computed the zero singular values and
the related vectors in W and V have to be eliminated from the systeni. Thus
the rank of the matrix is reduced which is indicated by the index p denoting
the number of non-zero singular values. Once the decomposition is computed,

the inverse of C is readily given by

Cl=VA'WT - : ] (3.24)
and thus, the solution to the inversion problem is given by

M = VoA'WIU ' (3.25)

where M denotes the estimate of M. Furthermore, the decomposition of C
into the matrices Wy and V7 allows the performance of the inversion to be
investigated. A measure of the resolving power of the model parameters can be

computed using the matrix Vp by
R=V,V]. ‘ (3.26)

In a perfectly resolved model, R is equal to the identity matrix I. If model
parameteré become dependent on each other and can no longer be resolved, the
value of the diagonal decreases and spreads out to neighboring elements. In this
sense the rows of R are a qualitative measure for the resolution of each model
parameter. .

The variance for the model estimate is given by the covariance matrix

covM = o2V, AV, (3.27)
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where o} is the variance in the data, which is assumed to be uniform and
independent of the model paraméters. Thué, for a given data variance, the
covariance of the model can be computed using SVD.

In addition to zero singular values, it may happen, for ill-conditioned prob-
lems, that these values are very small (close to zero). In these cases the estimate
M of the model in equation (3.25) may have very large components which may
be unrealistic in a physical sense. Therefore, 2 common practice is to damp the
system of equations and stabilize its solution. In the present case damping is
achieved by setting to zero small singular values and their associated column
and row vectors in W and V7, respectively. This causes the rank of the sys-
tem to decrease. However, because the information contained in the omitted
equations is negligible, the solution of the inversion is not affected while the
result becomes more stable. The question of how many singular values have to
be deleted to produce a stable and reliable solution is most important, yet no
simple answer exists. In many cases, a trial and error approach is attempted to
‘find the most stable inversion result. However, in this work a more objective
measure will be presented.

Figure 3.3 shows a trade-off curve for a typical inversion problem. The un-
certainty, defined as the normalized standard deviation of the model, is plotted
against model resolution. For an overdetermined undamped system, the model
resolution is perfect as one solution can always be found. However, the asso-
ciated uncertainty reveals very large values that can reach magnitudes larger
than the model estimate, thus rendering the inversion result useless. Damping
the system causes the resolution to decrease together with the uncertainty, thus
gradually decreasing the error of the estimate. However, a reliable model esti-
mate has to have a well balanced resolution and uncertainty which requires a
search for the right damping. For a trade-off curve with normalized axis, the
best solution is provided by the resolution and uncertainty values associated
with the point on the curve closest to the origin, which can be found by seeking

the minimum length of a vector t between the origin and the curve. To deter-
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mine this point, the undamped model estimate is computed and t determined by

It] = \/ (10— R)> + (sd (JTZ))2 (3.28)

where sd (M) is the standard deviation or uncertainty of the model, and (1.0—R)
was used to compute the component of the t vector on the resolution axis
(Figure 3.3). Damping the system is achieved by setting to zero the singular
values and their associated vectors in W and VT and recomputing for every
step the resolution R, the uncertainty sd (ﬂ ), and t. This process iteratively
is repeated until t starts to increase again, at which point the previous values
for the model estimate, resolution, and uncertainty are chosen as the optimum
inversion result. Figure 3.4 shows the length of the vector t as a function of
the iteration process. At inversion step number 38 the length starts to increase
again, and the result of step number 37 is the optimum inversion. The resulting
vector is shown in Figure 3.3. This procedure provides a fast and objective
way to compute the most stable solution without repeating the time consuming
SVD of the background matrix for every new damping step, as the damping is
performed after the initial SVD.

3.5 -Numerical Modeling of Near Field Inver-

sion Cases

It was shown in Chapter 3.2 that the nonlinear scattering problem can be
solved directly if the low frequency approximation (Rayleigh scattering) is ap-
plied. The advantage of quasi independence on the shape of the inhomogeneity,
caused by the the long wavelength relative to the size of the scatterer, is paid
for by the need to include near field terms in the solution. In a typical cross
hole experiment with source and receiver wells separated by distances on the

order of 10 m - 20 m, the location of the target prior to the investigation is
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Figure 3.3: Trade-off curve for a typical inversion problem. The uncertainty,
defined as normalized standard deviation of the model, is plotted versus the
model resolution. The resolution axis is flipped to match perfect resolution
with minimum uncertainty at the origin of the plot.
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often unknown. However, the near field influence of an inhomogeneity extends
to a distance of 2 wavelengths beyond the inhomogeneity (Chapter 2). Thus
in the case of Rayleigh scattering, when the wavelength is much larger than
the scatterer dimension, the receivers may well lie within the near field of the
inhomogeneity. To illustrate this problem, the effect of a solution containing
near field terms is evaluated with respect to a solution containing far field terms
only, based on a numerical model of a field experiment.

This field experiment was conducted at the FRI site in the southern part
of the Grimsel test facility in the Swiss Alps. The facility is run by the Swiss
National Coorporative for Storage of Nuclear Waste (NAGRA) to conduct re-
search on topics ranging from measurements of rock mechanical properties to
hydrological studies to determine permeabilities of fractured zones in granite.
A cross hole tomographic experiment was conducted-to determine the location
and extend of two fractured zones crossing an area of approximately 20 m by
10 m in size. A more detailed description of the FRI field site can be found in
Chapter 4.1.

The numerical model of this test site extends 20 m in length and 10 m
across. Sources and receivers are deployed in intervals of 2 m along the sides
of the model (Figure 3.5). The background parameters are 5500 m/s and 3200
m/s for the P and S wave velocities, respectively, while the density is 2650-

Kg/m3. The attenuation in the model is determined by the relation

o1 (K: + 51)

? (K: + 54r)

-1 1%

S M - 3.29
Q i (3.29)

where the indices ¢ and 7 denote the imaginary and real part of the moduli,
respectively. The complex parts of the elastic parameters are chosen such that
the quality factor for the background amounts to Q, . = 100.

Three weak zones are defined as linear features running across the model
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from the upper left to the lower right corner (Figure 3.5, left panel), consisting
of a decrease by -11 %, -5 % and -10 % in the velocities and density with
respect to the background medium. Simultaneously, the quality factor was
reduced to Qp = 10. The parametrization of the model consists of 50 voxels
with constant side lengths of 2 m. A single frequency for the forward modeling
and the inversion is chosen to ensure that the wavelength of the incident wave
is long compared to the inhomogeneities (one voxel in this model) and thus the
requirements for Rayleigh scattering are met. Given the background velocity,
a frequency of f = 445 Hz is chosen such that the resulting wavelength (A
= 12.4 m) is about six times larger than a single voxel. There are several
objectives for this experiment. First, is it feasible to invert for the structure and
to resolve the model parameters from each other considering the long wavelength
used? Second, if so, is it feasible to distinguish between the 3 weak zones with
almost identical properties, and third, what effect do the near field terms in
the solution have on the quality of the inversion? For the nonlinear forward
modeling, equation (3.1) is used to generate the scattered field at the receivers.
The weak zone is modeled as a series of single inhomogeneities, for each of
which the scattered field is computed independently before the superposition of
all scattered fields is determined at each receiver site. The inversion is performed
with the same parametrization as for the forward modeling, while the data is
kept noise free, therefore providing a means to evaluate the performance of the
inversion in relation to the use of a low frequency signal and the consideration
or dismissal of near field terms alone. '

The inversion is performed by solving the system of equations (3.20) contain-
ing near field terms and substituting the moments mg, m, and m, in equations
(3.5), (3.6) and (3.7) to determine the elastic parameters K, p; and p;. The
result is presented in Figures 3.5 and 3.6 showing the bulk modulus at the top,
the shear modulus in the middle, and the density at the bottom of the plot.
The real parts of the properties are shown in Figure 3.5 It is evident that the
fractured zones are recovered, revealing distinct amplitudes for the three degrees

of weakness for most of the fractured area. A decrease in resolution can be seen
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by fading colors in the center of the image particularly for the bulk modulus
and to a lesser degree for the density. The bulk modulus is the least constrained
of the three properties, as it is only affecting P wave propagation, and' thus, for
the purpose of an inversion, can only be reconstructed from P to P scattered
phases, whereas the shear modulus and the density can be determined from P
to P and P to S wave scattering. Therefore, a reduction in model resolution
due to a non-optimum geometry will first be apparent in the bulk modulus. In
the present example the minimum resolution is about 0.75 for some pixels in
the central row of the panel for the bulk modulus, indicating that they cannot
be perfectly resolved from neighboring elements. Nevertheless, the surrounding
pixels reveal a high level of resolution, indicates that these model parameters
have been sufficiently resolved, and in this sense, they are independent to a high
degree.

The imaginary parts (Figure 3.6) reveal a decrease in the quality of the
inversion result. Whereas the shear modulus shows an acceptable result for the
fracture zone as a whole, the result for the bulk modulus indicates a trend in
amplitudes only, coinciding with the strike of the disturbance. The reason for
the decrease in quality of the imaginary parts lies in the correlation between
the real and imaginary parts. The larger amplitudes of the real parts represent
a higher noise level for the small amplitudes of the imaginary parts. Therefore,
the relative error is much larger for the imaginary parts, causing the reduction
in quality. -

Eliminating the near field terms in equation (3.20) and recomputing the in-
version yields the result shown in Figure 3.7. Again, the model is plotted in the
left panel for comparison. As can be easily seen, the inversion fails to produce
any meaningful result, either in the amplitudes or in the geometric structure of
the anomalies. However, the model resolution produced values comparable to
those of the inversion including near field terms. Thus in a cross hole situation,
the lack of near field terms can lead to situations where the inversion produces
erroneous results which wrongfully are supported by acceptable model resolu-

~ tion. In such a case without further knowledge, a misleading evaluation of these
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Figure 3.5: Inversion results for the real part of the elastic parameters computed
with the total field Green function. The left panel shows the model, while the
inversion result is given on the right. The bulk and shear modulus, as well as
the density are presented in the top, middle and bottom of the plot respectively.
Sources are denoted by stars, whereas receivers are given by triangles. The reso-
lution is represented by the intensity of the color. Full saturation reveals perfect
resolution, whereas fading to white indicates total loss of model resolution.
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Figure 3.6: Inversion results for the imaginary part of the bulk and shear mod-
ulus computed with the total field Green funtion.
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results can cause severe interpretation errors.

To investigate the improvement of the inversion result based on a better
source receiver geometry, two receivers are added to the upper and bottom side
of the model area. The improved geometry is shown in Figure 3.8 which reveals
the inversion results for the real parts, whereas Figure 3.9 shows the results for
the imaginary parts again. The improvement of the inversion is evident in both
plots. All features are clearly recovered while the model resolution increased in
those panels which revealed non perfect results before. The improvement is most
remarkable for the imaginary parts which reveal an almost perfect inversion
result. To emphasize this improvement, Figure 3.10 shows the resolution for the
old and improved geometry for the real parts alone. In this figure the resolution
is plotted in a color scheme with red denoting zero and green indicating perfect
model resolution. The result derived from the old geometry is plotted in the
left panel. The lowest value of about 0.75 for the bulk modulus can be found
in the center towards the edges of the model. The shear modulus shows perfect
resolution while the density reveals slight decreases in the central part of the
model as well. The improvement is evident in the right panel with prefect model
resolution for all parameters. In all cases the resolution increased not only &t
the edges of the model, close to the new receiver locations, but in the central
parts of the model as well.

It can be learned from this example that a well designed geometry can pro-
vide favorable inversion results. In near field situations additional receivers at
the side of the model add to the information content of the system by improv-
ing the angular coverage. Mathematically, this means that the scattered field
described by the equations (3.1 and 3.2) becomes more distinct for different
source receiver pairs, as for this case, the angle § between a single pixel and the
receivers takes on different values, in comparison to the case with all receivers
lined up at one side of the model. Thus the situation can be avoided where the
equations become almost equal, contributing little independent information to
the solution of the system. This lack of information produces small singular

values in the decomposition of the coefficient matrix, which will cause unstable
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Figure 3.7: Inversion results for the real part of the elastic parameters computed

with the far field Green function.
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Figure 3.8: Improved inversion results for the real part of the elastic parameters
computed with the total field Green function, due to better source receiver
coverage. Note the additional receivers at the top and bottom of the panels.
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Figure 3.9: Improved inversion results for the imaginary part of the bulk and
shear modulus computed with the total field Green funtion, due to better source

receiver coverage.
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inversion results.

3.6 Numerical Modeling of Strong Nonlinear
Scatterers with Particular Consideration of

Source Receiver Geometry

A common problem in geophysical exploration is the determination of the
location and the size of cavities in the subsurface structure. The reasons are
widespread, ranging from the detection of abandonded mine shafts to the ver-
ification of underground facilities for military purposes. In the past, attempts
have been undertaken to solve this problem (Cdte et al., 1995). However, al-
though some methods provide a approximate location for the structure, most
-fail to give reliable estimates of the actual volume. The present section will
address this problem, proposing a detailed study to ensure optimum inversion
results for future investigations of this class of problems.

Cavities having a reduction of 100 % in their elastic properties with respect
to the surrounding medium comprise a class of strong scatterers. Therefore,
inversion approaches relying on a linearized solution are not suitable for the
problem, as one of their main restrictions is the assumption of small perturba-
tions in the elastic properties from the background medium. This fact is most
unfortunate, considering the possible advantage of a good signal to noise ratio
of the scattered waves caused by the large contrast in properties. However, the
nonlinear approach introduced in Chapter 3.1 takes advantage of the strong
scattered waves without being bound by any limitations regarding the scat-
tering strength. Therefore, the possibility of inverting for the location and the
structure of underground cavities is a promising feature of the present approach.

Considering the problem that the location and extent of a near surface cav-
ity needs to be determined, the question arises as to what source and receiver

geometry is most promising for a successful survey. Figure 3.11 depicts 4 com-
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Figure 3.10: Resolution for the real part of the elastic properties for the case
of ordinary transmission geometry (left panel) and improved source receiver
geometry (right panel). The resolution is indicated by the color scheme (green:
perfect resolution), (red: no resolution).
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mon geometries in near surface exploration surveys. For the common situation
of a cross hole experimént (Case A) the cavity is located in between the bore-
holes and transmission data is used to study the problem. However, for the
case of only one borehole, a VSP survey can be conducted with sources at the
surface and receivers in the less noisy borehole environment (Case B). In this
case, forward and side scattered energy is considered depending on the exact
location of the sources and receivers. Case C shows a situation where sources
and receivers are both located in the same borehole and only back scattered
waves are recorded. The advantage of this set up is that strong amplitudes
from the incident field do not interfere with back scattered energy, and thus
removal of the incident wavefield generally is not necessary. This compares to
Case D where the same source receiver geometry is located at the surface, in
the case where no borehole is available. This case may not be favorable for
other reasons, such as multiple scattering in the inhomogeneous surface layers
interfering with the primary scattered wavefield.

The question of which geometry is favorable over the others depends highly
on the target under investigation. The 3-dimensional scattering of energy by
an inclusion is a function of the incident wave, its wavelength in relation to the
size of the inclusioﬁ, the distance of observation from the inclusion, and the
elastic properties of the media involved. The distribution of scattered energy
can vary greatly based on these factors, and therefore, it is imperative to study
this problem before a successful survey geometry can be assigned. Figure 3.12
shows the scattering diagram of a sphere shaped cavity for an incident P wave
generated by a point pressure source at a distance of 2 A\. The wavelength is
12 times larger than the diameter of the cavity. The scattered amplitudes are
recorded at a radial distance of 2 A from the center of the cavity. The P to
P scattered amplitudes are plotted on the left side of the graph, while P to
S converted amplitudes are given on the right. The scattered amplitudes are
symmetric along the axis of wave incidence. It can be seen from this example
that little energy is forward scattered for both P and S waves. While most of
the scattered P wave energy is back scattered at 180°, the P to S converted
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Figure 3.11: Four common geometries used in near surface exploration. X's
denote sources while V’s denote the receivers. Case A: borehole transmission
survey, Case B: VSP survey, Case C: Reflection survey in borehole, Case D:
Reflection survey at surface.
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energy is back scattered at an angle of 135°. It is evident that more of the
incident P wave amplitude is converted to scattered S waves than scattered P
waves. In order to detect and to determine the properties of the cavity in this
example, seismometers have to be deployed on the source side of the cavity to
record the back scattered energy. To determine the bulk modulus, seismometers
have to be arranged close to the source to record the back scattered P wave
amplitudes which carry the information to estimate the bulk modulus (equation
3.1). As the source is at a distance of 2 A from the cavity, seismometers should
be placed at an equal distance of 2 A from the cavity and the source to record the
back scattered S wave energy under 135°. This energy is essential to constrain
the location, as well as the shear modulus and the density which are zero for
the case of a cavity. Any other seismometer locations will fail to record the
largest scattered amplitudes and thus make it difficult to detect the presence
of the cavity by means of scattered waveforms. This example is intended to
demonstrate the need for a careful analysis of the complicated nature of the
scattering processes.

Several aspects will be addressed in the present numerical example. First, it
is important to determine the performance of the nonlinear inversion approach,
as outlined in section 3.1, in the presence of a strong inhomogeneity. An appro-
priate test case is the model of an underground cavity. Second, does the source
receiver geometry have as strong an influence as suggested by the last figure?
And third, the spatial parameterization in the inversion thus far has always been
identical to the parameterization used for forward modeling. In the following
example the performance of different parameterizations for forward modeling
and inversion is investigated. This case always arises in nature, where the in-
cident wave samples a continuous medium and is affected by inhomogeneities
on all scales. However, for the inversion the medium has to be parameterized
into discrete blocks whose properties are being investigated. Thus it is desir-
_able that the elastic quantities inside the discrete blocks are averaged over each
single volume, therefore producing mean values of the properties which depend

on the discretization. For the forward modeling the parametrization presented
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Figure 3.12: Scattering diagram for a sphere shaped cavity for the incidence of

a P wave generated by a point pressure source at a distance of 2 ) from the

center of the cavity. Although the scattered amplitudes are symmetric with

respect to the direction of incidence, the scattered P wave is shown on the left,
while the scattered S wave is given on the right of the line of incidence.
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in Figure 3.13 (upper panel) is applied. The cavity is comprised of 64 voxels of
volume 1 m?, each of which is considered a small inhomogeneity. As before, the
exact scattered wavefield is computed for each single voxel and their superpo-
sition calculated for each receiver site. The parameterization for the inversion
is shown in the bottom panel of Figure 3.13, where each of the new voxels has
a total volume of 8 m3. The wavelength of the experiment was chosen to be
about six times larger than the voxel size of the inversion, to satisfy the con-
ditions for Rayleigh scattering. The purpose of the small discretization for the
forward modeling lies in the physics of Rayleigh scattering. One of the under-
lying principles of Rayleigh scattering is that the wavelength is long compared
to the scattering object such that there is no phase relation in the amplitudes
that have been scattered by adjacent objects. The consequence for the forward
modeling is that either the single voxels are chosen to be as small as possible,
which is computationally expensive, or the distance of observation is increased
such that the a':néle between the receiver and neighboring voxels becomes small
enough so that the difference in the phases of the scattered waves vanishes. For
the inversion, however, the discretization is chosen such that the size is small
compared to the wavelength, yet the phase information between neighboring
elements has to be preserved to resolve adjacent voxels. Therefore, it is desire-
able to decrease the distance of observation and keep the angle between adjacent
voxels large enough to maintain the phase difference in the scattered waves. As
can be seen, a trade off is evident in the modeling experiment between the op-
timum distance for forward modeling and the inversion. The best compromise
for the example under investigation is determined to be at about 2 A distance
from the inhomogeneity. It is found for this distance that the phase relation
between the small voxels in the forward modeling decreased sufficiently, while
it is still possible to resolve adjacent elements in the inversion. This fact led to
the choice of 2 A as observation distance for the investigation of the scattered
amplitudes in the last paragraph (Figure 3.12).

The numerical model of the cavity is shown in Figure 3.14. For reasons of

brevity only one vertical slice through the model and only the real parts are
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Figure 3.13: Parametrization of the model for the forward modeling (top) and
the inversion (bottom). Total volume of the cavity is 64 m3, with each voxel
having a volume of 1 m® for the forward modeling (top), and 8 m® for the
inversion. (bottom).
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displayed. For the forward modeling background values of V, = 4750 m/s,
V. = 2750 m/s and p = 2000 Kg/m® are selected which translate into the
bulk and shear modulus values presented in Figure 3.14. The parametrization,
including the background medium surrounding the cavity, was chosen to study
possible interferences between neighboring voxels with strong contrast in the
elastic parameter. According to the choices of geometries in Figure 3.11, three
set ups are selected for the inversion. A transmission survey, representing the
cross hole case, a VSP geometry with sources located at the surface and receivers
in the borehole, and a reflection survey, representing an array of both sources
and receivers either at the surface or located in one borehole. Each of the three
set ups consists of groups of 5 sources and 15 receivers. However, to reveal the
effect of directivity in the amplitudes of the scattered waves on the performance
of the inversion, the receivers are deployed in two different ways. One is a
general set up of 15 receivers separated by 1 m spacing located at = 0° for the
transmission case, at § = 180° for the reflection, and at = 270° for the VSP
case (refer to Figure 3.12 for orientation). Second, the receivers are split into 3
groups of 5 each deployed at § = 315°, § = 0° and 6 = 45° for the transmission,
at = 225°, 6 = 180° and § = 135° for the reflection, and at = 225°, § = 270°
and 0 = 315°'for the VSP case. The purpose of the second set up is to record
the maximum scattered P and S wave energy, simultaneously.

The results for the reflection survey are displayed in Figure 3.15. The results
for the split receiver geometry (3 groups of 5 receivers) is shown in the left panel,
while the single group geometry (1 group of 15 receivers) is given in the right
panel. Because of space limitations in the figure, a star represents a group of 5
sources while a cross denotes 5 receivers. Similarly, the locations of the sources
and receivers symbols are not drawn to scale, rather they should indicate their
posii.‘.ion relative to each other at a distance of 2 ) from the center of the inclusion
in the right panel and additionally are separated by a distance of 2 )\ in the left
panel.

It is evident in the left panel of Figure 3.15 that the inversion produced

good results for all three parameters. The background values are well recovered
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Figure 3.14: Numerical model for the real parts of the elastic parameters for

the case of the cavity. The cavity is modeled by sixteen central voxels, while
the outer delimiter represents the background medium.
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and the values inside the cavity are close to zero. The background values for
the bulk modulus show slightly larger deviations due to its decreased constraint
depending on the scattered P wave only. No interference is evident between
the strong contrasts across the cavity boundary. This is due to the fact that
equation (3.1) is nonlinear in the elastic parameters and thus strong deviations
can be accommodated in the inversion. In contrast, the inversion using the
single receiver array failed to produce a meaningful result. Although the am-
plitudes scale in the correct magnitude range, their location has no relation to
the model. It should be noted that, although a considerable amount of P wave
energy is backscattered (Figure 3.12), the result for the bulk modulus reveals no
improvement over the other parameters. This suggests that the poor geometry
produced coupling between the bulk modulus and the remaining parameters,
thus limiting the quality of the inversion result. For the transmission case (Fig-
ure 3.16) neither of the two geometries produced correct amplitudes or locations,
with amplitudes ranging widely from negative to positive values. However, this
is not surprising, as little energy is forward scattered for this example (com-
pare to Figure 3.12). Finally the VSP geometry reveals intermediate results for
both receiver arrays (Figure 3.17). In both cases the shear modulus and- density
show acceptable images, while the bulk modulus again produces no reliable re-
sult. Although the amplitudes for the shear modulus underestimate the cavity
slightly (negative values) its location is well determined. The inversion for the
density produced correct background values while the estimates for the cavity
are slightly wrong. The increase in performance of the VSP over the transmis-
sion case can be explained by the fact that considerably more S wave energy
is being side scattered (Figure 3.12), producing better inversion results for the
-shear modulus and the density.

This simple numerical experiment clearly demonstrates the complicated na-
ture of the scattering of elastic waves. For a successful detection of a subsurface
inhomogeneity it is imperative to incorporate all available information prior to
the experiment and to investigate the scattering mechanism of the expected

target body. Failure to do so, may lead to a wrong experimental design, which
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Figure 3.15: Inversion results for the real parts of the elastic parameters of
the reflection survey. The cavity is represented by four central voxels, whereas
the background is given by the surrounding area. The positions and number of
sources and receivers are not to scale. One triangle and one star is representative
for a group of 5 receivers and 5 sources, respectively, located at a distance of
2 X from the center of the cavity. The left panel reveals the results for the
geometry using three groups of 5 receivers each, located at § = 225°, § = 180°
and 0 = 135° (refer to Figure 3.12 for orientation), while the right panel shows
the results for one single group of 15 receivers located at § = 0°. In both cases
the source is located at 8 = 0°.
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Figure 3.16: Inversion results for the real parts of the elastic parameters of the
transmission survey. The notation is similar to that of Figure 3.15, except that
the three groups of 5 receivers in the left panel are located at § = 315°, 8 = 0°
and 6 = 45°, whereas the group of 15 receivers in the right panel is located at
6 = 0° (refer to Figure 3.12 for orientation).
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can produce erroneous results no matter how well the experiment and the data

processing are being conducted.

3.7 Inversion of Elastic Waves Scattered by a

High Velocity Inclusion

In Chapters 3.5 and 3.6 forward modeling and inversions were performed
using identical Green functions. The purpose of the present chapter is to in-
vert synthetic data using different Green functions for both processes and to
investigate the performance of the inversion process. Furthermore the effect of
correlation will be studied to determine possible leakage between the parame-
ters.

The forward modeling is based on the exact solution for the scattering of
elastic waves by a sphere (Korneev et al. 1993a, 1993b), whereas the inversion
uses its low frequency Rayleigh approximation. Thus the feasibility to recover
an anomaly, by applying a frequency band limited approximation to invert ex-
act broadband data, is investigated. The inhomogeneity consists of a sphere
with a 10 % reduction in density relative to the backgrbund medium. As the
bulk and shear modulus are kept constant, the velocities consequently are in-
creased. The background values are taken from the example in Chapter 3.5 with
K = 37.42 GPa, p=27.14 GPa and p = 2650 Kg/m? (V, = 5270 m/[s, V, =
3200 m/s), while the sphere has a density p = 2385 Kg/m® (V, = 5555 m/s, V; =
3373 m/s). Based on these values it is possible to study the correlation between
the parameters by inverting for the density anomaly and investigating side ef-
fects on the elastic moduli. In the ideal case, correlation should be negligible
and the values for the elastic moduli should remain unchanged.

The low density sphere with a diameter of 1 m is located approximately at
the center (x=>5.3m, z=11.3m) of a crosshole geometry consisting of 20 sources
and 20 receivers separated by an int'erva.l of Az = 1m each, with a horizontal -

separation of 10 m (refer to Figure 3.18 for orientation). Figure 3.16 displays
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Figure 3.17: Inversion results for the real parts of the elastic parameters of the
VSP survey. The notation is similar to that of Figure 3.15, except that the
three groups of 5 receivers in the left panel are located at at § = 225°, 6 = 270°
and 6 = 315°, whereas the group of 15 receivers in the right panel is located at
6 = 270° (refer to Figure 3.12 for orientation).
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the incident wave for a source located at the center (z = 10 m) of the source
gather. The x- and z-components are plotted at the top and bottom, respec-
tively. Because of the small size of the sphere and relatively weak decrease in
density only, the amplitudes of the scattered field are too small to be observ-
able when they are displayed together with the incident field. Furthermore,
the travel time differences between the two wavefields are so small that their
phases cannot be separaf;ed. Thus the scattered field is plotted in a separate
seismogram section, displayed in Figure 3.17. It can be seen that even for the
example of a single sphere in a homogeneous medium the scattered wavefield is
of complicated nature. Two major wave groups can be seen. The first represents
P to P scattered phases, visible in trace 1 in the time window between t = 3.0
ms and t = 3.5 ms, while the second denotes P to S scattering which appears
between t = 4.3 ms and t = 4.8 ms. In the first group several arrivals can be
seen. The first pulse is the P, P, phase which is reflected by the sphere. The
indices denote the medium in which the waves propagate. The second pulse is
a superposition of two phases that arrive almost simultaneously. These are the
P, P, P, and P, Pl P, phase. The first propagates through the sphere, while
the second is diffracted on the inside of the sphere propagating with the P wave
velocity of the sphere. The second wave group represents the same travel paths
with the exception that the waves convert to S waves while being scattered
from the sphere towards the receivers. Thus they represent Pp Si, P» P; Sa,
and P, P, S, for the first, second, and third arrival, respectively.

The stronger amplitudes of the incident over the scattered field by a factor
of more than 10° prevented the inversion for the structure of the inhomogeneity
without removing the incident field first. The large amplitudes of the incident
field produce numerical noise that is much stronger than the signal of the scat-
tered wavefield and hence a coherent image of the inhomogeneity cannot be
reconstructed. The incident field is generated by a second set of numerical sim-
ulations using the same geometry and elastic parameters for a homogeneous
background without the inhomogeneity. The incident field subsequently is sub-

tracted from the total field and the remaining scattered wavefield is used in the
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present inversion attempt.

The area to be inverted for consists of 13 x 20 voxels with a side length of
1 m each (Figure 3.18). As before, sources and receivers are denoted by stars
and triangles, respectively. The pa,rameti:ization is extended Beyond source and
receiver positions to investigate whether scattered waves are being mapped into
these locations. The results of the inversion is split into three panels, with bulk
modulus, shear modulus, and density plotting at the top, in the middle, and at
the bottom, respectively (Figure 3.18). The inversions are computed for a total
of 25 frequencies and the results stacked. The frequencies vary from 122 Hz to
5981 Hz. Considering a background velocity of V, = 5270m/s, this translates
to wavelengths between A = 43.2m and A = 0.88m for the incident wave, and
Rayleigh limits between k,R = 0.07 and k,R = 3.56, respectively. Thus, the
wavelength of the incident wave spans the whole range from Rayleigh to Mie
scattering. Although the results for the single frequency inversions vary, the
averaging process is successful in recovering the density perturbation. It can be
seen that for most of the voxels the background values for the three parameters
are well recovered. This result can be extended to the source and receiver
regions which indicates that no amplitudes are mapped into these positions and
the inversion produced stable results. The density reveals a negative deviation
from the background value at the approximate position of the sphere. However,
the exact location of the sphere is at x = 5.3 m and z = 11.3 m, whereas
each voxel of the parametrization is centered around values with 0.5 m spacing.
Therefore, the inhomogeneity is parametrized by the four neighboring voxels at
(x=4.5m, 2=10.5m), (x=5.5m, z=10.5m), (x=4.5m, z=11.5m), and (x=1.5m,
z=11.5m), with most of its volume residing in the voxel at (x=5.5m, z=11.5m).
Accordingly, the inversion result the strongest deviation in this voxel. Since
the returned value of the inversion is a function of the product of the deviation
from the background value times the scatterer volume, the deviation in the
density in voxel (x=5.5m, z=11.5m) has to be less than the original 10 %, as
it parametrizes the scatterer only by a fraction. Therefore, the adjacent voxel

at (x=4.5m, 2z=11.5m) reveals some deviation in density that comprises part of
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the scatterer as well.

Taking the location of the scatterer into consideration, it becomes evident
that the most noise in the images of the bulk and shear modulus appears around
that particular position. This is caused by correlation between the density
and the elastic moduli based on the parametrization of the medium. Figure
3.19 shows the correlation between the value of the density in voxel (x=5.5m,
z=11.5m) and the surrounding voxels of the model for each model parameter.
The top panel shows the correlation between the density and the bulk modulus,
the middle panel the correlation between density and shear modulus, while the
bottom part reveals the correlation of the density with itself. The values range
from -1 (anticorrelation) to +1 (perfect correlation). As expected, the auto-
correlation of the density value at voxel (x=5.5m, z=11.5m) is unity (bottom
panel of Figure 3.19), while the neighboring elements surrounding this voxel
reveal a correlation of -0.1. The correlation decreases farther away from the
object revealing mean background values of 0.0029. The top panel shows a neg-
ative correlation of -0.4 between the density and the bulk modulus at the same
location. As expecte;,d, this correlation amplifies the noise in this region and
produces the weak anomaly apparent in the top panel of Figure 3.18. However,
the background correlation reveals a very low value of 0.0017. Similarly, the
correlation between the density and the shear modulus (middle panel of Figure
3.19) reveals a high value of 4+0.8 at the location of the iject, and ;ampliﬁes
the noise in this area (middle panel of Figure 3.18). The mean background
correlation between density and shear modulus is equally low at -0.0017. The
overall low mean background value for the correlation means that little energy is
smeared from the voxel of the inhomogeneity to neighboring pixels and indicates

that the parametrization resolves the model well.

3.8 Conclusion

The thesis of this chapter was to reformulate the nonlinear scattering prob-

lem in terms of a direct linear solution and to invert this solution for the elastic
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parameters of the medium. The inversion was investigated to determine the
need for near field terms in certain cross hole situations, the resolving power of
several source receiver geometries, the performance in the case of strong inho-
mogeneities, and the correlation between model parameters.

Reformulating the expression of the scattered field in terms of moments
my, ™My, and m, represents a decomposition of the excitation mechanism of
the scatterer and has several advantages. The scattered field and the elastic
parameters depend linearly on the moments, and therefore, it is possible to solve
for the moments first which subsequently can be used to determine the elastic
parameters of the medium. This substitution stabilizes the inversion process,
as the moments are unitless properties of equal magnitude. Further, strong
inhomogeneities can be easily inverted for by solving the equations directly,
without having to iterate based on a linearized approximation, derived for weak
scatting cases. In most cases the linerized applications fail to produce reliable
results for deviations larger than 20 % (compare to Chapter 2.4).

The nonlinear dependence of the deviation of the elastic parameters on the
moments reveals that deviations between - 50 % and + 100 % exhibit the
strongest nonlinearity, whereas extreme or negative deviations can be approx-
imated by a linear fit but with almost no change in the moments for negative
deviations in the elastic parameters. As a consequence it may not be possible
to distinguish between a cavity and a solid inhomogeneity with small values in
the elastic parameters.

The SVD was selected to invert the matrix system of linear equations as it
provides a valuable insight into the physics of the problem. The decomposition
into singular values allows the degree of independence among equations in the
matrix system to be studied. Equations that are almost linearly dependent
produce small singular values that cause instabilities during the inversion and
therefore need to be set to zero. An automatic technique was chosen to damp
the system, by minimizing the distance between the origin and the trade-off
curve. The damping was achieved by progressively setting small singular values

and their associated eigenvectors equal to zero until the resulting resolution and
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variance produce an optimum value on the trade-off curve. This damping value
is found to produce the best result in terms of a trade-off between resolution
and variance of the parameters.

The numerical modeling of an underground crosshole situation revealed that
in the absence of noise, it is possible to invert Rayleigh scattered waves to solve
for the elastic parameters of the medium. It was shown that although the size
of a single voxel is small compared to the wavelength, its value was successfully
retrieved. As indicated in Chapter 2.3, it was shown that near field terms are
important in a crosshole situation when the Rayleigh approximation is used to
linearize the scattering problem. The long Wavelengths' cause the receivers to
lie within a distance of 2 A from the inhomogeneity and near field terms become
necessary to produce correct results. Although the model resolution produced
by the Green function containing only far field terms reveals an acceptable
result, the amplitudes of the elastic parameters deviate from the true model by
up to 2 orders of magnitude, and thus may lead to erroneous interpretations.
The importance of a good source receiver geometry was presented by adding 2
receivers at selected positions which increased the angular coverage of the model
area. This produces equations that are less linearly dependent and therefore add
new information to the system. Adding two receivers to an existing array of
10 sources and 10 receivers improved the model resolution in the least resolved
areas from 0.6 to 0.9.

The 3-dimensional scattering of energy is a complicated process almost im-
possible to visualize, as it depends on many parameters. An important factor
are the elastic parameters of the medium, and therefore the scattering process
strongly depends on the object under investigation and needs to be studied to
determine the best geometry for a successful inversion experiment. It was shown
for the case of a cavity that a reflection survey provides the most promising ge-
ometry, as most of the energy is back scattered. In contrast, the commonly used
cross hole geometry proved unsuccessful as the cavity blocks the propagation of
most of the waves and little energy is forward scattered. However, the successful

result for the reflection survey indicates that the presented theory is applicable
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to strong scattering objects.

The numerical case of elastic wave scattering by a high velocity (low density)
inclusion was intended to invert data generated with different Green functions
and to investigate the influence of the incident field on the inversion. The
forward modeling was performed using an analytic solution for the scattering
by a sphere, and thus the wavefield was exact over a broad frequency range.
The intention was to invert this data set applying the low frequency Rayleigh
approximation and to investigate whether it is possible to recover the anomaly
within the limited frequency range of the approximation. It was shown that
in the case of a small weak inhomogeneity, the incident field has much larger
amplitudes than the scattered field and that the travel time difference, due to
the small scatterer size, is not observable. Therefore, the incident wave field
has to be removed before a successful inversion can be achieved, as the noise in
the inversion produced by the incident field dominates over the amplitudes of
the anomaly. However, in a field situation, where the incident field generally is
poorly constrained, the removal would be problematic, due to interference as the
fields almost coincide in time. After removing the incident field in the numerical
exampl8, the inversion of the remaining scattered field produced correct results
in retrieving the anomaly. An increase in the noise level for the bulk and
shear modulus at the location of the anomaly could be explained by increased
correlation between the density and the moduli at this location, whereas small
background values of the correlation indicate a stable parametrization of the
model. This example showed that a successful inversion can be performed on
broadband data by applying a low frequency approximation, as long as the
incident field can be subtracted from the total wavefield. However, it should
be noted that the frequencies applied for the inversion varied from Rayleigh
to Mie sc:a.ttering. Although this appears to be in violation with the strict
mathematical application, the stacking process produces a good estimate of
the results in terms of resolution of small scale features and in recovering their
amplitude anomaly.

The problem of a strong incident wavefield that dominates the recorded data
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and its influence on the inversion will be addressed in the next chapter for the

case of a field experiment to determine the elastic moduli of a fractured zone in

a granitic host rock.
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Chapter 4

Inversion of Scattered Waves Applied

to. a Crosshole Experiment

4.1 Imtroduction

The last chapter was concerned with the the investigation of the effect of
near field terms on the inversion result, as well as the effect of source receiver
geometries. Although this is a valuable educational exercise for planing fu-
ture surveys, the usual strategy to recover anomalies on a small scale is still a
crosshole survey with source and receivers in opposite boreholes and the object
located in between. The objects vary widely and the survey intentions range
from the location and estimation of the volume, e.g for the case of a cavity,
to the delineation and possible estimation of elastic or hydrologic parameters
for the case of a fractured zone. In the present example, it will be attempted
to invert a crosshole data set to determine the location and, if possible, the
elastic parameters of a fractured zone. The intention is to study the possibility
of modeling a large object by a series of small point scatterers.

A brief overview will be given to describe the experimental design and the
geology at the survey site. Transmission crosshole data contain a variety of
direct, scattered, and reflected phases that need to be extracted from the data
before the scattered waveforms can be inverted. It will be shown what param-
eters have to be taken into account and whether it is possible to successfully
remove unwanted phases. The results of the inversion will be presented based

on images of the elastic moduli, the density, as well as the velocities, and it
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will be discussed which parameters are suitable for the various objects encoun-
tered in subsurface imaging. Finally, an overview will be presented to suggest

improvements for the future application of this inversion technique.

4.2 Geology and Experimental Design at the
Grimsel FRI Test Site

The United States Department of Energy (DOE) and the Swiss Coopera-
tion for the Storage of Nuclear Waste (NAGRA) conducted several experiments
to investigate the effect of fractures on the storage of nuclear waste in under-
ground repositories. The experiment was carried out at the Grimsel test site in
Switzerland, with the primary goal to dgtermine the nature of wave propagation
in fractured rocks and to relate seismological to hydrological parameters. The
experiment described here was carried out at the FRI site with the intention
to delineate and determine the elastic parameters of a known fracture zone in
a highly foliated granitic host rock. The geometry of the FRI site is shown in
Figure 4.1. Two main access tunnels provide access to a zone of fracturing strik-
ing NE-SW. The zone appears to be an area with varying concentration of thin
fractures, determined from cores taken from two horizontal boreholes (BOFR
87.001 and BOFR 87.002) as indicated by the short lines along the holes in Fig-
ure 4.1. In addition to the mapped fractures, a change in color of the granodior-
ite may indicate an additional feature in the upper half of the panel,-indicated -
by the dashed line. The data were collected between the two boreholes BOFR
87.001 and BOFR 87.002, with 39 sources located in the first and 39 receivers
in the second hole, respectively, separated by a distance of 10 m (Figure 4.2).
During the experiment, the horizontal holes were water filled to improve the
source and receiver coupling. Additionally, the receiver, a 3-component geo-
phone, was clamped to the borehole wall. Although the setup reveals a typical
2-dimensional crosswell geometry, the fracture zone can be expected to extend

in both directions perpendicular to the plane. Therefore, scattering in the third
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dimension will have an effect on this experiment and is a possible explanation

for relatively large amplitudes recorded on the y-component.

4.3 Data Processing

Figure 4.3 shows a typical source gather for a source located at z = 1.35m
in borehole BOFR 87.001. The reverberative nature of the incident wave is
apparent behind the first arrival, and is caused by mﬁltiple reflection in the
water filled boreholes. Several faint arrivals, representing reflections off tunnel
walls, S waves radiated at an angle of 45° by the source, and tube waves appear
in the section after ¢t = 5.5ms.

The theory of the presented inversion approach is formulated for the scat-
tered wavefield only, which requires the elimination of the incident wavefield
from the recorded data. However, the revérberations in the present example
make it difficult to correctly estimate the incident wave and remove it from the
data. In addition to the incident field, the data are contaminated by the radi-
ation pattern of the source, the source and receiver coupling to the borehole,
and anelastic attenuation in the medium which need to be corrected for before
an inversion can be attempted.

To correct for the differences in energy radiation of the source, a cosine
operator (cos®) is applied, where © is the angle between the horizontal and the
source receiver direction. This operator was found by estimating the amplitude
of the first arrival (after correcting for geometrical spreading and preliminary
anelastic attenuation) while the receivers were moved in a crosshole fashion
around a fixed source in a homogeneous region of the host rock. The cosine
function was found to best fit the amplitude pattern (Majer et al., 1990). In a
similar experiment, the P wave velocity was determined as a function of direction
of propagation. The granitic rock shows 2 high level of foliation, parallel to the
strike of the fracture zone. This foliation produces P wave anisotropy which
reaches up to 8 %, with the symmetry axis normal to the plane of fracturing.
Hence, the fast direction is parallel, and the slow direction perpendicular to the
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Source and Receiver Locations at the FRI Site %
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Figure 4.2: Geometry of the field experiment. Sources and receivers are denoted
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strike of the fracture zone. The average background velocity was determined at
5270m/s. Although no anisotropy estimation was done for the S wave velocity,
the background value was determined at V, = 3200m/s. It is expected, however,
that the host rock reveals a similar degree of S wave anisotropy, the lack of
which will reduce the quality of the inversion results, as a considerable amount
of scattered energy is converted into S waves.

To estimate the mean anelastic background attenuation o and the factors
governing the source receiver coupling at their locations in the boreholes, the
amplitudes of the first arrivals were measured and the parameters estimated in
a least squares sense. The parameters have to be determined simultaneously,
as they have similar effects on the amplitude of the wavefield, and an inversion
of a single parameter is not possible without estimating the others first. The
wavefield is corrected for geometrical spreading and the radiation of the source.
Subsequently, the traces are aligned along their arrival times and the amplitudes
of the first minima determined. A total of 1521 amplitude values were inverted
to solve for the 79 unknowns (39 source and receiver parameters each and the
average background deviation a). The background attenuation is estimated to
be oo = 0.36m™. Assuming a linear frequency dependence for e, a background
velocity of V, = 5270m/s, and a peak f:requenc_y dominating the incident pulse
of fo = 10K Hz, the relation Q@ = wf/aV, produces a frequency independent
quality factor of Q = 17. The value for ¢, although it seems to be low, is not
unreasonable for this highly foliated medium considering the short wavelength
of 0.53 m of the incident pulse. It is representative of the mean background
attenuation, however, and does not take into account local areas of abnormal
attenuation.

The results for the normalized source and receiver coupling factors are pre-
sented in Figure 4.4. It can be seen that the source factors vary around the value
of 1.0 with larger deviations between source position 10 to 20, corresponding
to 2z = 5 to z = 10m, respectively. Referring to Figure 4.1 it becomes obvi-
ous that this is the range where the assumed fracture zone intersects borehole

BOFR 87.001. As the factors are larger than unity towards the edges but less
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than unity in the center of the fracture zone, the physical parameters may be
varying across the fault area, indicating that, in fact, this is not a homogeneous
fracture, but rather an accumulation of thin parallel cracks. The trend .for the
receiver factors differs but supports the geological interpretation. A monotonous
increase from values around 0.5 to 1.0 between receiver position 1 (z = 1.5m)
.and 15 (z = 8.5m) is evident in Figure 4.4b). The low values are too small to be
explained by borehole effects only. However, since the inversion simultaneously
solves for the mean value of a, but does not recover local attenuation anomalies,
any anomaly will have an effect on the wavefield, particularly if these zones are
close to certain receivers. Such an anomalous zone was detected by Majer et al.
(1990) for a region close to borehole BOFR 87.002 between the receiver position
1 (z = 1.5m) and 10 (z = 6.0m). This result is mirrored by the low values in
Figure 4.4b). Figure 4.1 shows borehole BOFR. 87.002 intersecting the fracture
zone at approximately (z = 16.0m) (receiver position 32). Again, the receiver
factors reveal a maximum, before they drop to lower values towards the center
of the fracture zone at the end of the borehole. Thus, the source and receiver -
coupling factors seem to relate to the geological features, indicating a non uni-
form fractured zone and possibly a high attenuation area in the SE corner of
the study area.

After correcting the total wavefield for the source and receiver coupling fac-
tors and the background attenuation, the first arrivals should be a good repre-
sentation of the source wavelet. Therefore, for every source position, the traces
are stacked to produce a representative source signal for each source location.
Finally, the 39 source wavelets are stacked to produce the common source signal
representative of all source positions. This wavelet is shown in Figure 4.5. The
reverberative nature is evident after the first impulse fof almost 0.6ms. How-
ever, in contrast to many traces, the amplitudes are not constant but appear
to be attenuated after the first pulse. The reverberations are caused in part
by multiple reflections in the receiver borehole. However, in contrast to the
receiver, the source was not clamped in the borehole, as the water was intended

as the coupling medium to the borehole wall. Thus, after the first source pulse,
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a fraction of the energy reverberates in the source hole and each reverberation
radiates energy into the formation. Therefore, the multiples are likely to be a
mixture of source and borehole reverberations. It will be discussed in a later sec-
tion what length of the source wavelet provides the best deconvolution operator
for the scattered wavefield.

The first 0.6ms (150 samples) of the source wavelet are convolved with a
3-d Green function to compute a representative incident field which should be
subtracted from the total field. However, because of the large amplitudes .of
the reverberations in many single traces which did not stack constructively to
equally large amplitudes in the source wavelet, it was not possible to remove
the incident field and the reverberations effectively. Without the removal of the
reverberations, however, the inversion will not produce reliable results as they
produce the largest amplitudes in the seismogram after the removal of the inci-
dent field. Therefore, the incident field and the reverberations are suppressed by
applying a one sided Hamming window to the beginning of the traces, to damp
an interval of 0.6ms after the first arrival. The window length was estimated
from the source wavelet in Figure 4.5, where the reverberations appear to be
present up to 0.6ms. The windowing process simultaneously damped all near
field scattered phases that might have been present in the seismogram. These
phases appear with little travel time separation from the incident field in the
seismogram, since the scattering takes place in the vicinity of the source or the
receiver. To avoid incident S waves and tube waves in the coda of the traces,
visible after 5.5ms in Figure 4.3, the end of the traces are damped, again us-
ing a one sided Hamming window. The filtered wavefield representing the bulk
of the scattered energy is shown in Figure 4.6, where the geometry of sources
and receivers is the same as for Figure 4.3. The windowing process limits the
scattered phases to primarily forward scattered energy.

In a final step before inversion, the scattered field has to be deconvolved
by the source wavelet, to normalize the amplitudes by the source strength. In
the last paragraph, it was argued that part of the reverberative nature of the

source wavelet is due to reverberations in the source borehole. In this case
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the borehole source acts like a pulsar pumping energy into the formation with
every reverberation. This additional energy has to be taken into account for a
successful deconvolution by the source signal. For this reason the length of the
deconvolution operator is chosen to be 0.6msr, after which the reverberations
of the wavelet afe sufficiently damped. After deconvolution, the spectral values

of the scattered field are taken as input for the inversion algorithm.

4.4 Inversion of the Field Data

The images of the inversion results are compiled by stacking 13 individual
inversion results, each computed for one single frequency ranging from 3051H2
to 5981 H z with an interval of 244H z. Assuming a background P wave velocity
of V, = 5270m/s, this translates to a wavelength of A, = 1.7m and A, = 0.9m for
the incident wave, respectively. Unsing a voxel length of 1m, the wavelengths
vary from the Mie scattering range (A, = 0.9m) to a value of (), = 1.7m)
that lies between the ranges of Mie and Rayleigh scattering. The inversion
was performed using lower frequencies as well, but the resulting images did not
reveal sufficient resolution and therefore were dismissed from the final stack.

The inversion is computed using two criteria. First, the Green function is
computed with and without P wave anisotropy in the background medium, and
second, the data is inverted with and without corrections for the background at-
tenuation The intention is to study the sensitivity of the inversion to anisotropy
and to determine what effect anelastic attenuation has on the inversion result.

Figure 4.7 reveals the geometry of the area which is parametrized in the
model. As indicated in Figure 4.2 the boreholes are slightly slanted with respect
to the z-axis of the coordinate system. An area 9m x 19m was parametrized into
171 voxels of 1m? each. Data from all 39 source and receiver positions are used.
After the inversion, each panel is smoothed applying a cubic b-spline interpo-
lation after Michelini et al. (1991), generating the final plot. The background
values of the inversion are determined using the V, and V, values given above
and a mean density of p = 2650kg/m?® (Majer et al., 1990). This translates into



DODIDODIDNOCOCICOCOCD
[\l Nep]

& o Pt et e e DO DO N
~ ORI TIOONIRSHIOONIRI0

106

4

14

)‘M
o\\‘l{\}rww V4

RN

—)
AR
- A@’QN

AN

X

10 20 80 40 50 60 970 8.0
Time [ms]

10 20 30 40 50 6.0 7.0 80

Time [ms]

Figure 4.6: Source gather of scattered wavefield for source location at z = 1.35m,
a) x-component, b) z-component.




107

a bulk and shear modulus of 32.42GPa and 27.14GPa, respectively.

The inversion results in Figure 4.7 are determined by taking the P wave
anisotropy into account but neglecting the correction for anelastic attenuation.
Therefore, the scattered amplitudes will be more attenuated, however, since the
fracture zone most likely is a zone of higher attenuation, its influence may be
mirrored in the data. The image of the bulk modulus reveals several features
that can be related to the inferred geological interpretation as suggested in Fig-
ure 4.1. In the bottom half of the image (z = 13m — 2 = 20m) a crossing
pattern of low bulk modulus anomalies can be seen. The suggested fracture zone
is not clearly visible due to a more pronounced feature running from the lower
left corner (z = 2m, z = 18m) to borehole BOFR 87.002 (z = 10m, z = 14m).
Referring to Figure 4.1 this could be the effect of the borehole labeled CO 1
connecting the AU Tunnel with borehole BOFR 87.002. A possible explanation
may be provided by the nature of the fracture zone. In contrast to a clear frac-
ture, this zone probably consist of several thin parallel fractures with a more
gradual reduction in the elastic parameters, and thus it may not reveal such a
strong contrast. The borehole, however, provides a sharp contrast to the back-
ground medium and therefore constitutes a strong inhomogeneity for elastic
waves; although it is not clear whether the relatively small volume of the bore-
hole can produce such strong scattering amplitudes. A similar crossing feature
of low values in bulk modulus is visible in the upper half of the panel between
(z = 2m, z = 10m). The feature crossing from upper right (z = 10m, 2z = 2m)
to borehole BOFR. 87.001 at (z = 1m, z = 10m) is comparable in signature to a
low velocity anomaly found by Majer et al. (1990) and Vasco (1995), although
this is only supported by a set of fractures found at the beginning of borehole
BOFR 87.002, indicated by short lines at (z = 10m,z = 0Om). Again, a pro-
nounced anomaly is visible striking from (z = 10m, z = Tm) at BOFR 87.002
upward towards the source hole (z = 3m,z = 5m). The interpretation could
be a possible suture zone between two differently colored host rocks in the ares,
(dashed line in Figure 4.1). An explanation could be based on the fact that

this welded contact constitutes a better scatterer than the fracture zone and
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Figure 4.7: Inversion result for the elastic parameters for an anisotropic back-
ground medium. Stars denote sources, while receivers are indicated by triangles.
The result represents a stack of 13 individual frequencies, ranging from 3051 H 2

to 5981 H z.
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thus produces a more pronounced feature. Side effects from the tunnel walls
are not apparent, which is due to the windowing at the end of the traces. The
results for the shear modulus partly support this interpretation, although they
reveal the smallest perturbation of the three parameters. The fracture zone in
the lower left half may be indicated by three point anomalies trending from
the lower right corner to the middle of borehole BOFR 87.001. The suggested
suture zone appears to be shifted relative to the position in the upper panel.
However, S wave anisotropy is not accounted for in the inversion, and there-
fore the location of the shear modulus may be more affected than for the other
parameters. The location of the bulk modulus should be well constrained as
it is affected by the P waves only, whereas the density, being constrained by
P and S waves, may not be as much affected by deviations in the S wave ve-
locity as the shear modulus. The bottom panel, displaying the density data,
shows a strong feature runing from the upper right corner (z = 10m,z = 0m)
towards the middle of the panel (z = 4m,z = 6m). This partly supports the
results of the bulk modulus for the location of the anomaly. The suture zone
may be indicated by a faint anomaly traversing the upper half of the panel from
(z = 10m, z = 8m) at borehole BOFR 87.002 towards the middle of the upper
panel (z = 7m, z = 8m). However, the fracture zone in the bottom half is not
well constrained by the density.

The results of the three parameters clearly suggest the complicated process
of elastic wave scattering. Because of the limitations in the data processing, the
amplitudes of the moduli are the least constrained parameters in the inversion.
Similarly, the consideration of S wave anisotropy should improve the location -
of the anomalies of the shear modulus. However, despite these constrains it is
evident that the three parameters are affected in a distinct way by the encoun-
tered geological features. It appears that the bulk modulus is more sensitive to
drastic changes (e.g. borehole or welded contact) than it is to gradual changes
in a zone consisting of several fractures. The density on the other hand may be
sensitive to both features, whereas no real conclusion can be drawn for the-shear

modulus from these results. However, this suggests, as indicated in Chapter 3.1,
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that the difference in response of the three parameters may lead to decreased
effects in the seismic velocities.

To demonstrate this point, the P and S wave velocities as well as the V;/V,
ratio are computed for the inversion results of Figure 4.7 and presented in
Figure 4.8. As can be seen, the same parameters produce different features
when displayed in terms of the velocities. The P and S wave velocities suggest
the presence of a low velocity anomaly in the lower right corner of the panel,
possibly indicating the fracture zone, which is known to intersect the eastern
tunnel (AU Tunnel in Figure 4.1) at (z = 8m, z = 20m). Similarly the presence
of borehole CO 1 is indicated by a low velocity anomaly but merges with the
fracture anomaly (visible in P wave velocity). The suture zone in the upper
half is not visible, whereas the anomaly crossing from the upper right corner
(z = 10m,z = Om) towards the middle of the pamnel (z = 6m,z = 5m) is
evident as a high velocity anomaly, due to the low values in density for the
same location in Figure 4.7. Because these features are similar in P and S
wave velocities, they do not produce anomalies in the V;/V, ration (bottom
panel of Figure 4.8). The most apparent feature in the V,/V, ratio is what
appears to be the borehole CO 1, as this anomaly produced larger negative
deviations in the P wave velocity. Therefore, it is evident that the elastic moduli
respond distinctively to geological features and are useful in extracting different
information which can be displayed in various combinations to provide a more
profound understanding of heterogeneous subsurface structures.

The inversion problem is overdetermined since all 39 source and receiver
positions are used and total of 513 model parameters are inverted. Thus the
model resolution is good for most of the parameters. It ranges for the shear
modulus and the density from values of 0.9 along the source and receivers (due
to near field terms in the Green function) to values of 0.6 in the center of the
image, although the outermost row of voxels for the shear modulus reveals a
resolution of only 0.2. However, for the case of the bulk modulus, the resolution
is equally good at the edges but drops down to 0.45 in the center of the model.
These results confirm the numerical calculations in Chapter 3.5, where a similar
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Figure 4.8: Velocity and V;/V,-ratio maps determined from the inversion results
of Figure 4.7.
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behavior in the model resolution was determined. The drop in model resolution
for the bulk modulus is caused by the fact that it is only constrained by the
scattered P waves, whereas shear modulus and density are determined by both,
P and S waves. The drop in resolution in the center relates to the less perfect
angular coverage as stated in Chapter 3.5, where the waves are more likely
to sample a voxel in a straight transmission manner. Concerning the model
resolution, it can be stated that most of the features in Figure 4.7 are resolved
and to a certain degree independent from each other.

In contrast to Figure 4.7, Figure 4.9 shows the inversion of the same pa-
rameters for an inversion based on an isotropic background P wave velocity of
5270m/s. It is evident, that the image does not resemble the geological features
described in the previous figures. Moreover, it can be seen that the linear fea-
tures have disappeared and most of the deviations reveal a block like structure.
This may indicate that linear features striking either parallel or perpendicular
to the symmetry axis of anisotropy can no longer be resolved using a mean back-
ground velocity. In this case the velocity in the fast direction is underestimated,
while it is overestimated in the slow direction. Therefore linear features striking
parallel to the fast direction is are shrunk, while features parallel to the slow
direction are elongated. Thus for the case of inverting scattered amplitudes, the
Green function has to account for anisotropy if linear features are to be recov-
ered. It can be concluded that S wave anisotropy, which is not accounted for in
this example due to the lack of S wave velocity measurements, can be as easily
implemented as for the case of P wave anisotropy presented here. The strong
amplitudes for P to S scattered waves (refer to Figure 3.12) supports this point.
However, in the present example, the effect of scattered S waves may have been
suppressed due to the windowing at the end of the traces, which is supported
by the weak anomalies in the shear modulus. Additionally, as the wavefield is
not corrected for anelastic attenuation and the inversion is done one frequency
at a time, the effect is stronger for the S waves as their wavelengths are shorter
and therefore they are more strongly attenuated than P waves over the same

travel distance.
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Figure 4.9: Inversion result for the elastic parameters for an isotropic back-

ground medium.
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The inversions were also performed for attenuation corrected data, however,
the results revealed no structure, but rather strong oscillations between high
and low anomalies. This may be caused by an overcorrection for the anelastic
attenuation o = 0.36m™!, as determined in Chapter 4.2. However, inversion
results based on a lower value of @ = 0.12m™! as determined by Tura (1990),
revealed the same problem, and therefore it seems questionable whether the
extraction of ¢ is a suitable procedure. A possible solution is suggested in the

following chapter.

4.5 Conclusions

The application of inverting scattered waves to detect a fracture zone in a
cross hole situation revealed the following results. Before a successful inversion
is feasible the raw data have to be corrected for various effects. . The source
radiation pattern should be determined and corrected before any other param-
eters can be estimated. Source and receiver coupling to the borehole has to
be estimated simultaneously with the anelastic attenuation in the medium, as
all parameters have a similar effect on the first arrival and a single estimation
cannot be performed without assuming values for the other parameters. The
inversion produced meaningful results for the source and receiver factors, which
correlate well with the geology encountered in the boreholes. It produces an in-
dication that the fracture zone is not a homogeneous feature along the borehole
wall. However, the estimation of o produced an estimate that might be too low
for this host rock.

Reverberations in the source and receiver borehole made it difficult to suc-
cessfully remove the incident wavefield and a robust method of windowing the
beginning and the end of the traces was necessary. However, the inversion of
the scattered wavefield produced reasonable results that can be related to the
geology as determined from the tunnel and borehole walls. It appears that the
two moduli and the density respond to different features in different ways, and
therefore this may be a good method of distinguishing between e.g. an open
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fracture zone and a closed welded fracture. Furthermore, the commonly used
images of V}, and V velocities and their ratio can be easily computed to support
other tomographic studies.

At this point the general finding for the FRI zone are more suggestive than
definitive. It appears that the main fracture zone striking NE-SW is an ac-
cumulation of several thin fractures producing a blurred image. In contrast
an additional zone striking SE-NW from the Main Access Tunnel to borehole
BOFR 87.001 seems to be a more narrowly defined feature. In addition, the
existence of a welded contact between the two differently colored host rocks
appears to be real at about the location indicated on the map in Figure 4.1.
However, the quality of the image, although the findings appear significant,
is limited. This can be explained by a variety of factors summarized in the
following paragraph.

The fracture zone is.embedded in 2 relatively homogeneous granite and it
can be expected that it extends to both sides perpendicular to the experimental
plane. Thus out of plane scattered amplitudes will be evident in the seismo-
gram traces, which will contribute to an overestimation of the parameters to be
determined in the plane. A possible test would be to invert for a 3-dimensional
medium consisting of 3 planes parallel to each other extending in the y-direction.
Thus out of plane scattering could be traced back to its origin and the image
could be improved. However, sufficient source and receiver coverage is neces-
sary. Reverberations in the source and receiver hole prevented the subtraction of
the incident wavefield and therefore, the subsequent windowing of traces muted
near field scattering as well. A better procedure in subtracting the incident
field, e.g. cross correlating the first pulse of a numerically calculated represen-
tation of the incident field with the field data and subsequent scaling before the
synthetic field is subtracted, should improve the result. Anelastic attenuation is
a substantial problem in amplitude inversion. It should be corrected for, if the
Green function cannot account for it, although the determination of o seems
problematic. A promising procedure in the present approach is the application

of a complex Green function to solve for the real and imaginary parts of the
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elastic parameters simultaneously, as presented in Chapter 3.5. However, the
present example would require a large capacity in computing power, as, in addi-
tion to the 39 source and receiver combinations, the number of unknowxis would
increase from 3 to 5 per voxel. In this case, a reduction from 39 sources and 39
receivers to 20 each could solve the computational constrains, however, it would
reduce the resolving power for the model parameters as well, as the number of
unknowns is increased while simultaneously the number of equations is reduced.
An additional problem is the lack of S wave }).nisotropy information. As it is
obvious by the difference between Figure 4.7 and Figure 4.9, anisotropy has a
major effect on the inversion result. One possible approach is to recover the S
. wave anisotropy from the P wave anisotropy, assuming this quantity is known,
which is a likely the case for many experimental geometries. The incorpora-
tion of S wave anisotropy should improve the results for the P to S scattered
phases. Furthermore, the inversion was limited to wavelengths closer to the Mie
than to the Rayleigh scattering range, as the amplitudes associated with low
frequencies did not show enough resolving power. However, future applications
of broad band technology should provide data with higher energy in the low

frequency range.
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Chapter 5

Summary

The presented thesis was intented to Investigate two areas of elastic wave
scattering. The scattering of elastic waves by an inhomogeneity, and subse-
quently the inversion of these waves to solve for the elastic parameters of the
inhomogeneity. Both parts provide a general approach by keeping the results in
a general format, and the techniques are applicable to discretionary geometries.
The results should be useful for the evaluation of experiments in their planning
stage.

In the first part, the problem of low frequency elastic wave scattering by
an inclusion was investigated. The low frequency approximation is based on
an exact solution for the scattering of elastic waves by a sphere, and therefore,
the exact solution was used to evaluate the low frequency approximation under
various conditions. The Rayleigh approximation is a useful tool to linearize the
problem of elastic wave scattering, and therefore, it often is applied to solve the
inverse problem. However, no limits of the approximation had been established
thus far, as most of the assumptions were based on strong inequalities, and
therefore it was intented to determine bounds for its validity range.

The presented Rayleigh approximation produces excellent results within its
validity range. The comparison to the generally used Rayleigh approximation,
containing far field terms only, revealed that near field terms play an important
role for the evaluation of scattered amplitudes. Within a distance of 2 times the
wavelength of the incident wavefield from the inhomogeneity, P and S waves
cannot be separated and the scattered amplitudes are up to a magnitude of
= 300 times larger than at a distance of 2X. Therefore the use of the far field
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Rayleigh approximation will produce wrong results if applied in this situation,
which may arise during crosshole experiments or during the investigation of near
surface heterogeneities. '

The nonlinear Rayleigh approximation was compared to its linearized and
quadratic approximation. It was found that the relative error for these strongly
depends on the scattering angle. The #-component reveals the largest error for
forward scattering, whereas the #-component has the largest deviations for a
scattering angle of 45°. It was found that the quadratic approximation reduces
the error by a factor of 5 over the linear appro;dma,tion. The result helps to
estimate the relative error based on the use of the linearized Rayleigh approxi-
mation if the locations of source, scatterer, and receiver are known for a planned
experiment.

The relative error of the linear Rayleigh approximation not only depends
on the scattering angle but is a function of the parameter perturbation as well.
This functional dependence was invesfigated and produced results that allow
an application for larger deviations than previously assumed. Reliable result
should be obi:a.ined for perturbations up to 20%. However, the dependence of
the relative error on the parameter perturbation reveals an asymmetry with
respect to the origin, in that the increase for the error is larger in positive than
for negative perturbations.

In the past inequalities were used to restrict the Rayleigh limit to values
much smaller than unity (k,R < 1). However, the Rayleigh limit not only is a
function of the incident wavelength and the dimensions of the inhomogeneity,
but also depends on the elastic parameters. The dependence of the Rayleigh
limit as a function of perturbation in the elastic parameters was investigated
and surprisingly high values were found, reaching up to (k,R = 0.9). This opens
a broader range for the applicability of elastic wave Rayleigh scattering.

The surprising results established for the Rayleigh scattering process were
investigated in relation to their effects in the inversion of scattered waves. Near
. field effects have to be considered in a crosshole situation where the exact lo-

cation of the inhomogeneity may fall within a distance of 2\ of the receiver
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borehole. In addition, features extending beyond the target area may intersect
either borehole and therefore, the lack of near field terms would prodgce unre-
liable or false images close to the wells, where the performance of the inversion
could be tested by correlating borehole properties with inversion results in the
proximity of the wells. The extension of the Rayleigh limit to larger values
could help to reduce the computational expenses, since the parametrization of
the medium can be coarser with respect to the wavelength of the incident field.

At first, however, a method was presented to solve the inberently nonlinear
scattering problem in a direct way. The solution was linearly expressed in terms
of moments that decompose the scatterer into three types of force terms, each
accounting for the change in one of the elastic parameters. These parameters,
although they exhibit a nonlinear dependence on the moments, can be directly
recovered based on the symmetry of the scatterer, and therefore, the scattering
problem can be solved in an exact direct way. This allows inversion of strong
inhomogeneities directly, avoiding time consuming iterations which can only
approximate the magnitude of the anomaly.

The nonlinear dependence of the elastic parameters on the moments was
performed covering the whole parameter range from a cavity to a rigid inclu-
sion. The dependence is highly nonlinear and very sensitive to large positive
deviations, where small changes in the moments cause large variations in the
deviation of the elastic parameters. For negative values of the moments, how-
ever, the relationship becomes almost linear, but the perturbation in the elastic
parameters become almost insensitive to large changes in the moments. Thus it
could prove difficult to distinguish between a cavity and a low density yet solid
inhomogeneity.

Based on this solution, the effect of near field terms was investigated using
a numerical example which models a crosshole geometry. It was found that the
Green function containing near field terms returned an almost perfect inversion
result, whereas a Green function containing far field terms only produces erro-
neous magnitudes and locations for the anomaly. However, the model resolution

was equally good in both cases, which could lead to wrong interpretations of
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the far field Green function results. For the case of the correct Green function,
the model resolution was improved to unity for all three parameters by adding
one receiver each at the top and bottom of the model area. These receivers
improved the angular coverage of the parametrized zone, which is essential for
good results in the case of elastic wave scattering.

The influence of source and receiver geometry on the success of an inversion
for the location of a strong scatterer was presented for the case of a cavity. It was
found that the distinct pattern of scattered energy (P to P scattering under 180°,
P to S scattering under 135°) prevented the successful recovery of the image for
most geometries, and only a reflection survey, set up to record both P and S
scattered phases, proved successful in determining the location and parameters
of the cavity. Therefore, it was shown that, prior to a field experiment, the
scattering properties of the object have to be thoroughly studied to find the .
optimum geometry for a successful survey.

The numerical investigation of a small single scatterer with an anomaly in
density only, where different Green functions had been used for the forward
modeling and the inversion, revealed that in the absence of the incident wave
it is possible to retrieve the location and the amplitudes of the inhomogeneity.
However, the incident field, due to its large amplitudes in relation to the scat-
tered field and the coincidence in travel time, had to be removed first. It was
shown that correlation between the parameters introduced weak anomalies for
the less constrained bulk modulus. However, these were almost comparable to
the noise level and therefore negligible.

The final chapter applied the inversion technique to the case of a fracture
zone in an underground field laboratory. The purpose was to determine whether
it is possible to model a fractured zone by an enmsemble of point scatterers
which would provide a technique to parametrize scatterers of any shape for
the future application of this technique. Under this assumption the location
and, if possible, the elastic parameters of this highly fractured zone had to be
estimated. '

Before the inversion was performed the wavefield was corrected for several
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effects not related to the scattering process. The source and receiver parameters,
describing the coupling to the borehole walls were determined using a least
squares inversion approach of the first arrival amplitudes. The results related
to the geology encountered in the boreholes indicated that the fracture zone
is not a homogeneous feature, but probably consists of three zones; two of
which showed a high degree of fracturing at each side of the shaded fracture
zone in Figure 4.1, whereas the center section revealed a more homogeneous
composition. The same inversion produced a very high background attenuation
of @ = 0.36m™? for a frequency of 10 KHz. Although the magnitude of this
value seems questionable, the high degree of foliation in the host rock will have
a severe attenuation effect on wave propagation. Although an attempt was
made to subtract the incident field from the data after these correction were
applied, it proved unsuccessful, and therefore the beginning and the end of the
traces were muted.

The inversion of the data was performed for an isotropic and an anisotropic
background medium. The anisotropic model produced reasonable results that
could be related to the encountered geology. It was found, however, that the
fracture zone does not constitutes a good scatterer and produced a blurry image
in the moduli. This may be caused by a gradual change in properties from the
host rock to the fractured medium. In contrast, the inversion seems to have
detected an additional observation well traversing the study area, as well as
a suture zone between two different types of host rock. Both features seem
to be stronger scatterers for elastic waves, the borehole because of its strong
negative anomaly and the suture zone because of the welded contact, which is
the most probable between the two rock types. Displaying the same results
in terms of the P and S wave velocities as well as the V:/V, ratio, it became
evident that different structures appeared in the plots. The amplitude of the
small features (borehole and suture zone) were suppressed and the fracture zone
became apparent with negative perturbations in the velocities. This confirms
results discussed earlier that different physical parameters are each sensitive to

different types of inhomogeneities.
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The isotropic inversion produced no meaningful results, as all linear fea-
tures were reduced to block shaped structures. The lack of directionality in
the velocities makes it impossible to recover stretched linear features, wjaich, as
for the case of the fracture zone, strike parallel to the direction of maximum
velocity. Only the data that were not corrected for elastic attenuation pro-
vided a reasonable image after the inversion. This implies that the attenuation,
which is probably highest in the fracture zone, added information to the data
which helped to reconstruct the image. Since S wave anisotropy could not be
accounted for, the inversion result is likely to improve if these data becomes
available, since P to S scattered phases could not be correctly located in the
present example.

The overall result of the inversion raises hope for future applications. Al-
though a fracture zone is not a perfect target for the inversion of scattered
waves, it was shown that it is possible to decompose it into an ensemble of
point scatterers. The nonlinear approach appears to produce reliable results
in the case of a strong scatterer as shown by the probable detection of a third
borehole.

Future improvements in the extraction of the incident wavefield and an im-
proved estimation of the background parameters, including. anisotropy, should
produce better results. The correct subtraction of the incident wave would
leave near field scattered phases in the data, which are important to resolve the
structure close to the receivers. An increase in resolving power for low frequen-
cies can be expected from applications of broad band technologies, which are
currently introduced in many applications of observational seismology. At the
same time, improvements in source technology, particular in borehole applica-
tions, are desirable, which could produce source signals capable of transmitting
a constant amplitude level over a frequency band of at least two magnitudes. It
remains to be seen how the inversion performs for the reconstruction of other
classes of inhomogeneities, especially strong scattering objects (e.g. cavities). .
However, the work presented in this thesis indicates that successful results can

be expected, as the treatment of large scattered amplitudes associated with
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these objects proved successful in the numerical experiments, and therefore, it
should produce better results than other techniques that have been applied in

the past, which rely on linear approximations of the problem.
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