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INTRODUCTION

In the course of the past few years, the nuclear Boltzmann-Langevin (BL) model
has emerged as a promising microscopic model for nuclear dynamics at intermedi-
ate energies’?. The BL model goes beyond the much employed Boltzmann-Uehling-
Uhlenbeck (BUU) model®, and hence it provides a basis for describing dynamics of
density fluctuations and addressing processes exhibiting spontaneous symmetry break-
ing and catastrophic transformations in nuclear collisions, such as mduced fission and
multifragmentation?®®,

In these standard models , the collision term is treated in a Markovian approxima-
tion by assuming that two-body collisions are local in both space and time, in accordance
with Boltzmann’s original treatment. This simplification is usually justified by the fact
that the duration of a two-body collision is short on the time scale characteristic of the
macroscopic evolution of the system. As a result, transport properties of the collective
motion has then a classical character. However, when the system possesses fast collective
modes with characteristic energies that are not small in comparision with the temper-
ature, then the quantum-statistical effects are important and the standart Markovian
treatment is inadequate. In this case, it is necessary to improve the one-body transport
model by including the memory effect due to the finite duration of two-body collisions™®.

First we briefly describe the non-Markovian extension of the BL model by including
the finite memory time associated with two-body collisions ®. Then, using this non-
Markovian model in a linear response framework, we investigate the effect of the memory
time on the agitation of unstable modes in nuclear matter in the spinodal zone, and
calculate the collisional relaxation rates of nuclear collective vibrations.
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BOLTZMANN-LANGEVIN MODEL WITH MEMORY EFFECT

In the BL model the evolution of the phase-space density f(r,p,¢) is determined
by a stochastic transport equation,

2 $(e,p,8) = {h(1), £(5,p, 1)) = K(5) + 6Kz, p, ) ©)

Here, the Lh.s. describes the Vlasov propagation in terms of the self-consistent one-body
Hamiltonian ~(f). On the r.h.s. K(f) is a binary collision term and d K denotes its
stochastic part, which arises from correlations and describes the fluctuating aspect of
two-body collisions. In analogy with the treatment of Brownian motion, it is assumed
that this equation describes a stochastic process for the evolution of the phase-space
density in which d K acts like a random force characterized by a correlation function. In
the standard BL model, two-body collisions are treated in a Markovian approximation
by assuming the duration time of collisions is much shorter than time scale of the mean-
field fluctuations and the mean-free-time between collisions, which would be appropriate
if two-body collisions can be considered instantaneous. In this case, the BUU form with
on-shell two-body collisions is a good approximation and the stochastic collision term
can be treated as a white noise with a local correlation function®-2.

The standard description provides a good approximation at intermediate energies
when the system does not involve fast collective modes, since the weak-coupling con-
dition is well satisfied due to relatively long mean-free-path of nucleons®. When the
system possesses fast collective modes, for example high-frequency collective vibra-
tions or rapidly growing unstable modes, the Markovian approximation breaks down
and the memory effect due to finite duration of the collisions becomes important. The
finite duration time allows for a direct coupling between two-body collisions and col-
lective modes, which gives rise to an appropriate quantum-statistical description of the
collective modes®. In order to improve the transport description, we propose a non-
Markovian extension of the BL model by including the memory effect due to finite
duration of collision , in analogy with the treatment of the quantal Brownian motion®.
The non-Markovian binary collision term has a non-local structure of the form?,
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where f; = 1 — f; with f;(t —7) = f(r — 7v,p + 7VU,t — 1), d is the spin-isospin
degeneracy factor and the binary collision kernel is given in terms of the basic two-
body transition rate by W(12;34;7) = w(12;34){g1(7)g2(7)gs(7)*94(7)* + c.c.] with the
mean-field propagator

5(7) = [ el ST ol [ athOlps=5) (@)

The stochastic collision term is characterized by a nonlocal correlation function
dw _
(6K (r,p,t)6K(r',p',t)) = / %e_“"(t“t )C(p, p';w)d(r — r'). (5)

Here C(p, p’;w) denotes the spectral density of the correlation function, which can be
expressed in terms of one-body properties as in the Markovian case,
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The basic transition rate w(12;34) may be expressed in terms of the scattering
cross-section as

21 do 1,
- w(12;34) = ;r--nﬁgﬁfy(lh + Pz — Ps — P4) eXP[‘ﬁ(tcAf)zl (7)

where Ae = €;+€;—€3—¢4 is the energy exchange experienced by the colliding pair and ¢,
is the duration tine of a two-body collision. The Gaussian factor specified by the duration
time acts as a cut-off for the off-shell scattering and modulates the frequency spectrum
of the correlation function. In the mean-field dominated regime when the characteristic
time associated with the mean-field fluctuations is short in comparison with the nucleon
mean-free-path, the 7-dependence of the phase-space density in the collision term (3) and
the correlation function (6) can be neglected, f;(t—7) = f;(t). Then , the collision term
takes essentially a Markovian form with an effective transition rate f5 drW(12;34;7),
and the spectral density C(p, p’;w) of the correlation function reduces to a form similar
to the standard expression in the Markovian limit!, but expressed with a frequency
dependent transition density W(12;34;w) = [ dre™"W(12;34; 7).

LINEAR RESPONSE TREATMENT

The model developed in the previous section can be applied to study the small
amplitude density fluctuations around a stable or unstable equilibrium in the linear
response approximation. The small deviations of the phase-space density 8 f(r, p,t) =
f(r,p,t) = fo(r,p) = {Q(r,p, 1), fo} is determined by the linearized BL equation,

_6%51‘ —{6h, fo} —{ho,6f} =1o-6f + 0K, (8)

where fo is the Fermi-Dirac density representing the equilibrium state, Iy - 4 f is the
linearize approximation to the non-Markovian collision term and § K describes the rate
of fluctuations generated in the equilibrium state.

The linearized collision term involves two different contributions: one part comes
from the deviation § f(r,p,t) of the phase-space density, and the other part arises from
the fluctuating part of the mean-field propagator g;(7), which is usually neglected in
the Markovian limit. In the mean-field dominated regime when the collisional damping
is weak, the deviation 6 f(r,p,t) can be determined in terms of the fluctuating part of
the mean-field by setting the r.h.s. of eq.(8) to equal to zero. As a result, these two
contributions can be combined to give 1112,

d . .
lo8f = s [ Emd s pdWIRRER - 127 )
where the transition rate is given by
dw .
SW = / e w(12;34) AQ(W)F(Ae — w) — (Ac +w)] (10)
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with AQ = Q3(w) + Q4(w) — Q1(w) — Q2(w) and Q;(w) = Q(r,pj,w) is the Fourier

transform of the distortion function Q(r,p,t). The spectral density of the fluctuat-

ing collision term 8K, is given by the equilibrium limit of the expression (6) by re-

placing f; with f7, and the full propagator with the free propagator in the collision

kernel W (12;34; 7) yielding a frequency dependent transition density ® W(12;34;w) =
w(12; 34)[6(Ae — w) + §(Ae + w)).

The frequency dependence in the collision term a,nd the correlation function of the
stochastic part represents emission and absorption of collective phonons with energy
hw in direct coupling with two-body collision. The standard results of the Markovian
description are obtained as zero frequency limit of these expressions. However, when the
characteristic energies are large as compared to the temperature of the system the non-
Markovian extension provides an appropriate description of the transport properties of
collective modes in accordance with the quantal fluctuation-dissipation relation.

UNSTABLE NUCLEAR MATTER

The early evolution of the unstable nuclear matter in the spinodal zone has been
recently addressed in the framework of the BL model in 134, The system is mechanically
unstable and the density fluctuations generated by the stochastic collision term may be
amplified by the self-consistent mean-field, leading towards a transformation of the
system into an assembly of nuclear clusters. Here, we consider this problem on the
basis of the non-Markovian BL model and investigate the effect of finite memory time
on the development of the unstable collective modes in the RPA framework!®. Because
of translational symmetry, collective modes in matter are characterized with a wave
number k. For each wave number there are two unstable collective modes with imaginary
frequencies w = Fiv; determined by a semi-classical dispersion relation,

8Uk dgp k-v 6f°
(2rh)3k-v —w O

=1 (11)

where Ug(p) is the Fourier transform of the self-consistent mean-field. The associated
RPA amplitudes of these modes are given by Qf = Ny/k - v + iy, , with N; as a
normalization factor.

The fluctuating phase-space density can be expanded in terms of RPA modes as

3k
(2}
where A} and Af represent the amplitudes of the growing and decaying modes, respect-
ively. Integrating this equation over the momentum p and using the dispersion relation
(11), the fluctuating density can be expressed in terms of the collective amplitudes as

So(r,) = [ e (4L + 7). (13)

Inserting the expansion (12) into eq.(8) and projecting the resultant equation by

F exp(ik - r) and Qj exp(ik - r), respectively, we obtain stochastic equations for the
amplitudes A} and Aj. Here for simplicity, we consider only the amplitudes A} = A
of the growing modes,

51(0,p1) = [ oz * AT QE + A7 Q7K Do/ (12)
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where I'y and F}, are the collisional damping width and the stochastic force associated
with the mode. If the initial system consists of uniform nuclear matter, the initial
amplitudes all vanish, Ax(0) = 0. It then follows that the amplitudes remain zero on
the average (Ax(t)) = 0. However, each individual history displays a random evolution
and the development of the average magnitude of the amplitudes is described by the
associated variances oi(t) = (A(t)*Ax(¢)). Then, it is.convenient to convert eq.(14)
for the amplitudes into an equation for the variances,

d
aok — 2o = —Tror + 2D;. (15)
Here, both the damping width I'y and the diffusion coefficient Dy can be expressed in

terms of the correlation function Ci(w) of the stochastic force Fy,

dw .
Dy = /0 dren / 57—1_-6"“”015((.0) (16)
and a similar expression for Iy, and the correlation function of the stochastic force is
A .
Cr(w) /d3p d3P2d3P3d3P4W(12 34; w)| le fffgf:?fg (17)

where AQr = Qr(p1) + Qr(P2) — @k(P3) — Qk(P4) represents the change in the quantity
Qr(p) during a two-body collision. Here , we neglect the damping and study the
diffusion coeflicient which acts as a source term for exciting the collective modes.

The four momentum integrals in the expression (17) are constraint by the energy
conserving d-functions in the transition rate W(12;34;w). For temperatures small in
comparison with the Fermi energy T < e€p, the integrand is effectively confined to
the region near the Fermi surface. When, furthermore, the energy exchange is small
as well, Aw < €p, then the energy and angular parts of the integration approximately
decouple. It is then possible to factor out the w dependence of the correlation function®
Ck(w) = Ci(0) x(w), where Ci(0) is the correlation function obtained in the standard
treatment without the memory effect, and the influence of the finite memory is contained
in the frequency modulation function

hw hw hw

X() = Dacoth(Ga) + (ge)leapl 5 (1)) (19)
This function is displayed in figure la for a range of temperatures T and the duration
time t. = 6 fm/c. The modulation function x(w) strongly depends on temperature and
approaches to the classical result at high temperatures, as expected. It then follows the
diffusion coeflicient associated with a collective mode becomes Dy = D} xi(t), where
D} is the standard expression in the Markovian limit and xx(¢) is a time dependent
factor related to the frequency modulation function x(w) according to eq.(16). The
influence of the memory time on the growth of density fluctuations can be illustrated
from the solution of eq.(15), which can be expressed as o (t) = o2(t)xk(t), where a}(t)
is the standard result and xx(t) is a correction factor due to the finite memory time,

t ! [ 1]
() = Jo 2df eifp( 29kl ))fk(t) (19)
Jo di'exp(—27:t')

This correction factor is plotted in figure 1b for the most unstable mode corresponding
to p = 0.3pg and T = 4 MeV. As seen from the figure, the correction factor can deviate
significantly from unity particularly in the domain where the fastest growth occurs,
hence the density undulation grows larger in the course of a given time interval. It,
therefore appears important to incorporate such memory effect in the BL simulations.




10 T | » T l ‘ T l T 30 T T &7 l LB I'] LI N 3 I DL I LIRS fi T T l_l'_

L (a) RN . £ (b :

z ' 25 :( ) . T=4MeV 3

= 8r J AN L=6fm/c 4 = p ]

c L K . 1l 3« p=0.3pg ]

2 / N =20F 3

§ 6 / \ 45 F 3

S S1s5F E

5 4 N ]

3] - . 3

g g 1oL — ) ]

g 2 Q - : ]

i Cos ——mm ) —>=

-~ — h . 3

0 . ! ' H 1 ! ! I et 0.0 Lttt [T S T T N S WA OO SIS SO O N S ST S S AN AR O I I

0 20 40 60 80 100 0 10 20 30 40 50 60
Energy ho (MeV) Time t (fm/c)

Figure 1. (a) Frequency modulation function at T' = 3,4, 6 MeV and t. = 6 fm/c. (b) the correction
factors for the most unstable modes at p = 0.3pg and T = 4 MeV. Taken from1°.

DAMPING OF COLLECTIVE VIBRATIONS

Semi-classical transport models of BUU-type are often employed for studying nuc-
lear collective vibrations. Although these models give a good description of the average
resonance energies, for a proper description of the collisional relaxation rate of collect-
ive vibrations it is necessary to use these models with a non-Markovian collision term
‘as described in section 2. As a result, the collisional damping width of an iso-scalar

collective vibration with a mean frequency {) can be expressed as®!!:12
T = J d37’d3P1d3P2d3P3d3P4WZ(Q)(AX)2fff20 3 /2 (20)
2f d3rd3px25‘%fo

where Z(Q) = [6(Ae — Q) — §(Ae+ 2)]/29 and x = x(r,p, ) denotes the distortion
function of the local Fermi surface associated with the collective mode. It is possible to
derive a similar expression for the collisional widths of isovector vibrations by consid-
ering the proton and neutron degrees of freedom explicitly. In order to calculates the
relaxation rates , we need to know the corresponding distortion functions x = x(r, p, ),
which, in principle, should be determined by solving the linearized BL eq. (8). However,
an estimate of the collisional widths can be obtained by determining the distortion func-
tions according to the scaling model description of collective vibrations. The collective
vibrations induces coherent distortions into the momentum space , and the distortion
function can be expressed in terms of the velocity field ®(r) as x = (p- V)(p - V)2(r).
Then, it is possible to derive an analytical approximation for the collisional widths
assuming a constant cross-section and neglecting the surface effects &1,

Here, we present more accurate calculations of the collisional widths, which are
carried out with energy-angle dependent cross-sections, and also by incorporating sur-
face effects in a local density approximation!?. We take the velocity field associated
with the giant quadrupole vibrations as ®g = r?P,(6), and the velocity field associated
with the giant monopole vibrations as ®ar = r? and jo(kr) where the first and second
choices correspond to the scaling description and the hydrodynamical descriptions with
a wave number £ = 7 /R, respectively. Then the collisional widths are calculated by
evaluating the momentum integrals in the expression (20) with the Monte-Carlo method.
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Figure 2. The collisional widths of giant quadrupole (a) and -gia.nt monopole (b) vibrations as a
function of mass number at T = 0 MeV. Taken from!2.

The result of the Monte-Carlo calculations for the quadrupole vibrations is shown as a
function of mass number by solid line in figure 2a. In the same figure, the analytical
estimates with a constant cross-section ¢ = 40 mb are indicated by long dashed-line.
In figure 2b, the Monte-Carlo results for the width of monopole vibrations are shown in
the hydrodynamic model by solid-line and in the scaling model by short dashed-line. In
the same figure, long dashed-line indicate the corresponding analytical estimates. The
Monte-Carlo calculations yield larger collisional widths than those obtained by the ana-
lytical estimate. This increase comes out as a result of the combined effect of the diffuse
nuclear surface and energy-angle dependence of the cross-section. In the vicinity of the
nuclear surface the Fermi motion is reduced, and hence the cross-section becomes larger
, which leads to a more effective collisional damping.

CONCLUSIONS

The standard models such as BUU and its stochastic extension BL, provides a
good approximation for describing the transport properties of collective modes at low
frequency-high temperature limit. However, when the system possesses fast collect-
ive modes the standard description breaks down, and it is necessary to incorporate the
memory effect due to finite duration of two-body collision. This yields a non-Markovian
extension of the BL model with a modified transition rate involving a direct coupling
between collective modes and two-body collisions. Consequently, the extended model
leads to a description of the transport properties of collective modes that is in accord-
ance with the quantal fluctuation-dissipation relation. This is illustrated in the case of
agitation of unstable collective modes in nuclear matter, and it is shown that the mag-
nitude of the source term for exciting the most unstable collective modes is significantly
modified as compared to the standard treatment. The extended model is applied to cal-
culate the collisional damping width of the giant resonance excitations. The standard
treatment with a Markovian collision term leads to vanishing collisional widths at zero
temperature. Where as in the non-Markovian model the collisional widths are finite
and consistent with the Landau’s expression of damping of high frequency v1brat10ns
however account for a part of the observed damping widths. '
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