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AN EXPONENTIAL DISCONTINUOUS SCHEME FOR
X-Y-Z GEOMETRY TRANSPORT PROBLEMS

Todd A. Wareing and Raymond E. Alcouffe
Los Alamos National Laboratory
P.O. Box 1663
Los Alamos, NM 87545
email: wareing @lanl.gov

ABSTRACT

The recently developed exponential discontinuous spatial differencing scheme for the discrete-ordinate
equations has been extended to x-y-z geometry with hexahedral cells. This scheme produces strictly
positive angular fluxes given positive discrete-ordinate sources. The exponential discontinuous scheme
has been developed and implemented into the three-dimensional, discrete-ordinate code, THREEDANT.
Numerical results are given which show that the exponential discontinuous scheme is very accurate for
deep-penetration transport problems with optically thick spatial meshes.

I. INTRODUCTION

Recently, the algebraically equivalent nonlinear characteristic1-3 (NC) and exponential characteristic4->
(EC) spatial differencing schemes were developed. These schemes use the method of characteristics with
an exponential representation for the discrete-ordinate source within each spatial cell. This source
representation is derived using information theory6. The NC/EC scheme is very accurate, especially for
deep-penetration problems with optically thick spatial cells. The NC/EC scheme also produces strictly
positive angular fluxes given positive discrete-ordinate sources. Recently we developed an exponential
discontinuous (ED) scheme in x-y geometry based upon an exponential representation for the angular flux
within each cell’. This representation is also derived using information theory. The motivation for the ED
scheme is that it is much less complicated to derive and implement than the NC/EC scheme and is assumed
to be considerably less computationally expensive in x-y-z geometry. The NC/EC scheme is exact for
pure-absorbing problems in all Cartesian geometries. The ED scheme is only exact for pure-absorbing
problems in slab geometry. Nonetheless, the ED scheme appears to be nearly as accurate as the NC/EC
scheme for many problems and also produces strictly positive angular fluxes. The ED scheme has been
extended to x-y-z geometry with a hexahedral mesh and has been implemented into the three-dimensional,
discrete-ordinate code, THREEDANTTM 8,

The remainder of the paper will proceed as follows: in Sec. II, we derive the ED scheme in x-y-z
geometry and discuss the method of solution; in Sec. III, we present some numerical results to show the
accuracy and positivity of the ED scheme; and in Sec IV, we conclude with a discussion.




II. THE EXPONENTIAL DISCONTINUOUS SCHEME

The mono-energetic, X-y-z geometry discrete-ordinate equations are given by
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Here v _(x,y,z) is the discrete ordinate angular flux and S (X,y,z) is the discrete ordinate source
comprised of a combination of scattering, fission or fixed sources. We use a hexahedral mesh with each
spatial cell having dimensions X, ,,, S X< X,,,5, Yoy SYS Y and z,_,,, S 25 2,,,,,. We assume
that the material properties are constant within each mesh cell.

We begin our derivation of the ED scheme by taking the zeroth, x, y and z spatial coordinate moments of
Eq.(1). This is done by multiplying Eq.(1) by 1, R(x)=2(x-x,)/Ax,, R(y)=2(y~-y;)/4y, and
P(z)=2(z-1z,)/Az,, and integrating over the volume of the cell. Here Ax; = X, ,» — X;_1 55
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2y =(Z4o1n + 22 )/2 . This gives the following four moment balance equations:
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The definitions for the source moments are obtained by replacing y with S in Egs. (6)-(7).

and first spatial angular fluxes moments on the outgoing faces are defined as:
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At this point, we have four equations with thirteen unknowns. To obtain the auxiliary equations we
assume an exponential representation for the angular flux within each cell. Using information theory6, we

find that this representation is given by
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To find @, ,,, A, A, xand A we apply our definitions for the zeroth, x, y and z spatial
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moments of the angular flux. Inserting Eq.(14) into Egs.(6) - (7), we obtain
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Next, we use Eq.(14) to obtain our auxiliary equations. We assume that the angular fluxes are
discontinuous at the edges of the cell. Inserting Eq.(14) into Egs.(8) to (13) gives the following nine
auxiliary equations:
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To summarize, the ED equations are given by Eq.(2)-(5),(16) and (18)-(23).

The ED equations are solved somewhat differently than existing linear differencing schemes since it is
inherently nonlinear. As with most discrete-ordinates schemes, we use source-iteration (SI) to iteratively
solve for the scattering source. However, for within cell calculations, the ED equations are solved using
Newton-Raphson iterations for the cell average scalar fluxes and moments and the scalar fluxes and



moments on the outgoing faces. All within cell Newton-Raphson iterations are initialized with
A, A, A =0, which from practical experience appears to be the most robust. Current studies are ongoing
to obtain a diffusion accelerated solution method for the ED scheme. This has been done in slab geometry
but has not been extended to multidimensional geometries.

Having coded the ED scheme and solution method, we encountered difficulties with problems with
anisotropic scattering, when the truncated Legendre expansion of the discrete-ordinate source leads to
negative sources. In order for a solution to be possible, the ED scheme requires that the solution be
positive everywhere or negative everywhere. This results from information theory (maximum entropy).
Therefore, it appears that solutions to the ED scheme can only be obtained if the scattering source is
positive everywhere in the problem. Current investigations are ongoing to obtain positive discrete-ordinate
sources regardless of the Legendre expansion of the scattering source.

II1. Numerical Results

In this section we provide results for one test problem We compare the ED scheme with the linear
discontinuous (LD), constant-linear nodal with negative flux fix-up (CLN/F) and adaptive weighted
diamond difference (AWDD) schemes. The LD scheme does not use any negative flux fixup method.
We cannot compare with the NC/EC scheme since it has not been developed and implemented in x-y-z
geometry with hexahedral meshes.

The physical problem is a 120-cm cube of an iron alloy, in which is centered a 119-cm cube of an aqueous
solution, in which is centered a 40-cm cube of the iron alloy, in which is centered a 10-cm cube of the
aqueous solution that contains the source. Symmetry allows us to consider only one octant (a 60-cm cube)
with reflecting boundaries on the bottom, left and front sides and vacuum boundaries on the top, right and
back sides. The source emits 73.9 % of its neutrons in the first of three energy groups, with the remaining
26.1 % in the second energy group. We use an S4 quadrature set and isotropic scattering cross sections.
The cross sections for the aqueous solution are given in Table 1 and the cross section for the iron alloy are
given in Table 2. All calculations are converged to a relative error of 10-3.

In Figures 1 to 3 we present some results for the this test problem. Here, for each energy group, the
scalar flux is given, for various mesh sizes, at a detector located at 59.5cm<x<60.0cm,
59.5ecm <y <60.0 cm, and 59.5cm <z<60.0 cm. The coarsest meshis 5 x5 x 5 (5 cells along each
spatial axis) and the finest mesh is 57 x 57 x 57. If a data point representing the solution for a given
scheme at a given mesh does not appear on the graph, then it lies outside the domain of the graph or was a
negative value. Negative solutions only appeared for the LD scheme. We observe that the ED scheme is
far more accurate than the other schemes especially at the coarse meshes. Obtaining accurate fluxes at such
localized locations is much more difficult that an integral quantity, such as the total leakage, especially in a
deep-penetration problem such as this. We note that the ED scheme did not generate any negative fluxes.
We also note that the error in the ED solution was never more than a factor of two for the coarsest meshes;
all other scheme were off by several orders of magnitude at the coarsest meshes. Also, the AWDD scheme
is not monotonically converging at the refined meshes.

For this problem the ED scheme took, on average, 4 times longer than the CLN/F scheme and 10 times
longer than the AWDD on a per cell, per angle basis. Timing comparisons were not made with the LD
scheme, since the implementation is not optimized for accurate comparisons.




IV. DISCUSSION

We have extended the ED scheme to x-y-z geometry with hexahedral meshes and implemented it into the
THREEDANTTM code. One of the main advantages of the ED scheme is that it produces strictly positive
angular fluxes. We have tested the scheme on a variety of problems, including the one in this paper, and
have found that it is very accurate for deep-penetration problems with optically thick spatial meshes.

We are in the process of extending the ED scheme to x-y-z geometry with unstructured tetrahedral meshes.
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Group 1 Scalar Flux at Detector

Table 1: Cross Section Data for Aqueous Solution
Group Number O, O, o O (o-1)mg
g
1 0.2656 0.1600 0.0000
2 1.1745 0.8220 0.1052
3 3.2759 2.2980 0.0730
Table 2: Cross Section Data for Iron Alloy
Group Number O, o S, O, (o-1)>g
(2)
1 0.2163 0.1760 0.0000
2 0.3255 0.2500 0.0399
3 1.1228 0.7982 0.0001
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Figure 1: Group 1 Scalar Fluxes at the Detector Location




Group 2 Scalar Flux at Detector
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Figure 2: Group 2 Scalar Fluxes at the Detector Location
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Figure 3: Group 3 Scalar Fluxes at the Detector Location




