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@ INTRODUCTION

Late post-injections are used for aftertreatment heat-up operation

Operation of aftertreatment components highly temperature dependent
« DOC light-off temperature ~ 250° C
« Low NO, conversion efficiency below an SCR bed temperature of ~200° C

Low pollutant conversion efficiency experienced during ‘cold start’ phase
 No substantial NO, conversion for the initial 400 s of FTP transient cycle [1]
« Hydrocarbon emissions also spikes due to low conversion by the DOC

[1] C. Sharp, C. C. Webb, G. Neely, M. Carter, S. Yoon, and C. Henry, SAE International Journal of Engines, vol. 10, no. 4, pp.
1697-1712, 2017.



@ MOTIVATION AND OBJECTIVES

Late post-injections have the potential to decrease catalyst heat-up
period

« Fuel energy released late in the cycle used to increase exhaust gas temperature

« Challenges: high fuel penalty, unstable combustion leading to high engine-out
CO and HC emissions

Determine if the following fuel properties impact engine operation
during catalyst heating stage:

 Fuel reactivity as quantified by Cetane Number (CN)
 Fuel volatility as determined using the distillation characteristics



@ METHODS: EXPERIMENTAL SETUP

Single-cylinder light-duty engine (GM 1.9L) used for experiments
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Schematic of the test cell.




@ METHODS: OPERATING CONDITIONS

A three-injection strategy investigated using a fixed pilot and main

- Post-injection timing swept at a constant engine load (IMEP,= 3 bar) & speed

phasing
(1500 RPM)
Operational parameters used in this study
Parameter Units Value
Intake temp. K 328
Intake pressure | kPa 100
EGR % 30
Inj. pressure bar 500
Pilot SOT* CAD -14
Main SOI* CAD 1
Oil temp. K 328

* for #2 diesel operation

Injector Current

odnale

Expansion Stroke

Pilot|, || Main Post

TDC

Injection schedule used

Crank Angle in this study



@ RESULTS: BASELINE OPERATION

Post-injection sweep with #2 diesel established baseline engine
operation

e Pilot and main injection SOI and DOI held constant
e Post injection DOI adjusted to hold engine load constant
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sE il YT Y HRR profile at different injection timings for
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DOI: Duration of injection IMEP, Is listed in parentheses.
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@ RESULTS: BASELINE OPERATION

Retarding post-injection timing:
 Increases combustion duration

« Decreases combustion stability

» Decreases combustion & thermal efficiency

COV of IMEP, [%]

Thermal and combustion efficiency
and COV of IMEF, as a function of
post-injection timing.

Gross Indicated Efficiency [%]

COV: Coefficient of Variability
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@ RESULTS: COMPARING DIFFERENT FUELS

Fuels compared at matched pilot & main combustion phasing
« Achieved by adjusting pilot and main injection SOI
« Matched thermodynamic conditions for fuels at a constant post-injection timing
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@ RESULTS: IMPACT OF FUEL VOLATILITY

Fuels with different boiling points used to investigate the effect of
volatility

« Two set of binary fuel blends with low and high boiling points (BP) were studied
— PRF 0 and FAR-HMN at matched reactivity (CN 56) were compared
 Binary fuel components have similar physical properties (density, MW etc.)

750 | —— PRF

| — FAR-HMN

700 [ —m— #2 diesel

[| —— Ether-Diesel CN55 (equilbrium distillation)
[| —— Ether Blend (equilbrium distillation)

650

% 600 —
5 C -
£ ss0F L~ Low Volatility
2. - |
£ 500
= L
PRF: Primary reference fuel (blend HOF
of iso-octane and n-heptane) 400 :j // ngh VOIat'“ty
FAR: Farnesane 3o Lo T T Ty Distillation characteristics of the
HMN: Heptamethylnonane 0 20 40 60 80 100 fuels investigated in this study

e Volume Recoverd [%]



@ RESULTS: IMPACT OF FUEL VOLATILITY
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Fuels at matched reactivity showed similar comb. phasing

« Lower BP fuel (PRF 0) predicted to have shorter Liquid Length (L.L.) relative to
higher BP fuel (FAR-HMN) [2]

 No significant impact on ignition delay or comb. duration due to difference in LL

30 30
- —— PRFO0 CN56 - —— PRF0 CN56
25 :_ ---- FAR-HMN CNS56 25 :_ ---- FAR-HMN CNS56
5 - Post SOI=20 CAD 5 - Post SOI=24 CAD T
=, 20 B o =, 20 o8 S|m||ar
2 : 5 : - combustion
% 15 % 15 h .
Z = 2 - phasing
= 10 = o) 10 = .
% - R C .
5  SE \ 5§  SE
) - L‘\} \ - =
BP: Boiling point 0 = 0 = . HRR profile at two
PRF:Primaryreferencefuel _5‘||||||||||||||||||||||||||||| _5‘||||||||||||||||||||||||||||| d/ﬁce/‘ent/'njection
FAR: Farnesane 20 0 20 40 60 80 100 20 0 20 40 60 80 100 ¢mings for fuels with
HMN: H methylnonan match .
eptamethyinonane Crank Angle [CAD] Crank Angle [CAD] atched Cl

[2] D. Kim, J. Martz, and A. Violi, “Effects of fuel physical properties on direct injection spray and ignition behavior,” Fuel, vol.
180, pp. 481-496, 2016.



@ RESULTS: IMPACT OF FUEL VOLATILITY
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Fuels showed similar combustion characteristics and performance
« Similar comb. & emission performance for large portion of the injection sweep

 Deviation at late injection timings due to unstable combustion

« Impact of difference in L.L. minimal
— Overmixing of fuel maybe the
dominant pathway for HC and CO
emissions

Performance and combustion
parameters as a function of
post-injection timing for fuels

L.L.: Liquid length with matched reactivity.
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HMN: Heptamethylnonane
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@ RESULTS: IMPACT OF REACTIVITY (Binary Blends)

FAR-HMN blend at two different reactivity were compared (CN 45 v 56)

« Combustion phasing difference minimal at early injection timings

« Significant difference in comb. phasing, duration & stability at late injection

timings

HRR profile at two different

injection timings. Corresponding

value of COV of IMEP, Is listed
in parentheses.
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@ RESULTS: IMPACT OF REACTIVITY (Binary Blends)
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Higher CN fuel showed higher thermal & comb. eff. at late timings

 Earlier combustion phasing reduces fuel demand to meet load

« Higher combustion stability improves combustion efficiency

— Lower exhaust temperatures
compared to the lower CN fuel

Performance parameters as a
function of post-injection timing
for FAR-HMN at two reactivity
levels (CN 45 and 56)
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@ RESULTS: IMPACT OF REACTIVITY (Bioblendstock)

Reactivity study extended using high-reactivity blend of mono-ether

components

« Mono-ether components: DBE (v/v: 65%), DHE (33%), and DIE (2%)
« Ether blend was run neat & in-blend configuration with diesel (Ether-Diesel CN 55)

— Significant advancement in combustion phasing for the Ether Ble

HRR profile at two different
Injection timings.
Corresponding value of COV of
IMEP, Is listed in parentheses.

DBE: di-butyl ether
DHE: di-hexyl ether
DIE: di-iso-amyl ether
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@ RESULTS: IMPACT OF REACTIVITY (Bioblendstock)

Higher-reactivity fuels showed improved comb. performance at late

timings

« Higher combustion stability & shorter combustion duration

 Higher thermal & combustion

—— #2 diesel
efficiency  BbeBlend | 3
« Similar exhaust T. achieved at later i/*/ )
injection timings eeal

Performance and combustion
parameters as a function of

Combustion Phasing (CA50) [CAD]

post-injection timing for diese/
and mono-ether blends
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@ RESULTS: IMPACT OF REACTIVITY (Bioblendstock)

timings
« Higher combustion stability & shorter combustion duration

 Higher thermal & combustion

—— #2 diesel
—& - Ether-Diesel CN55
—o— Ether Blend

efficiency
 Similar exhaust T. achieved at later
injection timings

Higher CN-> Later Post SOI
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@ RESULTS: IMPACT OF REACTIVITY (Bioblendstock)
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Higher-reactivity fuels showed improved comb. performance at late

timings

« Higher combustion stability & shorter combustion duration

 Higher thermal & combustion
efficiency

 Similar exhaust T. achieved at later
injection timings

Performance and combustion
parameters as a function of
post-injection timing for diese/
and mono-ether blends
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@ RESULTS: IMPACT OF REACTIVITY (Bioblendstock)

18

Does reactivity offer any benefits in
thermal or combustion eff. at matched
exhaust temperature?

 Fuels with different reactivity compared at a
constant exhaust temp. (300 ° C)

« Benefits in combustion parameters were
minimal, if any

100 |- 952 954 94.3
- gl
3 m f
80 F-
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5 50 &
5 -
=~ W E 4 31.1
30
20 F-
10 £ 3.56 3.00
= A IZE =

#2 diesel Ether-Diesel CN55 Ether Blend
SOI=21.5 CAD SOI=23 CAD SOI=28 CAD

Performance parameters as a function of fuel reactivity
at matched exhaust temperature of 300° C (573 K)



@ CONCLUSIONS
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A three-injection strategy was investigated to understand the effects of

fuel properties on thermal management operation of aftertreatment
system

« Fuel components selected enabled isolating the effects of certain fuel properties

« Fuels were compared at relatively matched in-cyl. thermodynamic conditions

KEY TAKEAWAYS:

 Effects of volatility: Minimal effect of boiling point was observed on any
combustion or performance parameters

 Effects of reactivity:

— At a constant post-injection timing higher CN fuel showed higher combustion
stability & efficiency relative to a lower CN fuel

— At matched exhaust temperature fuels with different reactivity achieved similar
combustion and thermal efficiency
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@ BACK-UP: FUEL PROPERTIES

Parameter Units #2 diesel PRF FAR-HMN FAR-HMN ED CN 55 Ether Blend
Derived cetane number - 4 56 46 56 55 -
Cetane number - 42 56 46 56 - =100
Density kg,/m? 854 687 2 172 838 78
MNormal bailing point K 442-606 3N 523 523 419-605 414-501
Kinematic viscosity cSt 2509 0.496 206 2.96 - -

Lower heating value MJ/ kg 4262 44.50 43.60 4360 41.78 1896
Molecular weight g/mol 204 100 215 215 187 145

H/C - 1.84 228 213 213 191 222
0/C - 0.0 0.0 0.0 0.0 0.0225 0no
AFR,, - 14.54 15.13 14.93 14.93 14.17 12.94
Oxygen ratio () - 0.0 0.0 0.0 0.0 0.0076 0.0352
A H, (Enthalpy Demand) kl/ka na4.22 1212.54 129850 1301.28 196.26 1220.09
Liquid heating 479.96 16.64 502.61 49810 450.45 20749
Phase change 26893 12798 25666 26123 27220 28894
Vapor heating 43533 86792 539.23 541.95 47361 623,66
% diesel vol. % 100 0 0 0 75 0

ED: Ether Diesel
PRF: Primary reference fuel
FAR: Farnesane
HMN: Heptamethylnonane
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@ BACK-UP: ETHER FUEL COMPONENTS

Parameter Units DBE (M, ]3 DIE
CAS # - 142-96-1 112-58-3 544-01-4
Cetane number’ - =100 >100 96.%
Density kg/m* 770 7493 780
Normal boiling K 414 5M 445
point

Kinematic viscosity ¢St 0.89 214 l.64=
Lower heating M./ kg 3798 3994 39.20
value

Molecular weight g/mol 130.2 186.3 1583
H/C - 2.25 217 2.20
0/C - 0.125 0.083 0.10
AFR; - 12.72 13.35 13.09
Oxygen ratio (£ - 0.040 00269 00323
A kJ/ka 2410 3440 2615
YSl - 12.9 - 516

% in Ether blend vol.% 65 i3 2

DBE: di-butyl ether
DHE: di-hexyl ether
DIE: di-iso-amyl ether
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