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ABSTRACT

Hypersonic aerothermodynamics is an important domain of modern multiphysics simulation. The
Multi-Fidelity Toolkit is a simulation tool being developed at Sandia National Laboratories to
predict aerodynamic properties for compressible flows from a range of physics fidelities and
computational speeds. These models include the Reynolds-averaged Navier–Stokes (RANS)
equations, the Euler equations with momentum-energy integral technique (MEIT), and modified
Newtonian aerodynamics with flat-plate boundary layer (MNA+FPBL) equations, and they can be
invoked independently or coupled with hierarchical Kriging to interpolate between high-fidelity
simulations using lower-fidelity data. However, as with any new simulation capability, verification
and validation are necessary to gather credibility evidence. This work describes formal code- and
solution-verification activities, as well as model validation with uncertainty considerations. Code
verification activities on the MNA+FPBL model build on previous work by focusing on the viscous
portion of the model. Viscous quantities of interest are compared against those from an analytical
solution for flat-plate, inclined-plate, and cone geometries. The code verification methodology
for the MEIT model is also presented. Test setup and results of code verification tests on the
laminar and turbulent models within MEIT are shown. Solution-verification activities include
grid-refinement studies on simulations that model the HIFiRE-1 wind tunnel experiments. These
experiments are used for validation of all model fidelities. A thorough validation comparison with
prediction error and uncertainty is also presented. Three additional HIFiRE-1 experimental runs
are simulated in this study, and the solution verification and validation work examines the effects
of the associated parameter changes on model performance. Finally, a study is presented that
compares the computational costs and fidelities from each of the different models.
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1. INTRODUCTION

The Multi-Fidelity Toolkit (MFTK) is a workflow in the Sandia National Laboratories Sandia
Parallel Aerodynamics and Reentry Code (SPARC) code suite, which enables rapid aerothermal
modeling for use in hypersonic trajectory generation. To increase the speed of such aerothermal
modeling over a traditional approach, MFTK contains three aerothermal model fidelities that can
be used together. A Reynolds-Averaged Navier-Stokes solver with multiple turbulence models
comprises the highest level of fidelity. An inviscid (Euler equations) solver is coupled to a
momentum-energy integral technique (MEIT) solver for the mid-fidelity level. The lowest fidelity
level consists of a modified Newtonian aerodynamics (MNA) solver coupled with a boundary layer
correlations solver. Simulation results from multiple fidelity levels can be combined to optimally
balance the efficiency–accuracy trade-off using hierarchical Kriging to interpolate. Additional
details regarding the toolkit may be found in [1] and [2].

MFTK is currently under development, and its capabilities are being expanded in several important
ways. To ensure the credibility of aerothermal predictions produced with MFTK, verification
and validation activities are necessary for all models in the toolkit and the hierarchical Kriging
implementation. Such activities include code verification, which seeks to ensure that a code is
an accurate representation of the original mathematical model [3]. They also include solution
verification, which seeks to ensure that a given simulation of a mathematical model is sufficiently
accurate for the intended use [3]. Additionally, validation, which seeks to ensure that a model
is an accurate representation of the real world from the perspective of the intended uses of the
model [4, 5], is necessary. These activities strengthen the credibility of the model and potentially
identify improvements. Further details on definitions and the viewpoint and goals associated with
this project may be found in [1].

To date, significant verification and validation work has been performed on MFTK. Code
verification has been performed on the Euler solver [6], and code and solution verification have
been performed on the laminar portion of the RANS solver [7]. In a previous study [1], code
verification was partially completed on the MNA+FPBL model. This involved verification of
inviscid quantities on flat-plate and inclined-plate cases. In addition, solution verification and
model validation were performed on all models, referencing one Hypersonic International Flight
Research and Experimentation (HIFiRE) experimental run [8] from the HIFiRE-1 experiments.
In this study, the scope is expanded to include additional code verification on the MNA+FPBL
model, concluding that effort. Code verification activities are documented for a recently updated
MEIT model. As part of the code verification effort on the MEIT model, the model theory
and implementation are documented in a separate theory guide [9]. Solution verification and
model validation are also performed using three additional experimental runs from the HIFiRE-
1 experiments. As mentioned in [7], the primary parameters that characterize hypersonic flows are
the Mach number, Reynolds number, and freestream enthalpy. Another parameter that may impact
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model performance is the vehicle’s angle of attack. The additional HIFiRE-1 runs enable the
model performance to be investigated for various Reynolds numbers and angles of attack. Finally,
a study is presented that compares the computational costs and fidelities from the different models
to investigate the efficiency–accuracy trade-off for two representative cases.
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2. CODE VERIFICATION

Code verification is the first credibility activity to be completed for MFTK. This is done to ensure
that coding errors are removed before impacting solution-verification or validation activities. The
code-verification activities for this report focus on verifying the MNA+FPBL and MEIT models
within MFTK. MFTK computes surface quantities for hypersonic flow calculations by combining
an inviscid solution with a viscous solution. The MNA model is the inviscid component of the
low-fidelity model within MFTK, whereas FPBL is the viscous component of the low-fidelity
model within MFTK. MNA code verification was partially completed for a set of simple two-
dimensional problems [1]. This work extends the testing to include the viscous QoIs on the
same two-dimensional problems, as well as a three-dimensional problem, which stress-tests the
streamline distance calculation. For all three problems, three separate viscous models are tested:
laminar, White (turbulent), and van Driest (turbulent).

Additionally, MEIT code verification is included in this study. The MEIT method computes surface
quantities by reading in an inviscid solution and solving governing equations for momentum
and energy thicknesses along streamlines, before calculating values for quantities of interest
such as wall heat flux. The first step of the MEIT code verification effort involved analyzing
the implementation of the MEIT model in SPARC, and setting up the analytical foundation for
a method of manufactured solutions (MMS) code verification test. This involved identifying
analytical forms of all equations, correlations, and quantities in the method, and comparing the
analytical model to MEIT’s predecessor, hypersonic integral boundary-layer analysis of reentry
geometries (HIBLARG) code. The MEIT theory guide [9] provides the model derivation, as well
as a discussion of the code implementation for the laminar and turbulent flow and ideal gas models.
Two MMS tests were developed and deployed on the MEIT code, with one implementing the
laminar flow model and the other implementing the turbulent flow model. Both tests used the ideal
gas model. These tests targeted the most complex relations in the code given their scope, and
showed expected order-of-accuracy trends for all quantities examined. Though these tests did not
accomplish complete code verification of the MEIT code, they did cover both laminar and turbulent
flow models and provided significant evidence that the models were implemented correctly in the
code.

2.1. Code Verification for Algebraic Models

Typically, code-verification activities involve verifying the discretization of differential or integral
equations that introduces discretization error into the solution. Because of the simplification of the
MNA+FPBL equations, initial code-verification test cases do not introduce discretization error
because the streamline distance is simplified from the aligned grid. Therefore, the maximum
relative difference between an exact solution from a separate code and the computed solution from
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MFTK should be approximately round-off error, such that, if the maximum relative difference for
the ith mesh

εi = max
i

∣∣∣∣QoIiExact −QoIiMFTK

QoIiExact

∣∣∣∣ , (2.1)

where QoI is the quantity of interest, is less than 10−10, the test passes.

2.2. Order-of-Accuracy Verification

For the verification problem with discretization error, order-of-accuracy testing is performed. This
involves using an exact solution and at least two solutions on different meshes (characterized by
the number of elements nx) to compute the exact errors e1 and e2. When the refinement ratio is
constant (r = constant), the observed order of accuracy, pobs, is computed as

pobs =
ln
(
|e1|
|e2|

)
ln(r)

. (2.2)

When pobs is within 10% of the theoretical order of accuracy, this test passes.

2.3. MNA+FPBL Verification Cases

For this analysis, three code-verification cases are studied to identify implementation (also know
as constant errors) and meshing errors. Case 1 is a flat-plate case, Case 2 is an inclined-plate case,
and Case 3 is a cone case. The flat-plate case is the most simple of all of the tests due to the
regularity of the mesh. The inclined-plate case is almost identical to the flat-plate case, except
that the mesh for the inclined-plate case can introduce mesh tolerance errors when inclining the
plate. The cone case is introduced to test mesh curvature, which introduces discretization error
in the streamline calculation and all downstream QoIs. For the flat-plate and inclined-plate cases,
the following FPBL model QoIs are tested for the laminar, White, and van Driest viscous models
using the analytical solutions method: coefficient of friction C f , shear stress τ , and wall heat flux
qw. For the cone case, the inviscid QoIs with the exception of the streamline distance L, pressure
coefficient Cp, edge pressure Pe, edge velocity Ve, edge Mach number Me, edge temperature Te,
edge density ρe, and element normals n̂, are tested using code verification for algebraic models
method, whereas the streamline distance and viscous QoIs, C f , τ , and qw, are tested using the
order-of-accuracy method.

2.3.1. Case 1: Flat Plate

The flat-plate case models flow over a flat plate, where the angle of attack is −7◦. The
computational domain of the flat-plate case is a 1-m × 1-m square on the XZ-plane, which is
shown in Figure 2-1. Since the mesh shown in Figure 2-2 perfectly represents the geometry and is
aligned with the streamlines, this case uses an analytical solution to test the correct implementation.
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This case provides the most simplistic FPBL model test case to ensure all variables computed by
SPARC match the exact solution.

x

y

θ
V∞

Figure 2-1. Computational domain for the flat-plate case (side view).

Figure 2-2. Coarsest mesh for the flat-plate case (top view).

The exact solution uses input from Table A-1 [1] in conjunction with Equations (A.11) through
(A.18) in [1] and the velocity direction specified in Figure 2-1. Using Equation (2.1), the relative
error is computed. The results of the code-verification analysis are shown in Table 2-1.

All of the errors in the FPBL variables are below the test criterion of 10−10, which means the
FPBL model equations do not have constant errors when the staggered mesh is aligned, which
simplifies the streamline calculation. We note that all van Driest errors are a few magnitudes
higher. This is due to the iteration tolerance when solving Eq. A.46 from [1] in SPARC, but the
error level is low enough to show that implementation errors are not present. If an implementation
error were present, the maximum relative error would be much higher than 10−10, making this
verification test quite sensitive to constant errors. One note in completing this verification testing
is that precision tolerances are much more important for these tests than realistic problems. This
makes setting up the test cases difficult since hidden or rarely used settings might expose hidden
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Table 2-1. Code-verification results for the flat-plate case.
Variable Fine Mesh Error Medium Mesh Error Coarse Mesh Error
C fLaminar [×10−13] 4.08 4.38 2.72
C fWhite [×10−13] 2.80 1.27 1.19
C fvan Driest [×10−11] 8.99 8.11 7.15
τxLaminar [×10−13] 4.29 1.49 3.77
τxWhite [×10−13] 2.47 2.35 2.46
τxvan Driest [×10−11] 8.98 8.10 7.17
τyLaminar 0.00 0.00 0.00
τyWhite 0.00 0.00 0.00
τyvan Driest 0.00 0.00 0.00
τzLaminar 0.00 0.00 0.00
τzWhite 0.00 0.00 0.00
τzvan Driest 0.00 0.00 0.00
qwLaminar [×10−13] 4.55 3.55 2.99
qwWhite [×10−13] 1.59 1.66 1.38
qwvan Driest [×10−11] 8.98 8.10 7.16

coding errors. An increased error is expected since round-off error generally increases with the
number of calculations being performed.

2.3.2. Case 2: Inclined Plate

The inclined-plate case is identical to the flat-plate case, but the implementation is slightly
different. For this case, the velocity is along the x-axis and the plate is inclined by 7◦, as shown
in Figure 2-3. Since the mesh perfectly represents the geometry and the mesh is aligned with
the streamlines, this case uses an analytical solution to test the correct implementation. This case
provides the second most simplistic FPBL model test case to ensure all variables computed by
SPARC match the exact solution.
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θ

Figure 2-3. Computational domain for the inclined-plate case.

Figure 2-4. Coarsest Mesh for the inclined-plate case.

The exact solution uses input from Table A-1 [1] in conjunction with Equations (A.11) through
(A.18) in [1] and the velocity direction specified in Figure 2-3. Using Equation (2.1), the relative
error is computed. The results of the code-verification analysis are shown in Table 2-2.

All of the errors in the FPBL variables are below the test criterion of 10−10, except for τzvan Driest ,
which has a maximum relative error of 6.21 × 10−8. Even with the larger relative error, this
is significantly lower than expected ordered or constant errors, which means the FPBL model
equations do not have constant errors when the staggered mesh is aligned, which simplifies the
streamline calculation. This component of the shear stress in particular is near zero and has
absolute error on the order of 10−23, so its impact on the solution is negligible. However, it
was included in the analysis for completeness. One note on this particular problem is that initial
results were impacted by the precision of the mesh. This problem requires the maximum precision
available from the meshing software to ensure mesh precision does not impact the exact verification
results. When applications need more than three or four digits of accuracy, additional studies
should be performed to ensure the errors in the van Driest model are not impacting the solution.
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Table 2-2. Code verification results for the inclined-plate case
Variable Fine Mesh Error Medium Mesh Error Coarse Mesh Error
C fLaminar [×10−13] 4.39 4.21 4.65
C fWhite [×10−13] 2.60 2.78 1.13
C fvan Driest [×10−11] 8.93 8.90 8.63
τxLaminar [×10−13] 4.30 4.67 3.65
τxWhite [×10−13] 2.67 2.63 2.44
τxvan Driest [×10−11] 8.96 8.88 8.61
τyLaminar [×10−13] 4.46 4.66 2.88
τyWhite [×10−13] 2.27 2.11 2.07
τyvan Driest [×10−11] 8.96 8.91 8.60
τzLaminar [×10−11] 1.63 2.95 8.13
τzWhite [×10−11] 12.75 3.41 4.29
τzvan Driest [×10−8] 1.75 6.21 3.83
qwLaminar [×10−13] 4.69 4.11 4.66
qwWhite [×10−13] 1.96 1.72 1.66
qwvan Driest [×10−11] 8.94 8.88 8.64

2.3.3. Case 3: Nose-Cone

Now that code verification testing has been completed on simple geometries, additional testing is
completed on realistic, curved geometries. For the nose-cone problem, the geometry description is
shown in Figure 2-5 with the coarsely meshed geometry shown in Figure 2-6.

Figure 2-5. This geometry is based on the forecone of the HIFiRE-1 wind tunnel test geometry
from [10]. The text states that the final nosetip was changed from sharp to a radius of 2.5 mm.

Since this test introduces discretization error in the streamline distance calculation, all upstream
(inviscid) QoIs are tested using the algebraic model code verification method, whereas all
downstream QoIs (C f , τ , qw) are tested using the order-of-accuracy code verification method. The
exact solution used by both code verification methods uses input from Table 2-3 in conjunction
with Equations (A.11) through (A.18) in [1]. Note that while the velocity is significantly larger
than typical SPARC problems, it is set this large to avoid a singularity in the White model. Further
discussion on this is presented at the end of Section 2.3.3.2.
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Figure 2-6. Coarse mesh for the MNA+FPBL nose-cone problem.

Table 2-3. Table of values used in code-verification analysis.
Constant Name Notation Value Units
Gas constant for air R 287.05 J/kg/K
Ratio of specific heats γ 1.4 –
Prandtl number Pr 0.73684 –
Freestream density ρ∞ 0.066958 kg/m3

Freestream velocity V∞ [217000, 0, 0] m/s
Freestream temperature T∞ 226.46 K
Wall temperature Tw 300 K
Sutherland constant Cvisc 1.458×10−6 –
Sutherland constant Svisc 110.3 –
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2.3.3.1. Algebraic Model Results

Using Equation (2.1), the relative error is computed for all inviscid QoIs. The results of the code-
verification analysis are shown in Table 2-4.

Table 2-4. Code-verification inviscid results for the cone case.
Variable Fine Mesh Error Medium Mesh Error Coarse Mesh Error
nx [×10−13] 4.11 4.11 4.11
ny [×10−13] 4.89 4.96 4.49
nz [×10−13] 4.84 4.96 4.53
Cp [×10−13] 4.94 4.82 4.67
P [×10−13] 4.85 4.77 4.55
u [×10−13] 60.52 16.76 4.65
v [×10−13] 60.87 13.41 4.83
w [×10−13] 60.93 18.73 4.83
M [×10−13] 60.90 14.98 4.75
T [×10−13] 4.75 4.89 4.77
ρ [×10−13] 4.92 4.88 4.73

All of the relative errors in the MNA variables are below the test criterion of 10−10, which means
the FPBL model equations do not have constant errors, even when the mesh is not aligned. If an
implementation error were present, the relative error would be much higher than 10−10, making
this verification test quite sensitive to constant errors. One note in completing this verification
testing is that precision tolerances are much more important for these tests than realistic problems.
This makes setting up the test cases difficult since hidden or rarely used settings can cause issues
to the results. An increased error is expected since round-off error generally increases with the
number of calculations being performed.

2.3.3.2. Order-of-Accuracy Results

This test introduces discretization error in the streamline distance calculation. To ensure the
streamline distance calculation is implemented correctly, a mesh refinement study is completed
to measure the observed order of accuracy. When the observed order of accuracy matches the
theoretical order of accuracy to within 10%, the test passes. Additionally, since C f , τ , and qw
are functions of the streamline distance, the observed order of accuracy for these QoIs are also
measured. The theoretical order of accuracy is based on approximating the curvature of the
geometry with a linear element. The linear element introduces a second-order error, which means
the theoretical order of accuracy for MNA+FPBL when the geometry has curvature is two (O(h2)).
The exact solution uses input from Table 2-3 in conjunction with Equations (A.11) through (A.18)
in [1]. Using Equation (2.1), the observed order of accuracy for all FPBL variables are computed
using the relative error for two sets of meshes. These error values are substituted into Equation (2.2)
to compute the observed order of accuracy. The results of the code-verification analysis are shown
in Figures 2-7 through 2-9.
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Figure 2-7. Code verification results for the viscous QoIs in the laminar model.
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Figure 2-8. Code verification results for the viscous QoIs in the White model.
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Figure 2-9. Code verification results for the viscous QoIs in the van Driest model.

The observed order of accuracy for all FPBL variables and the streamline distance are within 10%
of the theoretical order of accuracy, which suggests the implementation of the FPBL model and
streamline distance equations is correct. If a significant implementation error were present, the
difference between the observed order of accuracy and the theoretical order of accuracy would be
larger than 10%. One note in completing this verification testing is that a singularity in the White
model causes degradation in the observed order of accuracy when it was applied to the whole
domain. As the mesh is refined, the Reynolds number becomes small and the natural log of the
Reynolds number is increased towards negative infinity. To avoid this, the freestream velocity is
increased to ensure the Reynolds number is larger than Euler’s number at every element centroid
to avoid issues with the natural log. Whereas the observed order of accuracy degrades slightly with
refinement, it is still within 10% of the theoretical order of accuracy. Since a realistic problem
would not apply the White model in areas where the flow is laminar (i.e., small Reynolds number),
this singularity will not be present in realistic problems.

2.3.4. Coding Errors Identified

While completing code verification testing, two coding errors were identified, which impacted all
FPBL models. The first coding error was identified in the non-dimensional viscosity calculation.
The calculation incorrectly used the wall temperature, Tw, instead of the non-dimensional
temperature, T ∗. The second coding error was identified in the S and b constants in coefficient
of friction calculation. The S calculation incorrectly used the wall temperature, Tw, instead of
the edge temperature, Te, whereas the b calculation left out subtracting the equation by 1.0. To
show the impact of these coding errors, the relative error for each QoI is shown for the flat plate
(Figure 2-10) and inclined plate (Figure 2-11) cases.

These differences are significant and would have impacted future simulations if the coding errors
were not caught. To show the impact on a real problem, Figure 2-12 is an example of how the
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Figure 2-10. Coding error identified in the FPBL model on the flat plate case.
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Figure 2-11. Coding error identified in the FPBL model on the inclined plate case.
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coding errors would have impacted the White model validation assessment for the HIFiRE-1 test
series (see Section 3 for more details about the test series).
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Figure 2-12. Impact of coding error on a cone case validation problem.

The error-free version of the model (sparc/daily) matches significantly better to the
experimental data than the version of the model with coding errors (sparc/22.2). This
shows how important code verification is when doing a validation assessment because the model
performance can be significantly degraded by coding errors.
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2.4. MEIT

This section outlines the completed code verification on the MEIT model using MMS (see [11] for
more information on this method). The code verification performed on the MEIT model includes
both a laminar and turbulent unit test. The process of building and running these tests uncovered
several real and potential issues with the code. Before this occurred, the code had to be understood
in sufficient depth for rigorous code verification to succeed. Thus, a literature survey was done
and the present implementation of the MEIT model was studied. Derivations of the governing
equations and streamline metric from Paul Delgado and Lawrence DeChant were also pulled
together, and all of the resulting material was used to create new documentation for the model.
This documentation [9] contains a detailed discussion of the code’s theory and implementation for
the model space examined in this test.

2.4.1. General Test Description

The MEIT model has reduced complexity in comparison with models which incorporate the
Navier–Stokes equations to obtain full solutions of viscous flow fields. However, the MEIT model
is moderately complex. It contains integro-differential equations, a gas model, several correlations
for model closure and parameter description, and multiple flow regimes with separate models
(laminar and turbulent). The MEIT solution process involves reading in an inviscid flowfield
solution from a volume mesh and interpolating quantities onto a surface mesh. Then, streamlines
are calculated on the surface of the vehicle and the MEIT algorithm runs the solution procedure
along each of the streamlines. The resulting quantities computed on the streamlines are then
interpolated back onto a surface mesh and the end product is a scalar or vector field of values
for each output quantity on the vehicle surface. When performing code verification, the primary
focus is on ensuring that the mathematical model is correctly implemented in the code. This focus
is balanced by the fact that code verification should be broad in scope in order to cover all parts of
the solution process which may produce errors. In the present study, the scope is limited to solution
along a single streamline, thus focusing on the mathematical implementation of the model for the
streamline calculation. The scope of the code verification effort in the present study is further
narrowed to a specific subset of options in the MEIT model. Specifically, the ideal gas model was
analyzed, since the real gas model involved a table lookup in the calculation of thermodynamic
quantities. Tables are difficult to implement in an MMS test, since an analytical description of them
is not necessarily attainable. Additionally, influence coefficients use different formulas depending
on the value of the Levy–Lees parameter β . In the present study, the tests are designed to exercise
the more complex relations (a function of β raised to a power and multiplied by a constant versus
simply a constant). The applicable equations and correlations, as well as the solution procedure,
are given in [9]. The following sections give the values which determined the set of expressions
used for each test.

The geometry chosen for this test is a 2D representation of a sharp half cone and is shown in
Figure 2-13. This geometry is selected specifically to allow for analytical evaluation of the source
terms arising from the model in the code verification process. Geometry defined with trigonometric
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or higher-order polynomial functions was not used because it resulted in integrals which could not
be evaluated in the manufactured solution, or discontinuities in quantities.
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Figure 2-13. Geometry of MEIT code verification test.

The primary equations solved along streamlines in the MEIT model are differential equations for
momentum and energy thickness, given in Equations (2.3) and (2.4), respectively [12]. In these
equations, hβ is the streamline metric, ρe is the edge density, Ue is the ege velocity, p is pressure,
C f is the skin friction coefficient, Ch is the Stanton number, hstag is the stagnation enthalpy, hw
is the wall enthalpy, hrl is the recovery enthalpy, and s is the streamline distance. The MMS
approach involves manufacturing solutions to the dependent variables of the governing equations.
Here, this means manufacturing solutions for momentum thickness (θ ) and energy thickness (φ ),
which are shown in Equations (2.5) and (2.6) [12]. In this test, these equations are solved along
a single streamline, and the equations specify the value of the two thicknesses along its length.
In these equations, ν1 is the kinematic viscosity at the stagnation point, H is the boundary layer
shape factor, Pr is the Prandtl number, and (dUe/ds)1 is the edge velocity gradient at the stagnation
point. The manufactured solutions used in the present study are equivalent to the limiting form for
θ and φ at the stagnation point, and thus match the code output there. In addition, with sufficient
refinement along the streamline (s → 0), the code output matches the manufactured solutions at the
next 4 points on each streamline.

d
(
θhβ ρeUe

2)
ds

= hβ ρeUe
2
(

θ
H

ρeUe
2

d p
ds

+
C f

2

)
(2.3)

d
(
φhβ ρeUe

(
hstag −hw

))
ds

=Ch
hstag −hw

hrl −hw
hβ ρeUe

(
hstag −hw

)
(2.4)
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θ1 =

√√√√ 0.245ν1

(3+H)
(

dUe
ds

)
1

(2.5)

φ1 =

√√√√ 0.220ν1

2Pr4/3
(

dUe
ds

)
1

(2.6)

Additionally, the inviscid pressure, temperature, and velocity along the streamline are specified in
simple functional form, as Equations (2.7)–(2.9). These forms are not ideal in comparison with
sinusoidal functions for two primary reasons. First, they lack the continuity under differentiation
that sinusoidal functions exhibit. Second, they do not provide the opportunity to test the behavior
of the model with fluctuations in quantities along the streamline length. However, they are
realistic in the sense that pressure decreases from the stagnation point whereas velocity increases.
Temperature was chosen to be constant due to the Levy–Lees parameter ξ , which involves an
integral, and cannot be evaluated as an analytical expression in Wolfram Mathematica for more
complex forms. In the current implementation of MEIT, the edge quantities are taken as equal to
the inviscid quantities, so that in this test, Equations (2.7)–(2.9) specify functional forms for edge
quantities along the streamline.

p = pref (2− s) (2.7)

T = Tref (2.8)

U =Uref (1+ s) (2.9)

A full analytical model was built in Mathematica with the MEIT equations, manufactured forms,
and specified quantities. In MMS, the solutions to the governing equations are specified, and
the governing equations are then applied to the specified solutions to obtain source terms. With
these source terms added to the governing equations, the new governing equations are theoretically
satisfied by the manufactured solutions. The code is then tested to see whether the MEIT and
manufactured values of the quantities solved for in the governing equations are consistent. The
Mathematica scripts are used to generate these source terms, which are added to the governing
equations in the MEIT solve. In reality, the process of creating the source terms was iterative,
with the functional form of prescribed and manufactured quantities being updated until the source
terms were analytical functions which could be evaluated in the test code. With the test set up as
described above, it is run and code values were compared to analytical values. The entire process
is summarized in Figure 2-14.
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Extract analytical model from SPARC MEIT code & 

compare with HIBLARG analytical description

Build full analytical MEIT model in Wolfram Mathematica 

incorporating manufactured solutions and specified 

expressions for inviscid quantities 

Design manufactured solution for 𝜃 and 𝜙 which is compatible 

with MEIT model and as realistic as possible

Generate source terms for governing equations using 

Mathematica scripts

Incorporate problem definition, analytical expressions, and 

source terms in test code. Add source terms to MEIT algorithm.

Define scope of test

Run test and make conclusions about results

Iterate

Figure 2-14. Flowchart for MEIT code verification test process.
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2.4.2. Laminar Test

The first test used on the MEIT code is a test of the model using the simpler laminar relations
(see [9]). The model is set to use laminar relations along the entire streamline, and the modified
governing equations use source terms based purely on these laminar relations. Expressions used
for the Stanton number and skin friction coefficient correspond to a β -value larger than zero (see
Equations 3.61, 3.62, 3.67 in [9]). The process followed for evaluating errors in quantities in
the code is to start with the first quantities set or computed and move to the quantities which
are further downstream in the solution process, ultimately analyzing the QoIs such as wall heat
flux. First, constant and thermodynamic quantities are analyzed with a series of checks expecting
equivalence or agreement within a small tolerance. Thermodynamic quantities are expected to
have a relative difference with magnitude less than 10−12 (the difference is scaled by the code
value). The results are shown in Tables 2-5 and 2-6. For the quantities in Table 2-5, exact or close
agreement is obtained, and absolute error is used. For the quantities in Table 2-6, the magnitude
of the quantities varies significantly, with some having several digits before the decimal place and
some having none. Thus, relative error is used to normalize the error for these quantities such that
they can be held to the same relative standard. This measure provides an indication of how many
digits are in agreement rather than how many digits after the decimal place are in agreement. With
a target error threshold of 10−12, all quantities in both tables pass the error check. The process
used to compute the thermodynamic quantities in the Table 2-6 is modified as part of the code
verification effort to make the calculations purely SI except for the calculation of µ , which has
a standard form assuming english units for temperature. This change removes the dependency of
these quantities on the precision of conversion factors, and reduces the complexity of the analytical
expressions in the test. This can be noted as a code improvement for thermodynamic property
calculations. With these checks passed, the discretization-dependent quantities are then analyzed
using order-of-accuracy testing over several levels of refinement.

Table 2-5. Absolute errors in quantities tested first.
Variable Absolute Error
Transition 0
Roughness 0
Blowing 0
pe 0
Te 0
ρe 0
ue 0
hβ 0
Tw 0
Me [×10−15] 0.89
Recovery factor [×10−15] 0
ξ [×10−15] 0.15

For the order-of-accuracy testing, the streamline is discretized using 6 refinement levels with each
having a factor of 10 more points than the previous level. At each level, 1 is added to the number
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Table 2-6. Relative errors in thermodynamic quantities.
Variable Relative Error
se [×10−15] 1.11
he [×10−15] 1.55
µe [×10−15] 1.33
sw [×10−15] 1.11
hw [×10−15] 0
µw [×10−15] 0.22
ρw [×10−15] 0
hr [×10−15] 0.22

of points such that there is an even number of segments along the streamline. Thus, the coarsest
level has 11 points and the finest has 1,000,001 points. Relative error is used for all quantities
except ξ and β , which have significantly amplified relative errors near the stagnation point due
to their small value when s ≊ 0. For these two quantities, absolute error is used. The resulting
plots are shown in Figures 2-15–2-16b. The theoretical order of accuracy for ξ is 2 due to the
trapezoidal rule used in its calculation. Figure 2-15 thus shows that the numerical integration
method used for calculation of ξ operated with the correct order. First-order differentiation is used
in the calculation of β and thus the theoretical order of accuracy is 1 for β and all subsequent
quantities. The convergence trend for β is shown in Figure 2-15, and exhibits good agreement
with the theoretical order. Figure 2-16 shows that the other quantities follow the expected order of
accuracy closely for most of the study’s domain. Agreement is within 15% along the entire trend
for all quantities except for θ and Reθ , which shows ∼27% difference from the expected order of
accuracy between the 3rd and 4th points. However, agreement is much better in the other intervals,
reaching less than 5% difference by the last interval. Overall then, agreement with the expected
orders of accuracy is sufficient for all quantities to strongly suggest the absence of code bugs. The
overall theoretical order of accuracy of the code is 1, and the test showed strong evidence that
convergence in QoIs and intermediate quantities agree with this fact, for the scope of the test. It
is worth noting that if the scope of the test weas expanded to include stagnation point detection,
this operation would also limit the theoretical order of accuracy of the code to 1. Any further tests
should take scope into careful consideration when determining the theoretical order of accuracy.
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Figure 2-15. Order of accuracy for ξ and β from laminar test.
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Figure 2-16. Order of accuracy plots for test QoIs from laminar test.
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2.4.3. Turbulent Test

The turbulent test exercises the Abres Shape Change Code 1980 (ASCC 80) turbulent correlations
on the same geometry with the same manufactured solutions and specified inviscid quantities as
in laminar test. A second set of Mathematica scripts incorporating the ASCC 80 correlations is
used to generated new source terms, and the test is updated to include an option to run with the
turbulent formulation. This test is run on the same six refinement levels as in the laminar test.
More complex expressions are once again targeted by choosing β = 0. In addition, the Prandtl
number is 0.7 (greater than 0.6) and the Mach number is greater than 1.5. The last two conditions
generally target the more complex set of relations in the ASCC 80 turbulent correlations (Equations
3.81–3.100 in [9]). The resulting errors on the constant and thermodynamic quantities all pass the
1×10−12 criterion as in Tables 2-5 and 2-6. The order of accuracy plots are shown in Figures 2-
17–2-18b. Again, θ and Reθ show ∼27% difference from the expected order of accuracy between
the 3rd and 4th points but much lower percent difference by the finest interval. All other quantities
show agreement in order of accuracy to within 15% over the entire trend, with agreement in the
finest intervals being significantly better than the maximum discrepancy. It should be noted that
this is only achieved after modifying the formula for the Stanton number to remove a factor of Pr1/2

that was included in the HIBLARG manual. The overall first-order nature of the code was clearly
seen and test results clearly matched the theoretical order of accuracy. Thus, the test conditionally
passed and the code is considered verified within the scope of the test.
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Figure 2-17. Order of accuracy for ξ and β from turbulent test.
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Figure 2-18. Order of accuracy plots for test QoIs from turbulent test.

2.5. Future Work

Significant progress has been made in verifying the MNA+FPBL and MEIT models. The
MNA+FPBL model has undergone significant testing with increasing complexity, with the cone
case exercising all parts of the MNA+FPBL code. The MEIT model has had both the laminar and
turbulent models tested, but with a subset of conditions limiting the scope of the tests.

The MEIT model has thus been partially verified by the testing described above. The extent of
testing completed to date is related to the heavy investment that has been made with regards to
understanding and describing the moderately complex MEIT model, and setting up high-quality
initial tests. Several coding errors have been found and could be further explored given sufficient
motivation. One error that was fixed in this effort was an incorrect if condition in the calculation
of viscosity. Another problem which was fixed was the thermodynamic module taking in quantities
in SI units, converting to English units, computing thermodynamic quantities, and then converting
back to SI units. This code was updated to include only SI units to streamline the process and
remove the potential for unit conversion coding errors which could reduce solution accuracy
or produce incorrect results. Related efforts fixed a coding error related to interpolation from
the streamlines back to the surface mesh. Another of these errors was an influence coefficient
formulation which was incorrect at the stagnation point.

Several potential issues were also identified for possible improvement. One of these issues is the
significant deviation of the order of accuracy trend in θ and Reθ from the expected value of 1
at intermediate refinement levels. Another is the fact that the algorithm defines the stagnation
region as the four points following the stagnation point regardless of spatial refinement along
the streamline. This means that the stagnation region essentially collapses to zero with high
refinement. An improvement would be to define the stagnation region based on a physical length
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scale. Another potential issue found was in the finite difference expression for the velocity gradient
at the stagnation point, where the velocity was assumed to be exactly zero. This assumption may
not be consistent with the actual velocity computed in a simulation and should be examined in
more detail or the formula replaced with a standard finite difference. A potentially significant
improvement—but one which should be weighed against the increased cost associated with it—
would be to change the MEIT discretization to 2nd order. The turbulent test also uncovered
some potential issues, with one being a missing factor of Pr1/2 in the Stanton number formula
as compared with the formula in the HIBLARG manual [12]. This formula is part of the ASCC
80 set of correlations. References containing these correlations are difficult to acquire, but finding
the correct formula should be pursued. Finally, the turbulent formula for wall heat flux at the
stagnation point used the laminar Stanton number. An undocumented assumption was used here
and should be further investigated.

Besides the potential follow-on work described above, the completed code verification should
provide value to the SPARC code development team. The tests developed and used in the present
study have been shared with the code development team along with documentation of both models,
allowing for more informed and efficient testing of future implementations.

36



3. HIFIRE-1 WIND TUNNEL TESTS

Experimental data are critical to validation studies, but there are few presented in the public
literature for hypersonic aerodynamic vehicles, possibly due to the challenges of measurements
under these extreme conditions or the sensitivities of the applications. There are a handful of
tests that include a mix of flight and ground tests. These two types have benefits and drawbacks.
Flights tests are closer to the intended uses of MFTK, but measurement quantity and quality for
aero-only quantities are challenging. Most flight tests of hypersonic vehicles require a thermal
protection system that complicates the direct measurement of aerodynamic quantities such as
surface pressure, temperature, and heat flux. Also, flight test conditions are only loosely controlled
and measured. Conversely, ground tests are farther from the intended uses of MFTK, but enable
greater instrumentation and control of conditions. Many ground test facilities are shock tunnels that
induce hypersonic conditions for a fraction of a second, eliminating the need for thermal protection
systems.

Many potential validation data sources were surveyed for this work. One source of hypersonic
aerodynamic validation data is the Hypersonic International Flight Research and Experimentation
(HIFiRE) program that sought to develop hypersonic technologies. The program included
atmospheric flight tests and ground tests in the shock tunnel facilities at the Calspan–University at
Buffalo Research Center (CUBRC). Their Large Energy National Shock (LENS) facilities include
LENS I, LENS II, and LENS XX [10]. Of particular interest are the HIFiRE-1 wind tunnel tests
that have been used for validation data in a number of subsequent publications that were conducted
in the LENS I shock tunnel [8].

The HIFiRE-1 wind tunnel tests were selected for a validation application due to hypersonic flow
conditions, challenging flow characteristics, turbulence, testing with air, and a wealth of high-
quality data that spans a range of angles of attack and Reynolds numbers [8]. One down-side is
the low enthalpy conditions in the flow that will not exercise the reacting gas models in the MFTK
RANS implementation. The HIFiRE-1 flight test was not selected due to the coning motion during
reentry that makes it less ideal for validation [13].

The geometry of the test article used in the HIFiRE-1 wind tunnel tests is shown in Figure 3-1.
The test article has a complex shape with a slender 7◦ half-angle fore-cone, a cylindrical section in
the center, then a blunt flare at the rear. The figure shows most features of the test article well, but
does not show the short cylindrical extension after the flare, which was present in the experiments
and is modeled. Depending on the run configuration, turbulent transition occurs naturally or is
tripped on the fore-cone. The flare causes a separation bubble in the cylindrical section that is a
challenge for many RANS models [10]. The test series had a total of over 50 runs in two phases
and the model contains a total of 106 heat flux sensors and 60 pressure sensors that are located at
four different meridional angles. Phase I of the experimental study was conducted to determine
optimal nose radius and flare angle, which were then used in Phase II. All experimental data used
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in the present study are from Phase II runs. It may be noted that the 0◦ meridional angle is the
most heavily instrumented, and that this angle is located on the windward side of the body when
the angle of attack (α) is nonzero.

Figure 3-1. The HIFiRE-1 wind tunnel test geometry, showing the fore-cone on the left, the
cylindrical section in the center, and the flare on the right, from [10]. Note that the nose radius
is 2.5 mm.

For this study, the number of runs was expanded from one (Run 30, in [1]) to four. The runs
analyzed span most of the Reynolds number – angle of attack space shown in Figure 3-2, with
symmetry for positive and negative angles of attack being exploited to reduce the number of runs
analyzed. The runs with positive angle of attack have the windward side on the 0◦ meridional angle,
so as to utilize the much higher number of sensors on the side which experiences earlier transition
and more extreme physics. The runs analyzed in this study were chosen such that laminar and
turbulent flow was present in each, and two sets of runs were similar in Reynolds number (Runs
30 and 34 around 1e7 m−1, Runs 38 and 42 around 3.5e6 m−1), while two sets of runs were also
similar in angle of attack (Runs 30 and 38 at 0◦, Runs 34 and 42 at 2◦). The flow was manually
tripped to initiate transition to turbulence in Runs 38 and 42. At a given angle of attack, the
Reynolds number was varied primarily by changing the freestream density (roughly 100 percent
difference in density versus less than 5 percent difference in freestream velocity). Not only did
these runs provide an opportunity to perform a more thorough validation comparison, they also
allowed for examination of model performance under varying conditions. Two questions that were
examined in this study were the performance of each of the MFTK models at lower Reynolds
numbers (are the models more accurate for lower Reynolds number?) and at nonzero angle of
attack (are models less accurate for nonzero angle of attack?).
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Figure 3-2. Map of HIFiRE-1 runs showing parameter space analyzed in this study.

To provide a sense of the flow field, the Mach number predictions in a two-dimensional,
axisymmetric, wall-normal plane for two RANS models are shown in Figure 3-3. The flow is left
to right. The solid wind tunnel model is the white region in the lower right and includes the cone,
the cylinder, and the flare. The white region in the upper left is outside of the simulation domain.
The RANS Spalart–Allmaras (SA) and RANS Shear Stress Transport (SST) models predict similar
flow fields with the exception of the separated region near the cylinder-flare intersection that is only
observed for RANS-SST.

In Figure 3-4, contour plots are shown for the center plane of RANS-SST simulations of Run 30
and Run 34. This figure highlights the major flowfield differences between results for runs at 0◦

angle of attack (Run 30) and those for runs at 2◦ angle of attack (Run 34). The main oblique shock
eminating from the nosetip is thinner than that on the leeward side of the Run 34 results, but thicker
than that on the windward side. Additionally, the separation region in the Run 30 results is smaller
than that on the leeward side of the Run 34 results, and similar in size to that of the windward
size. Comparing the leeward and windward sides of the Run 34 results directly, it can be seen
that the main oblique shock from the nosetip is significantly thicker and the separation region is
larger on the leeward side. The thin strip of green denoting a relatively low Mach number is also
thicker on the leeward side, reflecting a thicker boundary layer due to lower bulk flow speed and
reduced pressure. Finally, among other things, the surface heat flux and pressure are higher on
the windward side. All of these differences are expected due to the nonzero angle of attack, and
highlight the need for CFD models which accurately solve nonaxisymmetric flowfields, especially
as angles of attack may be higher for the intended use of these models.
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(a) RANS-SA

(b) RANS-SST

Figure 3-3. HIFiRE-1 wind tunnel simulation Mach number predictions for RANS-SA and RANS-
SST models.
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(a) RANS-SST, Run 30

(b) RANS-SST, Run 34

Figure 3-4. HIFiRE-1 wind tunnel simulation Mach number predictions for Runs 30 and 34 using
RANS-SST model.
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4. SOLUTION VERIFICATION

Solution verification seeks to ensure that a discrete solution is sufficiently accurate for its intended
use. This is crucial to complete before validation activities start because numerical errors have
the potential to contaminate predictions and bias accuracy assessments in validation. Since the
different models in MFTK (MNA+FPBL, Euler+MEIT, and RANS) use discrete equations to
represent the continuous mathematical model, an assessment of the numerical uncertainty needs to
be completed for each validation case. The grid convergence index (GCI) metric is used to assess
numerical uncertainty in this study.

4.1. GCI Equations

The GCI metric is the most simple and popular method to assess numerical uncertainty [3]. This
metric is a tailored approach for estimating numerical uncertainty, which is based on Richardson
extrapolation. For a detailed description of the mathematics behind numerical uncertainty
estimation using Richardson extrapolation, see [3]. The GCI method requires solutions on at
least three mesh sets ( f1, f2, and f3) to compute the observed order of accuracy. Previously [1],
the base case developed for the validation study produced a solution on a medium mesh, and a
finer and coarser mesh were used to generate additional solutions. The numerical uncertainty
previously observed tended to be higher than desired for some models and regions on the vehicle.
Thus, for this study, the base (nominal) case was taken to be the fine mesh case, and solutions on
two coarser meshes were obtained. These meshes were coarsened by a factor of two (refinement
ratio r = 2) each with respect to the next finest mesh. Since the MNA+FPBL model is a panel
method, whereas Euler and both RANS models are control-volume methods, two separate mesh
triplets were previously generated. Another improvement in this study was the generation of a third
mesh triplet specifically for the Euler model, as it does not require a refined near-wall region to
resolve the viscous boundary layer (BL). Figure 4-1 shows the coarsest 3D surface mesh used
for the MNA+FPBL model, whereas Figure 4-2 shows the coarsest 2D axisymmetric volume
mesh used for the Euler model, and Figure 4-3 shows the coarsest 2D axisymmetric volume
mesh used for both RANS models. These are volume meshes in the sense that the domain which
they represent is the volume around the vehicle, under an axisymmetric assumption. For both the
MNA+FPBL and Euler meshes, the only significant mesh refinement is near the nose-cone region
since large gradients are expected in this region, whereas the RANS meshes also have significant
wall-normal mesh refinement for viscous boundary layer resolution. Each figure focuses on the
mesh resolution details in the nose-cone region. The medium and fine cell sizes can resolve length
scales approximately two- and four-times smaller than the coarse cell sizes, respectively.
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Figure 4-1. MNA+FPBL coarse surface mesh example in nose-cone region.

Figure 4-2. Euler coarse mesh example in nose-cone region.

Figure 4-3. RANS coarse mesh example in nose-cone region.
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This provides enough information to compute the observed order of accuracy, pobs, which is

(4.1)pobs =
ln
(

f3− f2
f2− f1

)
lnr

.

Once we compute the pobs, a factor of safety, Fs, is chosen. This factor of safety turns the
discretization error estimate into a 95% confidence interval. When the difference between pobs
and the theoretical order of accuracy, pth, is smaller than 10%, Fs = 1.25. For all other cases,
Fs = 3.0 [3]. While multiplying the estimated discretization error significantly inflates the reported
error, being close to or outside the asymptotic range can negatively impact the quality of the
Richardson extrapolation. Additionally, when pobs is positive, but larger in magnitude than pth,
it is conservative to use pth in the GCI metric, which will be seen in the order-of-accuracy plots
below as a ceiling. When pobs is smaller in magnitude than pth, it is conservative to use pobs in the
GCI metric. For the case when pobs is positive, but less than 0.5, the order of accuracy is set to 0.5,
which will be seen in the order-of-accuracy plots below as a floor. Allowing the order of accuracy
used in the metric to be significantly larger than the formal order produces unreasonably small
uncertainty estimates, while allowing the order of accuracy to go to zero produces unreasonably
large uncertainty estimates. Moreover, scientific computing codes are typically of order 1 or higher,
and an order of less than 0.5 thus falls significantly below the expected range. For the case when
pobs is negative, this suggests that the simulation is non-convergent and numerical uncertainty
cannot be estimated. With these limitations on the order of accuracy, very large or small uncertainty
values are avoided, while an appropriate level of conservatism is retained. Now that Fs and p are
known, the GCI metric is computed using Equation (4.2).

(4.2)GCI = Fs
| f2 − f1|
(rp − 1)

4.2. Solution Verification Assessment

For the solution verification assessment, the numerical uncertainty is quantified for all model
combinations used in the validation study of the HIFiRE-1 wind tunnel test in Chapter 5. To
assess the numerical uncertainty for each simulation case, the GCI is computed in the streamwise
direction along the vehicle surface at three unique meridional angles (0◦, 90◦, 180◦). The model
fidelities assessed are MNA+FPBL, Euler+MEIT, and RANS. Since the validation assessment is
performed on the pressure (P) and wall heat flux (qw), the solution-verification assessment needs
to quantify the numerical uncertainty for those QoIs. In addition to the normalized GCI values,
we report simulation results for each level of refinement to quickly assess the mesh sensitivity.
Lastly, we also report the observed order of accuracy to show how well the numerical method is
performing. For all simulation results, the theoretical order of accuracy is assumed to be two, due
to second-order discretization methods for each model.
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4.2.1. MNA+FPBL

The MNA+FPBL model has the option of three different viscous models: flat-plate laminar and
flat-plate turbulent using either the van Driest or White models. Both the laminar and van Driest
models are used in each simulation case, and ultimately laminar and turbulent solutions are stitched
together at the transition location for the validation analysis. In the solution-verification effort,
each model is analyzed separately over the entire geometry for each simulation case. The results
are shown in Figures 4-4 through 4-12 for a series of experimental runs from the HIFiRE-1 wind
tunnel tests. The series of runs used is described further in Section 3. For the heat flux order
of accuracy, a moving mean with a window of 10,000 data points is plotted in black to more
clearly show the average trend. Note that the HIFiRE-1 geometry is shown as a shaded figure
in the background of each plot to show the increase in uncertainty due to changes in geometry.
Additionally, inset plots are added to the GCI plots, which show a magnified view of the QoI
trends on the flare. Inset plots are also shown for sections of the cylinder and cone in Figure 4-5.
These inset plots show that, in general, the simulation results converge to the fine grid results, with
the medium grid solution being closer to the fine grid solution than the coarse grid solution is.
This trend is checked along the entire vehicle for all cases by computing the absolute value of the
difference between the medium and fine, and coarse and fine grid solutions. This check yielded the
result that, in general, the medium grid solution is closer to the fine grid solution than the coarse
grid solution was. This in turn pointed to the fact that the simulation results are convergent to
a solution best approximated by the fine grid solution. Exceptions to this trend are the heat flux
results from the MNA+FPBL simulations of Runs 34 and 42, with both the laminar and van Driest
turbulence models (0◦ meridional angle). All simulation results are close together for these cases,
but the fine grid solution shows spikes in the flare region that the other solutions do not show. This
could contribute to the coarse solution being closer on average to the fine solution. These cases
are noted as an anomaly, and will be further investigated. In Figure 4-5b, the trends for all three
refinement levels are identical (same pressure predicted regardless of refinement level). This is the
result of the MNA model’s insensitivity when the angle of the geometry is 0◦ (see Appendix A
of [1]).

For pressure, both the GCI and order of accuracy perform quite well for the laminar and van Driest
cases, except near the discontinuity at the front of the nose cone, which is to be expected. This is
true for all runs. We note that there is a drop in order of accuracy when the angle of the HIFiRE-1
geometry is zero, in the cylindrical portion, since the model is designed to be insensitive when the
angle is 0◦. The runs at 2◦ angle of attack (Runs 34 and 42) have higher GCI in the cone region
than runs at 0◦ angle of attack (Runs 30 and 38). For Runs 34 and 42, the order of accuracy is
two along the entire body, excluding the nosetip. This is likely due to the fact that for these cases,
there is no section of the body which is at 0◦ with respect to the flow, since the angle of attack is
nonzero. For heat flux, the results are less desirable because of the larger sensitivity to the mesh
and due to the large variation in order of accuracy, although the numerical uncertainty is still quite
small (approximately 4% maximum difference, excluding the nosetip). In the present study, the
GCI and order of accuracy are computed at each axial mesh node on the finest mesh, which results
in very detailed trends. For heat flux, the GCI fluctuates substantially, but generally decreases
along the body. The order of accuracy also fluctuates, with higher magnitude fluctuations near
the nosetip, on the turbulent cone, and near the flare. The fluctuations are also larger for the van
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Figure 4-4. GCI calculation for Run 30 using laminar model.
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Figure 4-5. Pressure and heat flux plots from Run 30 with insets for cone and cylinder.
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Figure 4-6. GCI calculation for Run 30 using turbulent (Van Driest) model.
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Figure 4-7. GCI calculation for Run 38 using laminar model.
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Figure 4-8. GCI calculation for Run 38 using turbulent (Van Driest) model.
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Figure 4-9. GCI calculation for Run 34 using laminar model.
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Figure 4-10. GCI calculation for Run 34 using turbulent (Van Driest) model.
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Figure 4-11. GCI calculation for Run 42 using laminar model.
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Figure 4-12. GCI calculation for Run 42 using turbulent (Van Driest) model.
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Driest model than for the laminar model. In all cases, however, the order of accuracy is essentially
centered at one. As mentioned above, the expected order of accuracy for the MNA+FPBL heat flux
results is two, so the plots are surprising. This discrepancy could be caused by a number of factors,
including the interpolation method used in the GCI calculation and the simulation details such as
vehicle geometry and flow regime transition. However, since the GCI value is small, switching
the factor of safety from 1.25 to 3.0 does not change the overall conclusion that MNA+FPBL has
small numerical uncertainty. This phenomena is planned to be explored in the coming year.

4.2.2. Euler+MEIT

Results from the Euler+MEIT model are shown in Figures 4-13–4-16 for simulations of the four
HIFiRE-1 runs (30, 34, 38, 42). This model represents the standard mid-fidelity option within
MFTK that coincides with legacy production codes. Note that the HIFiRE-1 geometry is shown as
a shaded figure in the background of each plot to show the change in uncertainty due to changes in
geometry.

For pressure, there are areas in the domain that are not fully resolved with a GCI ratio of up
to 50 near the flare. Generally, spikes in the GCI ratio are lower than 10 for all runs, and
significantly lower for most of the body. However, these large spikes near the flare do indicate high
local numerical uncertainty, which is detrimental for predictions using this model combination.
Additionally, the order of accuracy confirms this lack of convergence with spikes from the order
of accuracy. For heat flux, rather than modeling the laminar-to-turbulent transition region, MFTK
currently switches from laminar to turbulent at the transition location (approximately x = 0.45 m,
x = 0.505 m, x = 0.404 m, x = 0.505 m) for Runs 30, 38, 34, and 42, respectively. The transition
location for Runs 38 and 42 is given in [8], while the other locations are deduced from the
experimental heat flux curves. Heat flux trends show distinct increases at the transition location,
consistent with theory. This approach is taken as this effort is focused on assessing model accuracy
for predicting quantities of interest and not for predicting transition, a challenge to current research
outside the scope of this work. Including both laminar and turbulent solutions is a relatively new
addition to MFTK. At the transition location, the GCI ratio spikes substantially (notice Run 34
results in particular), which indicates the manual method of modeling the transition region could
use improvement. Currently, the Euler+MEIT model contains the ability to prescribe transition at
a manually set point, and shifts the model form at that point. To improve the transition modeling,
a more complex transition model could be employed in the future. This transition model should
include a length scale in the transition region to ensure a resolvable transition model. In addition
to the transition region, the sharp aft (near-flare) region appears to be under-resolved, and for the
runs at nonzero angle of attack (Runs 34 and 42), the cone-cylinder intersection is another region
with high GCI values. We note that the levels of numerical uncertainty from this study are similar
to those of [1], though the GCI used in this study is computed using results from the two finest
meshes rather than the two coarsest meshes, as in [1]. The very large spikes in GCI in this study
are due to the greatly increased spatial resolution of the calculation, and other application-specific
elements contributing to the numerical uncertainty are possible. However, the results also point to
the potential need for reduction of numerical uncertainty in the Euler+MEIT model.
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Figure 4-13. GCI calculation for Euler+MEIT model, Run 30.
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Figure 4-14. GCI calculation for Euler+MEIT model, Run 38.
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Figure 4-15. GCI calculation for Euler+MEIT model, Run 34.
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Figure 4-16. GCI calculation for Euler+MEIT model, Run 42.
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4.2.3. RANS

The RANS model has the option of two different viscous models: Spalart–Allmaras (SA) and
Shear Stress Transport (SST). GCI results for the RANS-SA model simulations are shown in
Figures 4-17–4-20, while results for the RANS-SST simulations are shown in Figures 4-21–4-24.
These cases represent the high-fidelity options within MFTK. Note that the HIFiRE-1 geometry is
shown as a shaded figure in the background of each plot to show the increase in uncertainty due to
changes in geometry.
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Figure 4-17. GCI calculation for RANS-SA simulation of Run 30.

For pressure, the GCI and order of accuracy for the SA model appear to perform better than the
SST model. The order of accuracy of the SA model dwells near 2 more than that of the SST model,
and spikes in the GCI are generally fewer in number and lower in magnitude. The effects of this
are seen clearly in the shaded regions surrounding error curves in the validation section of this
report. For heat flux, the results are similar to pressure where the GCI and order of accuracy for
the SA model generally perform better than the SST model.
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Figure 4-18. GCI calculation for RANS-SA simulation of Run 38.
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Figure 4-19. GCI calculation for RANS-SA simulation of Run 34.
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Figure 4-20. GCI calculation for RANS-SA simulation of Run 42.
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Figure 4-21. GCI Calculation for RANS-SST simulation of Run 30.
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Figure 4-22. GCI Calculation for RANS-SST simulation of Run 38.
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Figure 4-23. GCI Calculation for RANS-SST simulation of Run 34.
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Figure 4-24. GCI Calculation for RANS-SST simulation of Run 42.
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Examining the results for the SA model, it can be noted that for the runs at 0◦ angle of attack, there
are no/very small spikes in the pressure GCI until the flare region. Then, there are two spikes, one
at the start of the flare, and one at the end of the flare, where the geometry becomes cylindrical
again. For heat flux, the GCI spikes at the transition location and flare for Run 30, but only at the
flare for Run 38. This is likely due to the larger flow speed and heat flux values present in Run 30,
but could also be related to the fact that transition occurred in Run 38 due to a manual trip, which
may be more easily predicted by the model. For the runs at nonzero angle of attack (Runs 34 and
42), the pressure GCI spikes at the cone-cylinder interface and flare, while the heat flux GCI spikes
at the transition location, cone-cylinder interface, and flare. The additional spike in GCI relative to
the runs at 0◦ angle of attack is interesting to note for Run 42 vs Run 38.

For the SST model, trends between runs are similar to those in the SA model results. However,
the spike in heat flux GCI for Run 30 is also present for Run 38. In addition, small spikes in the
pressure GCI appear for Runs 34 and 42, where spikes at this location only appear for the heat flux
GCI in the SA model results.

4.3. Future Work

For future work, additional code verification should be performed for the MEIT and RANS
equations to ensure the proper implementation of the models. Specifically, substantial work on
MEIT code verification is planned for FY23. As in [1], numerical uncertainty is lowest for the
RANS-SA model, but the order of accuracy is not maintained at a consistent value, and the GCI is
significant in several areas. The high GCI value is an important result since these mid- and high-
fidelity meshes were considered to be well refined before the analysis was completed. It was noted
in [1] that future simulations should use additional mesh refinement. This is done in the current
study despite the increased computational cost, and results in decreased numerical uncertainty in
general. As expected, the low-fidelity MNA+FPBL model’s numerical uncertainty is the lowest
of all the simulation results, even with the incorrect factor of safety when the difference between
pobs and pth is smaller than 10%. This is due to the simplistic nature of the model and the fact
that reaching well inside of the asymptotic region is less computationally expensive. Additional
work will be completed to address the degradation of pobs. For the mid- and high-fidelity models,
spikes in GCI remain large, and the numerical uncertainty for the Euler+MEIT and RANS-SST
models specifically could be further examined. Spikes in GCI are typically at points where the
body geometry makes it hard to predict flow accurately due to the sharp geometry and resulting
flow features such as shock waves. Thus, a certain level of numerical uncertainty is expected, and
the observed levels may not be significantly reducible. A potential approach to addressing regions
of high numerical uncertainty is further local or global mesh refinement to ensure the solution is
within the asymptotic region. In addition to local and global mesh refinement, the transition from
laminar to turbulent solutions should be improved to ensure the transition is smooth. Without
a smooth transition, this region is not able to enter the asymptotic range and will yield large
numerical uncertainty.
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5. VALIDATION

In the preceding sections, code verification and solution verification results are presented and
discussed. These results provide evidence that the MFTK models solve the correct mathematical
models and that the simulations evaluated are accurate for the intended use. Model validation is the
process of asking to what degree a model represents physical phenomena for its intended uses [5],
and involves the comparison of simulation results with experimental data. In this section, model
validation theory is presented, followed by a selection of comparison results. These results are
presented both in terms of QoI trends over the vehicle and in terms of errors with uncertainties.
In this comparison, the varying accuracy of the models in MFTK is seen, and the effect of certain
geometric features and physical phenomena are apparent in the results of each model.

5.1. Model Validation Theory

Though formally defined in the introduction, informally, model validation seeks to determine
the degree to which the model is solving the physically appropriate equations. For high-speed
aerodynamics, these would include compressible forms of the continuity, momentum, and energy
equations. For the turbulent flows, including the full forms of the governing equations (as
in direct numerical simulation) is often not tractable; therefore, closure models are frequently
used (as in RANS). The inviscid treatment of certain flows is another example of a modeling
assumption. Model validation processes can be used to determine the suitability of such modeling
assumptions.

Comparing simulation predictions to experimental results is fundamental to model validation.
There are several levels of scrutiny in comparisons that are seen in literature. A helpful comparison
is found in Figure 12 of [14] that presents six levels of validation comparisons. The first and least
descriptive is the viewgraph norm where contours are placed next to each other, but differences
in values are often obscured from the wealth of field information and colorful scales. The next
plots show several levels of comparisons that switch to a common set of axes that are much better
at revealing direct information. Increasing the levels of UQ on measurements and predictions
increases the rigor.

The ASME Standard for Verification and Validation in Computational Fluid Dynamics and Heat
Transfer (ASME V&V 20) [5] goes beyond comparisons in plots to the calculation of validation
comparison error and the validation uncertainty. In this standard, the validation comparison error
E is defined as

(5.1)E = S − D,
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where S represents the simulation solution and D represents the experimental data. Equation (5.1)
provides the simplest validation metric, which nonetheless transitions from the qualitative
comparisons in plots to a quantitative measure used to evaluate predictive accuracy. It can be
used to reveal trends in model form error over space, time, or parameter sets.

The validation comparison error reveals differences, but how meaningful are those differences, and
could experimental and/or modeling uncertainties explain them? To help answer these questions,
ASME V&V 20 also includes the calculation of a validation uncertainty

(5.2)Uval =
√

U2
num +U2

input +U2
D,

where Unum is the numerical uncertainty commonly assessed by grid convergence studies, Uinput
is the input parameter uncertainty propagated through the model, and UD is the experimental
data uncertainty [5]. Equation (5.2) is in the form of a standard uncertainty at the 1σ or 2σ

(68% or 95%, respectively) confidence level, depending on the confidence level of the uncertainty
components. Here, σ is the standard deviation. If the input and experimental uncertainties are
at the 1σ confidence level, the numerical uncertainty can be converted to the 1σ confidence
level by dividing the GCI by a expansion factor, as discussed in [5]. Throughout this work,
input uncertainties are not quantified and experimental uncertainties are assumed to be at the
95% confidence level. Thus, the numerical uncertainty is taken to be equal to the GCI, and
validation uncertainties are presented at the 95% confidence level. Uncertainties expanded to the
95% confidence level are capitalized by convention [5]. Thus, all uncertainties in the present
study are described by capitalized variables. The validation uncertainty provides perspective on
the validation error. For example, if |E|≫ Uval, then model form error is discernible from the
relatively small validation uncertainty and model improvements may be prudent if the errors are
larger than desired. On the other hand, if |E|≤Uval, model form error is not distinguishable among
the validation uncertainty and efforts to reduce uncertainty may be pertinent.

Note that E is the validation comparison error and includes possible errors in measured data and
simulation predictions. It is, therefore, not the model form error. The exact model form error is
challenging to isolate but can be bounded. In ASME V&V 20 [5], the model form error is bounded
by

(5.3)δmodel ∈ [E −Uval,E +Uval].

This bounding motivates efforts to minimize uncertainty in both experiments and simulations so
that the model form error can be known with greater accuracy.

5.2. Validation Results

The validation studies herein include surface pressure and heat flux comparisons for all HIFiRE-1
experimental runs mentioned in Chapter 3 (30, 34, 38, 42). In addition to traditional comparison
plots, the validation comparison error E from (5.1) and validation uncertainty Uval from (5.2) are
calculated and plotted to enable quantitative comparisons of predictive accuracy at all three fidelity
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levels of MFTK. Errors and uncertainties are shown for each run. Error and uncertainty are also
shown for individual geometric sections, and for each meridional angle of the nonzero angle of
attack runs. To explore the effect of parameter variation on error, the error is plotted for varying
Reynolds number or angle of attack, with the other parameter fixed. Total error integrated over
the body and averaged for all runs is also compared between models. The experimental data have
known uncertainties [8]. Similarly, the solution-verification studies in Chapter 4 provide numerical
uncertainty values Unum. Note that for all of the simulation results herein, the fine mesh is used
and iterative convergence is achieved by driving normalized residuals below 10−12 when possible,
and below 2× 10−8 in all cases. For some of the more computationally intensive RANS cases,
relaxing the residual tolerance to 10−9 or 10−8 enables convergence without significantly affecting
QoIs or the order of accuracy. The parameter uncertainty Uinput is not calculated in this work but
recommended for future work.

5.2.1. Surface Pressure Comparisons

The first validation comparison is the surface pressure along the axial length of the vehicle as
shown in Figures 5-1–5-4. The test vehicle geometry is shown with the second y-axis as a gray
region to provide background to the drastically different behavior along the length. The results
include measured data and predictions from the RANS-SA model, the RANS-SST model, the
Euler+MEIT model, and the MNA+FPBL model. The experimental pressure uncertainty is 3% [8],
interpreted as 3% of reading in the associated error bars/uncertainty bands. The simulations have
numerical uncertainty from the GCI results from solution verification shown as shaded regions
that are colored according to their respective model color. The data are taken from the 0◦

meridian (meridian with highest sensor density). The fore-cone has very few pressure sensors.
However, this is acceptable, as the pressure is nearly constant in this region. The instrumentation
density increases towards the rear of the vehicle where the flow is more complex. The pressures
increase drastically on the 33◦ flare region. The predictions use meshes that are derived from the
same source. From a 3D source mesh, a 2D axisymmetric mesh with 524,288 cells is derived
for the RANS simulations. For the Euler+MEIT simulations, a 3D mesh is derived from the
RANS 3D mesh with relaxed refinement in the boundary layer region (65M total cells), and from
this 3D mesh, a 2D axisymmetric mesh is derived with a similarly resolved boundary layer for
Euler+MEIT having 262,144 total cells. This results in Euler meshes which are more representative
of typical meshes for this model, which does not model viscosity. Because the viscous boundary
layer is not resolved by this model, it does not need a mesh with as fine of resolution near the wall.
For the MNA+FPBL model, which only requires a surface mesh, the 3D surface is extracted from
the RANS 3D source mesh.

These figures each include an inset plot that highlights the aft end of the cylindrical and the flare
regions where the pressure measurements and predictions are quite complex. As noted in [1], the
RANS predictions compare very well on the fore-cone and cylinder sections. It was mentioned
in that report that the inviscid nature of the surface pressure in these sections played an important
role in the accuracy of prediction. As noted in [15], RANS models have a known weakness in
the prediction of turbulent flow through a shock/boundary layer interaction. Indeed, Maclean et
al. noted in their computational work with the HIFiRE-1 data that their SST model suffered from
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Figure 5-1. HIFiRE-1 wind tunnel test pressure data and predictions, Run 30.
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Figure 5-2. HIFiRE-1 wind tunnel test pressure data and predictions, Run 38.
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Figure 5-3. HIFiRE-1 wind tunnel test pressure data and predictions, Run 34.
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Figure 5-4. HIFiRE-1 wind tunnel test pressure data and predictions, Run 42.
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a predicted increase in Reynolds shear stress caused by vorticity from the separation shock, and
that this behavior was caused by an overly aggressive choice of stress limiting [10]. They tuned
the eddy viscosity calculation in both the SST and SA models used, and achieved significantly
better agreement with experimental results. Such tuning could prove useful in program-specific
use cases of the SPARC RANS models, either in manual form for a specific geometry and set of
flow conditions, or via an automated process.

Over the majority of the flare region, the SA model predicts the pressure significantly more
accurately than the SST model. The over-prediction of pressure in this region is consistent
with [10]. In general, the numerical uncertainty associated with the SA model is substantially
lower than that of the SST model, indicating lower variation between results from the three mesh
refinement levels. The SST model typically displays a spike in numerical uncertainty at 1.45 m
as well, where separation is predicted to begin. For the runs at 0◦ angle of attack, the numerical
uncertainty increases further inside of the flare region, and is largest at the maximum predicted
pressure. For the runs at 2◦ angle of attack, there are two distinct regions of large numerical
uncertainty, one before and one after the peak pressure value, which occurs where the separation
region terminates and the shock impinges on the flare. Spatially rapid and quantitatively aggressive
changes take place around this location, and the refinement of the mesh becomes more important.
The SA model avoids this problem due to its prediction of a shock which does not impinge on
the flare, and the accompanying relatively constant pressure prediction across the flare. This does
make the SA model a more accurate choice for all flow features or QoIs, however, as it is known to
fail in the prediction of the separation region seen experimentally [10]. It is important to note that
while the 0◦ angle of attack cases show little difference between the peak pressure prediction on
the flare for the SA and SST models, the 2◦ angle of attack cases show significantly higher values
from the SST predictions, and indicate a specific spatial maximum. This sort of difference has the
potential to impact design decisions. To provide a sense of the differences in pressures between
runs, Figure 5-5 shows the RANS-SA predictions for each run. The pressure is clearly higher at the
high Reynolds number runs (30 and 34) and there is a noticeable difference between predictions
for 0◦ and 2◦ angles of attack.

The mid-fidelity Euler+MEIT and low-fidelity MNA+FPBL models of MFTK have not historically
been the focus of validation work to the extent that the RANS models have. Though previous
efforts to produce credibility evidence for these models have been carried out, the first known
validation study employing a rigorous standardized process on them was performed in [1] . Both
lower fidelity models predict pressure well on the fore-cone and cylinder, but are less accurate
in the flare region. MNA+FPBL predictions are generally least accurate and not smooth, but
show little numerical uncertainty as mentioned in Chapter 4. Pressure predictions in the flare
region appear similar to a step function, and miss experimental values by a significant amount. A
detailed discussion of the MNA+FPBL model’s behavior and the causes of it is given in [1]. The
Euler+MEIT model overpredicts the pressure gradient at the start of the flare and the maximum
pressure for all runs, before reaching a relatively constant value close to the RANS-SA prediction
for the rest of the flare. Spikes in numerical uncertainty occur at the cone/cylinder transition, and
the largest numerical uncertainty of all models in the flare region. This uncertainty is largest at the
start and end of the flare. Overall, the Euler+MEIT numerical uncertainty indicates that the model
is not mesh-converged. More quantitative error and uncertainty comparisons are given later in this
section.
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Figure 5-5. Comparison of pressure predictions from RANS-SA models for all analyzed runs at 0◦

meridional angle.

In Figures 5-6–5-9, the relative error for each model on the four runs is shown, together with the
total relative validation uncertainty, Uval. This error is computed using (5.1) and normalized by the
experimental data. The validation uncertainty is computed using (5.2), and is normalized by the
QoI (in the plots below, pressure). The error is low on the fore-cone and cylinder, and rises to large
values in the flare region. However, each model has significant relative errors before the flare is
reached, which is not immediately apparent from the pressure plots above. A comparison with the
equivalent plot from [1] shows reduced validation uncertainty in general for the RANS-SST and
Euler+MEIT predictions, and higher validation uncertainty for the RANS-SA prediction. These
changes in validation uncertainty are likely due to the increased refinement of the nominal mesh,
and accompanying use of the GCI metric on the finer two meshes rather than the coarser two.

As noted in [1], error was generally discernible due to reasonably low validation uncertainty for
the MNA+FPBL and RANS-SA models. This trend continues in the present study, for all runs.
There is a noticeable validation uncertainty present for the RANS-SA model in contrast to the
results in [1], but in general, the error is discernible. The Euler+MEIT validation uncertainty is
still too large in the flare region for error to be discernible, and the same is true for the RANS-SST
results in some cases (notably parts of the Run 30 and Run 34 results). However, the validation
uncertainty is reduced to such an extent for the lower Reynolds number runs that error becomes
distinct. This is an improvement and shows the value of mesh refinement studies.

The study described in this report seeks to draw conclusions regarding the accuracy of each model
in MFTK on the four runs examined. Such conclusions regarding the accuracy of each model for a
given run and of a given model across runs are difficult to make from the above plots. In addition,
the change in accuracy of each model due to a given change in parameter (Re or angle of attack),
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Figure 5-6. HIFiRE-1 pressure prediction error with uncertainty for Run 30.
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Figure 5-7. HIFiRE-1 pressure prediction error with uncertainty for Run 38.
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Figure 5-8. HIFiRE-1 pressure prediction error with uncertainty for Run 34.
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Figure 5-9. HIFiRE-1 pressure prediction error with uncertainty for Run 42.
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is difficult to ascertain from the above plots. Thus, as in [1], bar charts of error with uncertainty
are given.

First, the average accuracy of each model across all runs is examined. The relative error is
integrated over the vehicle in the axial direction at each meridional angle, and these integrated
errors are then averaged. Finally, the average from the four runs is taken for each model.
The result is shown along with average validation uncertainty in Figure 5-10. This provides a
graphical illustration of the concept of multiple fidelities in MFTK, by clearly showing that in the
most comprehensive and general sense, the RANS models provide the lowest error, followed by
Euler+MEIT, and finally MNA+FPBL. It also shows two important caveats to this generalization,
namely that high-fidelity models such as RANS-SST can struggle to predict flow in certain
scenarios and can result in higher error than lower fidelity models. Specifically, this can occur when
the simulated flow contains features which are challenging to accurately predict, such as transition
and separation. The validation uncertainty of the Euler+MEIT predictions is large enough to
prevent the error from being discernible, which is a concern that should be addressed in future
work and accommodated for in current usage of the model.
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Figure 5-10. Relative error averaged across runs.

In Figure 5-11, relative error integrated over the vehicle at the 0◦ meridional angle is shown with
integrated validation uncertainty. It is apparent from these plots that the error is largest in all
cases for the RANS-SST model, followed by that of the MNA+FPBL model. Generally, the
Euler+MEIT model shows the 3rd largest error, and the RANS-SA error is smallest, although
this trend is reversed for Run 34. Validation uncertainty is largest for the Euler+MEIT model, and
is also large for RANS-SST, except for Run 42. The smallest validation uncertainty is associated
with the MNA+FPBL model.

The plots in Figure 5-11 give a direct comparison between results for each run at the 0◦ meridional
angle. To examine model performance over the entire vehicle, the consolidation of error and
uncertainty data is taken to the next level by computing a weighted average of the integrated
results from the 0◦, 90◦, and 180◦ meridional angles. The 270◦ meridional angle is not considered,
as it is not a unique angle, but should be identical to the 90◦ meridional angle due to flowfield
symmetry, and would bias the weighted average toward the errors on the sides of the vehicle.
Figure 5-12 shows the resulting composite error and validation uncertainty for each run. For Run
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(c) Run 34
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(d) Run 42

Figure 5-11. Relative error and validation uncertainty, integrated over all axial locations at the 0◦

meridional angle.
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34, inclusion of the nonzero meridional angles results in increased error for all models except
RANS-SST. However, for Run 42, error decreases with inclusion of the nonzero meridional angles
for all models except MNA+FPBL. Indeed, comparing the composite errors for each model at each
meridional angle does not show clear trends across models. The RANS-SST model has the highest
error at the 0◦ meridional angle for both runs, and the MNA+FPBL model has the highest error
at the 180◦ meridional angle for both runs. The other models do not show consistent trends with
meridional angle.
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(b) Run 38
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(c) Run 34
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(d) Run 42

Figure 5-12. Relative error and validation uncertainty, integrated over vehicle and averaged over all
meridional angles.

Though overall errors as shown in Figure 5-12 are valuable to examine for the sake of making
conclusions about model accuracy in general over the entire vehicle, each model is affected by the
flow geometry. Thus, it is useful to examine each geometric section of the HIFiRE-1 vehicle
independently, to draw conclusions regarding model performance on each section. Figure 5-
13 shows integrated error and validation uncertainty for each model on each section, at the 0◦

meridional angle. There are no pressure sensors with reported experimental data on the laminar
cone, so no information is plotted for this section. It is apparent that for all runs, pressure error
is generally lowest on the turbulent cone, and highest on the flare. This follows the trends seen in
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Figures 5-6– 5-9. Notable anomalies include the high error in the RANS-SST predictions on the
cylinder, which correspond to the large error in the region just before the flare, where the RANS-
SST model predicts the early onset of flow separation. In addition, RANS-SA has higher error on
the cylinder than on the flare for Runs 38 and 34. RANS-SA maintains a roughly 40% or lower
error (generally below 20%) on all geometric sections, which is relatively impressive. By contrast,
RANS-SST, Euler+MEIT, and MNA+FPBL all reach significantly higher errors on the cylinder
or flare. Validation uncertainty is high for RANS-SST on the cylinder, and for Euler+MEIT on
the cylinder and flare. Also of note is that error for Run 34, which can be thought of as the most
difficult run to predict due to its high Reynolds number and nonzero angle of attack, does not show
significantly higher errors than the other runs, and often exhibits lower errors.
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(c) Run 34
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(d) Run 42

Figure 5-13. Relative error and validation uncertainty, integrated over vehicle at 0◦ meridional
angle.

In Figure 5-14, section-specific integrated error and validation uncertainty values are shown for
the 180◦ meridional angle, for Runs 34 and 42. Errors are not shown for the laminar cone or flare,
or for the 90◦ meridional angle, due to the scarcity of pressure sensors at these locations. Errors
are similar on the cylinder for both runs, but significantly larger on the turbulent cone for Run 34.
Interestingly, RANS errors are highest on this section for Run 34. RANS-SST and MNA+FPBL
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errors are the highest errors on the cylinder. Errors are higher for Run 34 on the turbulent cone
at the 180◦ meridional angle than at the 0◦ meridional angle. The MNA+FPBL model also shows
significantly higher error on the cylinder at the 180◦ meridional angle than at the 0◦ meridional
angle.
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(a) Run 34, 180◦ meridional angle
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(b) Run 42, 180◦ meridional angle

Figure 5-14. Relative error and validation uncertainty, integrated over vehicle at 90◦ and 180◦

meridional angles.

Because conical geometry can be of particular interest in hypersonic applications, the integrated
errors over the turbulent cone are shown separately with a smaller y-range, allowing for a better
view of the error magnitudes from each model. These plots are shown in Figures 5-15 and 5-16. At
the 0◦ meridional angle, the RANS errors are small compared to the MNA+FPBL errors, and are
smaller than the Euler+MEIT error when the angle of attack is 0◦ (Runs 30 and 38). However, they
are larger than the Euler+MEIT error when the angle of attack is 2◦ (Runs 34 and 42). A similar
trend is seen for Run 42 in Figure 5-16, but for Run 34, the RANS errors are greater than both
Euler+MEIT and MNA+FPBL errors. This indicates that at the 180◦ meridional angle (leeward
side), the RANS models struggle, especially for higher Reynolds numbers. The Euler+MEIT
model does as well. Note that due to lack of instrumentation on the vehicle at this meridional
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angle (two pressure sensors on turbulent cone), and the fact that the sensors were near the cone-
cylinder transition, the results should be taken with caution. Thus, the more robust conclusion is
that the RANS models appear to struggle near geometric transitions on the leeward side of such
hypersonic vehicles at nonzero angles of attack, especially for higher Reynolds numbers.
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(c) Run 34
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(d) Run 42

Figure 5-15. Relative error and validation uncertainty, integrated over turbulent cone section of
vehicle, at 0◦ meridional angle.

In order to isolate the effect of varying the two primary test parameters in Figure 3-2, error plots
are also made which show integrated relative error, averaged over meridional angles, with one
parameter approximately constant and another varied. In Figure 5-17, integrated relative error and
validation uncertainty are shown for fixed Reynolds number with the angle of attack varied. Error
is seen to decrease for every model when the angle of attack is 2◦ rather than 0◦.
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(a) Run 34, 180◦ meridional angle
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(b) Run 42, 180◦ meridional angle

Figure 5-16. Relative error and validation uncertainty, integrated over turbulent cone section of
vehicle, at 90◦ and 180◦ meridional angles.
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(a) Relative error for Runs 30 and 34 (high Re), with varied angle of attack.
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(b) Relative error for Runs 38 and 42 (low Re), with varied angle of attack.

Figure 5-17. Relative error with fixed Re, varied angle of attack.
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In Figure 5-18, integrated relative error and validation uncertainty are shown for fixed angle
of attack with the Reynolds number varied. Error decreases for higher Reynolds number for
Euler+MEIT in both plots, and for both RANS models in Figure 5-18a. This could be related
to the fact that higher Reynolds number corresponds to a reduced separation region size, which
could improve agreement between the RANS predictions and experimental results. However,
error increases with increasing Reynolds number for the nonzero angle of attack runs, so the
model performance with varying Reynolds number should be studied further to obtain a more
clear answer.
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(a) Relative error for Runs 38 and 30 (0◦ angle of attack), with varied Reynolds number.
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(b) Relative error for Runs 42 and 34 (2◦ angle of attack), with varied Reynolds number.

Figure 5-18. Relative error with fixed angle of attack, varied Reynolds number.

91



5.2.2. Surface Heat Flux Comparisons

The surface heat flux along the axial length of the vehicle is shown in Figures 5-19–5-22. The
test vehicle geometry is, again, shown with the second y-axis as a gray region to provide context
for the varying behavior along the length. The results include measured data and predictions
from the four models described in the preceding section. The experimental heat flux uncertainty
is 5% [8], interpreted as 5% of the reading in the associated error bars/uncertainty bands. The
simulations have numerical uncertainty from the GCI results from solution verification shown as
shaded regions that are colored according to their respective model color. As with surface pressure,
the data are taken from the 0◦ meridian that has the most sensors. The fore-cone has significantly
more heat flux sensors than pressure sensors. On the cylinder, there are also more heat flux sensors,
and there are equal numbers of heat flux and pressure sensors on the flare.

The previous report on MFTK validation activities [1] mentions several key phenomena in the
Run 30 results. Though the results in the present report are from simulations on fine (1L) meshes,
whereas results in [1] were from simulations on medium (2L) meshes, these observations hold true
for the current Run 30 results, and are in general common to all runs. One important difference
is the reduced numerical uncertainty in the 1L mesh predictions as shown by smaller bands
surrounding simulation results. This is a general trend, with numerical uncertainty still having
spikes at the laminar-turbulent transition location, the cone/cylinder intersection, and on the flare.
As noted in [1], the transition from laminar to turbulent flow on the cone is apparent. This is
true for all runs, though the onset of transition diverges significantly from model to model for
the low Reynolds number runs (Runs 38 and 42). These runs had the flow manually tripped
at x = 0.505 m, which resulted in a large spike in measured heat flux, followed by a normal
transition trend. The transition is turned on in the computational models in the same way for
all runs, so different behavior at transition does not arise from trip type. However, the lower
Reynolds number appears to allow some models (notably RANS-SST) the opportunity to predict
more slowly transitioning flow which more closely matches these experimental trends. For Runs 30
and 34, simulation predictions show a much steeper increase in heat flux at the transition location
than the experimental data display. The RANS-SST trend is more reasonable for Runs 38 and
42, with the Run 42 prediction showing good agreement. Euler+MEIT and MNA+FPBL show
very sharp increases in predicted heat flux at the transition location, as there is no mechanism
in these models for predicting transitional heating or for blending laminar and turbulent heating.
Following transition, the MNA+FPBL curve proceeds to take the form of a nearly horizontal line
to the cone/cylinder interface and the Euler+MEIT results overshoot the experimental trend in this
region before decreasing to a similar value. The Euler+MEIT model predicts a similar overshoot
at the flare before decreasing to approximate the experimental values reasonably well. Indeed, this
model performs on par with the RANS models in the flare region, notably for Run 34. Heat flux is
generally underpredicted by a substantial amount in the cone and flare regions by the MNA+FPBL
model.

The RANS-SA model predicts heat flux trends associated with earlier transition than the RANS-
SST predictions for all runs except for Run 30. Though the transition location is manually set, the
model’s formulation results in prediction of a more rapid transition. It also exhibits a relatively
slow increase to a value lower than the experimental data on the flare. This is likely due in part
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to the fact that the SA model generally predicted no separation region, so the high-speed flow did
not impinge on the flare after the cylinder/flare interface. The RANS-SST model predicts a slower
rate of increase of heat flux in the flare region than the experimental data as well, but does not
flatten out. This behavior is due to the low heating in the overpredicted separation region. Rather,
for the 0◦ angle of attack runs, it increases to a maximum value higher than the experimental
value at that point and roughly equal to the maximum experimental value. For Runs 34 and 42, it
predicts an increase in heat flux to approximately x = 1.69 m and a decrease from there to a value
significantly higher than the experimental value. The experimental data peaks around x = 1.67 m
for the 0◦ angle of attack runs and around x = 1.65 m for the 2◦ angle of attack cases. This is
related to the decreased separation region size, with the peak likely coming from impingement of
the high-speed flow on the flare at the end of the separation region. Because the separation region
terminates earlier on the windward side for the RANS-SST results at nonzero angle of attack, the
predicted heat flux peaks earlier as well. As noted for surface pressure, the difference between
the location and value of the maximum predicted by the SA and SST models would be critical for
design decisions in any analysis which used these models to predict these QoIs in a similar context.
Awareness of the models’ tendencies and possible improvement through tuning of eddy viscosity
are important to consider.
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Figure 5-19. HIFiRE-1 wind tunnel test heat flux data and predictions, Run 30.

To provide a sense of the differences in surface heat flux between runs, Figure 5-23 shows the
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Figure 5-20. HIFiRE-1 wind tunnel test heat flux data and predictions, Run 38.
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Figure 5-21. HIFiRE-1 wind tunnel test heat flux data and predictions, Run 34.
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Figure 5-22. HIFiRE-1 wind tunnel test heat flux data and predictions, Run 42.
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RANS-SA predictions for each run. The heat flux is clearly higher at the high Reynolds number
runs (30 and 34) and there is a noticeable difference between predictions for 0◦ and 2◦ angles of
attack.
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Figure 5-23. Comparison of heat flux predictions from RANS-SA models for all analyzed runs.

In Figures 5-24–5-27, the relative error for each model on the four runs is shown, together with
the total relative validation uncertainty, Uval. Validation uncertainty for all models on Run 30 is
generally reduced in this study vs the results from [1]. For all runs, there are large regions in
which error is discernable from uncertainty, with exceptions in Euler+MEIT results being the large
uncertainty at the transition location, at the cone/cylinder intersection, and on the flare. RANS-
SST results show large uncertainty at the transition location and around the flare. Errors are largest
for most models (except MNA+FPBL) at the transition location and on the flare. For MNA+FPBL
results, the error starts out as a large negative value on the laminar cone and is significant on the
turbulent cone and flare. As noted in [1], a difference is expected between MNA+FPBL results
and experimental data on the cone and flare, because of the flat-plate geometry assumption used in
the model.
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Figure 5-24. HIFiRE-1 heat flux prediction error with uncertainty for Run 30.
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Figure 5-25. HIFiRE-1 heat flux prediction error with uncertainty for Run 38.
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Figure 5-26. HIFiRE-1 heat flux prediction error with uncertainty for Run 34.
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Figure 5-27. HIFiRE-1 heat flux prediction error with uncertainty for Run 42.
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As in the discussion on surface pressure validation, this section includes several types of bar charts
which aid in the drawing of overall conclusions regarding the effect of varying parameters on
model performance, and overall model performance. Mean error across models is shown with
mean validation uncertainty across models in Figure 5-28. From this figure, it can be seen that
the RANS models generally yield the lowest error, followed by MNA+FPBL, and Euler+MEIT,
which displays the worst error and highest validation uncertainty. Uncertainty is large for RANS-
SA, RANS-SST, and Euler+MEIT. Important caveats to this trend are discussed above, and should
be taken into account in uses of each model.
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Figure 5-28. Relative error averaged across runs.

In Figure 5-29, relative error integrated over the vehicle at the 0◦ meridional angle is shown with
integrated validation uncertainty. Error is generally highest for the MNA+FPBL model, and the
RANS models show the lowest errors for all runs. Validation uncertainty is large for Euler+MEIT
and RANS-SST for all runs, and for RANS-SA on Run 30.

The plots in Figure 5-29 give a direct comparison between results for each run at the 0◦ meridional
angle. To examine model performance over the entire vehicle, the consolidation of error and
uncertainty data is taken to the next level by computing a weighted average of the integrated
results from the 0◦, 90◦, and 180◦ meridional angles (5-30). In contrast to the surface pressure
error results, the heat flux results show reduced relative error in the RANS-SST results compared
to Euler+MEIT and MNA+FPBL errors. Integrated error is highest for Euler+MEIT except for
on Run 30, where it is lower than MNA+FPBL error. The validation uncertainty is so large as
to make error not discernible for the Euler+MEIT results in general, for the RANS-SA results on
Runs 30 and 34, and for the RANS-SST results on Run 38. This indicates the usefulness of further
mesh refinement and model improvement. It should be noted that inclusion of nonzero meridional
angles caused the overall Euler+MEIT error to be relatively larger for Runs 34 and 42, which is
attributable to the fact that the current implementation assumes axisymmetric flow.

Figure 5-31 shows integrated error and validation uncertainty for each model on each section, at
the 0◦ meridional angle. It is apparent that for all runs, relative heat flux error is generally lowest on
the cylinder, and highest on the turbulent cone and flare. This follows the trends seen in Figures 5-
24– 5-27. RANS-SST predictions on the cylinder are relatively high, and this corresponds to the
large error in the region just before the flare, where the RANS-SST model predicts the early onset
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(a) Run 30
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(d) Run 42

Figure 5-29. Relative error and validation uncertainty, integrated over all axial locations at the 0◦

meridional angle.
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(a) Run 30
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(b) Run 38
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(c) Run 34
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(d) Run 42

Figure 5-30. Relative error and validation uncertainty, integrated over vehicle and averaged over all
meridional angles.
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of the separation region. On the turbulent cone, this model performs better than RANS-SA for
Runs 38 and 42 (low Reynolds number). As with surface pressure, the RANS-SA model shows
error generally less than 40% for all runs, in each section. The RANS models generally show the
highest validation uncertainty on the turbulent cone. Validation uncertainty is generally high in
each section for Euler+MEIT.
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(a) Run 30
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(b) Run 38
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(c) Run 34
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(d) Run 42

Figure 5-31. Relative error and validation uncertainty, integrated over vehicle at 0◦ meridional
angle.

In Figure 5-32, section-specific integrated error and validation uncertainty values are shown for the
90◦ and 180◦ meridional angles, for Runs 34 and 42. Results are not plotted for some regions due
to sensor scarcity at these meridional angles. RANS-SA error is generally lowest for each run and
meridional angle. The MNA+FPBL error is higher than that of the other models on the cylinder for
nonzero meridional angles, which is not true for the 0◦ meridional angle. MNA+FPBL generally
outperforms RANS-SST and Euler+MEIT on the turbulent cone and cylinder for the 0◦ meridional
angle of Run 34, but at the two other angles, this is generally not the case. The Euler+MEIT model
generally struggles at the 90◦ meridional angle, both in terms of error and validation uncertainty.
Other observations may be drawn from these plots depending on specific model applications.
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(a) Run 34, 90◦ meridional angle
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(b) Run 34, 180◦ meridional angle
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(c) Run 42, 90◦ meridional angle
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(d) Run 42, 180◦ meridional angle

Figure 5-32. Relative error and validation uncertainty, integrated over vehicle at 90◦ and 180◦

meridional angles.
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Integrated heat flux errors over the turbulent cone are shown separately in Figures 5-33 and 5-34.
At the 0◦ meridional angle, the RANS errors are generally below 40%, with exceptions for RANS-
SA on Run 38 and RANS-SST on Run 34. Euler+MEIT errors are generally the highest, and are
accompanied by relatively high uncertainty. Though relative errors rarely exceed 100% for any
model, they are not negligible, and can be higher than errors on other sections of the vehicle, as
shown in Figures 5-31 and 5-32.

Integrated relative errors for the 90◦ and 180◦ meridional angles are shown for Runs 34 and 42 in
Figure 5-34. For Run 34, errors are highest at the 0◦ and 180◦ meridional angles, except that the
MNA+FPBL model has low error at the 180◦ meridional angle. For Run 42, errors are generally
lower than those of Run 34. The lowest errors are seen at the 180◦ meridional angle, and the
highest at the 0◦ meridional angle. These results are not as conclusive as might be hoped, but do
indicate that surface heat flux predictions have significant errors at all meridional angles, and that
certain combinations of Reynolds number and angle of attack may result in lower errors (e.g. the
Run 42 conditions). In addition, the lower fidelity models appear more prone to variability in error
at different meridional angles. One reason for this for the Euler+MEIT model specifically is its
current implementation, which assumes axisymmetric flow.

In Figure 5-35, integrated relative error and validation uncertainty are shown for fixed Reynolds
number with the angle of attack varied. Relative heat flux error increases for all models except
MNA+FPBL when the angle of attack is increased from 0◦ to 2◦. The increase in the Euler+MEIT
model’s error at nonzero angle of attack is likely partially attributable to the current model
formulation which assumes streamlines aligned with the vehicle’s axis.

In Figure 5-36, integrated relative error and validation uncertainty are shown for fixed angle of
attack with the Reynolds number varied. Error decreases for higher Reynolds number for all
models in both plots. This is likely partially attributable to reduced separation region sizes as
noted for surface pressure, but also likely has other causes. Because this phenomenon is distinct
from that seen in the surface pressure error, further examination would be beneficial to determine
fundamental causes for this behavior.

5.2.3. Future Work

In this study, the work in [1] is expanded to include three additional runs from the HIFIRE-
1 experimental dataset. This allowed for analysis of MFTK model performance over a range
of Reynolds numbers and angles of attack, and resulted in several conclusions about model
performance in general and for specific scenarios. In addition, simulations were run on the finest
mesh (1L), and numerical uncertainty was reduced as a result. In the future, higher enthalpy
experimental datasets will be utilized for additional validation studies, in order to examine the
performance of the reacting gas models within MFTK. Additionally, the advanced CFL controller
will be further utilized, and further mesh refinement for the Euler+MEIT simulations will be
explored.
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(a) Run 30
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(b) Run 38
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(c) Run 34
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(d) Run 42

Figure 5-33. Relative error and validation uncertainty, integrated over turbulent cone section of
vehicle, at 0◦ meridional angle.
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(a) Run 34, 90◦ meridional angle.
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(b) Run 34, 180◦ meridional angle.
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(c) Run 42, 90◦ meridional angle.
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(d) Run 42, 180◦ meridional angle.

Figure 5-34. Relative error and validation uncertainty, integrated over turbulent cone section of
vehicle, at 90◦ and 180◦ meridional angles.
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(a) Relative error for Runs 30 and 34 (high Re), with varied angle of attack.
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(b) Relative error for Runs 38 and 42 (low Re), with varied angle of attack.

Figure 5-35. Relative error with fixed Re, varied angle of attack.
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(a) Relative error for Runs 38 and 30 (0◦ angle of attack), with varied Reynolds number.

Re = 3.63e6 Re = 1.01e7
50

25

0

25

50

75

100

125

150

In
te

gr
at

ed
 H

ea
t F

lu
x 

Er
ro

r M
ag

ni
tu

de
, %

RANS-SA
RANS-SST
Euler+MEIT
MNA+FPBL

(b) Relative error for Runs 42 and 34 (2◦ angle of attack), with varied Reynolds number.

Figure 5-36. Relative error with fixed angle of attack, varied Reynolds number.
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6. VALIDATION ERROR EXTRAPOLATION

6.1. Motivation

Computational simulation is highly useful as a companion to experimentation. In general,
simulation results should be compared against experimental data in validation studies. However,
computational simulation is often used in practice in situations for which there are no (or limited)
experimental data to compare against. There are several possible reasons for this. One is
prohibitions against testing. Another common case is when computational simulation is used
as a tool for test design, to help minimize the number, cost, and failure of tests. Whatever
causes the need for computational results in the face of scarce experimental data, the fact remains
that simulations are often used to make predictions which fall outside of the range of available
experimental data. Thus, no error estimate can be directly made on such results, as there is no
experimental data to compare them to. However, obtaining an estimate of validation error through
extrapolation is often more useful than assuming no error or a standard percentage error (i.e. 20%
of the QoI magnitude). While the results of validation error extrapolation are thought to prove more
useful than no information, it is recommended to consider the impact of making high-consequence
decisions with an imperfect process. When using extrapolation to estimate validation error, one
must consider to what extent extrapolation is required between the validation and application
conditions. In addition, the evidence which provides confidence in the ability to extrapolate should
be examined.

In this section, validation error is examined across the parameter space described by the Reynolds
numbers and angles of attack of the cases investigated in this report. The validation error computed
at locations where experimental data existed is extrapolated to other points in the Reynolds number
– angle of attack parameter space. This is done with error trends expressed as lines across a single
parameter (2D plots) and with error trends expressed as surfaces over the two-dimensional space
defined by both parameters (3D plots). The results follow in the next two sections.

6.2. Two-dimensional Results

The first extrapolation exercise done is extrapolation of validation error over Reynolds number
space with fixed angle of attack. This is done for both angles of attack considered in this study (0◦

and 2◦). The error considered here is the integrated relative error in each QoI. The error is relative
in the sense that it is normalized by the experimental data, and it is integrated over all space (all
axial locations for which experimental data exist, for all meridional angles, where applicable).
Thus, this is the same overall error for the four runs as is shown in Figures 5-12 and 5-30. This
error is interpolated between “known” points (where simulation and experimental results exist) and
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extrapolated outside of these points. A simple linear extrapolation of the error trend is done, as only
two points exist. To provide an uncertainty estimate on the results, the actual validation uncertainty
is used at the “known” points, and linear interpolation is used between these uncertainty values at
the “known” points. This uncertainty bound is expanded in the extrapolation region by fitting a line
between the lower uncertainty bound on one “known” point and the upper bound on the other, and
extrapolating uncertainty using these lines. This method assumes a linear error trend and consistent
physics (e.g. primarily turbulent versus laminar flow). The resulting plots are shown Figure 6-1. In
the two-dimensional plots, the extents of the x-axes show the range of the application space where
predictions are desired. Generally, error decreases with increasing Reynolds number for both QoIs
and both angles of attack. However, Figure 6-1c shows an increase in predicted relative pressure
error with increasing Reynolds number, indicating that the nonzero angle of attack influences the
error trend for this QoI. One thing to note in these results is the care that should be used when
applying extrapolated error on the left side of the “known” points. All cases examined in this study
have turbulent flow, but some involve manual tripping of the flow on the cone (Runs 38 and 42).
One case in the HIFiRE-1 dataset (Run 31) is fully laminar at a Reynolds number of 1.59× 106

m−1. This is approximately half of the value of the Reynolds number for Runs 38 and 42, and
serves as a realistic limit on the extrapolations’ valid range.

The same two-dimensional extrapolation is performed over angle of attack with (approximately)
fixed Reynolds number. The results are shown in Figure 6-2. Relative pressure error generally
decreases with increasing angle of attack, whereas relative heat flux error increases. The exception
is the relative heat flux error from MNA+FPBL simulations, which increases as angle of attack
increases, for both high and low Reynolds numbers. Two important things should be noted from
these plots. One is that when the extrapolated error reaches zero, the immediate conclusion from
the extrapolation for that point and further into the parameter space is that validation error is zero.
This is true, since the error magnitude is examined here, and negative magnitude does not have
meaning. Realistically, some nonzero error would likely be assigned to simulation predictions
in this scenario. Such an error estimate might be the error from the nearest “known” point, or
another measure. The second thing to notice is that the extrapolation range is large on the right
side of the “known” points. The limit (α = 10◦) was chosen to reflect a realistic upper limit for
many hypersonic aerthermodynamic analyses. In practice, extrapolating over such a large range
is dangerous for any quantity, as reflected by the wide uncertainty bounds at the limit. Indeed,
physics often change with a large parameter space, as is possible here with the separation region
growing larger and occurring on additional surfaces as the angle of attack is increased. However,
in the absence of experimental data, such an error estimate with an accompanying high uncertainty
may be the best option.

While the plots in Figures 6-1 and 6-2 clearly show the error and uncertainty extrapolation
technique investigated in this study, the uncertainties used are only the experimental uncertainties
as opposed to total validation uncertainties. Thus, the same procedure is followed with the
validation uncertainty (Equation 6.1), integrated over axial space and averaged over the three
meridional angles. Both the experimental uncertainties and the overall validation uncertainties
are at the 2σ (95%) confidence level, as discussed in Section 5.1, and are used to bound the error
as shown in Equation 6.2. The plots with validation uncertainty are shown in Figures 6-3 and 6-4.
The uncertainties are much larger, especially in the extrapolated regions, indicating that a different
technique may be appropriate for better estimating the uncertainty, but that the technique used here
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(a) Pressure error, α = 0◦.
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(b) Heat flux error, α = 0◦.
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(c) Pressure error, α = 2◦.
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(d) Heat flux error, α = 2◦.

Figure 6-1. Validation error extrapolation across Reynolds number, with only experimental
uncertainty.
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(a) Pressure error, Re ≈ 3.6×106 m−1.
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(b) Heat flux error, Re ≈ 3.6×106 m−1.

0 2 4 6 8 10
 (deg)

0

10

20

30

40

50

60

70

80

In
te

gr
at

ed
 P

re
ss

ur
e

Er
ro

r M
ag

ni
tu

de
, %

RANS-SA
RANS-SST
Euler+MEIT
MNA+FPBL

(c) Pressure error, Re ≈ 1×107 m−1.

0 2 4 6 8 10
 (deg)

0

25

50

75

100

125

150

175

In
te

gr
at

ed
 H

ea
t F

lu
x

Er
ro

r M
ag

ni
tu

de
, %

RANS-SA
RANS-SST
Euler+MEIT
MNA+FPBL

(d) Heat flux error, Re ≈ 1×107 m−1.

Figure 6-2. Validation error extrapolation across angle of attack, with only experimental uncertainty.
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could serve as a conservative estimate of extrapolation uncertainty. Another apparent conclusion
from these results is the caution which is needed when placing confidence in extrapolated values.
The Euler+MEIT uncertainties are quite high in most cases, and RANS-SST uncertainties are
often significantly higher than those of RANS-SA and MNA+FPBL. In many cases, the predicted
uncertainty is reasonably low for both RANS-SA and MNA+FPBL.

(6.1)Uval =
√

U2
num +U2

input +U2
D

≈
√

GCI2 +U2
D

(6.2)δmodel ∈ [E −Uval,E +Uval].
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(a) Pressure error, α = 0◦.
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(b) Heat flux error, α = 0◦.
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(c) Pressure error, α = 2◦.
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(d) Heat flux error, α = 2◦.

Figure 6-3. Validation error extrapolation across Reynolds number, with validation uncertainty.
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(a) Pressure error, Re ≈ 3.6×106 m−1.
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(b) Heat flux error, Re ≈ 3.6×106 m−1.
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(c) Pressure error, Re ≈ 1×107 m−1.
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(d) Heat flux error, Re ≈ 1×107 m−1.

Figure 6-4. Validation error extrapolation across angle of attack, with validation uncertainty.
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6.3. Three-dimensional Results

Two-dimensional extrapolation as shown above can be useful in determining realistic validation
error across a range of values of a single parameter. However, extrapolating over a two-dimensional
parameter space can also be useful for examining error trends influenced by both parameters,
overall high- or low- error regions of the parameter space, and a general global view on realistic
error. To examine this for the runs analyzed in this study, the relative validation error magnitudes
at all four “known” points (the same values as used in the previous section) are plotted in 3D plots
against both Reynolds number and angle of attack. Error is interpolated between “known” points
in each dimension, and extrapolated linearly outside of the “known” points. These lines are shown
in Figure 6-5, and form the basis for an error surface which can be constructed using triangular
sub-surfaces defined from vertices which originate from the lines. The four “known” points are
vertices, as well as the intersections of extrapolation lines with the domain extents of the parameter
space. These outer vertices are connected with grey lines to show the parameter space boundary.
When lines cross each other, the average of the two values at the point in the parameter space
where they intersect is taken as a vertex. All plots of this type in Figures 6-6–6-13 have the same
elements. The error surface arising from the lines of Figure 6-6a is shown in Figure 6-6b, along
with its projection onto the parameter space (zero-error plane). The green region indicates the part
of the domain in which error is interpolated, and the orange region indicates the part in which it is
extrapolated. Such error surfaces are shown in Figures 6-6–6-13 for all model/QoI combinations
used in this study. Also shown in these figures are the 2D views of the error surfaces which give
insight into error trends with each parameter individually. Due to the complex nature of the plots,
uncertainty estimates are not added, as they would likely convolute the surfaces’ features and make
the plots difficult to read.

In Figure 6-6, the error surface plots for the MNA+FPBL model’s pressure predictions are shown.
The error changes strongly with angle of attack, decreasing with higher angles of attack. Because
the prediction reaches zero quickly, a relatively small region of the parameter space is covered by
the extrapolation prediction. The shaded region on the zero-error plane could be extended with
a prediction of zero error outside of the predicted space, but as mentioned above, assuming zero
error may not be the most robust solution in such circumstances. Thus, only the projection of the
directly predicted error before its intersection with the boundaries is shown. In Figure 6-6c, the
error surface is shown vs the Reynolds number. It appears to trend downwards as Reynolds number
increases, but is not as sensitive to Reynolds number as it is to angle of attack. The error surface for
the MNA+FPBL heat flux predictions (Figure 6-7) shows a more gradual change in error as angle
of attack changes, which allows more of the parameter space to be covered by the extrapolation
predictions. The error surface also shows a higher rate of change in error with Reynolds number.

Figures 6-8 and 6-9 show the error surfaces for the Euler+MEIT predictions. In Figure 6-8, the
pressure error surface is shown. It has similar characteristics to the corresponding MNA+FPBL
surface, with a sharp decrease in error predicted as angle of attack increases and a slower decrease
in error predicted for increasing Reynolds number. The heat flux error surface (6-9) covers a
similar region of the parameter space as the corresponding MNA+FPBL surface, but has more
surface curvature. The error is predicted to increase in general as the angle of attack increases.
However, the high level of surface curvature indicates that the error is predicted to vary strongly
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in a local sense across the parameter space. Thus, certain combinations of Reynolds number and
angle of attack correspond to pockets of relatively low or high error. Ultimately, more “known”
points would be useful to better characterize surfaces such as this.

Figures 6-10 and 6-11 show the error surfaces for the RANS-SA predictions. Once again, clear
trends are seen for heat flux error vs angle of attack, but the pressure error surface is more spread
out for moderate angles of attack. Indeed, the pressure error surface has significant local variation
in both parameters. One important feature to note is the low maximum pressure error prediction
relative to the RANS-SA heat flux error and the maximum pressure error predicted by the two
lower fidelity models.

The RANS-SST pressure error surface (Figure 6-12) shows similar behavior to the corresponding
RANS-SA error surface, but with higher errors. The RANS-SST heat flux error surface once again
shows a clear trend vs angle of attack, with little variation in the Re-direction for a given angle-
of-attack-value. The minimum error predicted is significantly higher than zero for this surface
(Figure 6-13c).
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Figure 6-5. Validation error extrapolation surface elements.
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(a) Lines corresponding to error surface.
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(b) Error surface, isometric view.
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(c) Error surface, Re-error plane.
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(d) Error surface, α-error plane.

Figure 6-6. Validation error extrapolation surface for pressure prediction from MNA+FPBL model.
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(a) Lines corresponding to error surface.

 (deg)

0 2 4 6 8 10
Re (m

1 ) 1e7

0.2
0.4

0.6
0.8

1.0
1.21.4

In
te

gr
at

ed
 H

ea
t F

lu
x

Er
ro

r M
ag

ni
tu

de
, %

0
10
20
30
40

50

(b) Error surface, isometric view.
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(c) Error surface, Re-error plane.
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(d) Error surface, α-error plane.

Figure 6-7. Validation error extrapolation surface for heat flux prediction from MNA+FPBL model.
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(a) Lines corresponding to error surface.
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(b) Error surface, isometric view.
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(c) Error surface, Re-error plane.
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(d) Error surface, α-error plane.

Figure 6-8. Validation error extrapolation surface for pressure prediction from Euler+MEIT model.
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(a) Lines corresponding to error surface.
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(b) Error surface, isometric view.
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(c) Error surface, Re-error plane.
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(d) Error surface, α-error plane.

Figure 6-9. Validation error extrapolation surface for heat flux prediction from Euler+MEIT model.
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(a) Lines corresponding to error surface.
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(c) Error surface, Re-error plane.
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(d) Error surface, α-error plane.

Figure 6-10. Validation error extrapolation surface for pressure prediction from RANS-SA model.
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(a) Lines corresponding to error surface.
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(b) Error surface, isometric view.
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(c) Error surface, Re-error plane.

 (deg)
0 2 4 6 8 10

In
te

gr
at

ed
 H

ea
t F

lu
x

Er
ro

r M
ag

ni
tu

de
, %

0
10
20
30
40
50
60
70

(d) Error surface, α-error plane.

Figure 6-11. Validation error extrapolation surface for heat flux prediction from RANS-SA model.
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(a) Lines corresponding to error surface.
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(b) Error surface, isometric view.
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(c) Error surface, Re-error plane.
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(d) Error surface, α-error plane.

Figure 6-12. Validation error extrapolation surface for pressure prediction from RANS-SST model.
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(a) Lines corresponding to error surface.

 (deg)

0 2 4 6 8 10
Re (m

1 ) 1e7

0.2
0.4

0.6
0.8

1.0
1.21.4

In
te

gr
at

ed
 H

ea
t F

lu
x

Er
ro

r M
ag

ni
tu

de
, %

0
10
20
30
40
50
60

(b) Error surface, isometric view.
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(c) Error surface, Re-error plane.
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(d) Error surface, α-error plane.

Figure 6-13. Validation error extrapolation surface for heat flux prediction from RANS-SST model.
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6.4. Conclusions

Validation of simulation results is an important credibility activity, helping to increase confidence
in those results. When computational simulation is performed in the absence of experimental
data, validation cannot be directly performed on the simulation results. In such situations,
validation error extrapolation from conditions at which experimental data is available may be
the best option to obtain a reasonable validation error estimate. In this section, a simple
linear extrapolation method is used in a two-dimensional (one-parameter) sense and a three-
dimensional (two-parameter) sense. The resulting line and surface plots yield predictions of overall
integrated relative error in QoIs at given points in the parameter space. Uncertainty should, in
general be included, as in the two-dimensional plots, and can allow for higher confidence on the
estimate. This exercise shows one way to obtain validation error estimates by extrapolation, but
improvements/changes could be made. Extrapolation with more points could be useful in making
validation error extrapolation more robust. This is especially true for extrapolation predictions
which involve a high error slope and those which extrapolate a large distance into the parameter
space. There are also other methods which have been examined for error extrapolation, and an
analysis of multiple methods would likely be worthwhile.
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7. TIMING STUDY

7.1. Importance of Cost and Accuracy in MFTK

The Multi-fidelity Toolkit, MFTK, has, at its core, competing values of computational cost and
simulation accuracy [2]. The toolkit comprises the inexpensive, low-fidelity MNA+FPBL model,
the more expensive mid-fidelity Euler+MEIT model, and the high-fidelity RANS models, which
are generally the most expensive. Because trajectory generation for hypersonic vehicles requires
an accurate assessment of aerodynamic performance and thermomechanical response, simulations
are generally expensive and resulting datasets are large. However, running all simulations in a
hypersonic trajectory generation study with the highest-fidelity models would require an exorbitant
amount of time. Thus, the lower fidelity models play an important role in such a study by being
used in lieu of the higher fidelity models when accuracy requirements allow, or in tandem with
them, through the use of Hierarchical Kriging [2]. In this study, the computational cost and
simulation accuracy as measured by validation comparison error are examined for the HIFiRE-
1 dataset. Conclusions are made regarding the general cost and accuracy of each model for two
representative runs, and the optimal number of processors to use for simulations of those runs is
examined.

In this study, the same ramp-type CFL controller is used for all models and runs to provide
consistency. The maximum number of iterations is set to 2,000 to avoid excessive computation
times. Prior to doing this, behavior was checked on the Euler+MEIT simulation of Run 30 for
consistency in the behavior of compute time versus number of processors. All simulations are also
run on the same machine (Attaway) for consistency in architecture, which can affect performance.
Attaway is the most recently installed institutional HPC cluster at Sandia, with good performance
characteristics, and is thus optimal for use in this study. One benefit is that the results will be
relevant for as long as possible.

7.2. Computational Cost of Each Model for Representative Cases

Using the mid-refinement mesh level (2L) for each model except Euler+MEIT, Run 30 and Run 34
are simulated using each model in MFTK. The number of cells per core is kept at roughly 30,000
with the exception of the MNA+FPBL runs, which can only use a single processor, and the RANS
simulations of Run 30, which use closer to 22,000 cells per core. The mesh refinement level used
for Euler+MEIT is the coarsest (3L), due to the fact that Euler+MEIT simulations are rarely run
on grids which are as refined as RANS grids, and the 3L grid is thus more representative of a
typical grid for these runs. The results are shown in Figure 7-1. The compute time for both runs is
similar, while the computational cost as measured by time multiplied by the number of cores used
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is significantly higher for Run 34. This is due to the 3D meshes used for this non-axisymmetric
run, which has many more cells than the corresponding 2D meshes for Run 30. Measured by
either criteria, computational cost is higher for the higher fidelity models, with RANS-SST being
the most expensive due to the fact that it is a two-equation model versus RANS-SA which is a
one-equation model. More specifically, the RANS-SST model solves two transport equations, one
for kinetic energy, and the other for the specific dissipation rate [16]. The RANS-SA model, on the
other hand, solves a single transport equation for a variable related to turbulent eddy viscosity [17].
The additional transport equation increases solution time for the SST model significantly. Note
that the RANS simulations took hundreds of minutes (upwards of 1 hr), which becomes extremely
expensive for trajectory simulations, when dozens or hundreds of simulation times are required.
The Euler+MEIT model is significantly less expensive than the RANS models, but it should be
noted that appropriate mesh refinement plays an important role in this. The MNA+FPBL model is
extremely inexpensive to run.

7.3. Cost versus Error

While the relative cost of each model from the simulations described above was expected, it is
useful to examine whether simply decreasing model fidelity to achieve less expensive simulations
is the best way to proceed in a given study. Similarly, if higher accuracy is needed, it is useful
to examine whether simply increasing model fidelity will always improve accuracy, and if so,
by how much. While these questions were answered to some extent by Chapter 5, they are
further examined here, in the context of the two runs described above. To examine computational
cost versus error, the simulation time is plotted versus the relative error, integrated over the
axial coordinate and averaged over meridional angles for each run. Using time instead of time
multiplied by number of cores is acceptable in this case because both measures showed similar
trends (Figure 7-1). The resulting plots are shown in Figure 7-2. RANS-SA has the lowest or
second-lowest error on both QoIs for both runs. However it does have the second-highest compute
time for all run/QoI combinations. For these simulations, then, it can be concluded that when
accuracy is a priority, RANS-SA is the best model choice. RANS-SST is surprisingly undesirable,
having generally high simulation times and the worst error of all models for surface pressure. If
simulation time is the priority, MNA+FPBL involves the shortest compute times, but has significant
error for both QoIs and runs. Euler+MEIT has relatively low compute times, and has low error for
surface pressure, but the highest or second-highest error for surface heat flux. Thus, which lower-
fidelity model is chosen when time is a priority depends on the time constraints. Realistically, it
also depends on the physical scenario being simulated, and the QoIs.

The same analysis is also performed for total integrated relative error, on the turbulent cone section
of the vehicle. Similar to the corresponding section in the validation discussion, the errors on this
section of the vehicle are examined separately because of the high relevance of conical geometry
to hypersonic applications. The resulting plots are shown in Figure 7-3. For Run 34, these errors
take into account all three unique meridional angles, when data are available, whereas for Run
30, with axisymmetric flow, the errors correspond to those computed at the 0◦ meridional angle.
Generally, lower relative surface pressure errors are seen on the turbulent cone than for the entire
vehicle. The RANS-SST model also appears to perform better on the turbulent cone than it does
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(c) Simulation cost versus model, Run 30
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(d) Simulation time versus model, Run 34

Figure 7-1. Time and composite cost of representative simulations of Runs 30 and 34 for each
MFTK model.
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(d) Relative surface heat flux error, Run 34

Figure 7-2. Simulation time versus overall error in surface pressure and heat flux.
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overall. For Run 34, Euler+MEIT still stands out as a good choice. For surface heat flux, relative
errors appear generally larger on the turbulent cone than overall. The plots appear more similar to
the overall plots than the pressure plots do. RANS-SST has comparable relative error to RANS-
SA for Run 30, but error which is nearly as high as that of MNA+FPBL for Run 34. Overall, the
results indicate that RANS-SA appears to be the best choice, especially if accuracy is valued, and
the lower fidelity models stand out in particular instances. Conclusions should be taken with some
caution, as the number of sensors on this section was not high, especially for nonzero meridional
angles.
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Figure 7-3. Simulation time versus overall error in surface pressure and heat flux, on turbulent cone.

7.4. Optimizing Number of Compute Cores

The number of compute cores used to perform a simulation is important for multiple reasons. Using
more cores generally reduces simulation time, and is thus often desirable. However, using too
many cores can cause mesh over-decomposition issues and long queue times in a high performance
computing system. When the number of cores specified becomes too high, simulations times can
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pass an optimal point, or the simulations can fail. To address this issue, compute time is plotted
versus the number of processors for the Euler+MEIT and both RANS models. The MNA+FPBL
model is not studied, because it can only use a single core. The results are shown in Figures 7-4–7-
6. For the Euler+MEIT (Fig. 7-4) simulation of Run 30, the compute time decreases monotonically
with the number of processors used. Moving from 1 processor to 8 results in a significant reduction
in compute time (∼ 6×). While further reductions in time are possible with more processors, using
16 provides little decrease in compute time while increasing total cost significantly and potentially
nearing a number of cells per core which would cause over-decomposition. Thus, 8 processors
would be a reasonable number to choose. For the Euler+MEIT simulation of Run 34, there is a
clear minimum compute time at 288 processors, which corresponds to roughly 30,000 cells per
core. This fits with the rule of thumb sometimes used for RANS simulations, and would be a good
choice for such a simulation. Note that total cost as measured by compute time multiplied by the
number of cores used is also plotted to the right of the time versus number of processors plots.
These plots serve to show the competing trend of increasing cost with that of compute time.

In Figure 7-5, compute time vs number of processor plots for the RANS-SA model are shown. As
with Euler+MEIT, Run 30 shows a monotonic decrease in compute time with an increasing number
of processors. Using a similar argument as for Euler+MEIT, 16 processors appears to be a good
choice. It provides a large speedup as compared to using 2–8 processors, but avoids the increase in
cost associated with increasing the number of processors further. It also avoids over-decomposition
concerns by staying at 8,000 cells per core (∼1,000 cells per core sometimes produced such errors
in the validation study). To stay even further from this region, 8 processors could be chosen. The
Run 34 simulation also shows a clear minimum region similar to the Euler+MEIT results, and
indicates that ∼576 processors, which corresponds to ∼30,000 cells per core, is optimal.

Finally, RANS-SST results are shown in Figure 7-6. 16 processors (8,000 cells per core) appears
to be a reasonable choice for Run 30. For Run 34, ∼1,150 processors (∼14,000 cells per core) or
∼2,300 (∼7,000 cells per core) would make sense. It is interesting to note that RANS-SST did
not show a clear minimum time for Run 34, unlike the RANS-SA and Euler+MEIT models. This
behavior could be further examined and could be tied to the form of the model.

7.5. Future Work

In this study, compute times for the Euler+MEIT and RANS models of MFTK are examined for
two HIFiRE-1 runs on representative meshes. It is seen that compute times follow the expected
trend (increase with increasing model fidelity), but that there are competing measures of simulation
performance which must be taken into account. For the parameters and geometry studied, these
results provide a good basis for intuition regarding the choice of model and number of processors
to use in a simulation. Future work could include a study on the use of the updated CFL controller
used in SPARC, which can provide significant speedups. In addition, the behavior of the RANS-
SST model on simulations involving 3D meshes could be further examined.
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(a) Compute time versus number of processors, Run 30
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(c) Compute time versus number of processors, Run 34
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(d) Simulation cost versus number of processors, Run 34

Figure 7-4. Simulation cost and compute times versus number of processors for Euler+MEIT
model.
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Figure 7-5. Simulation cost and compute times versus number of processors for RANS-SA model.
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(c) Compute time versus number of processors, Run 34

500 1000 1500 2000
Number of Processors

150

200

250

300

To
ta

l C
os

t, 
co

re
s*

hr
s

(d) Simulation cost versus number of processors, Run 34

Figure 7-6. Simulation cost and compute times versus number of processors for RANS-SST model.
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8. CONCLUSIONS

MFTK is a highly useful workflow for hypersonic aerothermal modeling and simulation. This
study provides quantitative credibility evidence to aid analysts in understanding the accuracy and
uncertainty associated with the use of MFTK in a challenging context. In this study, verification
and validation activities are continued from the previous year and expanded.

For code verification, the MNA+FPBL work includes testing the viscous quantities of interest on
the same two-dimensional test cases as before, but also extends to a three-dimensional problem.
The SPARC MEIT mathematical model and code implementation are studied and described in a
theory guide [9]. In addition, two tests have been completed on the MEIT code, with one testing
the laminar flow model and the other the turbulent flow model.

The solution verification effort is expanded to cover simulations reproducing four HIFiRE-1
experimental runs. The finest mesh is taken as the nominal mesh, and the GCI is calculated using
the two finest meshes (in the numerator). This results in lower numerical uncertainty in general as
compared with results from the previous year. Numerical uncertainty associated with all models is
relatively low over much of the vehicle. Euler+MEIT and RANS-SST models still show relatively
high numerical uncertainties in challenging regions, and further investigation of this trend would
be beneficial.

For validation, the study is also extended to the same four HIFiRE-1 runs as for solution
verification, but additional work comparing these runs to each other is done. Detailed error
trends along the vehicle, overall error, error by vehicle section, and average model error across
runs are examined. Effects of parameter changes on overall simulation error are analyzed. Over
much of the vehicle, the models show good accuracy, though relatively high errors are observed
in several locations for multiple models. In particular, the Euler+MEIT and RANS-SST models
have relatively high error in regions of complex flow. The RANS-SA model shows the lowest error
in general, with the RANS-SST model being competitive on the cone for certain runs. Generally,
the error and uncertainty results agree with the expected fidelity of each model. Exceptions to this
trend include high error and uncertainty in the Euler+MEIT and RANS-SST results for complex
flow (transition, separation, and SLBI) and competitive accuracy of the lower-fidelity models for
simpler flow.

A timing study is completed which examines the computational cost of each model for
representative 2D and 3D simulations. Cost versus error trends are examined in plots comparing
the model fidelities in MFTK. Finally, the optimal number of processors for the Euler+MEIT and
RANS models is examined.
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