LA-UR-23-33139

Accepted Manuscript

Distributed out-of-memory NMF on CPU/GPU architectures

Djibrilla Boureima, Ismael
Bhattarai, Manish

Eren, Maksim Ekin

Skau, Erik West

Romero, Phillip R.

Eidenbenz, Stephan Johannes
Alexandrov, Boian

Provided by the author(s) and the Los Alamos National Laboratory (2023-12-15).
To be published in: The Journal of Supercomputing
DOl to publisher's version: 10.1007/s11227-023-05587-4

Permalink to record:
https://permalink.lanl.gov/object/view?what=info:lanl-repo/lareport/LA-UR-23-33139

i Los Alamos NIYSH

NATIONAL LABORATORY National Nuclear Security Administration

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government
retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.
Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos
National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.



The Journal of Supercomputing
https://doi.org/10.1007/s11227-023-05587-4

™

Check for
updates

Distributed out-of-memory NMF on CPU/GPU architectures

Ismael Boureima' - Manish Bhattarai' - Maksim Eren’ - Erik Skau? -
Philip Romero? - Stephan Eidenbenz? - Boian Alexandrov’

Accepted: 9 August 2023
© The Author(s) 2023, corrected publication 2023

Abstract

We propose an efficient distributed out-of-memory implementation of the non-neg-
ative matrix factorization (NMF) algorithm for heterogeneous high-performance-
computing systems. The proposed implementation is based on prior work on NMFk,
which can perform automatic model selection and extract latent variables and pat-
terns from data. In this work, we extend NMFk by adding support for dense and
sparse matrix operation on multi-node, multi-GPU systems. The resulting algorithm
is optimized for out-of-memory problems where the memory required to factorize
a given matrix is greater than the available GPU memory. Memory complexity is
reduced by batching/tiling strategies, and sparse and dense matrix operations are sig-
nificantly accelerated with GPU cores (or tensor cores when available). Input/output
latency associated with batch copies between host and device is hidden using CUDA
streams to overlap data transfers and compute asynchronously, and latency associ-
ated with collective communications (both intra-node and inter-node) is reduced
using optimized NVIDIA Collective Communication Library (NCCL) based com-
municators. Benchmark results show significant improvement, from 32X to 76x
speedup, with the new implementation using GPUs over the CPU-based NMFk.
Good weak scaling was demonstrated on up to 4096 multi-GPU cluster nodes with
approximately 25,000 GPUs when decomposing a dense 340 Terabyte-size matrix
and an 11 Exabyte-size sparse matrix of density 1075,

Keywords NMF - Out-of-memory - Latent features - Model selection - Distributed
processing - Parallel programming - Big data - Heterogeneous computing - GPU -
CUDA - NCCL - Cupy

1 Introduction
NMF is a popular unsupervised learning method that extracts sparse and explainable

latent features [1], which are often used to reveal explainable low-dimensional hid-
den structures that represent and classify the elements of the whole dataset [2]. NMF
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is used in big data analysis, which plays a crucial role in many problems, including
human health, cyber security, economic stability, emergency response, and scien-
tific discovery. With the increased accessibility to data and technology, datasets con-
tinue to grow in size and complexity. At the same time, the operational value of the
information hidden in patterns in such datasets continues to grow in significance.
Extracting explainable hidden features from large datasets, collected experimentally
or computer-generated, is vital because the data presumably carries essential (but
often previously unknown) information about the investigated phenomenon’s cau-
sality, relationships, and mechanisms. Discovering meaningful hidden patterns from
data is not a trivial task because the datasets are formed only by directly observable
quantities while the underlying processes or features, in general, remain unobserved,
latent, or hidden [3].

Analysis of vast amounts of (usually sparse) data via NMF requires novel dis-
tributed approaches for reducing computational complexity, speeding up the com-
putation, and dealing with data storage and data movement challenges. Most NMF
computations are matrix-matrix multiplications, which GPU accelerators can speed
up. The primary performance and scaling limiting factors in NMF implementa-
tions on modern heterogeneous HPC systems are high communication costs due to
data movement across different system parts (inter-node and intra-node communi-
cations). In various cases, these communication delays exceed the time the actual
computations take, resulting in poor performance and poor scalability on large dis-
tributed systems.

The growth in data volumes outpacing the improvement in hardware specifica-
tions is causing significant challenges in extracting useful information from large-
scale datasets using algorithms like NMF. This motivates the need for out-of-
memory implementations of NMF for distributed HPC systems, which will allow
the decomposition of large datasets that does not fit in memory at once. Enabling
out-of-memory factorization is very important because it removes the matrix size
constraint imposed by the GPU memory, thus enabling the analysis of datasets up to
the cumulative size of all RAM on the cluster. This is mainly required to address the
challenges presented by the need to factorize the ever-growing datasets. We utilize
this unique ability of pyDNMF-GPU to demonstrate the decomposition of record
large dense, and sparse datasets.

To illustrate how pyDNMF-GPU can be used as a building block for more com-
prehensive workflows, we integrate pyDNMF-GPU with our existing model selec-
tion algorithm pyDNMFk' that enables automatic determination of the (usually
unknown) number of latent features on a large scale datasets [4-8]. We utilized the
integrated model selection algorithm previously to decompose the worlds’ largest
collection of human cancer genomes [9], defining cancer mutational signatures [10],
as well as successfully applied to solve real-world problems in various fields [8,
11-19].

This integration results in our out-of-memory scalable tool, pyDNMFk-GPU, to
be capable of estimating the number of latent features in extra-large sparse (tens of

' pyDNMFF: https://github.com/lanl/pyDNMFk.
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EBs) and dense (hundreds of TBs) datasets while operating across CPU-GPU hard-
ware. To the best of our knowledge, our framework is the first to identify hidden
features in large-scale dense and sparse datasets.

In experiments on large HPC clusters, we show pyDNMF-GPU’s potential: we
measure up to 76x improvement on a single GPU over running on a single 18-core
CPU. We also demonstrate weak scaling on up to 4096 multi-GPU cluster nodes
with approximately 25,000 GPUs when decomposing a dense 340 Terabyte-size
matrix and an 11 Exabyte-size sparse matrix of density 107,

Our main contribution is a novel NMF parallel framework, called pyDNMF-GPU,
that minimizes the data movement on GPUs, improving overall running times. Our
work’s main contribution and novelty is the proposal of a new distributed imple-
mentation of NMF with low memory complexity that enables the out-of-memory
factorization of very large datasets. Our proposed implementation, pyDNMF-GPU,
takes advantage of the following three modern design choices:

e pyDNMF-GPU reduces the latency associated with local data transfer between
the GPU and host (and vice-versa) by using CUDA streams.

e Latency associated with collective communications (intra-node and inter-node)
is reduced by using NCCL primitives.*

e We incorporate a batching approach for inter-node communication, which pro-
vides a unique ability to perform out-of-memory NMF while using multiple
GPUs for the bulk of computations.

The main contributions of the paper include:

e Introducing a novel distributed algorithm with out-of-memory support for NMF
for sparse and dense matrices operating across CPU-GPU hardware.

e Report, the first NCCL communicator accelerated NMF decomposition tool in
distributed GPUs.

e Demonstrate the framework’s scalability over a record-breaking 340 Terabytes
(TB) dense and 11 Exabytes (EB) sparse synthetic datasets.

The remainder of the paper is organized as follows: Sect. 2 gives a summary of NMF
and the existing parallel NMF implementations. In Sect. 3, we detail the design con-
siderations and choices for a scalable, parallel, and efficient algorithm in different
configurations of the data size and available GPU VRAM, as well as the complexity
of the new implementation. The efficacy of pyDNMF-GPU with different bench-
mark results and the validation of benchmark results on a synthetic dataset with a
predetermined number of latent features is shown in Sect. 4. We finally conclude
with summaries and suggestions of possible future work directions in Sect. 5.

2 NCCL: https://developer.nvidia.com/nccl.
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2 Background and related work
2.1 Non-negative matrix factorization algorithms

NMF [1] approximates the non-negative observational matrix A € R7™" with a
product of two non-negative factor matrices W € R’j:x" and H € IR’er” where the col-
umns of W represent the latent features, while the columns of H are the coordinates/
weights of the analyzed samples (the columns of A) in the reduced latent space, and
k is the latent dimension of the data. The NMF minimization is based on alternating
update of each one of these two factor matrices until convergence indicated by the
condition |[A — WH||z <n 1is reached. Here |.||; is the Frobenius norm,

Al =1/ z]. aizj, where q;; is the element on row i and column j, and 7 is the

desired tolerance. Each iteration consists of a W-update sub-step followed by a H
-update sub-step, given by

W —— |lA - WH||>.
W=0

2 ey
H — ||A - WH]||;,
H>0

Algorithm 1 W, H = NMF(X, k) — Generic NMF

Require: X € R"", k is the rank of approximation and maz_iters is the number
of iterations.
: Initialize W ,H = rand(m, k),rand(k, n)
1=0
=1+ 1 > Ensure n; > 7 to enter loop
: while (n; > nori<imaez) do
@ stands for matrix multiplication operation
(AeHT)
WFW*W(@I‘I—‘—E > W update

wTaA)
H « H * wraowa e
X+ WH )
ni=[A- X[z
i=1i4+1;
: end while

W =

o

> H update

Peeree

— =

The Frobenius norm (FRO) based multiplicative update (MU) algorithm is pre-
sented in Algorithm 1. In addition to the presented Frobenius norm-based MU
algorithm (which leads to a Gaussian model of the noise [20]) other similarities
(e.g., KL-divergence that corresponds to a Poisson model) can also be used in the
NMF minimization. Also, based on the update rules, several variants of NMF algo-
rithms exist such as hierarchical alternating least squares (HALS) [21], alternating

@ Springer
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non-negative least squares with block principle pivoting (ANLS-BPP) [22], and
block coordinate descent algorithm (BCD) [23]. These algorithms have different
advantages in the context of convergence rate, computational, and memory require-
ments. MU-based updates are computationally and memory-wise cheap at the cost
of slower convergence. Whereas HALS, BCD, and ANLS-BPP have faster conver-
gence rates at the cost of higher computational and memory requirements and high
communication costs for parallel implementations. In our experiments, we use the
FRO-based MU algorithm to demonstrate record scalability on large datasets due to
its lower computation and communication cost, which can easily be modified with
another update algorithm or similarity metric.

2.2 Related work on distributed NMF

Several parallel implementations have been proposed to address the computational
need of NMF for large datasets involving multiple and repeated matrix-matrix multi-
plications of several orders in magnitude. The existing parallel implementations can
be grouped under two categories (i) with shared memory and (ii) with distributed
memory. Majority of existing parallel works utilize shared-memory multiproces-
sor [24-27] and shared memory GPUs [26-29] via OpenMP and CUDA libraries
respectively. A majority of distributed memory implementations rely on MPI primi-
tives for distributed CPU [12, 30] and CUDA-aware MPI primitives for distributed
GPU [28, 30] parallelization. Although shared-memory implementations drastically
minimize the communication costs incurred for distributed memory implementation
[26], there is a constraint on how much data such frameworks can decompose. Due
to this constraint, shared-memory implementation often cannot provide the compu-
tational/memory requirements needed for the current large-scale datasets.

Almost all distributed GPU implementations including NMF-mGPU [28] and
PLANC [33] rely on significant data communication for the update of the factors.
This involves using CUDA-aware MPI primitives for data communication or MPI
distributed memory offload through NVBLAS [33] without multi-node GPU com-
municators. Such implementation leads to high data movement costs due to data
on-loading/offloading to/from the device, which significantly raises communica-
tion costs compared to the computation cost for large data decomposition. This is
previously illustrated with distributed BPP in PLANC [30] and distributed MU and
BCD [12] where the communication cost is minimized by communicating only with
the two-factor matrices and other partitioned matrices among MPI processes. These
works attempt to reduce the bandwidth and data latency using MPI collective com-
munication operations. For distributed CPU implementations, this approach works
well as the communication cost is significantly lower compared to the computa-
tion cost. However, for GPU implementation, communication cost is higher due to

@ Springer
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Distributed out-of-memory NMF on CPU/GPU architectures

device/host data transfer; therefore, communication cost is a limiting factor for par-
allel performance when using many GPUs.

Table 1 illustrates the comparison against the existing parallel NMF implementa-
tions. Further, support for factorization of sparse datasets equally adds value for our
new pyDNMF-GPU framework. Since many of the extra-large datasets, such as the
text corpora, knowledge graph embeddings (and, in general, most of the relational
datasets), cyber network activity datasets, and many others, are highly sparse, having
sparse decomposition support dramatically reduces the memory and computational
requirements which otherwise would be a major bottleneck for the dense implemen-
tation. Despite the support for a sparse dataset for shared-memory in ALO-NMF and
genten [26, 27] and for distributed memory in PLANC [30], there is no specific solu-
tion aiming to address the bottlenecks due to extracted dense factors and their com-
munications for large sparse datasets. Even though the largest sparse datasets may be
a few MBs in size, due to their extreme sparsity, decomposing such datasets would
be challenging for most existing frameworks as the extracted factors are dense and
very large. Even for such a small non-zero valued size, the corresponding dense fac-
tors could easily explode and require an expensive communication of dense interme-
diate terms. However, our batching framework provides a solution by accommodat-
ing larger intermediate-dense factors, which have not been addressed previously.

2.3 Rationale for an algorithm for the out-of-memory distributed NMF

In pyDNMF-GPU, we use a distributed implementation of NMF that aims at effi-
ciently factorizing matrices of all sizes, even those too big to fit on available mem-
ory, in out-of-memory scenarios. To this end, pyDNMF-GPU accelerates matrix
operations using GPUs on modern heterogeneous systems, provides support for
sparse matrix operations to deal with practical data sets which are often sparse, and
can partition large problems into smaller problems solved in a distributed manner.
Above all, and to the best of our knowledge, our proposed implementation is the first
to provide a solution for practical out-of-memory cases that require the factorization
of data too big to be stored on combined available GPU memory.

When performing NMF on GPUs, OOM situations can arise in various sce-
narios with different degrees of complexity. As discussed in [34], we distinguish
three main types of OOM scenarios. Scenarios of type 0 (OOM-0) concern practical
problems where the input data A and its co-factors W and H can easily be stored
on GPU memory. However, an explosion of memory requirement can occur, either
due to the unknown rank k becoming significant, causing W and H to become pro-
hibitively expensive to store on memory, or when computing intermediate results
such as X = WH (line 8 of Algorithm 1), when A is a large sparse matrix of very
low density, where X resulting from the operation becomes dense and very likely
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impossible to store on GPU. For instance, if A € R19¥1%° js a sparse matrix, with
density of § ~ 1073, the size of A in dense format, in single precision, is Sy =~ 47TB,
however representing A in CSR sparse format can lower the size of A down to
S, ~3 xS, X6~ 12 GB (the factor of 3 accounts for storing the data, indices and
index pointers for CSR format), consequently Sy,,» = 2 X Sy ~ 4TB. Assuming very
small k, A and all co-factors can be stored on GPU; however, the calculation of the
intermediate product X from X = WH would still require a whopping ~ 8 7B of
GPU memory (line 8 of Algorithm 1), making this scenario an OOM-0 problem.

A more complex OOM scenario, type I (OOM-1), arises in cases where matrix
A and at most one of its co-factors cannot be cached on GPU memoryj; this is typi-
cally the case when dealing with a large A that is dense or sparse with high density.
Scenarios of type 2 (OOM-2) are the most complex and consist of practical cases
where neither A, nor its co-factors can be stored on GPU memory. Note that more
complexity can arise in cases where data cannot fit on host RAM memory, but that
still is of type 2 as the OOM classification here is based on the GPU RAM memory
utilization. In other words, in OOM-0 scenarios, all the data can be cached on GPU;
in OOM-1 scenarios, the data can partially be cached on GPU, and in OOM-2 sce-
narios, none of the data can be cached on GPU. The treatment of OOM-2 scenarios
is out of the scope of this study.

OOM-0 cases can easily be handled using tiling techniques, and OOM-1 cases
can be handled with batching techniques. In extreme OOM-1 cases, we will comple-
ment batching by tiling to further reduce memory footprint.

Both batching and tiling are block-based computational techniques designed to
simplify larger, memory-intensive computations into smaller, manageable, and par-
tially solvable tasks. Each technique, however, functions in a distinct setting and
serves a different purpose. Batching is a process that operates on the host, necessi-
tating consistent data transfer between the host and the device. The efficacy of batch-
ing techniques is heavily reliant on the speed of the interconnecting buses between
the host and device, such as PCle or NV-Link. Batching techniques become crucial
when dealing with OOM-1 problems, as they help in transferring partially computed
results. Conversely, tiling happens directly within the device memory, resulting in
data transfer between global memory and shared or cache memory. The performance
of tiling techniques is primarily governed by the GPU architecture, including fea-
tures like memory speed and available shared memory. Tiling techniques are espe-
cially effective for tackling OOM-0 problems, as they handle computational tasks
directly on the device. Notably, batching is typically irrelevant for OOM-0 problems
as these computations are already based on the device. Similarly, tiling techniques
alone cannot address OOM-1 issues due to the preliminary need to transfer oper-
ands to the device. However, an optimized solution for extreme OOM-1 problems
can be achieved by strategically combining both batching and tiling techniques, thus
enhancing the overall performance.

In the section below, we discuss our implementation and design choices.

@ Springer
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3 pyDNMF-GPU for heterogeneous systems

An efficient implementation of NMF for distributed heterogeneous systems should
avoid high costs associated with communication (data transfer) resulting from poor
consideration for data locality in the distribution of the computational work. Fur-
thermore, cases, where resources such as available combined GPUs memory are
limited will require additional considerations and various trade-offs. For instance,
it is sometimes better to replicate data over the distributed compute grid to reduce
communication. Other times, it is acceptable to use batching techniques that can
increase communication costs to lower the memory footprint. Below we first discuss
our distributed data partition strategies that partition large problems into smaller
problems solvable on cooperative distributed systems in subsection 3.1, and then in
subsection 3.2 we discuss our tiling and batching approaches, respectively used to
handle practical scenarios of complexities typeQ and typel.

3.1 Distributed implementation

Our implementation considers two one-dimensional data partition strategies based
on the shape of matrix A (m X n). A column (vertical) partition, CNMF employed
when n > m, and a row (horizontal) partition, RNMF, is used otherwise.

Algorithm 2 W H = DCNMF (X, k)-Distributed CNMF Algorithm

Require: X € ]RTX", k is the rank of approximation and maz_iters is the number
of iterations.

Require: X distributed across N GPUs where X; € R™*"/N where J = n/N if
m < n. Similarly the co-factor W local to each GPU given by W & R™*F which
is reproduced across different GPUs. H is distributed across N GPUS such that
H; ¢ R

i .
1: Initialize W,H; = rand(m, k),rand(k, J)
J=n/N,jo=¢gIDxJ,j1 =(¢gID+1)*.J
2: for [ =0 to | < max_iter do

T
3: wTA=w® aa > @ stands for matrix multiplication operation
T
. wrw =wW aw
5. HUD = (HO «wTA) )/ (WTWwaH + ¢ > Hupdate
¢ HHT = HagT"™"
7 HHT = All Reduce(HHT)
s: WHHT=wYaHHT
9: AHT = AQHT
10: AHT = All Reduce(AHT)

11: WD =wO « AHT/(WHHT + ¢) > Wapdate
12: end for
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=
—
k

(a) Column partition with orthogonal  (b) Row partition with co-linear batch-
batching ing

Fig. 1 Illustration of distributed matrix A and co-factors W and H in CNMF and RNMF distributed parti-
tions respectively in (a) and (b). Solid lines show distributed partition boundaries, and dashed lines show
local partition segmentation in batch for Out-of-Memory decomposition

Algorithm 3 W, H = DRNMF(X, k)-Distributed RNMF Algorithm

Require: X € RTX"7 k is the rank of approximation and maz_iters is the number
of iterations.
Require: X distributed across N GPUs where X; € R™/N*" where I = m/N if
n < m. Similarly the co-factor H is reproduced across different GPUs given by
H € RF*™ | W is distributed across N GPUS such that W, € RIXF,
1: Initialize W;, H = rand(I, k),rand(k, n)
I=m/N,ig=gIDx1,39 = (gID+1)*1
2: forl=0tol < m%x_iter do
3: wrTA=w® aa > @ stands for matrix multiplication operation
4: WTA = All_ Reduce(WTA)
T
wTw = w" aw
WTW = All_ Reduce( WTW)
HHD) = (HD «wTA) ) (WTWaHWY + ¢) > Hyupdate
s  HHT = HDagT""
9. WHHT=wWYQHHT
10: AHT = AQHT
11: WD =wW « AHT/(WHHT + ¢) > Wapdate
12: end for

R

Assuming a distributed system with N GPUs where each GPU is indexed by
its global rank g;,. In the CNMF approach illustrated in Fig. la, the j” GPU
with g;,, =j will work on array partitions Al[:,j, : j1, H[:.j, : j;] and W,
where j, =jXxJ, j, =(+ 1) X g, and J = n/N(partition size). Each GPU gets a
full copy of W (W is replicated) and a unique partition of A and H. This trans-
lates into a segmentation of arrays A and H on global memory illustrated with
solid lines in Fig. la. These solid lines indicate boundaries in global memory

@ Springer
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Node, Node, Nodey,

Boee cooe  Goee

- I Y

[ switc

Fig. 2 Illustration of distributed HPC hardware and different communication channels

and consequently help conceptualize where communication is required whenever
information is exchanged from one bounded region to another. The H-update is
embarrassingly parallel since W/ W, (W' W)H, and WA can all be computed
locally on each GPU; the W-update on the other hand, will require two separate
all-reduce-sum communications to compute AH” and HH' as indicated in Algo-
rithm 2 lines 10 and 7.

Following a similar analogy, a RNMF approach results with H replicated on
the different GPUs and A and H distributed across the compute grid. This time W
-update is embarrassingly parallel since HH', WHH"), and AH" can all be com-
puted locally on each GPU, but the H-update will require separate all-reduce-sum
communication to compute W W and W”A as presented in Algorithm 3.

Communication takes place through various channels with different band-
widths and latency. We refer to intra-node communications as any communi-
cation on the same node, i.e., yellow, pink, and black lines in Fig. 2 and those
between different nodes as inter-node communications. i.e red lines in Fig. 2. The
latter often have the lowest bandwidth and highest latency and could easily cause
bottlenecks for distributed algorithms such as NMF. For these practical reasons,
in our implementation, we avoid all-reduce collective calls as much as possible.
When n > m, CNMF is more efficient than RNMF because it costs less to com-
municate AH” of shape m X k, and RNMF is more efficient when m > n because it
cost less to communicate W’ A of shape k X n.

The FLOP (floating point operations) count for the given distributed RNMF
(row-wise nonnegative matrix factorization) algorithm can be calculated by going
through each of the operations performed in the algorithm. Below is a rough esti-
mation of the FLOP count for each line of interest in the algorithm:

@ Springer



|. Boureima et al.

e Matrix multiplication (Line 3): WTA = [I[IWT @A. Here we have a matrix
multiplication of size (k X I) * (I X n), which will result in 2k« I s n —k xn
FLOPs.

e Matrix Multiplication (Line 5): WTW = [[I[IWT @W. Here we have a matrix
multiplication of size (kX I) % (I X k), which will result in 2k I « k —k % k
FLOPs.

o Elementwise Multiplication and Division (Line 7):
[+ 11[1H = ([/1[1H * WTA)/(WTW @[I/]H + ¢).This consists of k xn FLOPs
for elementwise multiplication and k * n FLOPs for elementwise division, so
total 2 * k * n FLOPs.

e Matrix multiplication (Line 8): HHT = [l + 1][l[H@H T™" Here we have a matrix
multiplication of size (kX n) % (n X k), which will result in 2k xn x k —k % k
FLOPs.

e Matrix multiplication (Line 9): WHHT = [[|W@HHT. Here we have a matrix
multiplication of size (I X k) * (k X k), which will result in 27 x kx k—1 % k
FLOPs.

e Matrix multiplication (Line 10): AHT = A@HT. Here we have a matrix multi-
plication of size (I X n) * (n X k), which will result in 21 * n % k — I % k FLOPs.

o Elementwise multiplication and division (Line 11):
[[+ 11(]W = [I][]W = AHT /(WHHT + ¢). This consists of Ik FLOPs for
elementwise multiplication and I * k FLOPs for elementwise division, so total
2 % I % k FLOPs.

Note: The All_Reduce operation (Lines 4 and 6) are communication operations and
are not considered in the FLOP count as they do not involve any computation.

So, total FLOPs for each iteration of the loop= 2K * [ ¥ n+2k % I x k+2 x k xn
+2k*n*k+21>kk*k+2]*n*k+2*I*k—k*n—k*k—k*k—l*k—]*k.

For max,, iterations, total FLOPs would be max;,,,. times the FLOPs per iteration.
Now, to compute GFLOPS, we have GFLOPS = total_FLOPs/(total_timex1e9).
Morever, given device peak GFLOPS (peakG), we can compute efficiency as
GFLOPS/peakG*100%.

The total VRAM required to factorize A of size size(A) = S, (in Bytes) is typi-
cally in the order of Sy, ~ 4 X S,. One fold of S, to store A in memory, another
fold to store perturbed A [7], an additional fold to compute intermediate product
X = W@H when checking the convergence conditiony A — WH < 5, and almost
one full fold to store the co-factors W, H, and heavy intermediate products such
as W'A or AH". When the total available combined GPU VRAM, S, is lower
than Sy, as in practical big data applications, batching techniques are imperative.
Batching, in most cases, increases intra-node and inter-node communication over-
heads. Although this can significantly affect the algorithm’s performance, proper
use of asynchronous data copy and CUDA streams can reduce performance loss by
overlapping compute and data transfers, as discussed in our out-of-memory imple-
mentation below.
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3.2 Out-of-memory implementation and memory complexity analysis

Algorithm 4 W H = CNMF(X, k)-CNMF with orthogonal batching

Require: X € RTX", k is the rank of approximation and maz_iters is the number

of iterations.

Require: X distributed across N GPUs where X; € R"™*"/N where J =  if

W N =

o«

10:

11:
12:
13:
14:
15:

16:
17:

18:

19:
20:
21:
22:

23:
24:

25:
26:

27:
28:

29:
30:
31:

32:
33:

m < n. Locally to each GPU, X; can be split into n; batches where n;, = %

following a orthogonal batching strategy where the batch is of shape p x J.

Similarly the co-factor W local to each GPU given by W € R™*¥ is locally
divided into n; batches where the batch is of shape p x k. H is distributed across

N GPUS such that H; € R**7.

. Initialize W;,H; = rand(I, k),rand(k, J)
: Initialize SQ, a queue of CUDA-streams of size ¢s.

. Initalize zero array accumulators WT.A € Z9-XFX" and WTW e 7.9 XFxF
: for 1in [1,maz_iters] do

/* Update H given W */
for b in n; do
SQ — > st > De-queue stream st from SQ
while in context st do > Calculations in loop are in non-default stream st
to=bxp, i1=(0b+1)xp, jo=gIDxJ, j1=(gID+1)xJ
A = H2D(X;[:0:il,:],st) > H2D(=, st) stands for async copy of x
from Host to GPU using non-default stream st
W, = H2D(W D30 : i1, ], st)

WT Alst] += Wl @A > Accumulate local WT @A
WTW|st] += Wl W, > Accumulate local WTaw,,
st —>SQ > En-queue stream st back into SQ, exit context st
end while
end for
WTA =" WTA,.. > Reduce of WT A local to each GPU
WTW =3 WTW, .. > Reduce of WT W local to each GPU

H"x =wra/wrweH" + )
/* Update W given W */
HHT = H"agT"""
J J
HHT < All_Reduce_sum(HHT)
for bin 0 to ng do
SQ — > st > De-queue stream st from SQ
while in context st do > Calculations in loop are in non-default stream st
Setig =bx*xp, i1=(b+1)*p
A = H2D(X[i0:i1,:],st) > H2D(=, st) stands for async copy of x
from Host to GPU using non-default stream st
W, = H2D(W W [i0 : i1, ], st)
WHHT, = Wy,QHHT + ¢
T+D)
AHT = AQH;
AHT = All Reduce_sum(AHT, stream = st) > Perform stream
aware Reduce with NCCL
Wyx = AHT/(WHHT, +¢)
Wi(H_l)[iO :il,:] = D2H(Wy, st) > D2H(, st) stands for async copy
of  from GPU to Host using non-default stream st.
end while

end for
end for
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In pyDNMF-GPU, OOM-0 problems are handled using a tiling approach where tem-
porary results like AH”, W' A or WH are evaluated in small chunks, by tiling one of
the operands, such that the size of the tile sets the memory required for the calcu-
lation. In RNMF for instance, the criterion w A — WH . ;< 7, can be evaluated in
m/p small chunks obtained by tiling W into smaller tiles of size p X k. This results
in computing nt chunks of [w A — WH . ], which are accumulated into the total

error e such thate =Y ([v A — WH nF],)'tn:/(f_l, which can later be used to check
the conversion condition e < 5. This allows the reduction of the memory required
to check the conversion criterion from O(m X n) to O(p X n). Because all matrices
involved in the calculations are stored on GPU memory, performance loss due to til-
ing can be negligible, especially on modern GPU architecture like NVIDIA Ampere
A100, which uses low latency and high bandwidth HBM memory. Using the til-
ing approach, the memory required to perform NMF on GPU can be reduced from

Saxmr ~ 4S5, to approximately 25, < Syr < 35,
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Algorithm 5 W, H = RNMF(X, k)-RNMF with co-linear batching

Require: X € R"*", k is the rank of approximation and maz_iters is the number
of iterations.

Require: X distributed across N GPUs where X; € R'*" where I = ¥ if m >
n. Locally to each GPU, X; can be split into n; batches following a co-linear

batching strategy where the batch size is bs = % x n. Similarly the co-factor W

local to each GPU given by W, € RI*F g locally divided into n; batches where
bs = L) x k. H € R¥*" is cached and replicated across the GPUs.

2

1: Initialize W;, H = rand (I, k),rand(k, n)

2: Initialize SQ, a queue of CUDA-streams of size ¢s.

3: Initalize accumulators WT A € RZ:XkX" and WTW € R% xhoxk

4: for 1 in [1,max_iters] do
/* Update W given H */

5. HHT = HVaHT"

6: for p in ny do

7: 10,i1 = pxbs,(p+1) % bs

8: SQ — > st > De-queue stream st from SQ

9: while in context st do > Calculations in loop are in non-default stream st

10: A = H2D(X;[i0:1,:],st) > H2D(x, st) stands for async copy of «
from Host to GPU using non-default stream st

1. w, = H2D(W,V[i0 : i1, ], st)

12: AHT = AaHT"

13: WHHT = W, QHHT + ¢

14: Wyx = AHT/AWWT > W update

15: WZ.(Hl)[iO :11,:] = D2H(Wy, st) > D2H(x, st) stands for async copy
of & from GPU to Host using non-default stream st.

16: WT Alst] += W aA > Accumulate local WT@A

17: WTWi[st] += W' W, > Accumulate local WTaw,,

18: st —>SQ > En-queue stream st back into SQ, exit context st

19: end while

20: end for
/* Update H given W */

21: WTA=3" WTA,.. > Reduce of WT A local to each GPU

22: WTW =37 WTW, .. > Reduce of WT W local to each GPU

23: WTA = All Reduce_sum(WTA) > Global Reduce of WT A across all
GPUs

24: WTW = All_ Reducesum(WTW) > Global Reduce of WTW across all
GPUs

25 WTWH =WTWaH"

2. WIWH =WTWaHWY + ¢

o7 HVx = WTA/WTWH > H update

28: end for

When dealing with OOM-1 cases, light arrays are cached on GPU memory,
and heavier arrays are kept on host memory and batched to respective GPUs as
needed. Further, an appropriate batching strategy for the chosen memory parti-
tion is required to limit unnecessary D2H and H2D copies. In PyDNMFk-GPU, we
employ a ID co-linear batching strategy, illustrated in Fig. 1b, where the elements
in the batch are arrays of length equal max(m, n). This batching strategy turns out to
employ half the D2H and H2D memory copies required by an orthogonal batching
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Fig.3 Illustration of the batched multiplicative update of Algorithm 4 for the column partition(CNMF).
Green array is duplicated across different MPI ranks. Blue and red arrays are distributed, and only red
array is cached on device. For CNMF, p is out-of-memory batch width and J is distributed partition width

strategy, illustrated in Fig. 1a for the column partition, where the elements in the
batch are vectors of length equal min(m, n). Let p be a batch size control parameter.
In RNMF (CNMF) the number of batches is then given by ng = m/p (ngz = n/p).
In the extreme case where both m and n are very large, only the light array, W[J, :]
is cached on GPU memory, and heavier arrays A[J, b, : b;] (Alb, : by,J]) and
H[:,b, : b;]1 (W[b, : by, :]) batched to their respective GPUs, such that for the b
batch, by =bXpand b, = (b+ 1) X p.

An implementation of the distributed CNMF with orthogonal batching is given in
Algorithm 4. The calculation of the different intermediate products is illustrated in
Fig. 3, where batch delimitation is represented with dashed lines. The top row shows all
intermediate products computed during H-update, and products computed in W-update
is shown in the bottom row. Intermediate products W’ @A and W@W?' can be com-
puted with ., independent batches each containing [W’ @A], and [W” @ W], sub-prod-
ucts. Each batch is queued to a non-default CUDA stream Stm,, along with the transfer
of A,[b, : b;,J] and W, [b, : b;, :], and when calculated, each sub-product is added
to a local accumulator (see lines 10-11 of Algorithm 4). Once all batches have been
processed, all accumulators are reduced to obtain the full values of W™ and W4, (see
lines 15-16 of Algorithm 4). Note that this reduction is local to each GPU and does not
involve communication. Special batch en-queuing and de-queuing policies are imple-
mented with CUDA events, so as to limit (control) the number of concurrent batches
on GPU to ¢, (see lines 67,12 of Algorithm 4). This way, the memory requirement for
H is bounded by g, X [p x J], as W W@H and H + (W' A)/(W' WH + ¢) have

update
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a kX J memory requirement. This is important, especially when dealing with large
sparse arrays, which can be cheap to cache on the device but can also have co-fac-
tors becoming prohibitively expensive to cache when k becomes large. For instance, in
CNMF, when m ~ 10 million, the size of H will approximate 20GB in single precision
when k ~ 512.

Intermediate products A@H” and W@HH" of the W-update are computed similarly
to W @A and W@ W7, except A@H" will require an intermediate all — reduce — sum
of sub-products [A@H T] » of batches of same stream number from the different GPUs
(see line 28 of Algorithm 4). The resulting memory complexity of this implementa-
tion is found to be of the order of O(p X n X g,) when p >> k which is the aggregated
memory utilization caused by the g, concurrent uploads of batches of A of size p X n at
line 8 orline 24 of Algorithm 4. This is a significant saving compared to the estimated
Symr ~ 3 X S, when not checking the convergence conditionn A — WH ., ;< . When
the convergence criterion is checked, the error computation is tiled similarly as it was
done for OOM-0 scenarios, resulting in a memory utilisation Sy,z ~ 2 X p X n X g,
when p >> k.

Note that the use of batches here will only increase intra — node communication
due to mem-copies, as it is not possible to cache A and W on the device, however major
shortcomings of using the orthogonal batching can be pointed out through the exam-
ple of Algorithm 4 discussed above. First, the need to upload batches two times at
lines (8-9 and lines 24-250f Algorithm 4) is very inefficient as the second set of H2D
will significantly (almost double) data transfer costs. Second, unnecessary additional
latency due to load balancing delays when the streams are scheduled in a different order
on the different GPUs can occur at line 28 of Algorithm 4. Above all, the worst result
here is that both inefficiencies multiply with the number of iterations ( see line 4 of
Algorithm 4).

A better implementation uses a co-linear batching strategy as it is done in the
batched implementation of the distributed RNMF given in Algorithm 5. The calcula-
tion of the different intermediate products is illustrated in Fig. 4. The top row shows
all intermediate products computed during W-update, and products computed in H
-update is shown in the bottom row. The W-update (cartoons 1-4 of Fig. 4 is embar-
rassingly parallel and can be done at a batch level. This means that within each batch,
we have the updated partition of W readily available to compute local sub-products
W' @A and W @A in the H-update. This avoids the need for a second data upload,
as was the case with implementation using an orthogonal batching strategy. Further,
the aggregation of W @A and W’ @A first consists of a local accumulation of the sub-
products (lines 16—17 of Algorithm 5) followed by a local reduction (lines 21-22 of
Algorithm 5), then a global reduction (lines 23-24 of Algorithm 5) illustrated in car-
toons 5—6 of Fig. 4. This does not require communication between batches of the same
stream number and consequently avoids load balancing issues as discussed above in
case using an orthogonal batching strategy.
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Fig. 4 Illustration of the batched multiplicative update Algorithm 5 for the row partition(RNMF) and
colinear batching. Green array is duplicated across different MPI ranks. Blue and red arrays are distrib-
uted, and only red array is cached on device. For RNMF, p is out-of-memory batch width and J is distrib-
uted partition width

4 Benchmarks results and discussion
4.1 Hardware infrastructure and software environment

Benchmark tests were performed on three different HPC clusters to illustrate the
portability and scalability of pyDNMF-GPU. The first cluster, Kodiak, is a LANL
internal HPC cluster with 133 compute nodes with dual Xeon E5-2695 v4 CPUs and
four NVIDIA Pascal P100 GPGPUs each. Each NVIDIA Pascal P100 GPGPU has
16GB VRAM and uses PCI-E 16X gen 3 Links. The cluster peaks at 1850TF/s and
uses an Infiniband interconnect. Each GPU peaks at 9.3 teraflops for single preci-
sion. The second cluster, Chicoma, is also a LANL internal HPC cluster, composed
of 118 compute nodes where each node has 2 AMD EPYC 7713 Processors and 4
NVIDIA Ampere A100 GPUs. The AMD EPYC 7713 CPUs have 64 cores peak-
ing at 3.67 GHz and 256 GB RAM. Each of the four NVIDIA A100 GPUs in each
node provides a theoretical double-precision arithmetic capability of approximately
19.5 teraflops with 40GB VRAM memory. The nodes are networked with HPE/
Cray slingshot 10 interconnect with 100Gbit/s bandwidth. Chicoma runs Shasta 1.4
OS and SLURM Job manager. The third cluster, Summit, peaks at over 200 peta-
flops in double-precision theoretical performance and comprises 4600 IBM AC922
compute nodes, with two IBM POWERY9 CPUs and six NVIDIA Volta V100 GPUs
each which peak at 15.7 single precision. The POWER9 CPUs have 22 cores run-
ning at 3.07 GHz. The six NVIDIA Tesla V100 GPUs in each node provide a theo-
retical double-precision arithmetic capability of approximately 40 teraflops with
VRAM memory of 16GB/GPU. Dual NVLink 2.0 connections between CPUs and
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GPUs provide a 25-GB/s transfer rate in each direction on each NVLink, yielding
an aggregate bidirectional bandwidth of 100 GB/s. The nodes are networked in a
non-blocking fat-tree topology by Infiniband. Summit deploys an RHEL 7.4 OS
and IBM Job step manager jsrun to run compute jobs. Jsrun provides a fine control
of how node-level resources are allocated on these systems, including CPU cores,
GPUs, and hardware threads.

pyDNMF-GPU is written in python and uses other off the shelf python libraries
such as CuPy [35], Numpy [36], MPI4PY [37] and Scipy [38]. It supports dense and
sparse datasets on various hardware architectures and handles communication using
a low-latency NCCL-based communicator. NCCL is an open-source library provid-
ing inter-GPU communication primitives developed and maintained by NVIDIA.
NCCL performs automatic hardware topology detection, which it then uses in graph
search algorithms to identify communication paths that offer the highest bandwidth
and lowest latencies for communication between GPUs intra- and inter-node (e.g.,
between GPUs that are on the same compute node, as well as between GPUs that
are on separate compute nodes). NCCL is compatible with many multi-GPU par-
allelization models, and provides the ability to perform MPI-like collective and
point-to-point operations such as allgather, reduce, broadcast, allreduce, send, and
recv. NCCL was initially proposed to help with the need to transfer large message
GPU buffers in deep learning applications efficiently. Many leading deep learning
frameworks like Chainer, PyTorch, and TensorFlow have since integrated NCCL to
accelerate deep learning training on multi-GPU, and multi-node systems, which has
motivated us to use NCCL to handle communication in our work. All implementa-
tions discussed in the section above were found to benefit from a reduction in data
transfer latency and communication performance (both intra-node and inter-node
communications), using our low latency NCCL-based communicators versus MPL
An example of such benefit in communication performance gain is illustrated in the
subsection 4.2 below that compares the new NMF implementation proposed in this
work that uses an NCCL-based communicator to the prior pyDNMFk that uses a tra-
ditional MPI based communicator. A More comprehensive and detailed comparative
study between NCCL and MPI can be found in the analysis by Awan [39].

4.2 Performance benchmark results of pyDNMF-GPU vs pyDNMFk

The performance gained using GPU over CPU is assessed with speedup com-
puted as the ratio of time measured on CPU with pyDNMFk [7], to time measured
on GPU with pyDNMF-GPU. For this study, we used a dense matrix of shape and
size S, of memory (in bytes) that respectively scale as [N X 65536,32768] and
N x 8GB, where N is the number of GPU or CPU units. Speedup measured on
the Kodiak cluster are reported in Fig. 5. Figure 5a shows speedup in NMF time
as a function of the number of units for various k. First, we note an increasing
speedup with the increasing number of units, and second, we note a decreasing
performance with increasing k& when k£ > 32. The low performance observed at
k < 32 is explained by low GPU occupancy. The best performance is obtained
when k = 32, peaking at 76X. We also report speedup in communication time
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Fig.5 Results of benchmarking experiment showing speedup gain using N GPUs vs N CPUs, for various
k. Speedup gained on NMF calculation time is shown in Fig. 5a and speedup gained on communication
time is shown in Fig. 5b

computed as the ratio of total communication time measured with pyDNMFk to
the total communication time measured pyDNMF-GPU. The former used MPI
based communicator and the latter used an NCCL-based communicator. Speedup
in communication time is reported as a function of number of units for various
k in Fig. 5b. We note ~ 80X — 100X speedup when N > 2, the number of units
above which inter-node communications start. This clearly shows a significant
performance gain in communication when using NCCL in pyDNMF-GPU over
MPI in pyDNMFk.

4.3 Strong and Weak scalability of pyDNMF-GPU

The scalability of the proposed NMFk algorithm is assessed using both strong
and weak scaling analysis. This scaling study measures NMF execution time for
a given problem size as a function of the number of compute units. Compute
nodes (with 4 GPUs each) are chosen as compute units in strong scaling analy-
sis, while individual GPUs are chosen as compute units in weak scaling analysis.
The problem size S, is chosen to use most of the available 16GB VRAM per
GPU. To this end, S, is fixed at S, ~# 4 X 8GB = 32GB in strong scaling analysis
and chosen to scale as S, % 8GB X N in weak scaling analysis. This is accom-
plished by generating a random synthetic array A of shape [4 X 65536,32768] and
[N x 65536,32768] respectively in both strong and weak scaling. Cases of sparse
A with density 1075 were also studied, and for those cases, A was generated as a
random synthetic array of shape [4 X 2097152, 65536] in strong scaling analysis,
and of shape [N X 2097152, 65536] was chosen in weak scaling analysis.
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Fig.6 Results of strong scaling study performed on Kodiak. NMF time vs number of node for various

k dense and sparse A respectively shown in (6a) and (6b). For the case k = 8, execution time of H gy,
W,

update and All-reduce communication are compared in (6¢) and (6d), respectively for dense and sparse A

4.3.1 Strong scalability

Strong scaling results for cases where k = 8, 16,32, 64, 128,256 are shown Fig. 6a.
NMF time is found to increase with k and to decrease with the increasing number
of compute nodes. Good strong scaling is indicated by a linear decrease of NMF
time with increasing compute grid size, and such behavior is only observed in
select parts of the obtained results. Strong scaling is maintained up to a count of
8 nodes when k = 8, then to 4 nodes when k = 16, and lost when k > 16. Identical
scaling is observed for cases where A is sparse, as shown in Fig. 6b.

The worst case scenarios, when k = 256, can be diagnosed from breakdown of

H W and combined all-reduce-sum (AR) execution time, as detailed in

update> "' update
Fig. 6¢. H gy is shown to maintain good scaling at all compute grid sizes, while
Wipdaie had poor scaling at each tested compute grid size. W4, s poor scaling is

strongly influenced by AR communications time, which already makes up more
than 80% of W4, at 2 node count, which increases non-linearly with node count.

At full grid size, AR time makes up more than 98% of W4, influencing the
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Fig.7 Results of weak scaling study performed on Kodiak. NMF time vs number of GPU for various
k are respectively shown in (7a) and (7b), for dense and sparse A. For the case k = 8, execution time of

H pdaie> Wapdare and All-reduce communication are compared in (7c) and (7d), respectively for dense and

sparse A

overall NMF time dominated by W, time. The same explanation applies to
cases where A is sparse, as one can interpret from Fig. 6d.

4.3.2 Weak scalability

Weak scaling results for cases with k = 8, 16,32, 64, 128,256 are shown Fig. 7a.
Good weak scaling is indicated by constant NMF time with the increasing number
of compute units, and this is observed only when N > 8. The lack of scaling when
N < 8 can be explained using the breakdown of H, gy, Wypgae and combined AR
execution time for the case where k = 256, shown in Fig. 7c. While W, 4, main-
tains a perfect weak scaling at all N, H,,q, is influenced by AR communications
time, which increases with GPU count. Communication grows with noticeable tran-
sitions indicating the use of slower channels. The first transition is from N =1 to
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Fig. 8 FLOPS and Efficiency graph for weak scaling results for Kodiak Cluster are shown respectively in
(a) and (b)

N =2, indicating the beginning of intra — node communication between GPUs on
the same node. While growing with N, intra — node communication remains a small
portion of Wy, ( ~ 10%). The next major transition occurs between N =4 and
N = 8, indicating the beginning of infer — node communication, which quickly satu-
rates to ~ 40% of Wy 4, by N = 32. Identical weak scaling is observed for cases
where A is sparse, as shown by plots in Fig. 7b, and the explanation for lack of scal-
ing when N < 8 is consistent with the explanation given above for the case where A
is dense, as one can interpret from Fig. 7d.

In Fig. 8, we display the GFLOPS and Efficiency results generated from our weak
scaling experiments conducted on the Kodiak cluster. Notably, GFLOPS shows a
linear progression as GPU counts rise in Fig. 8a, indicating an efficient distribution
of computational workload across GPUs. Simultaneously, the consistent relationship
of Efficiency with increasing GPU counts shown in Fig. 8b underscores the effective
GPU utilization, thereby confirming our implementation’s efficacy in maintaining
performance at scale, specially for larger ranks(k).

While all scaling results were obtained with RNMF, similar results will be
obtained with A” using CNMF.

4.4 Scaling benchmark results on Big Data

It’s important to note that as technology continues to evolve, the scale of data
storage and processing capabilities will likely increase, leading to even more
significant data sets in the future. “The world’s most valuable resource is no
longer oil, but datal" [40]. In national security and related research efforts, vast
amounts of high-dimensional data are continuously being generated by mas-
sive computer simulations, large-scale experiments, surveillance systems, etc
[41, 42]. For example, Stanford Synchrotron Radiation Lightsource experiments
at SLAC laboratory for revealing the inner structure of materials at nanometer
scales [43, 44] and the Large Hadron Collider [45] produce terabytes of data in
minutes. Another example is the petabytes of data generated by mission-critical
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Fig.9 Results of weak scaling study for dense and sparse A performed on Summit are shown respectively
in (a) and (b)

simulations [46-50]. Exploration and analysis of such extra-large data mandates
the development of novel machine learning (ML) approaches that are able to
extract meaningful basic processes and fundamental features underlying the data
[51].

Given our interest in exascale data, the proposed implementation was tested
on a dense matrix of shape [2618523648; 32768] with a size of ~ 3407B, and
a sparse matrix of shape [2.89 % 10'2,1.05 % 10°] with sparsity 107% and size of
~ 11EB (~ 34TB when compressed in a sparse format). Benchmarks were per-
formed on Summit, with an allocation of 4096 nodes with 6 GPUs of 16 GB
VRAM each, totaling a combined 3947B VRAM. While that is not enough to
efficiently factorize either of the two matrices, we chose to cache A and co-fac-
tors and batch the compute of heavy, intermediate products (OOM-0). This way,
we can reduce performance loss by avoiding unnecessary data transfers from
host to device and vice-versa.

On the one hand, the weak scaling benchmark results for the dense array are
reported in Fig. 9a. The H, . is shown with a perfect weak scaling, while the
Wipdate 18 shown not to scale appropriately. Loss of scaling in the W, 4, is a con-
sequence of the high communication cost associated with the All-reduce of W™
and W™V, which combined, make up a substantial portion of the W,,g,.. The
total NMF time, in turn, is significantly affected by the W4, Which takes about
one order of magnitude more time to execute than the H, 4, On the other, the
weak scaling benchmark results for the sparse array, reported in Fig. 9b, indi-
cate both W, 4y and H, gy to have an excellent weak scaling. The AR(W™) is
similar in both cases, as WV is of shape k X k, but the AR(WT) is two orders of
magnitude higher in the case of the spare dataset, proportional to n which is also
two orders of magnitude higher. Unlike in the case of the dense array, the com-
munication cost associated with the AR(W™) and AR(W™), although higher,
are not significant enough to affect the W, consequently do not affect the
overall scaling of the NMF.

pdate >

@ Springer



Distributed out-of-memory NMF on CPU/GPU architectures

—— =32

PeakMem(GB)

Queue Size Queue Size

(a) OOM Memory peak (b) OOM execution time

Fig. 10 Results of Out of memory NMF benchmarks on Chicoma showing a NMF peak memory vs
queue sizes for different k£, and b NMF execution time vs queue sizes for different &

4.5 Benchmark results on out-of-memory problems

Next, we assess the effectiveness of the proposed batching technique for OOM
scenarios and the use of the CUDA stream queues to reduce communica-
tion in Algorithm 5. To this end, the proposed implementation is tested in
an OOM-1 scenario, where a matrix of shape [524288, 4096] is factorized for
k=1[32,64,128,256,512,1024]. Smaller array H is cached on GPU memory,
and large arrays A and W are stored on the host and batched to GPU as needed.
For this experiment, the number of iterations in Algorithm  5(line 4) fixed to
max_iters = 100, and the number of batches is fixed to n, = 32. Given the size of
A in single precision is S, = 8GB, the resulting batch size is Sy = p X n ~ 0.25GB.
The GPU peak memory utilization and NMF execution time for the 100 iteration, vs
queue size, are respectively reported in Fig. 10a and Fig. 10b.

In Fig. 10a, the peak memory utilization measured when g, = 1is §,,,,» ~ 0.267GB
which is close to the estimated memory complexity of O(p X n X ¢,) ~ 0.25GB in
section 3.2, and which is a very big saving, ~ 1/100X, compared to the estimated
Symr 3 XS4 = 24 GB require by a normal implementation. This memory complex-
ity is maintained for all k values and all queue sizes as indicated by the lines with
the same slope ~ 0.267 in Fig. 10a. The increase in peak memory with increasing k
for any given queue size is explained by the increase in the size of the arrays cached
on GPU (H), as well as the increase in the size of the computed intermediate prod-
ucts (see Fig. 4. Similarly, for each k value, we note an increase in peak memory
utilization with the increasing number of batches which is simply explained by the
aggregated memory utilization from the concurrent streams. While from this figure,
it seems unproductive to use larger stream queue sizes due to the increase in peak
memory utilization, the benefits of such design choice are explained in the execution
benchmark results reported in Fig. 10b.

From Fig. 10b, we first see that it is, in all cases, a good idea to choose a
queue size g, > 1 if one wants to speed up the NMFk execution time. This is
explained by using large stream queue sizes makes more streams available to
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Fig. 11 a Estimation of number of hidden features (k = 8) through Silhouette analysis [6]. b Pearson cor-
relation between columns of ground truth W and reconstructed W

overlap memory copies, all-reduce communications, and compute concurrently.
It is, however, not the case that more streams will always make this process bet-
ter, as we can see it not being the case when g, = 16, where the NMFk execution
time is not optimum for any & value. This is explained by the fact that CUDA core
counts are limited and that some streams will block and wait when all cores are
busy processing other streams, causing load-balancing delays. Consequently, it is
crucial to fine-tune g, for a given batch size and k to obtain optimal performance.

4.6 Validation of the model selection capability

To demonstrate the correctness of the proposed algorithm on big synthetic data-
sets, we first integrate our pyDNMF-GPU with the existing model selection algo-
rithm pyDNMFk [7]. Then, we determine the number of latent features on a syn-
thetic terabyte size matrix (with a predetermined number of features) and show
that estimation is performed correctly. We generate a random matrix of dimen-
sions 8388608 x 32768 as a product of two random matrices, W and H, with a
latent feature count of k = 8. We construct W with Gaussian features with differ-
ent statistical means. The pyDNMFk-GPU silhouette analysis corresponding to
this decomposition is shown in Fig. 11a and the correctness of features is shown
with confusion matrix in Fig. 11b. pyDNMFk-GPU estimates k = 8 as the mini-
mum Silhouette score is high and relative error is low. For k > 8, the minimum
silhouette score drops suddenly as the solutions begin to fit the noise Fig. 11a.
Figure 11b shows a Pearson correlation matrix that illustrates a large correlation
between the features of ground truth W Ground truth and the corresponding pyD-
NMFk-GPU extracted WPredicted for k = 8. The analysis took approximately 1 h
to correctly estimate the latent features on Kodiak. The average reconstruction
error for the data is ~ 4% with the Frobenius norm objective and MU update opti-
mization. Our experiment demonstrates that pyDNMFk-GPU correctly estimates
the number of latent features in addition to its scalability for large datasets as
demonstrated in previous sections.
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5 Conclusion

In summary, we demonstrated a novel scalable and portable framework, pyDN-
MFk-GPU, for non-negative matrix factorization based on custom multiplicative
updates, with automatic determination of the number of latent features on Exa-
scale data. Scalability of the framework was demonstrated via strong and weak
scaling benchmarks, and speedup gains on GPU over CPU were found to vary
with k and to increase with the size of the HPC system. The efficacy of the pro-
posed tiling technique was demonstrated through the OOM-0 problem by fac-
torizing a dense dataset of 340TB and a sparse dataset of size 11EB, where the
implementation was found to have good week scaling on upto to 25k GPU. We
also demonstrated the efficacity of the proposed batching technique along with
the importance of using CUDA streams by solving OOM-1 problem, where mem-
ory complexity was shown to be of the O(p X n X ¢q,), resulting in a significant
saving of ~ 100X smaller peak memory utilization in some cases. The automatic
model selection capability was verified by correctly decomposing large synthetic

data with a predetermined number of latent features and factors.

Acknowledgements This research used resources of Los Alamos National Laboratory Institutional Com-
puting Program, supported by the U.S. Department of Energy National Nuclear Security Administration
under Contract No. 89233218CNAO000001 and the Oak Ridge Leadership Computing Facility at the Oak
Ridge National Laboratory under Director’s Discretionary allocation #CSC456, which is supported by
the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-000R22725.

Author Contributions IB was responsible for the GPU algorithm. The implementation of the code, per-
formance of benchmarks, and complexity analysis was a collaborative effort between IB and MB. ES was
consulted for the complexity analysis of the algorithm, along with the verification of the method’s cor-
rectness. The algorithms and their implementation, benchmark and verification results were thoroughly
reviewed by ME, PR, SE, and BA. All authors significantly contributed to both the work and the compo-
sition of the manuscript.

Funding This research was funded by DOE National Nuclear Security Administration (NNSA) - Office
of Defense Nuclear Non-proliferation R &D and by U.S. Department of Energy National Nuclear Secu-
rity Administration under Contract No. DE-AC52-06NA25396 and through LANL laboratory directed
research and development (LDRD) grant 20190020DR.

Data availability The code and the benchmark results used in this paper will be available at https://github.
com/lanl/pyDNMFk.

Declarations
Conflict of interest The authors declare that they have no competing interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

|. Boureima et al.

References

11.

12.

13.

15.

16.

18.

19.

20.

Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization.
Nature 401(6755):788-791

Cichocki A, Zdunek R, Phan AH, Amari S-i (2009) Nonnegative matrix and tensor factoriza-
tions: applications to exploratory multi-way data analysis and blind source separation

Everett B (2013) An introduction to latent variable models

Alexandrov LB, Nik-Zainal S, Wedge DC, Campbell PJ, Stratton MR (2013) Deciphering signa-
tures of mutational processes operative in human cancer. Cell Rep 3(1):246-259

Alexandrov BS, Alexandrov LB, Iliev F, Stanev VG, Vesselinov V (2020) Source identification
by non-negative matrix factorization combined with semi-supervised clustering. Google Patents.
US Patent 10,776,718

Chennupati G, Vangara R, Skau E, Djidjev H, Alexandrov B (2020) Distributed non-negative matrix
factorization with determination of the number of latent features. The Journal of Supercomputing,
1-31

Bhattarai M, Nebgen B, Skau E, Eren M, Chennupati G, Vangara R, Djidjev H, Patchett J, Ahrens
J, ALexandrov B (2021) pyDNMFk: python distributed non negative matrix factorization. GitHub.
https://doi.org/10.5281/zenodo.4722448

Vangara R, Bhattarai M, Skau E, Chennupati G, Djidjev H, Tierney T et al (2021) Finding
the number of latent topics with semantic non-negative matrix factorization. IEEE Access, pp
117217-117231

Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli
N, Borg A, Bgrresen-Dale A-L et al (2013) Signatures of mutational processes in human cancer.
Nature 500(7463):415

Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Ng AWT, Wu Y, Boot A, Covington KR, Gor-
denin DA, Bergstrom EN et al (2020) The repertoire of mutational signatures in human cancer.
Nature 578(7793):94-101

Vangara R, Skau E, Chennupati G, Djidjev H, Tierney T, Smith JP, Bhattarai M, Stanev VG, Alex-
androv BS (2020) Semantic nonnegative matrix factorization with automatic model determination
for topic modeling, pp 328-335. IEEE

Bhattarai M, Chennupati G, Skau E, Vangara R, Djidjev H, Alexandrov BS (2020)Distributed non-
negative tensor train decomposition. In: 2020 IEEE High Performance Extreme Computing Confer-
ence (HPEC), pp 1-10. IEEE

Alexandrov BS, Stanev VG, Vesselinov VV, Rasmussen K@ (2019) Nonnegative tensor decomposi-
tion with custom clustering for microphase separation of block copolymers. Stat Anal Data Min
ASA Data Sci J 12(4):302-310

Pulido J, Patchett J, Bhattarai M, Alexandrov B, Ahrens J (2021) Selection of optimal salient time
steps by non-negative tucker tensor decomposition. In: Agus M, Garth C, Kerren A (eds) EuroVis
2021—short papers. The Eurographics Association. https://doi.org/10.2312/evs.20211055

Bhattarai M, Kharat N, Skau E, Nebgen B, Djidjev H, Rajopadhye S, Smith JP, Alexandrov B
(2022) Distributed non-negative rescal with automatic model selection for exascale data. arXiv pre-
print arXiv:2202.09512

Bhattarai M, Kharat N, Skau E, Truong D, Eren M, Rajopadhye S, Djidjev H, Alexandrov B
pyDRESCALK: python distributed non negative RESCAL decomposition with determination of
latent features. https://doi.org/10.5281/zenodo0.5758446

Eren ME, Moore JS, Skau E, Moore E, Bhattarai M, Chennupati G, Alexandrov BS (2022) General-
purpose unsupervised cyber anomaly detection via non-negative tensor factorization. Research and
practice, digital threats

Eren ME, Richards LE, Bhattarai M, Yus R, Nicholas C, Alexandrov BS (2022) Fedsplit: One-shot
federated recommendation system based on non-negative joint matrix factorization and knowledge
distillation. arXiv preprint arXiv:2205.02359

Eren ME, Solovyev N, Bhattarai M, Rasmussen K, Nicholas C, Alexandrov BS (2022) Senmfk-
split: Large corpora topic modeling by semantic non-negative matrix factorization with automatic
model selection. arXiv preprint arXiv:2208.09942

Févotte C, Cemgil AT (2009) Nonnegative matrix factorizations as probabilistic inference in com-
posite models. In: 2009 17th European Signal Processing Conference, pp 1913-1917. IEEE

@ Springer


https://doi.org/10.5281/zenodo.4722448
https://doi.org/10.2312/evs.20211055
http://arxiv.org/abs/2202.09512
https://doi.org/10.5281/zenodo.5758446
http://arxiv.org/abs/2205.02359
http://arxiv.org/abs/2208.09942

Distributed out-of-memory NMF on CPU/GPU architectures

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

Phan AH, Cichocki A (2008) Multi-way nonnegative tensor factorization using fast hierarchical
alternating least squares algorithm (HALS). In: Proc. of The 2008 international symposium on non-
linear theory and its applications

Kim J, Park H (2012) Fast nonnegative tensor factorization with an active-set-like method, pp 311-326
Kim J, He Y, Park H (2014) Algorithms for nonnegative matrix and tensor factorizations: a unified
view based on block coordinate descent framework. J Global Optim 58(2):285-319

Battenberg E, Wessel D (2009) Accelerating non-negative matrix factorization for audio source sep-
aration on multi-core and many-core architectures. In: ISMIR, pp 501-506

Fairbanks JP, Kannan R, Park H, Bader DA (2015) Behavioral clusters in dynamic graphs. Parallel
Comput 47:38-50

Moon GE, Ellis JA, Sukumaran-Rajam A, Parthasarathy S, Sadayappan P (2020) ALO-NMF:
Accelerated locality-optimized non-negative matrix factorization. In: Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 1758-1767
Phipps ET, Kolda TG (2019) Software for sparse tensor decomposition on emerging computing
architectures. STAM J Sci Comput 41(3):269-290

Mejia-Roa E, Tabas-Madrid D, Setoain J, Garcia C, Tirado F, Pascual-Montano A (2015) NMF-
mGPU: non-negative matrix factorization on multi-GPU systems. BMC Bioinf 16(1):1-12

Lopes N, Ribeiro B (2010) Non-negative matrix factorization implementation using graphic pro-
cessing units. In: International Conference on Intelligent Data Engineering and Automated Learn-
ing, pp 275-283. Springer

Kannan R, Ballard G, Park H (2016) A high-performance parallel algorithm for nonnegative matrix
factorization. ACM SIGPLAN Not 51(8):1-11

Koitka S, Friedrich CM (2016) nmfgpu4R: GPU-Accelerated Computation of the Non-Negative
Matrix Factorization (NMF) Using CUDA Capable Hardware. R J 8(2):382

Tang B, Kang L, Zhang L, Guo F, He H (2021) collaborative filtering recommendation using non-
negative matrix factorization in GPU-accelerated spark platform. Scientific Programming 2021
Eswar S, Hayashi K, Ballard G, Kannan R, Matheson MA, Park H (2021) PLANC: parallel low-
rank approximation with nonnegativity constraints. ACM Trans Math Softw 47(3):1-37

Boureima I, Bhattarai M, Eren ME, Solovyev N, Djidjev H, Alexandrov BS (2022) Distributed out-
of-memory SVD on CPU/GPU architectures. arXiv preprint arXiv:2208.08410

Okuta R, Unno Y, Nishino D, Hido S, Loomis C (2017) Cupy: A NumPy-compatible library for
NVIDIA GPU calculations. In: Proceedings of Workshop on Machine Learning Systems (Learn-
ingSys) in the Thirty-First Annual Conference on Neural Information Processing Systems (NIPS).
http://learningsys.org/nips17/assets/papers/paper_16.pdf

...Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E,
Taylor J, Berg S, Smith NJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A,
del Rio JF, Wiebe M, Peterson P, Gérard-Marchant P, Sheppard K, Reddy T, Weckesser W, Abbasi
H, Gohlke C, Oliphant TE (2020) Array programming with NumPy. Nature 585(7825):357-362.
https://doi.org/10.1038/s41586-020-2649-2

Dalcin L, Fang Y-LL (2021) mpi4py: Status update after 12 years of development. Comput Sci Eng
23(4):47-54

...Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E,
Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov
N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat i, Feng Y, Moore EW, VanderP-
las J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM,
Ribeiro AH, Pedregosa F, van Mulbregt P (2020) SciPy 1.0 contributors: SciPy 1.0: fundamental
algorithms for scientific computing in python. Nat Methods 17:261-272. https://doi.org/10.1038/
$41592-019-0686-2

Awan AA, Hamidouche K, Venkatesh A, Panda DK (2016) Efficient large message broadcast using
NCCL and CUDA-aware MPI for deep learning. In: Proceedings of the 23rd European MPI Users’
Group Meeting, pp 15-22

Quigley E, Holme I, Doyle DM, Ho AK, Ambrose E, Kirkwood K, Doyle G (2021) data is the new
oil: citizen science and informed consent in an era of researchers handling of an economically valu-
able resource. Life Sci Soc Policy 17(1):1-13

Hickey A (2019) Zettabytes of data hog up space and resources

Akhgar B, Saathoff GB, Arabnia HR, Hill R, Staniforth A, Bayerl PS (2015) Application of Big
Data for national security: a practitioner’s guide to emerging technologies. Butterworth-Heinemann,
Oxford

@ Springer


http://arxiv.org/abs/2208.08410
http://learningsys.org/nips17/assets/papers/paper_16.pdf
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2

|. Boureima et al.

43. Sierra RG, Laksmono H, Kern J, Tran R, Hattne J, Alonso-Mori R, Lassalle-Kaiser B, Glockner C,
Hellmich J, Schafer DW et al (2012) Nanoflow electrospinning serial femtosecond crystallography.
Acta Crystallogr D Biol Crystallogr 68(11):1584-1587

44. Sandberg RL, Huang Z, Xu R, Rodriguez JA, Miao J (2013) Studies of materials at the nanometer
scale using coherent x-ray diffraction imaging. JOM 65:1208-1220

45. Butter A, Plehn T, Schumann S, Badger S, Caron S, Cranmer K, Di Bello FA, Dreyer E, Forte S,
Ganguly S et al (2023) Machine learning and LHC event generation. SciPost Phys 14(4):079

46. Gubaev K, Podryabinkin EV, Shapeev AV (2018) Machine learning of molecular properties: local-
ity and active learning. J Cheml Phys 148(24):241727

47. Kruglov I, Sergeev O, Yanilkin A, Oganov AR (2017) Energy-free machine learning force field for
aluminum. Sci Rep 7(1):8512

48. Haghighatlari M, Heidar-Zadeh F, Hirn M, Hoja J, Isayev O, Kondor R, Li L, Li Y, Martyna G,
Meila M et al (2017) IPAM program on machine learning & many-particle systems-recent progress
and open problems

49. Messina P, Lee S (2016) The us exascale computing project. In: Proc. ACM/IEEE conf. supercom-
puting (birds a feather)

50. Zhang J, Xiao M, Gao L (2019) An active learning reliability method combining kriging con-
structed with exploration and exploitation of failure region and subset simulation. Reliab Eng Syst
Saf 188:90-102

51. Franke B, Plante J-F, Roscher R, E-sA Lee, Smyth C, Hatefi A, Chen F, Gil E, Schwing A, Selvi-
tella A et al (2016) Statistical inference, learning and models in big data. Int Stat Rev 84(3):371-389

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Ismael Boureima' - Manish Bhattarai' - Maksim Eren’ - Erik Skau? -
Philip Romero3 - Stephan Eidenbenz? - Boian Alexandrov'

P< Ismael Boureima
iboureima@lanl.gov

Manish Bhattarai
ceodspspectrum @lanl.gov

Maksim Eren
maksim@lanl.gov

Erik Skau
ewskau@lanl.gov

Philip Romero
prr@lanl.gov

Stephan Eidenbenz
eidenben @lanl.gov

Boian Alexandrov
boian@lanl.gov
! Theoritical Divison, Los Alamos National Laboratory, Los Alamos 87545, NM, USA

Computer, Computational, and Statistical Science Division, Los Alamos National Laboratory,
Los Alamos 87545, NM, USA

3 HPC Divison, Los Alamos National Laboratory, Los Alamos 87545, NM, USA

@ Springer



	Distributed out-of-memory NMF on CPUGPU architectures
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Non-negative matrix factorization algorithms
	2.2 Related work on distributed NMF
	2.3 Rationale for an algorithm for the out-of-memory distributed NMF

	3 pyDNMF-GPU for heterogeneous systems
	3.1 Distributed implementation
	3.2 Out-of-memory implementation and memory complexity analysis

	4 Benchmarks results and discussion
	4.1 Hardware infrastructure and software environment
	4.2 Performance benchmark results of pyDNMF-GPU vs pyDNMFk
	4.3 Strong and Weak scalability of pyDNMF-GPU
	4.3.1 Strong scalability
	4.3.2 Weak scalability

	4.4 Scaling benchmark results on Big Data
	4.5 Benchmark results on out-of-memory problems
	4.6 Validation of the model selection capability

	5 Conclusion
	Acknowledgements 
	References


