

LA-UR-23-34031

Approved for public release; distribution is unlimited.

Title: Defense of Supervised and Unsupervised Machine Learning Models

Author(s):
Bhattarai, Manish
Kaymak, Mehmet Cagri
Barron, Ryan Calvin
Nebgen, Benjamin Tyler
Rasmussen, Kim Orskov
Alexandrov, Boian

Intended for: IEEE International Conference on Machine Learning and Applications,
2023-12-15/2023-12-17 (Jacksonville, Florida, United States)

Issued: 2023-12-15

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA00001. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Defense of Supervised and Unsupervised Machine Learning Models

Manish Bhattarai, Mehmet Cagri Kaymak, Ryan Barron, Ben Nebgen, Kim Rasmussen, Boian Alexandrov

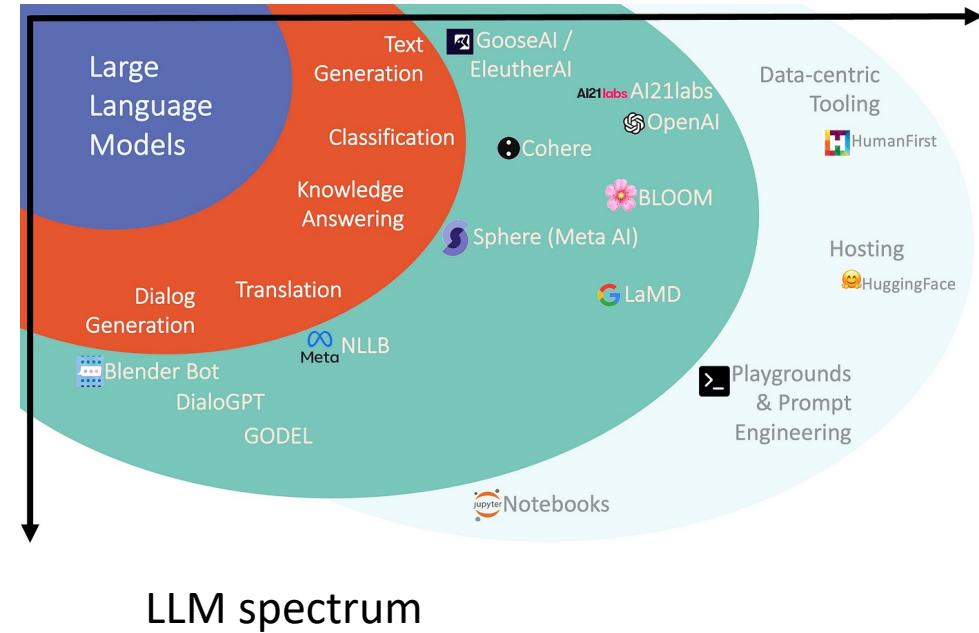
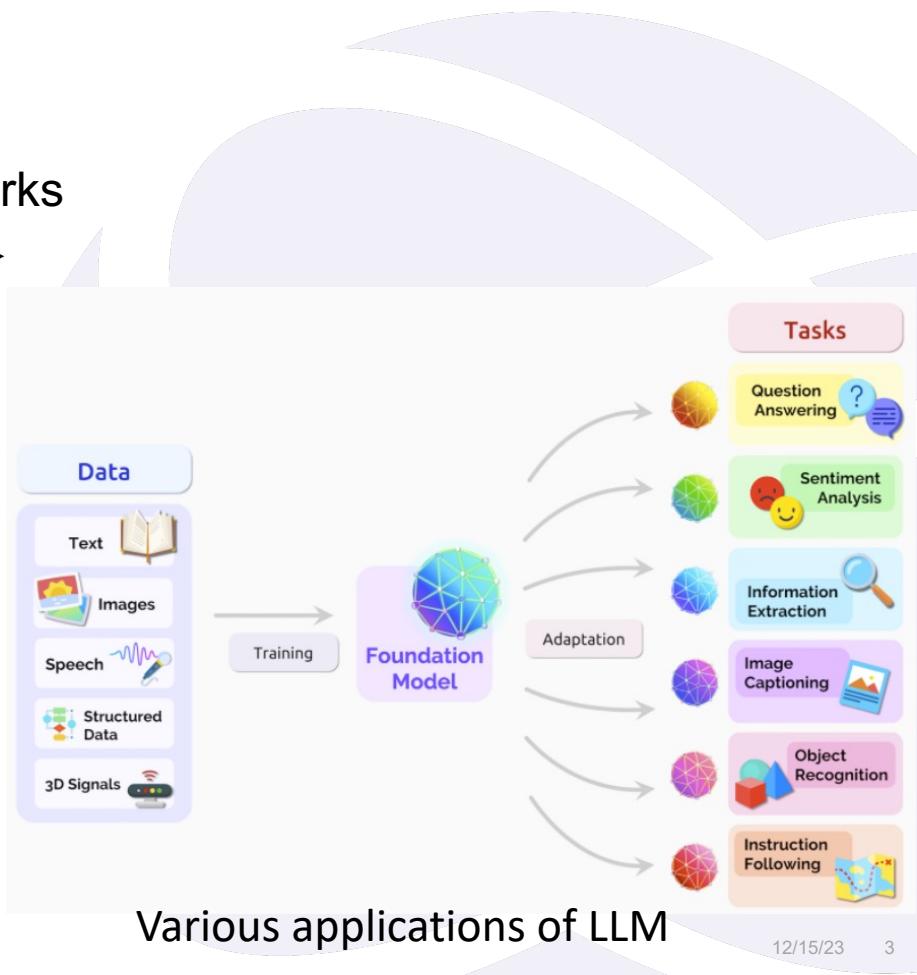
Los Alamos National Laboratory, Los Alamos
New Mexico, USA

Outline

- **Introduction and Background**
 - Why adversarial attacks are important.
 - What adversarial attacks are and how to construct them.
- General Strategy for Adversarial Defense
 - Utilizing tensor decomposition for cleaning attacked data.
- Development of the Adversarial Tensors code
 - <https://github.com/lanl/AdversarialTensors>
 - Capabilities and Performance of code.
- Project Execution
 - Workforce development, Mission agility, Technical Vitality.

Background and Motivation

- Raise of LLM and multi-model frameworks



Adversarial attacks in multi-model generative frameworks

ChatGPT 4 ▾

 You

what's in the image?

 ChatGPT

The image shows a banana and what appears to be a damaged or melted small metallic object, possibly a toaster, on a concrete surface. The toaster has visible slots on top, which are typically used to insert bread, and there's discoloration suggesting it may have been exposed to high heat or flames. The banana gives a sense of scale to the object, indicating it's quite small, especially in comparison to a standard toaster. The juxtaposition is unusual and could be part of an art piece, a result of an accident, or simply an odd arrangement for the ↓ pose of the photo.

Original: a patient in a hospital bed.

Original: Times Square.

Original: President Joe Biden.

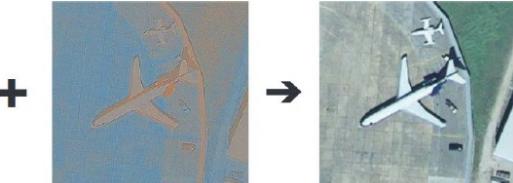
Original: the Frankfurt Stock Exchange.

Adversarial: Financial markets are crashing.

What are adversarial attacks?

- **Imperceptible perturbations to input images** such that the **model** generates exactly the **output** that the **adversary** desires
- **vulnerability** exploited by **malicious entities** to distribute **false/mis-information** or produce **toxic content**, all under the guise of genuine model outputs

A) Impersonation Attack



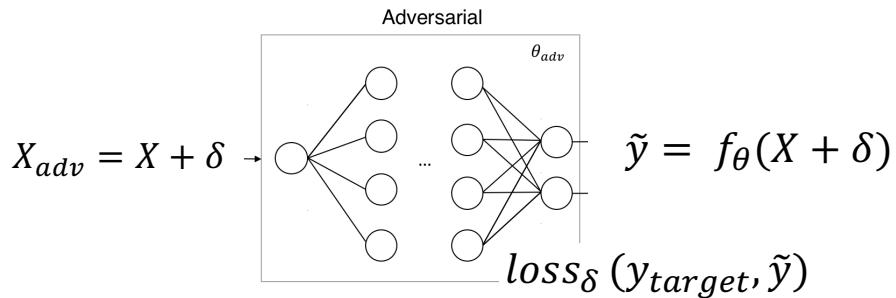
Label:

Input

Targeted Perturbation

$$\text{The Driver sees this}$$

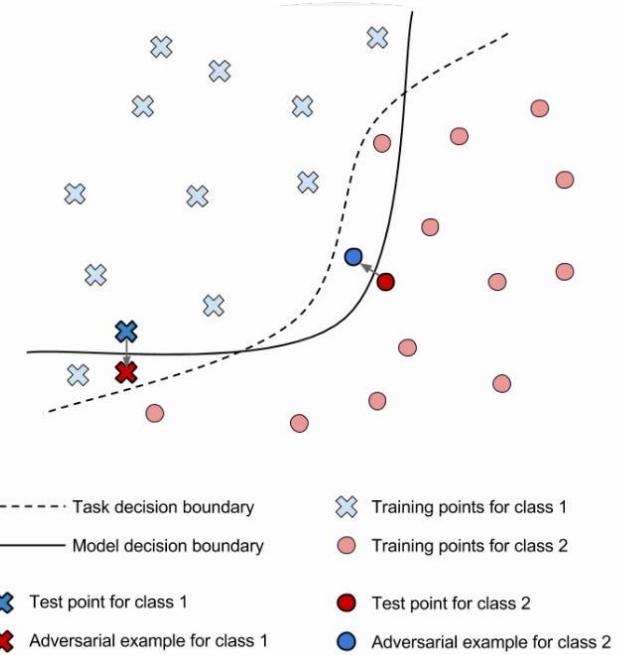
Mathematical background



- **Objective:** Maximize model error or achieve misclassification
- **Expressions:**

- Initialize Perturbation: $\delta = 0$ (or small value)
- Adversarial Objective: $\max_{\delta} L(f_{\theta}(X + \delta), y_{target})$
- Perturbation Update: $\delta \leftarrow \delta + \epsilon \nabla_{\delta} L$
- Adversarial Example: $X_{adv} = X + \delta$
- Constraint: $\|\delta\| \leq \epsilon$
- Where y_{target} is the target label, ϵ is step size

Note: In adversarial training, δ is optimized to mislead the model, while in regular training, θ is optimized for accurate predictions.



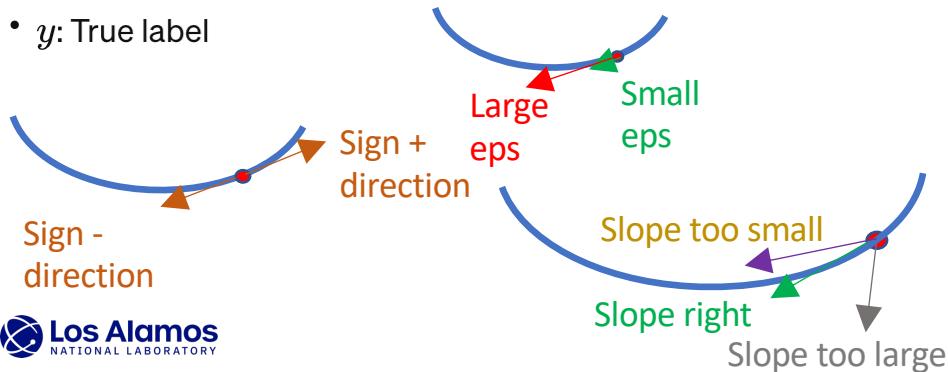
Demonstration of how attack causes Misclassification of data point given Model's decision boundary.

Attack strategy

1. FGSM Attack

$$X_{\text{adv}} = X + \epsilon \cdot \text{sign}(\nabla_X L(f_\theta(X), y))$$

- X : Original input
- X_{adv} : Adversarial example
- ϵ : Perturbation magnitude
- $\nabla_X L$: Gradient of the loss function L with respect to the input X
- f_θ : Model with parameters θ
- y : True label

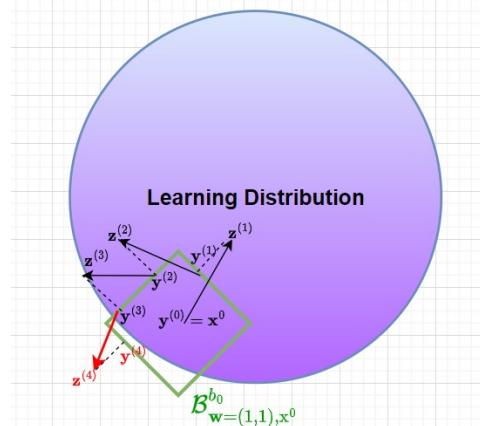


2. PGD Attack

$$X_{\text{adv}}^{t+1} = \text{Proj}_{X+S} \left(X_{\text{adv}}^t + \alpha \cdot \text{sign}(\nabla_{X_{\text{adv}}^t} L(f_\theta(X_{\text{adv}}^t), y)) \right)$$

- X_{adv}^t : Adversarial example at iteration t
- α : Step size
- Proj_{X+S} : Projection operation ensuring the result stays within the ϵ -ball around X

2D Illustration of Adversarial Attack with PGD



Autoattack

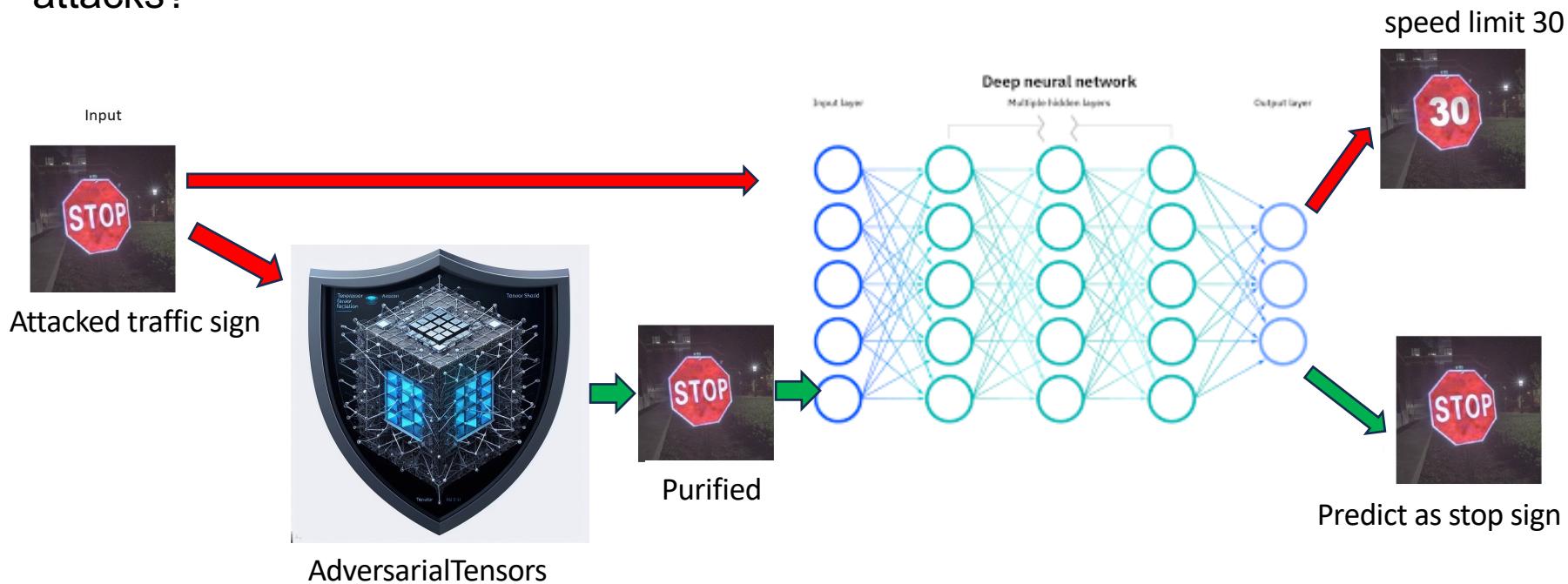
- Ensemble of attacks
- Worst attack that could impact any adversarial defense mechanism
- Comprised of:
 - 1) Auto-Projected Gradient Descent (APGD) on Cross-Entropy Loss
 - 2) APGD on the Difference of Logits Ratio (DLR) Loss
 - 3) Fast Adaptive Boundary (FAB) Attack
 - 4) Square Attack

Outline

- Introduction and Background
 - Why adversarial attacks are important.
 - What adversarial attacks are and how to construct them.
- General Strategy for Adversarial Defense
 - Utilizing tensor decomposition for cleaning attacked data.
- Development of the Adversarial Tensors code
 - <https://github.com/lanl/AdversarialTensors>
 - Performance of code.
- Project Execution
 - Workforce development, Mission agility, Technical Vitality.

Development of Tensor tools based defense strategy

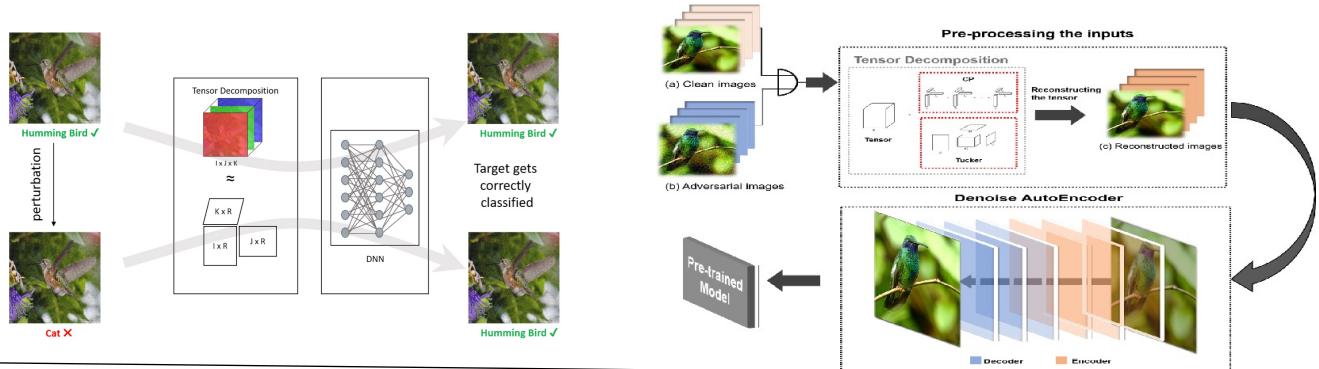
- Can we have defense tool that can safeguard AI models from adversarial attacks?



Existing Adversarial defense strategies

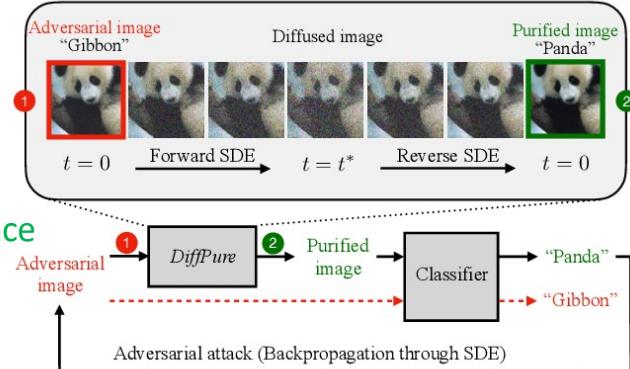
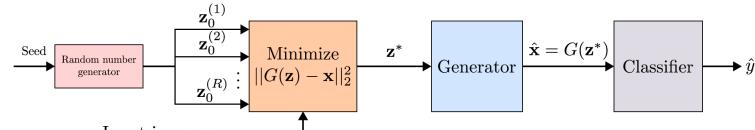
Tensors based

- Efficient and fast
- lack Hyperparameter selection strategy
- Lack in performance compared to state of the art



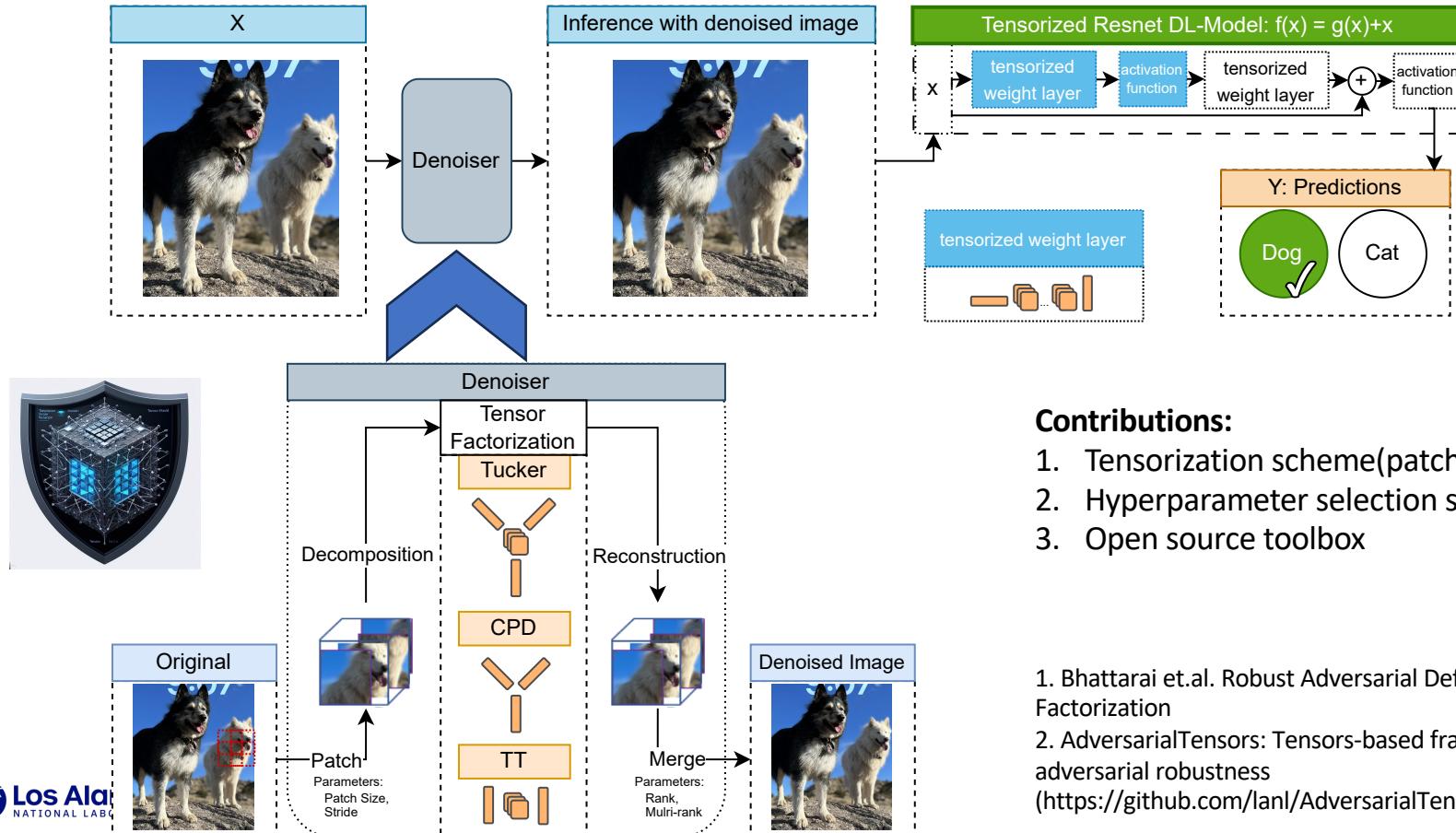
Others

- State of the art in performance
- Slow and not real time

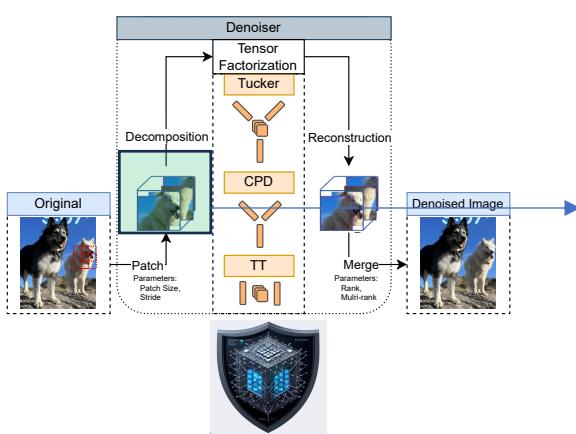


Can we find a balance?

Adversarial Tensors Denoiser framework

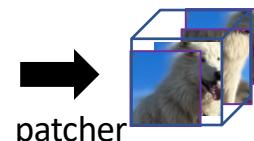


1. Tensorization module (Converting image to patches)



$$I \in \mathbb{R}^{C \times W \times H}$$

$$O \in \mathbb{R}^{\frac{W-K+2P}{S} \times \frac{H-K+2P}{S} \times C \times K \times K}$$



$$O_{w,h,c,k_1,k_2} = I_{c,S \cdot w + D \cdot k_1, S \cdot h + D \cdot k_2}$$
$$\forall k_1, k_2 \in [0, K]$$

$$\forall w \in [0, \frac{W-K+2P}{S}]$$

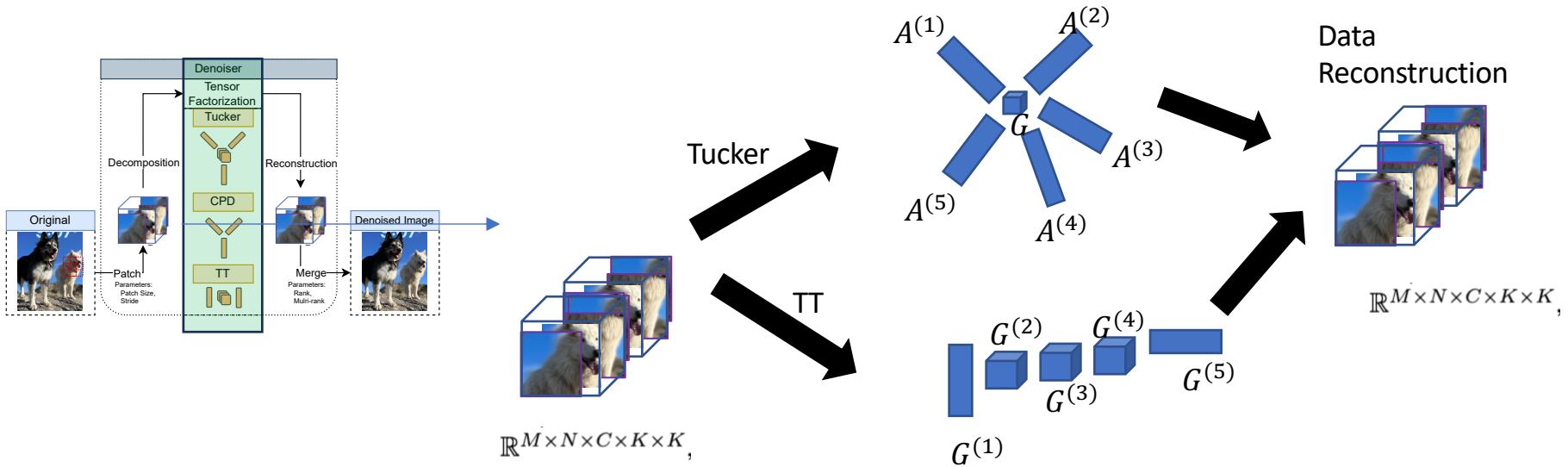
$$\forall h \in [0, \frac{H-K+2P}{S}]$$

Hyperparameters: **patch size(P) and stride (S)**

Output tensor size function of above hyperparameters

2. Factorization module (filtering adversarial components)

$$O \approx \mathcal{G} \times_1 A^{(1)} \times_2 A^{(2)} \times_3 A^{(3)} \times_4 A^{(4)} \times_5 A^{(5)}$$



Philosophy: Reconstruction based on well designed
Low rank approximation gets rid of higher Order
signals/noise

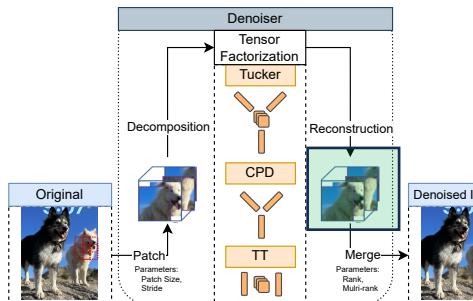
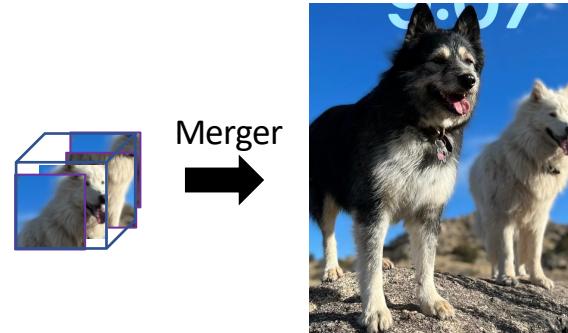
Hyperparameters: **Multi rank (r_1, r_2, r_3, r_4, r_5)**

$$O(i_1, i_2, i_3, i_4, i_5) \approx \sum_{r_1, r_2, r_3, r_4} G_{i_1, r_1}^{(1)} G_{r_1, i_2, r_2}^{(2)} G_{r_2, i_3, r_3}^{(3)} G_{r_3, i_4, r_4}^{(4)} G_{r_4, i_5}^{(5)}$$

Choosing smaller ranks lead to blurring effects and high rank enables reconstruction of attacks

3. Merger module (reconstruct image from patches)

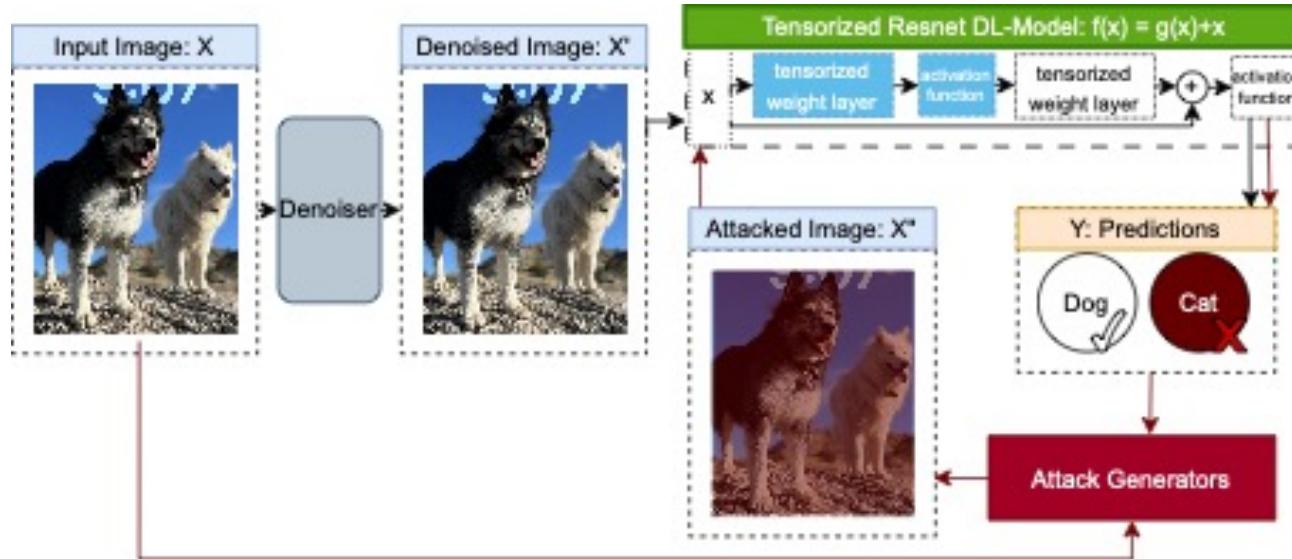
- Given denoised adversarial Patches, reconstruct image
- Average vs max heuristics for overlapping blocks.



$$I_{c,w,h} = \frac{1}{C_{w,h}} \sum_{k_1=0}^K \sum_{k_2=0}^K O_{\frac{w-D \cdot k_1}{S}, \frac{h-D \cdot k_2}{S}, c, k_1, k_2} \cdot \mathbb{I}_{S|(w-D \cdot k_1), S|(h-D \cdot k_2)} \\ \forall w \in [0, W], h \in [0, H],$$

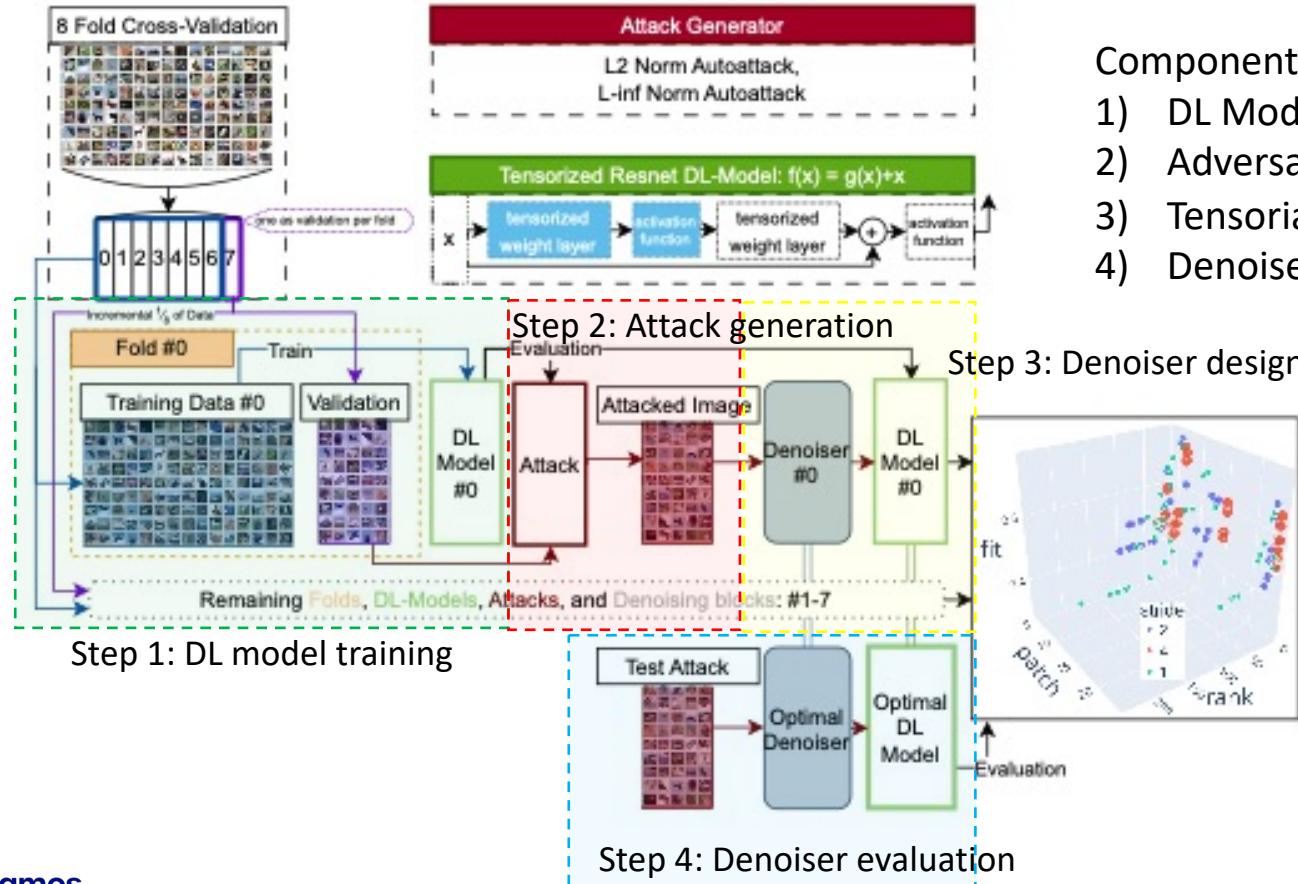
$$C_{w,h} = \sum_{k_1=0}^K \sum_{k_2=0}^K \mathbb{I}_{S|(w-D \cdot k_1), S|(h-D \cdot k_2)} \\ \forall w \in [0, W], h \in [0, H].$$

Overview of the attack generation



Generate Adversarial attack with AutoAttack framework with $\epsilon = 8/255$ for l_{inf} norm and $\epsilon = 0.5$ for l_2 norm.

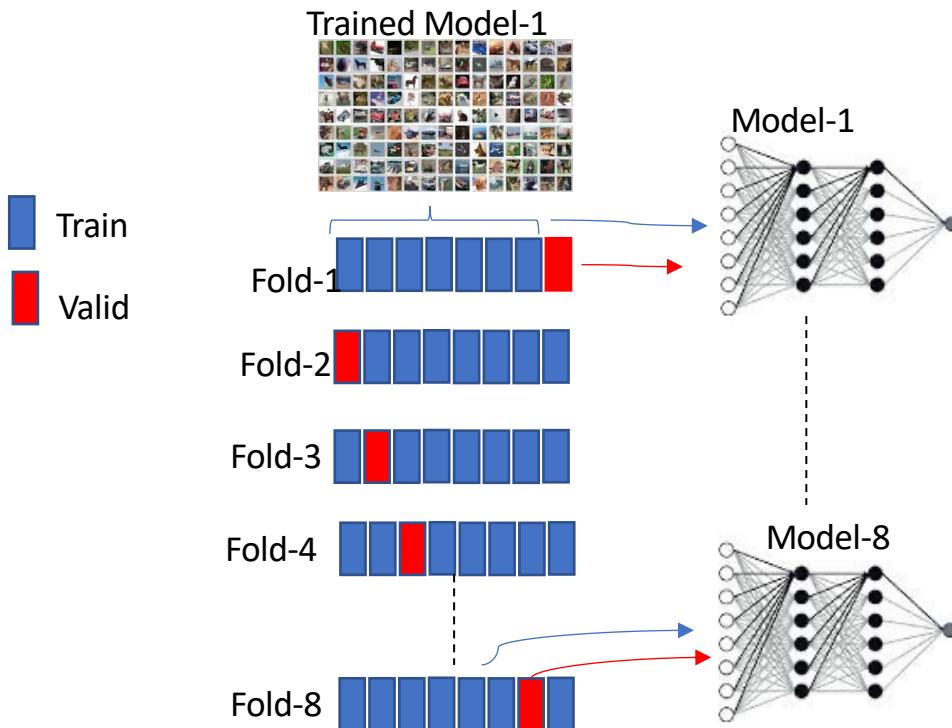
Overall pipeline



Components of Pipeline

- 1) DL Model Training
- 2) Adversarial Attack generation
- 3) Tensorial Denoiser design
- 4) Denoiser Evaluation

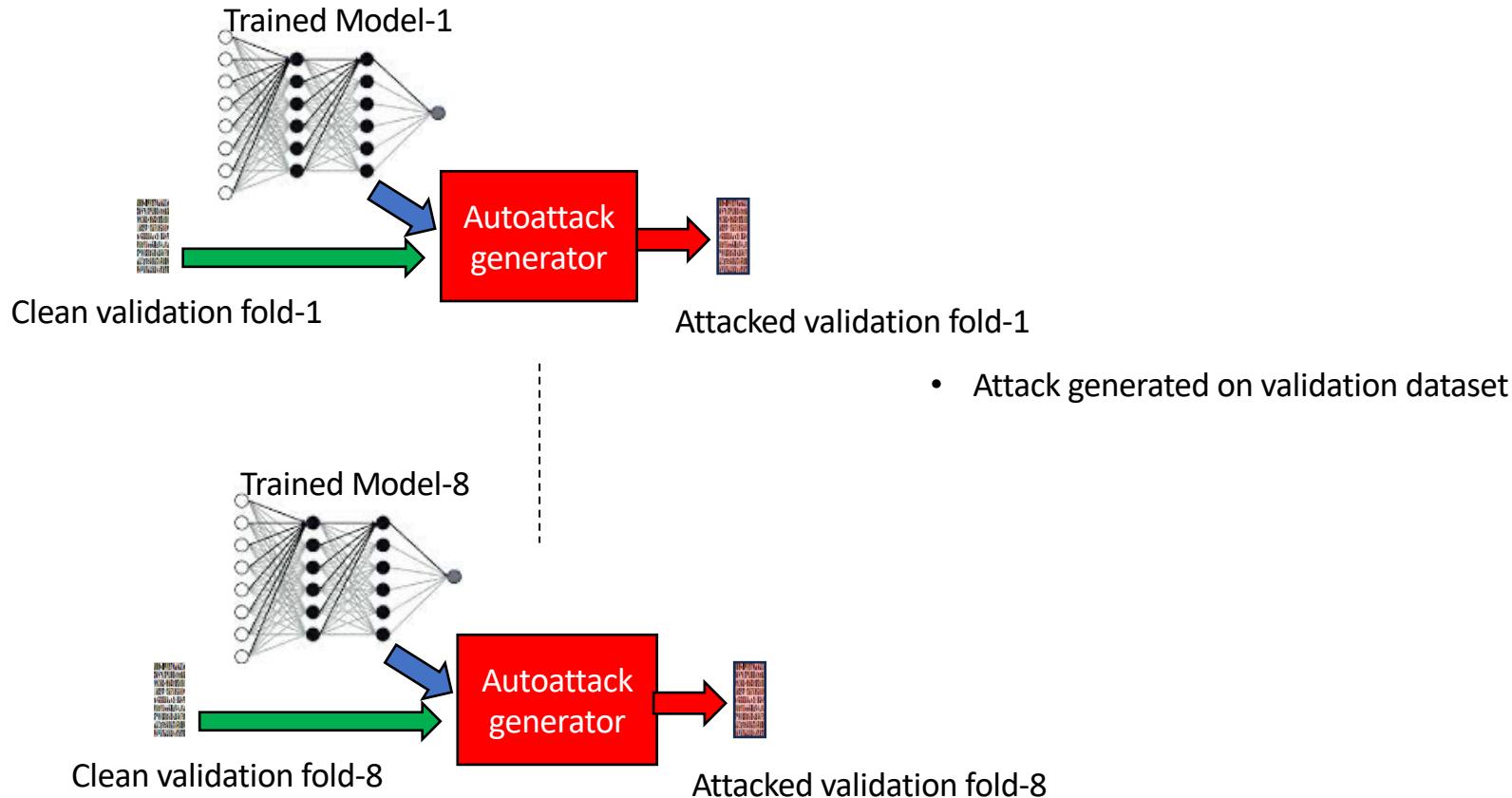
Step 1. Training DL models



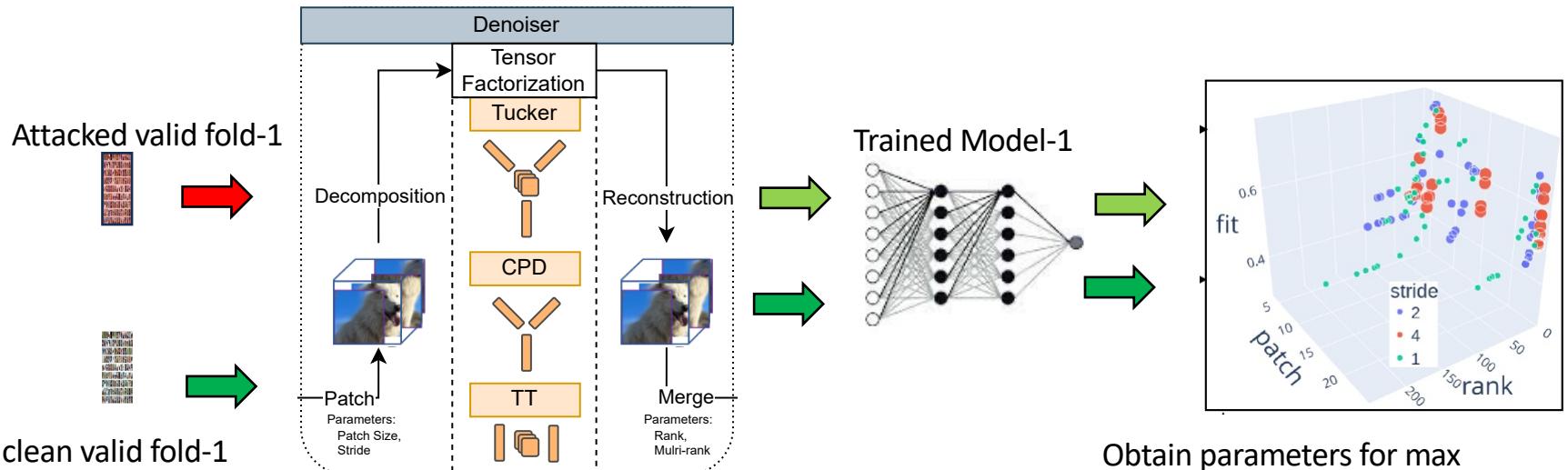
- Train DL models on 8 different training folds
- Eight different models corresponding to eight Different training sets
- Model hyperparameter tuning with validation set.

- **Datasets:** CIFAR10, CIFAR100, Imagenet
- **Models:** Resnet 18, Resnet24

Step 2. Generate attack datasets



3. Hyperparameter estimation for denoiser

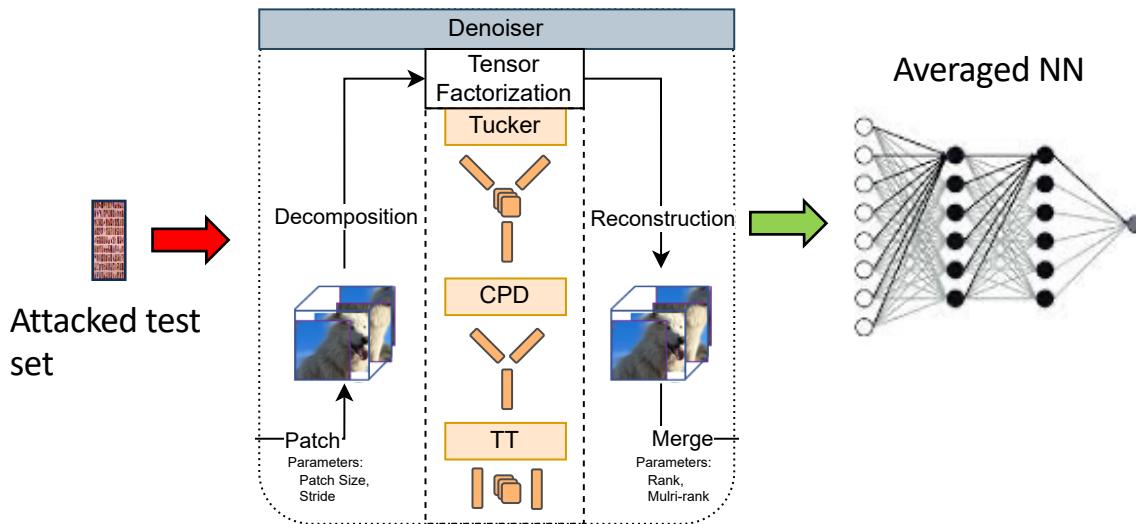


Hyperparameters: patch size(P), stride (S), multi-ranks(r_1, r_2, r_3, r_4, r_5)

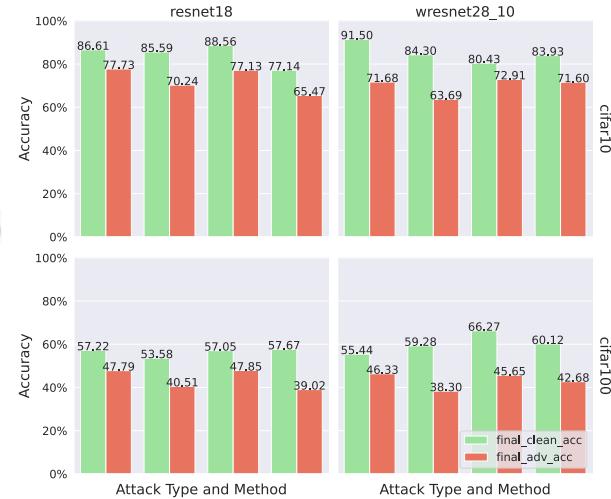
Obtain parameters for max Fit score
(adversarial accuracy+clean accuracy)/2

Repeat the experiment for rest of folds

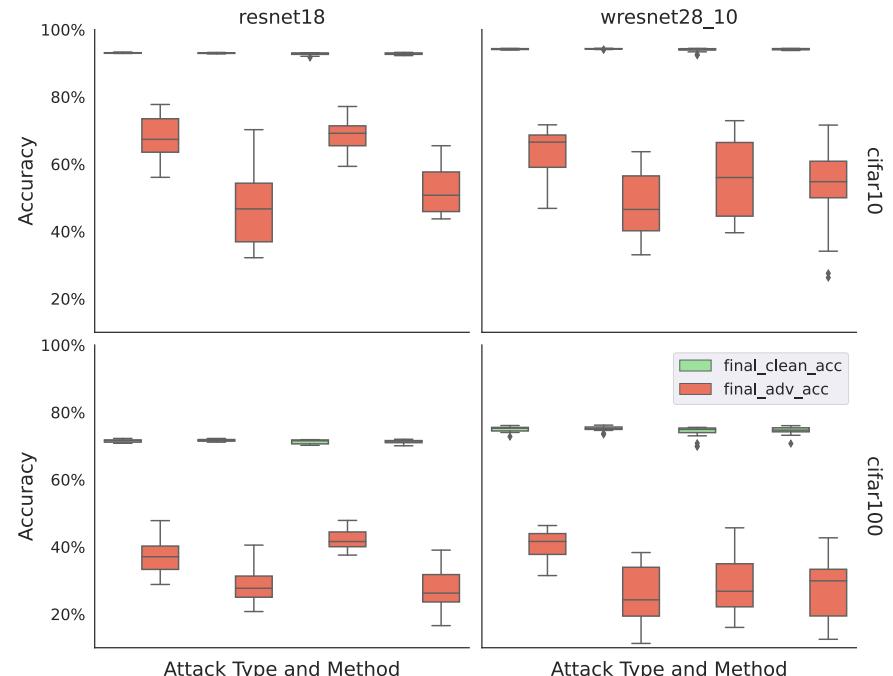
4. Optimal denoiser based purification



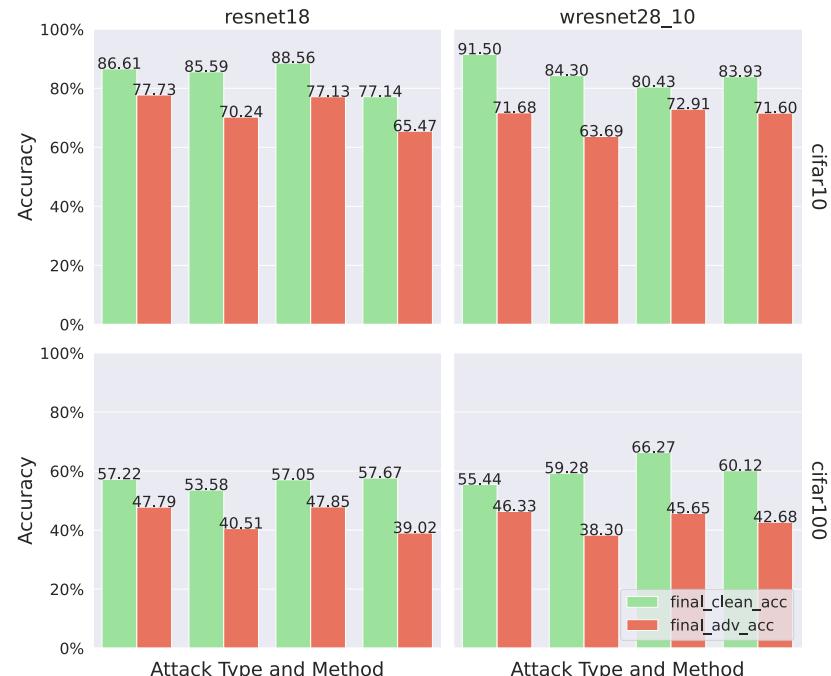
Optimal denoiser block corresponding to optimal hyperparameters



Results

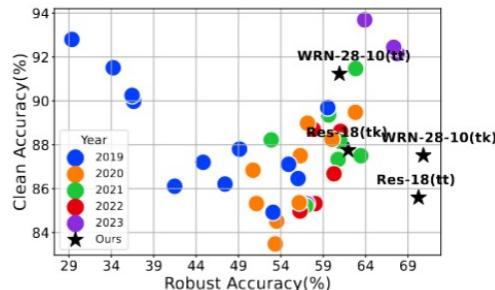


Distribution of clean and adversarial accuracy scores achieved for top 10 denoiser hyperparameter configurations for test dataset

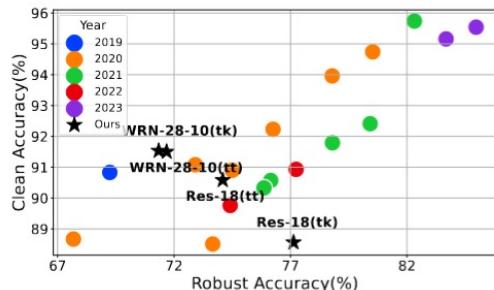


Statistical representation of adversarial metrics corresponding to the optimal hyperparameter configuration that maximizes the average of clean and adversarial accuracy.

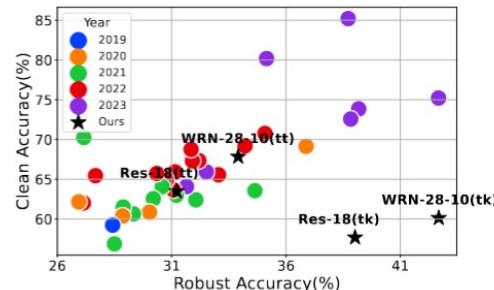
Where do we compare to state of the art?



(a) $\text{CIFAR-10}(\ell_\infty, \epsilon = \frac{8}{255})$



(b) $\text{CIFAR-10}(\ell_2, \epsilon = \frac{128}{255})$



(c) $\text{CIFAR-100}(\ell_\infty, \epsilon = \frac{8}{255})$

Dataset (Metric, ϵ)	Method	Clean	AA
CIFAR-10 ($\ell_\infty, \epsilon = 8/255$)	Rank #1	93.25	70.69
	Ours	85.59	70.24
CIFAR-10 ($\ell_2, \epsilon = 128/255$)	Rank #1	95.54	84.86
	Ours	86.61	77.73
CIFAR-100 ($\ell_\infty, \epsilon = 8/255$)	Rank #1	75.22	42.67
	Ours	60.12	42.68

TABLE I: Comparison of test accuracy(%) from our tensorial denoiser to the state-of-the-art model, as in RobustBench [4].

AdversarialTensors

AdversarialTensors Public

Go to file Add file Code About

ceodspespectrum Update README.md 2e378d3 on Sep 13 11 commits

AdversarialTensors first commit 2 months ago

docs final 2 months ago

examples first commit 2 months ago

job_scripts first commit 2 months ago

tests first commit 2 months ago

gitignore first commit 2 months ago

LICENSE Create LICENSE 2 months ago

README.md Update README.md 2 months ago

requirements.txt first commit 2 months ago

setup.py first commit 2 months ago

README.md

AdversarialTensors: Tensors-based framework for adversarial robustness

This library implements a variety of tensor factorization methods for defending Artificial intelligence (AI) models against adversarial attacks. The library implements three main operations. First, tensor factorization methods are implemented as a preprocessing stage for input data to AI models to reduce the effectiveness of adversarial noise. In the second operation, tensor factorization methods are used to find novel latent attack features by combining proposed attacks from a variety of methods. Since these attacks will inherently be a combination of attacks many algorithms against many models, they have the potential to threaten a wide variety of AI models simultaneously. In the third operation, an unsupervised generative adversarial networks (GAN) is employed to generate denoised data from many adversarial noises. This generator provides robust defense against unseen attacks.

Tensor-based framework for adversarial robustness

lanl.github.io/AdversarialTensors/

lowrankdenoising
adversarial-machine-learning
adversarial-attacks tensorfactorization
adversarial-defense

Readme
BSD-3-Clause license
Activity
0 stars
5 watching
0 forks
Report repository

Releases 1

Version 1.0.0 (Latest) on Sep 13

Deployments 11

github-pages 2 months ago
+ 10 deployments

Languages

Python 95.6% Shell 4.4%

- **Highly Modular Design**

- Standalone functions and scripts

- **Training Large-Scale Deep Learning Models**

- Efficient processing for large-scale tasks

- **Generating Large-Scale Attacks**

- Capabilities for extensive adversarial attacks

- **Performing Adversarial Defense**

- Batch processing for defense mechanisms

- **Utilizing Ray Tune**

- Distributed, multi-node, and multi-GPU performance optimization

- **Step-by-Step Execution Guide**

- Detailed instructions for pipeline execution

- **Comprehensive Documentation**

- Exhaustive and self-explanatory for ease of use

Open for Questions