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Abstract—In this study, we conduct an exhaustive novel eval-
uation of various machine learning and multimodal learning
techniques on complex datasets, exploring their potential to
enhance image classification in applied sciences. We utilize
the CheXpert chest x-ray and Fluoropolymer Atomic Force
Microscopy (AFM) datasets, replicating and augmenting these
with additional images and one-hot encoded binary metadata
values. A comprehensive set of pretrained and non-pretrained
Convolutional Neural Network (CNN) architectures, including
ResNet50, ResNet101, DenseNet121, InceptionV3, and Xception,
were tested on different configurations of image and metadata.
We observe that the integration of multimodal data, even simple
one-hot encoded metadata, provides substantial improvements
in model classification performance compared to traditional
unimodal or state-of-the-art MADDi models. The results show the
promising capability of multimodal learning in providing richer
data representation and improved performance in image classi-
fication tasks. In particular, the Xception models demonstrated
superior results in the CheXpert experiments, while almost all
models enhanced the prediction of crystal structures in the AFM
datasets. Our findings offer a new performance benchmark and
highlight the transformative potential of multimodal learning in
applied scientific research.

Index Terms—Machine Learning, Multimodal Learning, Im-
age Classification, Atomic Force Microscopy (AFM), CheXpert
Dataset, Material Science

I. INTRODUCTION

IMAGE classification, a crucial task in domains ranging
from healthcare to autonomous driving, has traditionally

relied on Convolutional Neural Networks (CNNs) [1] and
Vision Transformers [2], particularly excelling in benchmarks
like ImageNet [3]. However, the increasing complexity and
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diversity of big data from various sources—be it medical
imaging in biomedicine or text and sensor data in social media
and IoT—demand more nuanced approaches for effective
learning. This paper employs multimodal learning systems
to integrate disparate types of data for robust learning [4].
Initially focused on the CheXpert dataset [5], our methods
are extended to explore novel applications in material science,
revealing untapped potential for data-driven insights in this
critical domain.

Multimodal learning in applied sciences presents challenges
such as the heterogeneous nature of data sources and the
intricate interactions between different modalities. These com-
plexities risk overfitting [6] and computational inefficiency,
often referred to as the ’curse of dimensionality.’ Additional
issues like data modality misalignment and missing modalities
can degrade performance. To address these challenges, our
study provides a simple experimental setup, proposing diverse
learning configurations and designing multimodal learning
models. Notably, our work in material science demonstrates
the versatility of multimodal learning, opening new avenues
for research and applications.

Our comparative performance evaluation against state-of-
the-art unimodal and MADDi models shows the efficacy and
robustness of our approach, mitigating many complexities
associated with multimodal learning. The cross-modal syn-
ergy not only enhances predictive accuracy but also proves
instrumental in unlocking new applications in material science,
underscoring the transformative potential of our research.

II. RELATED WORKS

Baltrusaitis et al. [6] classifies challenges in multimodal
learning into five broad areas: Representation, Translation,
Alignment, Fusion, and Co-Learning. The foremost challenge
is the diverse representation of data modalities. Two main
strategies address this: joint and coordinate representation



[7]. The former combines different data types into a shared
space, useful when all modalities are available during training
and testing [8]. The latter maintains separate spaces for each
modality but links them through constraints, useful when a
modality might be missing during testing [6]. Translating
between modalities is another challenge, divided into example-
based and generative methods. Example-based approaches
use explicit mappings from data dictionaries to convert data
between modalities [9]. These dictionaries can also combine
data to represent it in a new modality [10]. Such translation
tasks add complexity, requiring a deep understanding of the
modalities involved. Generative translation complicates modal-
ity mapping by using learning models instead of explicit rules.
Common approaches include grammar-based methods in NLP
[11] and encoder/decoder models for latent representations [6].
Another challenge is data alignment, divided into explicit and
implicit types. Explicit alignment focuses on techniques like
dynamic time warping for time series [12] or CNNs for text-
image similarity [13]. Implicit alignment, meanwhile, learns
alignment indirectly during model training.

Fusion integrates information from various modalities for
better classification and comes in two main forms: model-
agnostic and model-based. Model-agnostic methods combine
features directly and average unimodal results, while model-
based methods adapt the architecture for specific data types.
Other model-based techniques include Multiple Kernel Learn-
ing, which modifies support vector machines for each modality
[14], and graphical models that use conditional probability like
conditional random fields [15]. These approaches highlight the
complexity and potential of multimodal learning in applied
sciences. Multimodal co-learning uses a data-rich modality to
enhance a less-resourced one, addressing issues like missing
or noisy data. Co-learning methods can be tailored for parallel,
non-parallel, or hybrid data. For parallel data like synced
video and audio, weak classifiers are trained on a few labeled
samples, then applied to unlabeled ones, although this risks
overfitting. An alternative is transfer learning, where insights
from one modality inform the training of another. [6] [16] [17]
Co-learning also works with non-parallel data by using shared
categories, enhancing modalities without needing to align them
initially. For hybrid data with partially matched instances, a
’bridging’ modality can connect the gaps, such as using images
to link different languages [18] [19].

Two recent studies highlight the growing benefits of mul-
timodal approaches. Ellen et al. enhanced plankton image
classification by adding contextual metadata to a VGG-16
model, slightly boosting accuracy and underscoring the value
of early metadata inclusion in CNNs. [20], [21] Golovanevsky
et al. used multimodal techniques for early Alzheimer’s di-
agnosis, combining MRI scans, genetic markers, and clinical
observations in their MADDi framework. This resulted in
higher accuracy compared to unimodal approaches, suggesting
multimodal techniques’ potential in healthcare. [22] Both
studies serve as benchmarks for our own multimodal research.

III. EXPERIMENTAL SETUP

In this study, we aim to characterise the advantages of
multimodal learning in enhancing image classification perfor-
mance, specifically focusing on fluoropolymer crystal growth
analysis and chest X-ray (CXR) pathology classification. We
designed and executed experiments using CXR data to esti-
mate the potential performance gains conferred by employing
a dual-modality dataset. Building upon these discoveries, we
conducted an additional series of experiments within the field
of material science, focusing on fluoropolymer Atomic Force
Microscopy (AFM) images.

A. CheXpert Task
The CheXpert dataset, introduced by Stanford in 2019, is

a comprehensive compilation of 224,316 chest radiographs
(CXR) from 65,240 patients, each image associated with five
potential pathologies: atelectasis, cardiomegaly, consolidation,
edema, and pleural effusion [5]. These labels were generated
through an automated system that examined corresponding
medical records. Included alongside these radiographs are
metadata entries detailing the patient’s age and sex, and the
CXR image orientation, which can be either frontal, with
additional anterior or posterior specification, or lateral. To
enhance model training and predictive capabilities, we con-
structed an augmented version of this dataset, implementing
image augmentations for increased realism and diversity, and
converting metadata into one-hot encoded binary values for
comprehensive integration. This approach utilizes the avail-
able metadata in conjunction with radiograph images, despite
the insufficiency of metadata alone for predicting pathology
presence.

B. The Novel Fluoropolymer Crystallization Task
Fluoropolymers, primarily composed of carbon-fluorine

bonds, exhibit a range of desirable qualities such as chemical
inertness when exposed to acids, bases, and solvents, aging and
thermal resistance, as well as low dielectric constant, flamma-
bility, moisture absorption, and refractive index; they also
show resistance to hydrolysis and oxidation [23]. These poly-
mers, exemplified by materials like polytetrafluoroethylene
(Teflon), are characterized by their insolubility, which stems
from the semi-crystalline surface formed by the structure of
repeated polymer subunits. A higher degree of crystallization
can make the material more insoluble but also renders it brittle
and challenging to work with. Furthermore, the crystalline
regions within a fluoropolymer can grow over time due to
repeated exposure to environmental factors, making it crucial
to continually test the material’s development.

This testing can be accomplished using AFM, which tracks
the contact point of a sub-nanometer tip along the surface
of a fluoropolymer. Regularly tapping the surface of a fluo-
ropolymer, or some other thin material, with the tip produces
a height map of its topology, along with several corresponding
error and correction signals [24]. An example of the varying
signals generated with AFM can be seen in Figure 1, where



(a) Height (b) Amplitude (c) Phase (d) Z-Sensor (e) Spherulites (f) Lamellar

Fig. 1: AFM images and crystal structures of fluoropolymer samples. (a-d) AFM four-channel images of fluoropolymer. (e-f)
Fluoropolymer samples with spherulite and lamellar crystallinity.

Channel Name Description
A Height Direct topology of material surface
B Amplitude Measure of error tracking the ma-

terial surface
C Phase Measure of error induced by ma-

terial surface effect on tapping os-
cillation

D Z-Sensor Measure of motion for the Height
sensor

TABLE I: Summary of AFM channels.

a single scan produces four separate images. The differences
between these channels is summarized in Table I.

The sample depicted in Figure 1 originated from a part-
nership between the CWRU SDLE Laboratory and Lawrence
Livermore National Laboratory (LLNL) [25] [26]. A part
of that joint venture involved the study crystalline growth
on fluoropolymer surfaces. The development of two specific
types of crystal structures, spherulite and lamellar, serve
as an important aspect of this research. Spherulite crystals
grow spherically in all directions, producing a rounded two-
dimensional image as seen in Figure 1. In contrast, lamellar
crystals grow biaxially along a single axis, similar to a needle’s
shape. To track this growth, different material samples were
recorded by an AFM device where crystalline expansions were
accelerated.

The formed crystalline substructures, however, were not
solely determined by the fluoropolymer composition of the
material. As AFM devices scan with a resolution that have
orders of magnitude less than a nanometer, the fluoropolymer
being imaged must be thin enough so that the crystals do not
grow too high along the z-axis and interfere with the scanning
tip. This is accomplished through spin coating, where some
material is mixed with a solvent and the resulting solution
is spread over a rotating surface. The centripetal force and
surface tension of the solution creates an even film, from
which the solvent evaporates and leaves a thin layer of the
original material [27]. However, before the solution is spread
onto the rotating surface, it can be filtered through small pores
to remove larger particles, which have been shown to change
the surface behavior of polymer films [28]. If the altered
behavior of a material caused by this preprocessing step is not
considered, incorrect conclusions can be drawn by comparing

one compound that was filtered with another that was not.
As this filtering step can impact crystal growth on fluo-

ropolymer surfaces, understanding what type of crystal struc-
tures form in the fluoropolymer film is important. For a
single image, it may be a trivial task to manually determine
what crystalline structures are more prevalent. Yet a single
fluoropolymer experiment can produce thousands or tens of
thousands of AFM images. Furthermore, each AFM image
may contain several composite images along with other meta-
data. This increasing scale of data necessitates the need for
automation. By applying image classification techniques to
the AFM images, the dominant crystal structure type can be
cross-referenced with known information about the depicted
materials to describe how fluoropolymers crystallize when
filtered differently.

C. Data Preprocessing

The CheXpert dataset, comprising of chest X-ray (CXR)
images along with corresponding metadata, underwent several
preprocessing steps. Class labels were produced from patient
medical records via an automated labeler, resulting in an
imbalanced distribution across fourteen possible classes as
shown in Table II [5]. Uncertainty in these labels was handled
by assigning uncertain instances as negative, based on a
preliminary performance test. To manage the class imbalance,
data augmentation was employed, only on the image modality,
due to the inherent difficulty in altering binary-valued metadata
fields without losing their true information. Duplications were
made for underrepresented classes (”Enlarged Cardiomedi-
astinum”, ”Pneumonia”, ”Lung Lesion”, ”Pleural Other”, and
”Fracture”) and a random half of these duplicated images un-
derwent transformations including random rotation, cropping,
brightness and contrast adjustment, and reduced image com-
pression. Every CXR image was also resized to dimensions of
224× 224 pixels. The CXR dataset has three binary metadata
fields (sex, frontal/lateral, and anterior/posterior), and to avoid
imparting a potentially misleading numerical representation,
one-hot encoding was used, transforming each binary field
into two mutually exclusive variables [29]. The combination of
these preprocessing steps resulted in four model variants: the
original unmodified CheXpert dataset (CXR experiment 1), a
version with data augmentation (CXR experiment 2), one with
one-hot encoding of binary metadata (CXR experiment 3), and



finally a model variant with both data augmentation and one-
hot encoding (CXR experiment 4).

Pathology Positive Uncertain Negative
No Finding 16627 0 171014
Enlarged Cardiom 9020 10148 168473
Cardiomegaly 23002 6597 158042
Lung Lesion 6856 1071 179714
Lung Opacity 92669 4341 90631
Edema 48905 11571 127165
Consolidation 12730 23976 150935
Pneumonia 4576 15658 167407
Atelectasis 29333 29377 128931
Pneumothorax 17313 2663 167665
Pleural Effusion 75696 9419 102526
Pleural Other 2441 1771 183429
Fracture 7270 484 179887
Support Devices 105831 898 80912

TABLE II: Class distribution of CheXpert data. [5]

In the context of multimodal learning with fluoropolymer
Atomic Force Microscopy (AFM) data, preprocessing is
primarily concerned with managing a greater scale of modality,
as each AFM dataset includes four concurrent images (Chan-
nels A-D) and over a thousand metadata points of diverse
nature. Initially, up to four 512x512 pixel TIFF images and
corresponding metadata for each observation were extracted
from the original aging fluoropolymer dataset. Prior work
employed the YOLOv4 object detection technique to the
Channel A images, yielding 1, 285, 204 distinct observations
related to spherulitic or lamellar crystal instances [30]. These
observations were subsequently categorized based on the
corresponding TIFF image, leading to an aggregated dataset
wherein each Channel A image was paired with total counts of
spherulitic and lamellar crystals, resulting in five mutually ex-
clusive classes: Equal, Majority Spherulite, Majority Lamellar,
Vast Majority Spherulite, and Vast Majority Lamellar, detailed
in Table III. All observations, inclusive of the four images,
class labels, and metadata, were collated into a unified dataset,
eliminating entries with missing image channels or partial
metadata values. Categorical metadata fields, identifiable by
having three or fewer unique possible values, were one-
hot encoded [29]. The finalized dataset encompassed 10,242
observations from 18 distinct material samples, with each
observation linked to four images and 284 metadata fields. To
ensure compatibility with TensorFlow, the TIFF images were
converted into lossless PNG images of equivalent size.

Class Quantity
Equal 382
Majority Spherulite 1,694
Majority Lamellar 1,806
Vast Majority Spherulite 4682
Vast Majority Lamellar 1678

TABLE III: Fluoropolymer AFM class distribution.

D. Model Training

Our study employed five CNN architectures—ResNet50,
ResNet101, DenseNet121, Xception, and InceptionV3—with
initial weights either randomly assigned or pretrained on Ima-
geNet. We also explored a model solely dependent on sample
metadata for classification. Ten unique implementations of the
MADDi framework served as benchmarks.

The dataset was partitioned in an 80:20 split for training
(Dtrain) and testing (Dtest). All models were trained using a
binary cross-entropy loss function:
L(y, ŷ) = − 1

N

∑N
i=1 yi · log(ŷi) + (1− yi) · log(1− ŷi)

Performance metrics—loss, accuracy, precision (P =
TP

TP+FP ), recall (R = TP
TP+FN ), ROC AUC, and F1-score

(F1 = 2·P ·R
P+R )—were monitored across three runs of 40 epochs

each. Each model’s final classification layer used a sigmoid
activation function for independent class probabilities.

E. Unimodal Approach Models

To critically assess the effectiveness of multimodal learning,
we incorporated two unimodal methodologies for chest pathol-
ogy classification, which included either image-only data or
metadata-only data.

• Image-Only Architecture A generic architecture for a
unimodal image approach is illustrated in Figure 3.1(a).
An image input I is processed through a specific back-
bone model to extract a feature map F . This feature map
is subsequently passed through an average pooling layer,
transforming it into a pooled feature P , defined as:

P =
1

N

N∑
i=1

Fi (1)

Next, a dropout layer is introduced to prevent overfit-
ting through selective neuron deactivation. The resulting
feature D is then passed into a fully connected dense
layer with a Rectified Linear Unit (ReLU) activation
function and L2 kernel regularization to further mitigate
overfitting. This process is mathematically represented as:

D = ReLU(Wd · P + bd) (2)

where Wd and bd are the weights and biases of the dense
layer, respectively. Finally, the output O is computed
by passing D through a fully connected output layer,
predicting the classification labels:

O = σ(Wo ·D + bo) (3)

where Wo and bo are the weights and biases of the output
layer, and σ is the sigmoid activation function.

• Metadata-Only Architecture
The metadata-only model is outlined in Figure 3.1(b).
Metadata M is input into a shallow neural network
starting with a single dense layer to produce D′:

D′ = ReLU(Wm ·M + bm) (4)



where Wm and bm are the weights and biases of the dense
layer. The output of the dense layer is passed through
a ReLU activation function and then normalized using
batch normalization. The normalized information is then
passed to the classifier segment, constituted by two fully
connected layers. The output of the network, representing
the classification labels, is computed as:

O′ = σ(W ′
o ·D′ + b′o) (5)

where W ′
o and b′o are the weights and biases of the output

layer.

Fig. 2: Representation of unimodal model architectures eval-
uated on AFM data: a) single channel image-only, and b)
metadata only.

F. Multimodal Approach Models
To scrutinize the potential advantages of a multimodal

learning approach for chest pathology classification, we de-
ployed the architecture depicted in Figure 3(c). This setup
merges two unimodal models prior to the final feature selection
stage, thereby incorporating both modalities into the decision-
making process. The overarching aim is to balance the proven
methodologies as employed in [20], permitting the metadata
modality to interact within its domain before integrating with
the image subnet.

Fig. 3: Representation of multimodel architectures evaluated
on AFM data: c) all channels treated as the same modality,
and d) each channel has a unique image subnet.

• Partial Metadata Context Two distinct categories within
the metadata modality of the CXR dataset were rec-
ognized: patient-related data and image-orientation data.
Patient-related metadata encompasses age and sex, while
image-orientation data indicates whether an image was

taken from a frontal/lateral or anterior/posterior view.
Partitioning the metadata into these groups and retain-
ing only one during training allows for investigating
the influence of these metadata types. As a result, two
additional multimodal models were trained with the same
architecture, each model exclusively containing one type
of sample metadata. Consequently, an ensemble of 41
average models was trained for each CXR experiment.

Fig. 4: Representation of multimodel architectures evaluated
on AFM data: e) single channel image with metadata, and f)
all channels treated as the same modality with metadata.

• MADDi An adapted bimodal version of the MADDi
framework was instantiated for comparing our proposed
multimodal approach with state-of-the-art techniques.
The revised model architecture is presented in Figure
3(d), where the ”Dense Group” in the metadata modality
corresponds to the three layers defined in the unimodal
metadata-only model (i.e., Dense, ReLU, and Batch Nor-
malization). Given only two modalities instead of three,
the cross-modal units are initially concatenated together.
They are then merged with another instance of each
unimodal unit prior to entering the classification layer.
Given feature vector f from the image subnet and meta-
data vector m from the metadata subnet, the final features
c for classification are obtained by concatenating f and
m:

c = [f ,m] (6)

These concatenated features are then passed to the final
classification layer to predict the labels. The output of the
network is computed as:

O′′ = σ(W ′′
o · c+ b′′o) (7)

where W ′′
o and b′′o are the weights and biases of the output

layer, and σ is the sigmoid activation function.



Fig. 5: Representation of multimodel architectures evaluated
on AFM data: g) metadata and each channel has a unique
image subnet, and h) adaptation of bimodal MADDi.

G. Distributed Learning Framework Exploiting Parallelism

The continuous increase in complexity of computational
tasks required to train multiple models on large datasets
requires the use of distributed computing systems. Such frame-
works leverage parallel computing mechanisms to circumvent
the limitations imposed by singular hardware configurations.
We thus propose a mirrored strategy for distributed computing,
facilitating efficient parallelized model training.

• Data Partition, Gradient Computation, and Model
Replication with TensorFlow Distributed Mirrored-
Strategy (D, ∇, Ms): The dataset D is uniformly
partitioned among the N GPUs. Let Di denote the subset
of data allocated to the i-th GPU. Each GPU indepen-
dently computes its gradient ∇Li(Wi) and loss function
Li(Wi) utilizing Di. The computation on each GPU can
be formalized as ∇Li(Wi) =

1
|Di|

∑
x ∈ Di∇L(x;Wi)

where x is an instance in Di. This process results in
better utilization of the computational resources of each
GPU and an increase in throughput. This strategy for data
partitioning and gradient computation is managed and
enhanced by TensorFlow’s Distributed MirroredStrategy
Ms. Ms is capable of robust model replication and
dataset distribution across N GPUs, thereby ensuring
redundancy and system resilience. It is especially well-
suited for scenarios with multiple GPUs in a single ma-
chine but also extends to multi-machine configurations,
catering effectively to a diverse hardware environment

• Gradient Aggregation, Weight Updates, and Data
Communication with TensorFlow Hierarchical Copy
All Reduce (∆W, H): After the completion of indepen-
dent computations, the gradients ∇Li(Wi) from each
GPU are aggregated and synchronized across all units
using TensorFlow’s Hierarchical Copy All Reduce (H).
The H methodology hierarchically aggregates tensors,
initially within a machine and then across machines,
thus effectively reducing the time required for the all-
reduce operation. It further ensures more efficient use of
the network bandwidth, minimizing network congestion
and enhancing the overall performance of the distributed

system. The collective gradient obtained post-aggregation
is then utilized to perform consistent network weight
updates across all GPUs. This can be mathematically
represented as ∆W = −η

∑
i = 1N∇Li(Wi), where

N is the number of GPUs and η is the learning rate.
The use of H in this process guarantees uniformity
and synchronization of the learning process across the
distributed network.

To illustrate, the CXR dataset was efficiently split across
multiple instances without a substantial impact on model
performance. With the data distributed across N = 8 GPUs,
each instance still had over |Di| > 27, 000 images for training.
This optimized distributed learning framework was effectively
instantiated on the High-Performance Computing (HPC) clus-
ter of Case Western Reserve University (CWRU), employing
eight NVIDIA A100 GPUs, which dramatically enhanced the
training speed for CXR models. The results suggest a scalable
and efficient methodology for handling large-scale datasets
and complex models, emphasizing the feasibility of distributed
learning in high-performance computing ecosystems.

IV. RESULTS

We present experimental results of both the CXR and fluo-
ropolymer AFM tests—the overall and relative performances
of multimodal models under different data conditions. The
fluoropolymer crystal classification results compare the various
multimodal approaches that were implemented.

A. Chest X-Ray
We conducted four experiments to explore the efficacy of

different machine-learning approaches and data manipulations
in predictive modeling. Experiment 1 served as a baseline,
using a multimodal learning approach and producing modest
f1-scores across a range of robust models like Xception,
InceptionV3, and DenseNet121. Experiment 2 introduced data
augmentation techniques targeting underrepresented classes
and saw improvements in the f1-score, although surprisingly,
the multimodal versions of the models did not outperform the
unimodal ones. In experiment 3, one-hot encoding was used
for binary metadata, resulting in varied model performances
but generally failing to surpass the f1-scores of the unimodal
Xception model from previous experiments.

Experiment 4, however, integrated the data augmentation
from experiment 2 and one-hot encoding from experiment
3. This integrated approach yielded exciting results: while
the unimodal Xception model still led in f1-score, the mul-
timodal version of DenseNet121 outperformed its unimodal
counterpart, making a case for carefully integrating various
data modalities and preprocessing techniques. These results
are summarized in Table IV.

Benchmark Results: In assessing multimodal learning
methods, we implemented a bimodal iteration of the MADDi
framework and evaluated it alongside a Metadata Only ap-
proach. Various backbone architectures were tested with
MADDi, and the results are detailed in Table V The most
effective MADDi model utilized the InceptionV3 architecture



imagenet weights random weights
Model Approach Loss Accuracy Precision Recall ROC

AUC
F1 Loss Accuracy Precision Recall ROC

AUC
F1

DenseNet121 Multimodal 0.6735 0.8451 0.5619 0.4429 0.671 0.2998 0.8657 0.8125 0.4241 0.2408 0.6068 0.1675
DenseNet121 Image 0.3891 0.8581 0.6211 0.445 0.7218 0.2891 0.4254 0.8514 0.5853 0.4615 0.7023 0.2755
InceptionV3 Multimodal 0.7503 0.8504 0.5787 0.4735 0.6512 0.2926 0.7287 0.8322 0.514 0.4584 0.651 0.2808
InceptionV3 Image 0.4483 0.8538 0.6036 0.4355 0.7108 0.2939 0.4301 0.853 0.5908 0.4752 0.7082 0.311
ResNet101 Multimodal 0.7749 0.8405 0.547 0.4197 0.6318 0.2584 0.8826 0.8331 0.5103 0.3594 0.6347 0.239
ResNet101 Image 0.4916 0.8507 0.5885 0.4378 0.685 0.2768 0.4597 0.8431 0.5484 0.4871 0.6837 0.2766
ResNet50 Multimodal 0.8496 0.8336 0.518 0.3714 0.6136 0.2315 0.8894 0.8149 0.432 0.3442 0.5925 0.1713
ResNet50 Image 0.4608 0.8517 0.5871 0.4589 0.6855 0.2685 0.4103 0.8538 0.5939 0.4751 0.7012 0.2729
Xception Multimodal 0.8457 0.8498 0.5891 0.4113 0.6449 0.2826 0.936 0.8486 0.5758 0.4691 0.6326 0.2684
Xception Image 0.5454 0.8506 0.5806 0.4681 0.6967 0.3226 0.4918 0.8552 0.6047 0.4564 0.6953 0.2854

TABLE IV: CXR experiment 4 multimodal and image-only classification results, with pre-trained imagenet weights on the left
and randomized initial weights on the right.

with pretrained imagenet weights for the highest f1-score,
while the DenseNet121 with pretrained weights achieved the
top ROC AUC value. Interestingly, pretrained models gener-
ally incurred higher losses than their non-pretrained counter-
parts. For the Metadata Only models, the predictive capacity
was notably lower, as demonstrated in Table VI The one-
hot encoded metadata in experiment 3 yielded the highest f1-
score, albeit not exceeding 0.1. Moreover, data augmentation
to balance class labels resulted in reduced accuracy and f1-
scores across the board.

B. Fluoropolymer AFM

The experimental results for the various image-only and
multimodal models are presented, first in terms of general
model results and then in terms of class-wise metrics.

Image Only Model Results: In evaluating various mul-
timodal approaches, a baseline experiment employing just
a single image from each AFM sample was analyzed. The
non-pretrained InceptionV3 architecture outperformed others
with an impressive ROC AUC of 0.9687±0.0118 and f1-score
of 0.6413±0.0113. The non-pretrained ResNet50 also yielded
better f1-scores than its pretrained variant, while ResNet101
showed mixed results. Interestingly, DenseNet121 was the sole
architecture where the pretrained version surpassed the non-
pretrained model across all metrics, boasting an accuracy of
0.9133±0.0099, ROC AUC of 0.9289±0.0118, and f1-score of
0.6356±0.0198. This suggests that pretraining may not always
be advantageous, as the results varied based on the architecture
employed. Class-wise metrics revealed that pretrained models
exhibited higher recall rates for the ”Equal” class and greater
consistency across the ”Vast Majority” classes, whereas non-
pretrained models were more variable in these metrics.

C. Ablation study for fusion techniques

In this ablation study, we aim to elucidate the impact of
different data fusion strategies on the performance of our mod-
els. We categorize the strategies based on well known fusion
paradigms in the existing literature. We also utilize multiple

architectures to gain insights into the interplay between fusion
strategies and the pertaining of models.

• Late Fusion via Feature Concatenation (Baseline)
We found that the pretrained InceptionV3 model exhib-
ited superior performance, achieving an ROC AUC of
0.9370 ± 0.0019 and an f1-score of 0.6817 ± 0.0202.
However, this superiority of pretrained models was not
universal. For instance, the non-pretrained ResNet101
model outperformed the pretrained DenseNet121 in f1-
score.
Upon closer examination, we observed that pretrained
models consistently had a higher recall, particularly for
the ”Equal” and ”Vast Majority” classes. In terms of pre-
cision, both pretrained and non-pretrained models were
more evenly matched. Notably, non-pretrained models
came close to matching the f1-score of pretrained mod-
els in the ”Majority Spherulite” class, with scores of
0.6618± 0.0772 and 0.6891± 0.0935 respectively, well
within the range of standard deviation.
The Late Fusion strategy offered a straightforward but ef-
fective method for fusing different AFM channels. While
pre-trained models generally performed better, the results
indicate that non-pretrained models can be competitive,
especially in class-specific metrics. The variable perfor-
mance across different architectures suggests that the
choice of model and fusion strategy should be carefully
considered depending on the specific requirements of the
task.

• Early fusion via processing all channels together: This
approach adopts an Early Fusion strategy by treating each
channel of a given AFM image as an individual sample.
The class labels are replicated across each channel for
each sample. The pretrained InceptionV3 model contin-
ued to excel in classification, posting an accuracy of
0.9561 ± 0.0072, ROC AUC of 0.9739 ± 0.0044, and
f1-score of 0.7949 ± 0.0285. It was striking that pre-
trained models universally surpassed their non-pretrained
counterparts in class label prediction. In fact, no non-



Model Weight Loss Accuracy Precision Recall AUC F1
DenseNet121 random 0.933±0.1388 0.8461±0.0038 0.5653±0.0097 0.4449±0.0366 0.6404±0.0119 0.2698±0.0056
DenseNet121 imagenet 9.3066±14.6226 0.8484±0.0068 0.5726±0.0262 0.4646±0.0551 0.6678±0.0207 0.2923±0.0277
InceptionV3 random 0.8144±0.0383 0.844±0.0084 0.554±0.0322 0.4905±0.0406 0.6526±0.0114 0.2973±0.0126
InceptionV3 imagenet 0.9898±0.0574 0.8477±0.0016 0.5694±0.0058 0.4627±0.0108 0.6449±0.0047 0.298±0.0173
ResNet101 random 0.6501±0.1477 0.8435±0.0059 0.5641±0.0277 0.3941±0.0442 0.6435±0.0246 0.2415±0.0131
ResNet101 imagenet 1.0577±0.0246 0.851±0.0008 0.5777±0.0026 0.4927±0.0078 0.6321±0.0043 0.2818±0.0097
ResNet50 random 0.9802±0.0622 0.8398±0.0005 0.5463±0.0023 0.3953±0.025 0.6145±0.0068 0.2326±0.0129
ResNet50 imagenet 1.0016±0.0267 0.8465±0.0062 0.5686±0.0209 0.437±0.0408 0.6348±0.0046 0.2696±0.0185
Xception random 1.0555±0.1271 0.851±0.0043 0.5825±0.0184 0.4694±0.0264 0.6322±0.0054 0.2728±0.0078
Xception imagenet 0.7698±0.3477 0.8484±0.0067 0.5818±0.0183 0.4206±0.1169 0.6371±0.0239 0.2392±0.1288

TABLE V: CXR bimodal MADDi model results.

CXR experiment Loss Accuracy Precision Recall AUC F1
experiment 1 0.3444±0.0002 0.8507±0.0001 0.591±0.0016 0.3052±0.0044 0.6083±0.0011 0.0915±0.0008
experiment 2 0.3702±0.0001 0.8427±0.0001 0.5845±0.0024 0.2895±0.0064 0.609±0.0006 0.0912±0.0006
experiment 3 0.3445±0.0001 0.8506±0.0001 0.5895±0.0023 0.3091±0.0061 0.6072±0.002 0.092±0.001
experiment 4 0.3703±0.0001 0.8428±0.0001 0.5897±0.0004 0.2774±0.002 0.6093±0.0011 0.0897±0.0004

TABLE VI: Unimodal metadata models for the four CXR experiments.

pretrained model managed to outperform any pretrained
model in classifying crystalline structures. Distinct hierar-
chies of performance were noted between pretrained and
non-pretrained architectures. The pretrained InceptionV3
and DenseNet121 models showed superior performance
compared to the ResNet models, consistent with observa-
tions in the CXR experiments. Conversely, non-pretrained
ResNet models fared better than their DenseNet121 coun-
terpart. Specifically, the ResNet50 model had an f1-
score of 0.5896 ± 0.0958, slightly edging out the non-
pretrained InceptionV3 model’s 0.5873± 0.0851, though
these scores lie within their respective ranges of standard
deviation.
Non-pretrained models exhibited irregular recall across
classes, whereas pretrained models demonstrated more
consistent recall. Coupled with generally higher preci-
sion—particularly in the ”Equal” class—pretrained mod-
els maintained an edge in overall f1-scores.
The Early Fusion method capitalizes on the combined
information from all channels at the input stage, allowing
the model to capture potentially complex inter-channel re-
lationships. Pretrained models consistently outperformed
non-pretrained ones, yet differences in performance did
emerge based on the architectural choices, emphasizing
the importance of architecture in model performance.

• Multimodal Fusion: AFM Single Channel + Metadata
This Multimodal Fusion approach combines the AFM
height channel (Channel A) with sample metadata before
feature extraction (see Figure 6). Pretrained InceptionV3
led in classification with ROC AUC 0.9447 ± 0.0056
and f1-score 0.6889 ± 0.0224. Like in unimodal setups,
pretrained models generally outperformed non-pretrained
ones in f1-scores.
However, the non-pretrained InceptionV3 also showed

competence, posting the second-highest ROC AUC score
of 0.9332 ± 0.0376, indicating that pretrained models
were not universally superior. Unlike the first unimodal
approach where loss values were inconsistent, the mul-
timodal models exhibited more stable loss metrics. Pre-
trained versions typically had about half the loss of non-
pretrained models, except for InceptionV3, where the
difference was marginal and within the range of standard
deviation.

• Hybrid Fusion: AFM All Channels Separate + Meta-
data Hybrid Fusion combines multimodal data (meta-
data) with multi-view learning (separate AFM channels)
as shown in Figure 6. Pretrained InceptionV3 outper-
formed others with ROC AUC 0.9496 ± 0.0112 and f1-
score 0.7042±0.0228. While pretrained models generally
had higher f1-scores, non-pretrained models displayed
variances, like higher ROC AUC values compared to
certain pretrained models (except ResNet50). The pre-
trained ResNet101 struggled with low recall in ”Vast
Majority” and ”Majority” classes, impacting its f1-scores.
Conversely, high recall in the non-pretrained ResNet50
model allowed it to perform better than more robust
architectures.

• Multimodal Fusion: AFM All Channels Together +
Metadata Results of this multimodal method, fusing all
image channels and metadata, are shown in Figure 6.
Pretrained InceptionV3 again led the pack with accuracy
0.9549±0.0005, ROC AUC 0.9718±0.0035, and f1-score
0.7873±0.0029. Pretrained models universally outclassed
their non-pretrained counterparts across all metrics. Non-
pretrained DenseNet121 exhibited anomalously low pre-
cision in ”Vast Majority” classes but was on par with
others in ”Majority Spherulite” and ”Majority Lamellar.”
Conversely, pretrained models were consistently strong



across classes, yielding uniformly high classification met-
rics.

Fig. 6: Classification metrics for multimodal models trained
on AFM data with images and metadata, where the top half
use pretrained imagenet weights and the bottom half have
randomized initial weights.

Benchmark Results: To provide reference points to the
proposed image-only and multimodal learning methods, a
bimodal implementation of the MADDi framework along with
a metadata-only model was tested, and their results are shown
in Table VII.

MADDi: In our MADDi tests, the pretrained InceptionV3
led in ROC AUC, while non-pretrained DenseNet had the
best f1-score and lowest loss. Non-pretrained ResNet50 out-

performed its pretrained version in f1-score. Interestingly, all
MADDi models had double the recall compared to precision,
and non-pretrained models generally had higher recall except
for DenseNet121.

Metadata only: Lastly, a model trained for fluoropolymer
AFM images achieved an accuracy of 0.8332 and a credible
ROC AUC value of 0.8752. However, the model had limi-
tations, including a low f1-score below 0.5 and poor recall
at 0.2874. It failed to predict positive labels for the ”Equal,”
”Majority Spherulite,” and ”Majority Lamellar” classes.

Our results therefore underscore that the fusion of diverse
data modalities can substantially enhance a model’s predictive
prowess in this novel application domain.

V. DISCUSSION

Our ablation study reveals nuanced interactions between fusion
strategies and model architectures. Pretrained InceptionV3 consis-
tently dominated across all fusion paradigms, with particularly strong
f1-scores and ROC AUC values in the Multimodal Fusion setups
involving all AFM channels and metadata. On the other hand, the
Late Fusion and Early Fusion strategies highlighted the competitive
capabilities of non-pretrained models in class-specific metrics, such
as in the ”Majority Spherulite” class for Late Fusion and the overall
f1-score for Early Fusion. The Hybrid Fusion strategy presented an
interesting case where non-pretrained models demonstrated strength
in ROC AUC, challenging the generality of pretrained models’ su-
periority. These observations underscore the importance of selecting
an appropriate fusion strategy and model architecture based on task-
specific requirements. Non-pretrained models show promise in certain
scenarios and should not be universally discounted. Each fusion
strategy also seems to affect the class-wise behavior of models
differently, suggesting that a careful choice of fusion paradigm is
crucial when class-level performance matters.

It is important to acknowledge that the scope of this study does
not necessarily encompass the cutting-edge developments or the most
recent techniques proposed in the multimodal learning literature.
The rapidly evolving field has introduced a multitude of innovative
techniques, each having its unique potential and sophistication, which
are not directly incorporated in our work. However, this study serves a
distinct purpose. Instead of chasing the state-of-the-art, our focus lies
on building a principled and applied foundation, demonstrating that
multimodal techniques can be harnessed effectively to improve mod-
els in applied science research. By utilizing established methodolo-
gies, we aim to present a practical, concrete application of multimodal
learning in a real-world context. The goal is not only to illustrate the
benefits and feasibility of adopting such an approach, but also to
inspire further integration of multimodal learning techniques into a
broader range of applied scientific disciplines, thereby stimulating
advancements in these fields through interdisciplinary collaboration.

VI. CONCLUSION

In our comprehensive study, we meticulously evaluated the impact
of multimodal learning techniques in image classification tasks,
specifically using the CheXpert chest x-ray and fluoropolymer AFM
datasets. Utilizing various pretrained and non-pretrained CNN archi-
tectures, we explored the benefits of fusing image and metadata for
advanced data interpretation. Our key findings reveal that categorizing
metadata fields led to greater performance improvements than mere
image augmentation. Multimodal models consistently outperformed
their unimodal counterparts in predictive metrics. Remarkably, our
multimodal approaches, especially those using the Xception model,
matched or even exceeded the performance of state-of-the-art MADDi
models. Our results robustly support the significant potential of
multimodal learning in enhancing analytical methods in applied
sciences.



Model Pretrained
Weight

Approach Loss Accuracy Precision Recall ROC AUC F1

DenseNet121 random MADDi 0.5497±0.1911 0.7025±0.0777 0.4063±0.062 0.9667±0.0279 0.9099±0.0315 0.6681±0.08
DenseNet121 imagenet MADDi 0.7881±0.2457 0.7023±0.069 0.4029±0.0547 0.947±0.0554 0.8904±0.0318 0.6226±0.0499
InceptionV3 random MADDi 0.9932±0.4894 0.5136±0.1562 0.2963±0.0675 0.9288±0.1209 0.8491±0.0106 0.5586±0.1806
InceptionV3 imagenet MADDi 0.8622±0.458 0.7797±0.0745 0.4888±0.0919 0.9419±0.0466 0.9219±0.0136 0.6417±0.039
ResNet50 random MADDi 0.7044±0.555 0.6355±0.2151 0.3859±0.1267 0.9881±0.0141 0.9125±0.0507 0.6912±0.0192
ResNet50 imagenet MADDi 1.0362±0.6961 0.6588±0.1006 0.3748±0.0809 0.9478±0.0318 0.8521±0.0633 0.5899±0.0537
ResNet101 random MADDi 0.7513±0.3284 0.5324±0.2422 0.3369±0.1555 0.9782±0.0299 0.8572±0.0819 0.6209±0.072
ResNet101 imagenet MADDi 0.611±0.0583 0.7175±0.0454 0.4146±0.0377 0.9645±0.0201 0.9109±0.0173 0.6708±0.0154
NA None Metadata 1.0633±0.0411 0.8332±0.0135 0.6976±0.0451 0.2874±0.0676 0.8752±0.0117 0.4932±0.0421

TABLE VII: Fluoropolymer AFM results for benchmark classification techniques (bimodal MADDi and metadata-only).
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