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ABSTRACT

Fire emissions from the Maritime Continent (MC) over the western tropical Pacific are
strongly influenced by El Nifo—Southern Oscillation (ENSO), posing various climate effect to
the Earth system. In this study, we show that the historical biomass burning emissions of black
carbon (BCpp) aerosol in the dry season from the MC are strengthened in El Nifio years due to
the dry conditions. The Eastern-Pacific type of El Nifio exerts a stronger modulation in BCpp
emissions over the MC region than the Central-Pacific type of El Nifio. Based on simulations
using the fully coupled Community Earth System Model (CESM), the impacts of increased
BCub emissions on ENSO variability and frequency are also investigated in this study. With
BCb emissions from the MC scaled up by a factor of 10, which enables the identification of
climate response from the internal variability, the increased BCub heats the local atmosphere
and changes land-sea thermal contrast, which suppresses the westward transport of the eastern
Pacific surface water. It leads to an increase of sea surface temperature in the eastern tropical
Pacific, which further enhances ENSO variability and increases the frequency of extreme El
Nifio and La Nifia events. This study highlights the potential role of BCp, emissions on extreme
ENSO frequency and this role may be increasingly important in the warming future with higher

wildfire risks.



31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

1. Introduction

El Nifio—Southern Oscillation (ENSO) is the strongest interannual climate variation signal
globally. It is characterized by anomalous sea surface temperature (SST) in the central-to-
eastern tropical Pacific, oscillating irregularly between its warm (El Nifio) and cold (La Nifia)
phases. These SST anomalies can alter atmospheric circulations and arouse teleconnection
patterns (Bjerknes, 1969), which exert pronounced global impacts on social stability and
economic growth through modulating crop yields (lizumi et al., 2014), drought and flood
hazards (Jiménez-Mufioz et al., 2016; Ward et al., 2016), heat waves and cold surges
(Thirumalai et al., 2017), tropical cyclones (Sobel and Maloney, 2000), and ice melting in polar
regions (Hu et al., 2016; Nicolas et al.,2017).

The Maritime Continent (MC) is the western boundary of the tropical Pacific under the
ascending branch of the Walker Circulation, which is susceptible to ENSO-related circulation
changes. During the developing phase of El Niflo, precipitation over the MC is suppressed,
reducing the wet deposition of aerosols and promoting dry conditions favorable for fire burning
(Chen et al., 2017; Wu et al., 2013). The severest fire years of the MC in the past few decades,
such as 1991, 1997 and 2015, are all El Nifo years (van Marle et al., 2017). Fire emissions
during the major fire season of equatorial Asia were nearly tenfold higher during El Nifio years
than during La Nifia years (Chen et al., 2017). In recent decades, biomass burning has become
more frequent and widespread across the MC due to human activities, including land clearing,
land-use change, poor peatland management, and burning of agriculture waste (Dennis et al.,
2005; Marlier et al., 2015a; Lee et al., 2017). Large-scale and high-emission biomass burning
activities occur every year in the dry season that usually peaks from August/September to
October/November. Based on economic incentives and population growth in Southeast Asia,
future land-use management will play an important role in determining fire activities across the
region (Carlson et al., 2012; Marlier et al., 2015b). Furthermore, climate warming will generally
increase the risk of fire and can also affect the fire injection and plume height (Szopa et al.,
2021), which indicates that aerosol emissions from wildfire will increase in the future.

Changes in biomass burning aerosols over the MC could influence regional climate change.

Biomass burning aerosols from fire emissions during El Nifio events heat the middle and upper
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troposphere and cool the surface, thus increase static stability near the surface. The increased
stability together with reduced specific humidity and weakened surface convergence suppress
convection and precipitation, exacerbating drought in the source region of the MC (Tosca et al.,
2010). During the extreme El Nifio of 1997, carbonaceous aerosols from the Indonesian fires
induced radiative forcings at the surface by about =10 W m™2 over most of the tropical Indian
Ocean and —150 W m™2 over the burning regions (Duncan et al., 2003).

Black carbon (BC) is an important component of aerosols emitted from incomplete
combustion. Globally, open biomass burning account for about 15% of the total BC emissions.
Long-term measurements in Indonesia (Rashid et al., 2014; Sattar et al., 2014) revealed that BC
was elevated during the dry season because of the biomass burning emissions and relatively
low rainfall. BC has diverse impacts on meteorology and climate by directly absorbing solar
radiation within the atmospheric column, affecting cloud formation and lifetime, and reducing
surface albedo through deposition on snow and ice (McFarquhar and Wang, 2006; Ramanathan
and Carmichael, 2008; Kang et al., 2020). The influence of heating effect of BC aerosols in the
atmosphere depends on its vertical position. The BC-induced heating aloft increases stability
below the BC layer and enhances vertical motion above the BC layer (Stocker et al., 2013). The
warming effect of BC can be enhanced by coating its surface with organic carbon (OC), which
leads to the “lensing effect” where photons are focused on the BC core (Lack and Cappa, 2010).
Compared to fossil fuel BC (BCg) emissions, biomass burning BC (BCypb) is generally
accompanied by higher emissions of OC, with a typical OC/BC ratio of 2 in urban traffic
environments and a ratio of 5 or higher in regions with prevalent biomass burning emissions
and smoldering dominance (Novakov et al., 2005). Also, BCyp tends to be larger in size with
thicker coatings compared to BCyr in urban environments (Schwarz et al., 2008). Based on these
characteristics, BC can exert significant climatic and dynamic impacts over the tropical Pacific
and surrounding continents by changing atmospheric vertical motion, circulation and
convection. Increased BC emissions in the mid-latitudes of the Northern Hemisphere and Arctic
could increase the frequency of extreme ENSO events through altering meridional heat
transport from equator to polar regions (Lou et al., 2019a). The direct radiative forcing of global
BC can exert precipitation change pattern similar to that corresponding to ENSO activities

(Wang, 2007). BC from biomass burning and industrial emissions from Indo-Gangetic Plain is
4
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also able to amplify the effect of ENSO on the Indian summer monsoon (Kim et al., 2016).

Previous studies have shown that the intensity and frequency of ENSO events might
increase under climate warming (Stevenson, 2012; Cai et al., 2014, 2015, 2018; Wang et al.,
2018; Wang B. et al., 2019). Many studies have reported that aerosols and their precursor gases
can affect ENSO properties, including its intensity, frequency and duration. Fasullo et al. (2023)
identified that 2019-2020 Australian wildfires caused a significant increase in biomass aerosol
burdens, altered cloud properties, and led to cooling in the tropical Pacific Ocean, ultimately
contributing to the occurrence of strong La Nifia events in 2020-2022. Using simulations of
global climate models, Yang et al. (2016a, b) found a positive sea salt emission-ENSO feedback,
in which changes in sea salt emissions enhance the variability of ENSO. Xu and Yu (2019)
investigated the ENSO-induced aerosol dipole over the International Dateline and the MC
regions and proposed a positive feedback of aerosol dipole pattern to ENSO evolution. Several
other studies found that stratospheric sulfate aerosols, formed from sulfur dioxide (SO2)
injected by tropical volcanic eruptions, influence the ENSO through changing the earth
radiation budget (Wang et al., 2018; Ward et al., 2021). How the increasing BCyp, from the MC
potentially influences ENSO variability remains unexplored.

In this study, we show that the boreal winter mean Nifio indices are positively correlated
with the preceding September-October-November (SON) BCyp, emissions over the MC based
on a long-term statistical analysis and analyze meteorological parameters leading to the increase
of BCyb emissions associated with El Nifio. Then the mechanism of the substantial increase in
year-round BCypb, emissions from the MC regulating ENSO variability is identified based on
long-term global aerosol-climate model simulations. The model, simulations, and observational
datasets are described in Section 2. The impacts of BC from the MC on ENSO variability and
the potential mechanisms are analyzed in Section 3. These results are summarized and discussed

in Section 4.

2. Methods

a. Data

The meteorological and aerosol emission datasets used in this study include the following:
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1. For biomass burning emissions, we utilize the BB4CMIP dataset (available at

https://esgf-node.llnl.gov/search/input4mips/; van Marle et al., 2017). BB4CMIP combines

satellite-observed fire emissions with regional proxy datasets and modeled data to provide a
global estimation of emissions of various aerosols and gases at a horizontal resolution of
0.25°%0.25° and covers the period from 1750 to 2015 for Coupled Model Inter-comparison
Project phase 6 (CMIP6). This dataset divides the world into 17 regions with different data
sources. For the MC region in this study, the biomass burning emission data primarily originate
from the Equatorial Asia (EQAS) region within BB4CMIP. In the EQAS region, the emission
data from 1997 to 2015 are based on the Global Fire Emissions Database version 4 with small
fires (GFED4s). The emission data from 1950 to 1996 are based on visibility observations from
the World Meteorological Organization (WMO) stations in the EQAS. However, the emission
data from 1750 to 1949 are held constant at the lowest decadal average (van Marle et al., 2017).
Therefore, in the EQAS region of BB4CMIP, the data from 1950 to 2015 are considered more
reliable compared to the earlier period. In this study, for historical data analysis, we use
BB4CMIP data from 1950 to 2015. For model input, we use data of 2006 that are regridded to
0.9° (latitude) x1.25° (longitude) and divided into 13 levels.

2. For calculation of historical Nifio indices, we utilize monthly sea surface temperature
from the NOAA Extended Reconstructed SST V5 (ERSST v5; available at

https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html) with a horizontal resolution of 2°x2°

from 1950 to 2016.
3. For historical analysis of meteorological conditions for increasing BCupp from the MC

region during El Nifio, we utilize monthly mean meteorological fields (i.e., sea level pressure,

winds) from ERAS5 reanalysis (available at https://cds.climate.copernicus.eu/; Hersbach et al.,
2020) with a horizontal resolution of 0.25° x 0.25° from 1979 to 2015 and monthly mean
precipitation from the Global Precipitation Climatology Project (GPCP; available at

https://www.ncei.noaa.gov/data/global-precipitation-climatology-project-gpcp-

monthly/access/; Adler et al., 2018) with a horizontal resolution of 2.5° x 2.5° from 1979 to

2015.
4. For anthropogenic emissions of model input, we use the Community Emissions Data

System (CEDS; available at https://esgf-node.llnl.gov/search/input4mips/; Hoesly et al., 2018).
6
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Specifically, we use CEDS emissions of BC, OC, SO», and volatile organic compounds (VOCs)
from various anthropogenic sectors in year 2006. The CEDS emissions originally have a spatial
resolution of 0.5° and are regridded to a resolution of 0.9° (latitude) x1.25° (longitude) for our

analysis and model simulation.

b. Model configuration

In this study, simulations are performed with the coupled global aerosol-climate model,
Community Earth System Model version 1.2 (CESM1.2; Hurrell et al., 2013), which has been
widely used to quantify aerosol-climate interactions (Yang et al., 2017, 2019, 2023; Lou et al.,
2019a, b). The atmospheric component of CESM is the Community Atmosphere Model version
5.3 (CAMS5.3) configured with a 1.9° (latitude) x2.5° (longitude) horizontal resolution and 30
vertical levels, in which mass and number concentrations of aerosols (including sulfate [SO4*],
BC, primary organic matter [POM], secondary organic aerosol [SOA], mineral dust, and sea
salt) are represented using the four-mode (i.e., Aitken, accumulation, coarse, and primary
carbon modes) Modal Aerosol Module (MAM4; Liu et al., 2016). MAM4 is chosen for its aging
processes of primary carbonaceous aerosols that can well represent the BC aerosol lifecycle.
The CAMS.3 model includes aerosol-radiation interaction in shortwave and longwave bands as
well as aerosol-cloud interactions for stratiform clouds (Liu et al., 2012). In our model
simulations, to estimate the direct radiative forcing (DRF) of BC, atmospheric radiation
calculation is performed twice with BC included and excluded, respectively, in the estimate of
bulk aerosol properties for the radiative transfer model. The ocean component is the Parallel
Ocean Program version 2 (POP2) configured with the nominal grid gx1v6 (horizontal
resolution of approximately 1°) and with 60 vertical levels.

To assess the impact of BCp, on ENSO variability, two experiments are conducted, namely
“MCI1” and “MC10”, both of which are initialized with the same atmosphere and ocean
conditions at present-day levels. In the MC1 experiment, solar radiation, greenhouse gases
concentration, aerosol and precursor emissions are all fixed at year 2006 level with monthly
variations, while in the MC10 case, BCy, emissions of each month over the MC (95° E-155°
E, 10° S-10° N) are scaled up by a factor of 10 and other regions are kept the same as MC1.

The reason for choosing emissions in year 2006 as the baseline is that biomass burning aerosols
7
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over the MC are significantly affected by a moderate El Nifio in 2006 (Chandra et al., 2009).
Therefore, the emissions in 2006 are relative higher than normal but not too extreme compared
to strong El Nifio years (Fig. S1), which helps to distinguish the climate response signals from
the internal variability. The input of BCpb, emissions in MC1 and MC10 are shown in Fig. 1.
The large increase (i.e., the factor of 10) is used in MC10 so that climate response signals are
stronger than internal variability in the climate model, which has been widely used in previous
aerosol perturbation experiments (e.g., Lou et al., 2019a, b; Sand et al., 2013, 2015; Stjern et
al., 2017; Yang et al., 2019). MC1 and MCI10 cases are initialized with the same present-day
default initial condition. For each experiment, one 135-year simulation is performed with the

last 100 years used for model analysis and the first 35 years treated as model spin-up time.

Input of biomass burning BC emissions in MC1 Input of biomass burning BC emissions in MC10 mgm Cyr
60° N B e T S — TR R T R T T
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hd 100 b b v Ly M
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Fig. 1. Annual mean biomass burning black carbon emission rate (mg m 2 yr!) in a MC1 and b MC10
simulations. The red box marks the Maritime Continent (95° E-155° E, 10° S—10° N). Biomass burning black

carbon emission data are from the year 2006 of the BB4CMIP dataset.

¢. Model evaluation

We compare the global patterns and seasonal variations over the MC between
reanalyzed/satellite data and simulated results. The simulated absorption aerosol optical depth
of BC (AAODBC) from the MC1 case is contrasted with the reanalysis data of MERRA?2
(M2TMNXAER) (Fig. S2), revealing an underestimation of AAODBC over the MC region by
the model. This may be attributed to the bias in BC aerosol simulation related to many factors
including emissions and wet scavenging, as well as the bias in satellite retrievals related to

abundance of clouds over the MC region. Remarkably, the simulated total cloud fraction
8



202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

demonstrated a strong correspondence with the MODIS satellite data (Fig. S3). Additionally,
the simulated precipitation rate (Fig. S4) closely resembled the magnitude observed in the
GPCP reanalysis data. However, it is noteworthy that CESM1.2, like many climate models,
exhibited a tendency to simulate a double Intertropical Convergence Zone (ITCZ) rather than
the conventional single band. Also, the 2-degree version of CESM1.2 tends to simulate more

extreme ENSO events than those in the real world (Lou et al., 2019a).

d. ENSO indices and statistical methods

The intensity of ENSO condition is usually characterized by monthly Nifio indices,
including Ninol+2, Nifio3, Nifio3.4 and Nifio4 indices which are defined as the regionally
averaged SST anomalies over the Nifiol+2 region (90° W—80° W, 10° S—0°), Nifio3 region (150°
W-90° W, 5° S—5° N), Nifio3.4 region (170° W-120° W, 5° S—-5° N) and Nifio4 region (160°
E-150° W, 5° S—5° N), respectively. The Nifo indices are calculated from ERSST v5 and used
for the selection of historical El Nifio years and the correlation analysis.

An EI Nifo (La Nifia) event is usually identified based on Nifio3.4 index. In the section of
the impact of El Nifio on BCyp emissions from the MC, El Nifo years during 1950-2015 are
identified using Nifio3.4 index according to the method used by the Climate Prediction Center
(CPC) of NOAA. Firstly, the interannual linear trend from 1950 to 2016 is removed from the
monthly averaged SST in the Nifio3.4 region. Then, the anomalies of Nifio3.4 SST removed the
seasonal variations are calculated. A consecutive 5-month moving average exceeding 0.5°C is
considered as an El Nifio event. The selected El Nifio years during 1950-2015 are 1951, 1953,
1957, 1963, 1965, 1968, 1969, 1972, 1976, 1977, 1982, 1986, 1987, 1991, 1994, 1997, 2002,
2004, 2006, 2009 and 2015. In the section of the impact of BCyp emissions from the MC on
ENSO, we use the standard of Santoso et al. (2017) to identify extreme El Nifio/La Nifia events
in the model results. If the Nino3.4 SST anomalies of November—December—January, i.e., NDJ
(or December—January—February, i.e., DJF) exceed 1 standard deviation of Nifio3.4 SST
anomalies of NDJ (or DJF) in MCl, it is classified as an extreme El Nifio/La Nifia event. The
standard deviation of NDJ (DJF) in MCl is 2.1 (2.0) °C.

The statistical significance of changes in the occurrence frequency of ENSO conditions

between the two simulations are tested in two steps. We first construct a Kolmogorov—Smirnov
9
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test to examine whether the frequency distribution of Nifio3.4 index from MCI10 differs from
that of MC1. Next, SST data obtained from a 1400-year CESM preindustrial simulation are
used as a baseline to examine whether the frequency within a specific interval has changed in
MC10 compared to MC1. Specifically, we construct a probability distribution function (PDF)
for each 1-K interval of the monthly Nifio3.4 index using 1000 random samples of consecutive
1200-month results from the 1400-year CESM control simulation with a Monte Carlo method.
Within each 1-K interval, if the difference between MC1 and MCI10 is greater than the 95th
percentile or less than the Sth percentile of the PDF, the change in the Nifio3.4 index distribution
of the interval is considered significant. However, we note that the statistical analysis based on
a preindustrial simulation could overestimate the significance of the ENSO differences between
MCI1 and MCI10, since that the preindustrial simulation has a weaker SST variability than
MC1/MC10 (Table S1). Also, the preindustrial simulation is performed using CESM version
1.1 (Text S1), which is the prior version of CESM1.2 for MC1 and MC10 simulations. However,
the two model versions share very similar ENSO statistics and should not affect the results in

this study.

3. Results

a. Impact of ENSO on fire emissions of BC over the Maritime Continent

From the perspective of the annual cycle, BCpb, emission rate over the MC peaks in the late
boreal summer and boreal fall seasons and the emissions increase during the El Nifo years (Fig.
2a). ENSO events usually reach their peak intensity during boreal winter. To examine whether
BCb emissions over the MC change with the ENSO phase and intensity, the lead-lag correlation
coefficients between the DJF mean Nifio indices and the BCy, emission rate over the MC in the
preceding and following seasons during 19502015 are calculated and shown in Fig. 2b. The
BCub emission rate over the MC in the fall season preceding the boreal winter of the mature
phase of ENSO events is positively correlated with Nifo indices, with correlation coefficients
of 0.6-0.9 for Nifiol+2, Nifio3 and Nifio3.4 indices and are statistically significant at 95%
confidence level. If the lead-lag correlation is based on 1997-2015 when biomass burning data

are all derived from satellite observations, the correlations will be higher with the correlation
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coefficient between Nifio1+2 index and BCyp emission rate exceeding 0.95 (Fig. 2¢). It suggests
that the biomass burning emissions of BC are enhanced during El Nifio events, especially in the
preceding fall season. The Ninol+2 index has the highest correlation with BCyp, emission rate,
while Nino4 index has the lowest correlation coefficient, indicating that the Eastern-Pacific
type of El Nifio exerts a stronger modulation in BCp, emissions over the MC region than the

Central-Pacific type of El Nifio.
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Fig. 2. Historical relationship between biomass burning black carbon emissions over the Maritime Continent
and El Nifio—Southern Oscillation. a Seasonal variation of biomass burning black carbon emission rate (Tg
yr 1) over the Maritime Continent during 1950-2015. The shades indicate 1 standard deviation. El Nifio years
are 1951, 1953, 1957, 1963, 1965, 1968, 1969, 1972, 1976, 1977, 1982, 1986, 1987, 1991, 1994, 1997, 2002,
2004, 2006, 2009 and 2015. La Nifia years are 1950, 1954, 1955, 1956, 1964, 1970, 1971, 1973, 1974, 1975,

1984, 1988, 1995, 1998, 1999, 2000, 2005, 2007, 2008, 2010 and 2011. b Lead-lag correlations between the
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December—January—February mean Niflo indices and the biomass burning black carbon emission rate over
the Maritime Continent during 1950-2015. The “—1” and “0” in the x-axis labels represent the preceding and
following year, respectively and the statistically significant correlations (at the 95% level) are marked by
solid markers. ¢ Lead-lag correlations the same to b, expect the data are during 1997-2015. Biomass burning

black carbon emission data are from BB4CMIP dataset. Nifio indices are calculated from ERSSTvS5.

From the perspective of the annual cycle of precipitation climatology, boreal fall is the dry
season in the MC region with relatively little precipitation (Zhang et al., 2016). In general, the
MC is under the ascending branch of the Walker Circulation. However, during the developing
phase of El Nifio, the updraft vertical motion is suppressed (Fig. 3d), which coincides with the
increased sea level pressure over the region spanning from the eastern Indian Ocean to the west
Pacific warm pool (Fig. 3¢). A weakened convection due to the suppressed updraft decreases
the precipitation over the MC and the eastern Indian Ocean (Fig. 3b). The dry condition over
the MC is favorable for fire occurrence. The increased fires also release more heat, which is
conductive to temperature increase and further worsen the dry conditions. The intensified fire
activities increase BC emissions into the air (Fig. 3a), which are likely to reside in the air for a

longer time under dry conditions (Wu et al., 2013).
a b
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Fig. 3. Anomalies in boreal fall season preceding El Nifio events compared to the climatology in a biomass
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burning black carbon emission rate (mg m 2 yr '), b precipitation (mm d '), ¢ sea level pressure (hPa) and
10m winds (m s '), and d zonal circulation (reference vector) and pressure velocity (contour, —107% Pa s™}).
Biomass burning black carbon emission data are from the BB4CMIP dataset. Meteorological parameters are
from GPCP and ERAS reanalysis. The dotted areas indicate statistical significance more than 95% confidence
level from a two-tailed Student’s #-test. The black vectors indicate that the statistical significance of latitudinal
winds or meridional (vertical) winds is more than 95% confidence level from a two-tailed Student’s #-test,
while the grey vectors indicate the insignificant winds. The climatology is based on 1950-2015. El Nifio
years are 1951, 1953, 1957, 1963, 1965, 1968, 1969, 1972, 1976, 1977, 1982, 1986, 1987, 1991, 1994, 1997,

2002, 2004, 2006, 2009 and 2015, which are selected by the method of NOAA CPC.

b. Biomass burning BC from the Maritime Continent enhances ENSO variability

The analysis above points out that BC emissions from biomass burning over the MC
increase during the preceding boreal fall seasons of El Niflo events from the perspective of the
annual cycle. The strongly increased BCyppb can also impact ENSO statistics via its radiative
effects. The standard deviation of monthly Nifio3.4 index after removing the annual cycle
simulated in CESM increases from 1.69 °C in MC1 to 1.92 °C in MCI10. It implies that
substantial increases in BC emissions from biomass burning over the MC could enhance ENSO
variability.

Figure 4 shows histograms of the monthly Niflo3.4 index obtained from the MCI1 and
MC10 simulations. The frequency distribution of Nifio3.4 index in MC10 is different from that
in MC1 based on the Kolmogorov—Smirnov test (p < 0.01). The frequencies at the positive and
negative tails of the monthly Nifio3.4 index significantly increase in MC10, indicating that the
increase in BCypp over the MC may enhance the ENSO variability and increase the frequency of
extreme ENSO events. If the ENSO years are identified based on the NDJ or DJF mean Nifio3.4
index, the frequencies extreme El Nifio (La Nifna) events change from 23 (16) per 100 years in

MCI1 to 25 (19) per 100 years in MC10.
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MCI10 (red bars). Bars with asterisks indicate statistically significant changes with respect to the upper and
lower 5th percentiles of a probability distribution function for each Nifio3.4 index bin derived from a 1400-

year CESM preindustrial simulation.

c. Potential mechanisms of BC impacts on ENSO variability

Potential mechanisms of how BCy, affects the ENSO variability are examined here. We
investigate the pressure-longitude cross-sections averaged over 3° S—0° of the difference in BC
concentration, zonal circulation, shortwave heating rate and air temperature in Fig. 5. The
latitude band of 3° S—0° is chosen because it can better show the BC plume from the high
emission area over the MC (Fig. 1). The ten-fold increase in BCypp, emissions in the MC leads to
a strong increase in BC concentrations between 100° E and 120° E near the equator (Fig. 5a).
The maximum increase locates below 850 hPa and it extends to the upper troposphere. As the
most important absorbing aerosol, BC heats the atmosphere through absorbing solar radiation.
With the increase in BC aerosol concentration, the shortwave atmospheric heating rate is
enhanced over the MC (Fig. 5c). While the BC concentration primarily rises in the lower
troposphere, the anomalous shortwave heating exerts a strong influence throughout the entire
atmospheric column, owing to the efficient solar absorption of BC at higher altitudes.
Additionally, the reduction in cloud coverage associated with a dearth of precipitation also

contributes to the shortwave heating.

14



340
341

342
343
344
345
346
347
348
349
350
351
352
353
354
355
356

Black carbon aerosol concentration 150 Zonal circulation
— — e
200 : -
N & 300 |- ‘* '
5 5 -~ > > o
o o [- . ..
z 2 [
8 8 500 -
o o L
850 | 850 [
g o Eigi b 5iye ) G50 58
60° E 120°E 180° 120° W 60° W 60° E 120° E 180° 120° W 60° W
ST T [ O g kg
-3.0 -15 0.0 15 30 M99
c . d
Solar heating rate
50 —— 150
200 200
& 300 |- & 300
= £
o )
=} >
2 2
® 500 ® 500
o o
850 | E = 850 |
T I S
60° E 120°E 180° 120°W 60° W 60° E 120° E 180°
T T T O 10 Ks < [T T I °C
-8 -4 0 4 8 0.0 0.2 0.4 0.6 0.8

Fig. 5. Pressure-longitude cross-sections averaged over 3° S—0° of differences between the MC1 and MC10
cases for a Black carbon aerosol concentration (ug kg '), b zonal circulation (reference vector) and vertical
velocity (contour, =102 Pa s™!), ¢ shortwave heating rate (10° K s™!) and d air temperature (°C). In b, the
red shading indicate rising motion as the contour scale is negative. The differences are calculated from
simulated data by (¥annual, MC10—Vannual, Mc1)- Vannuat, mc1 1S the annual mean of 100 years in MC1 case for each
parameter. The same for Vannuat, mcio but in MC10 case. The dotted areas indicate statistical significance more
than 95% confidence level from a two-tailed Student’s #-test. The black vectors indicate that the statistical
significance of latitudinal winds or vertical winds is more than 95% confidence level from a two-tailed

Student’s ¢-test, while the grey vectors indicate the insignificant winds.

Over the MC (95° E-155° E, 10° S—10° N), the ten-fold increase in BCp, emissions induce
a DRF of 1.3 W m™2 at the top of atmosphere (TOA) and of —4.4 W m? at the surface (Figs. 6a,
6¢), showing a strong solar absorption of 5.7 W m ™2 in the atmosphere. The anomalous heating
in the atmospheric column induces a strong ascending motion above the BC layer between 105°
E and 115° E (Fig. 5b). The enhanced updraft is accompanied by an anomalous subsidence over

120°-160° E of the tropical Pacific (Fig. 5b), which coincides to the increasing sea level
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pressure over the western Pacific (Fig. 7a). In the lower troposphere over the western Pacific,
the subsidence is expected to diverge. One anomalous horizontal branch moves towards east
over the central tropical Pacific (Figs. 5b, 7b). Under normal circumstances, the easterly trade
winds move the sea surface water from the eastern tropical Pacific to the west. Meanwhile, the
upwelling of cold water from the deep sea cools the sea surface over the eastern tropical Pacific,
resulting in lower SST in the eastern tropical Pacific than the western Pacific. However, in the
MCI0 case, the westerly wind anomaly weakens the easterly trade winds, causing a reduced
transport of sea surface water from east to west. As a result, the east-west SST gradient is
weakened by the substantial increase in BCy, emissions over the MC, leading to the anomalous

warming over the eastern tropical Pacific (Figs. 5d, 7¢). The anomalous warming of sea surface

water causes the anomalous upward motion of the atmosphere around 130°W (Fig. 5b), leading

to a decrease in low cloud fraction and increase in high cloud fraction (Figs. 7d, 7f). In the
atmosphere, low clouds mainly scatter solar radiation and pose net cooling effect to the earth
system, while high clouds consist chiefly of ice crystals, which can absorb the longwave
radiation from the surface and heat the earth. The change in the vertical profile of cloud amount
leads to a positive cloud radiative forcing (CRF) over the eastern tropical Pacific (Figs. 6b, 6d),
which is also conductive to sea surface warming (Fig. 7c). Over the central Pacific, the
increased low clouds and mid-level clouds (Figs. 7e, 7f) induce a negative CRF over this region

(Figs. 6b, 6d).
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radiative forcing (CRF) at b the top of atmosphere and d the surface. The differences are calculated from
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than 95% confidence level from a two-tailed Student’s #-test.
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Fig. 7. Differences between MC1 and MC10 cases in a sea level pressure (hPa), b 10m wind vectors and
speeds (m s, ¢ surface temperature (°C), d high cloud fraction (%), e mid-level cloud fraction (%) and f
low cloud fraction (%). The differences are calculated from simulated data by (Vannual, Mc10—Vannuat, MC1)- Vannual,
mc1 is the annual mean of 100 years in MC1 case for each parameter. The same for Vannual, mcio but in MC10
case. The dotted areas indicate statistical significance more than 95% confidence level from a two-tailed
Student’s ¢-test. The black vectors indicate that the statistical significance of latitudinal winds or meridional
winds is more than 95% confidence level from a two-tailed Student’s #-test, while the grey vectors indicate

the insignificant winds.

Due to the effects of weakened easterly trade winds and positive CRF, the SST over eastern
tropical Pacific in the MC10 case increases significantly relative to the MC1 case, which further

enhances ENSO variability and increases the frequency of extreme ENSO events. Wang Y. et
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al. (2019) found that a uniform sea surface warming could increase ENSO amplitudes and the
frequency of ENSO events. Previous studies also showed that faster warming in the eastern
tropical Pacific than other regions due to westerly wind anomalies in the equatorial Pacific
under global warming (Xie et al., 2010) could promote an increase in the frequency of extreme
El Nifio events (Cai et al., 2014, 2022). It is consistent with this study that the warming over
eastern tropical Pacific due to the ten-fold increase in BCy, emissions increases the frequency
of extreme El Nifio events. Some studies have shown that a La Nifia-like change occurs in the
mean state of SST across the equatorial Pacific due to the damping effect of upwelling sea water
in the eastern equatorial Pacific on the increase of SST (Latif and Keenlyside, 2009; Lian et al.,
2018). Cai et al. (2015) argued that a faster warming rate of the MC than the central equatorial
Pacific, enhanced upper ocean vertical temperature gradients in the central equatorial Pacific
and increased frequency of extreme El Nifio events are conducive to development of extreme
La Nifia events. These support our finding that the frequency of extreme La Nifia events is

enhanced due to the ten-fold increase in BCppb.

4. Conclusions and discussions

In this study, we investigate the meteorological parameters leading to the increase of BCopb
emissions over the MC associated with El Nifo and then examine the impact of substantial
increases in BCyp, emissions on the ENSO variability and the frequency of extreme ENSO
events using CESM model sensitivity experiments. The BCp, emission over the MC in the fall
season preceding the boreal winter of the mature phase of ENSO events is positively correlated
with Nifio indices. El Niflo can increase the biomass burning emissions over the MC by
enhancing the dry conditions. We also show that the Eastern-Pacific type of El Nifio exerts a
stronger modulation in BCp, emissions over the MC region than the Central-Pacific type of El
Nifio.

A ten-fold increase of BCpp emissions over the MC substantially warms the atmosphere
and enhances the ascending air motion above the BC layer over the MC, leading to changes in
the atmospheric circulation over the western Pacific. The changed atmospheric circulation

further weakens the near-surface easterly trade winds over the central-to-eastern tropical Pacific

19



426
427
428
429
430
431
432
433
434

435
436

437
438
439
440
441
442
443
444
445
446
447

and weakens the east-west SST gradient, which reduces upwelling of mean cold subsurface
water and leads to an increase in SST over the eastern tropical Pacific. Meanwhile, the low
cloud fraction decreases and the high cloud fraction increases over the eastern tropical Pacific,
which further enhances the increase in SST. When the mean SST increases over the eastern
tropical Pacific, ENSO variability is enhanced and the frequency of extreme El Nifo and La
Nifia events is increased due to the ten-fold of BCyb, emissions over the MC, as simulated in the
CESM experiments. It highlights that there might be more extreme ENSO events if there were
more BCyp emissions from the MC in a warmer future. The mechanism of the impacts of BCpp

aerosol emissions from the MC on ENSO are illustrated in the schematic Fig. 8.

(O BC aerosols from the fire emissions @ Westerly anomaly weakens (@) Decreased low clouds and
absorb solar radiation and heat the air, the trade wind and the tropical increased high clouds further
which enhances the updraft over the MC east-west SST gradient enhance the increase of the SST

60° N

60° E 120° E 1809 120° W / S0O° \N
T —T—T— T — =

60°S

Fig. 8. Mechanism of the impacts of biomass burning black carbon aerosol emissions from the Maritime

Continent on El Nifio—Southern Oscillation. Color shadings represent the difference in sea surface
temperature between the MC1 and MC10 cases. Arrows indicates the difference in atmospheric circulation
between the MC1 and MC10 cases. The schematic highlights the tropical Pacific mean state changes in
response to enhanced black carbon emissions over the Maritime Continent. The change in El Niflo—Southern

Oscillation statistics can then follow the mean state changes but is likely model dependent.

There are some limitations and uncertainties in the study. Concerning the experimental
design for exploring the interaction between BCp, and ENSO, two key factors need to be
considered. Firstly, current models lack the capability of online calculation of BCpb, emissions.
Secondly, the oceanic responses are much slower than the atmosphere. On the background of

these factors, the direct response of BC emissions over the MC region to individual El Nifio
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events and the influence of the large increase in BC emissions on ENSO statistical probability
due to mean state changes are separately analyzed in this study with different time scales. In
the real world, the loop linking the increased BC emissions during an El Niflo event back to
another ENSO event could be hidden by the internal variability. Besides, any change in extreme
ENSO events in the real world is difficult to be attributed to the changing aerosols due to their
weak forcing compared to natural variability. To address these challenges, the annual BCpp
emissions from the MC region are amplified by a factor of 10 in the CESM simulation (MC10)
for investigating the BC impact on ENSO. It allows the signal of climate response to BC to be
stronger than internal variability of the climate model, and such a large perturbation was also
adopted in previous studies (e.g., Lou et al., 2019a, b; Sand et al., 2013, 2015; Stjern et al.,
2017; Yang et al., 2019). However, in the real world, it is unrealistic that BCp, emissions over
the MC associated with El Nino alone can reach 10 times of that in 2006, which is a relatively
high emission year affected by a moderate El Nifio.

When conducting model simulations in this study, the atmosphere component focuses on
the troposphere with 30 vertical levels from the surface to about 3.6 hPa. However, the biomass
burning aerosol can also induce deep convection due to their release of sensible heat and affect
stratospheric climate (Trentmann et al., 2006; Chavan et al., 2021). Whether BC emissions from
the MC can affect stratospheric climate and feedback on ENSO requires further studies using a
high-top atmospheric model.

The response of ENSO variability to external climate forcing in model simulations remains
a controversial topic, as ENSO is largely influenced by a delicate balance of multiple
amplification and damping feedbacks. As indicated in Lou et al. (2019a), the 2-degree version
of CESM1.2 simulates more extreme ENSO events than observations. We use the 2-degree
atmosphere configuration because the ENSO variability requires long-term simulations and 2-
degree atmosphere configuration is much more efficient than 1-degree configuration. Also, the
model resolution and version are consistent with our previous study (Lou et al., 2019a),
although it may not be the most accurate model version in simulating ENSO statistics. Some
modeling studies show weakened ENSO variability under a warming climate (Kohyama et al.,
2018), while CESM results showed the opposite (Wang Y. et al., 2019). Therefore, we cannot

rule out the model dependence of these simulation results. Also, the 100-year results may not
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be long enough to fully capture the ENSO statistics. These deserve further exploration with
multi-models, large ensemble and long-term simulations in future studies.

In this study, we focused on BC emissions from the MC region, but we also note that
ENSO modulates fire across the tropics with some influences being potentially constructive and

other aspects being destructive, which also requires future investigation.
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