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ABSTRACT

A new approach for processing of piecewise-constant
signals is proposed. It is based on modeling the ob-
served data as a sum of a random signal and noise. The
random signal has a Gibbs distribution, and the noise is
Gaussian. A MAP criterion is derived for joint estima-
tion of the number of signal levels and reconstruction
of the signal. The criterion comprises of three terms,
one corresponding to the likelihood of the data and two
to penalties. One penalty term penalizes for unneces-
sary transitions, and the other, for unnecessary levels.
The method has been tested on synthesized data and
applied to single ion channel recordings.

1. INTRODUCTION

Piecewise constant signals arise frequently in many ar-
eas of science and engineering. They are characterized
by several constant levels and are commonly corrupted
by unknown noise. In many applications, the number of
levels and their associated values are not known. The
signals themselves also change levels randomly. The
main processing task is that of detecting the number
of levels and reconstructing the noiseless signal.
There are a variety of methods for addressing this
problem. In this paper, we propose a procedure based
on hierarchical models. The observed data are repre-
sented as a sum of two random processes, one corre-
sponding to the signal and the other to the noise. The
unobservable (noiseless) signal is modeled by a Gibbs
distribution and the noise by a Gaussian distribution.
We apply a maximum a posteriori (MAP) criterion to
obtain the optimal number of levels and the estimate
of the associated signal. The resulting criterion is a
penalized likelihood function with terms that can be
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easily interpreted. The method is implemented itera-
tively in stages by using a tree-structure (TS) initial-
ization scheme [5] and the Iterated Conditional Modes
(ICM) method [2]. In the first stage, it is assumed that
the signal has only one level, in the second two levels,
in the third three, and so on. After the completion of
each stage, the best sequence is selected for that stage
and compared to the best sequence from the previous
stages. If based on the derived criterion the sequence
from the latest stage is better, it is kept, otherwise it
is removed. The procedure ends with the processing of
the hypothesis associated with the maximum number
of levels.

We are interested to apply our method to patch
clamping recordings. One of the main objectives of
patch clamping is the study of ion permeation mecha-
nisms in biological membranes. Patch clamping allows
for the isolation of small patches of membranes and in-
volves measurement of ion channel currents. The ion
channels are large proteins embedded in the membranes
of all living cells. These macromolecules form pores
across the cell membrane, and in certain conforma-
tions, they allow the flow of ions into or out of the cell,
thereby controlling the electrical function of the cell.
The measured currents are noisy piecewise constant sig-
nals which reflect the gating kinetics of the individual
channels. Previous attempts to process such signals
include the half amplitude analysis [8], mean-variance
histograms [8], the stategram [7], various forms of the
Hinkley detector [3], and Bayesian methods based on
Markov chain prior distributions [4]. For an overview
of statistical analysis methods in the study of ion chan-
nels, see [1].

In this paper, we provide the derivation of our pro-
cedure, interpret the results, and show the necessary
steps for its implementation. We also test the method
on synthesized signals and apply it to single ion channel
currents.
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2. PROBLEM STATEMENT AND
TERMINOLOGY

Let X, be a signal which represents a random sequence
of N samples, with k£ being the number of possible
signal values (levels), and let x; be a realization of
X4:. The set of various levels is denoted by S =
{51,82, - s}, and the collection of all possible signal
sequencies x; by the set X3, where X = {x; = [z:]1]

zi[2] - - z&[N]]T : zi[i] € Sk, 1 < i < N}. The signal _

remains constant with a value equal to s; € S, i =
1,2,.. .k, for some time, which is referred to as the
dwell time, and then moves to a different level. It then
remains there for another dwell time, then changes lev-
els again, etc. The signal x; is unobservable. Instead,
we observe the noise corrupted version y, which is ob-
tained as a sum of x; and a white noise vector w, i.e.,

y=X; +Ww. : (1)

The number of signal levels k&, the signal levels i, and
the noise parameters are unknown. Also unknown are
the dwell times of the signal. Based on the model (1)
and the assumptions

o the signal X; has a finite number of well defined
levels k, where k£ < K, for a known K,

¢ the signal is described by a Gibbs distribution,

o the noise samples are independent and zero mean
Gaussian with variances that depend on the sig-
nal levels, and

e the introduced random processes are time revers-
ible,

the objective is to determine from y the number of
levels k, k € {1,2,---, K}, and estimate the signal x,
which includes the signal levels s;, { = 1,2,-..,k, and
the associated dwell times.

One of the key assumptions is the Gibbs distribu-
tion of the random signal X;. If x; is one outcome
from the set X%, its probability is given by [2], [6],

eV (Xa)

p(xz) = A (2)

where Z; is a normalizing constant, and U(x;) is an
energy function. With the assumption (2), we adopt a
neighborhood system N, which is a collection of subsets
of {1,2,---,N}, thatis N = {N; :i € {1,2,.---,N}},
where N; denotes the neighbors of i and satisfies the
conditions (a) i ¢ A; and (b) i € N iff j € M. Thus,
X is a one-dimensional Markov random field with re-
spect to A,

Finally, we introduce the sequence of k different la-
bels 1, where Ii[i] € {1,2,---,k}. This sequence is
associated with the signal sequence x; via |

xi = ®(1e, Se) (3)

where ®(-) is a function that uniquely maps the label
sequence 1; to the signal x; according to zi[i] = sy,
i€{1,2,---,N}. For example,ifl; =[11213 -7,
x¢ = [51 8y 52 51 83 -~ ]T In quantifying the probabil-

- ity p(xi), we choose energy functions that allow us to

write

p(xe) = p(le). (4)

3. ESTIMATION CRITERION

We want to apply the maximum a posteriori probability
(MAP) criterion for estimating k. The marginalized

. MAP estimate is given by

k = argmaxp(kly) (5)

where p(kly) is the posterior probability mass function
of k given the observed data y. This criterion will be
very difficult to implement because its solution is based
on

~

k = arg max {Z / A F(y e, 8:) f (&)P(h)?(’ﬂ“k}
L *

(6
where f(y|ls, 8:) is the density of the data given the
label sequence 1; and the signal and noise parameters
8 with prior density f(8:), O is the parameter space
of 8y, and p(k) is the prior probability of k levels. Note
that the surmmmation in (6) has an extremely large num-
ber of terms.

Another MAP estimator jointly provides the MAP
estimates of k£ and x;, and it is expressed by

x; = argmaxp(xxy). (M
L T3

This criterion can readily be evaluated by using one of
several existing iterative techniques.

Finally, we introduce a third criterion, which we
find more appropriate than (7) for reasons to be ex-
plained below. The form of the criterion is

I; = arg maxp(li|y) (®)
or
ii = arg xilakx {/@ fylk, ek)f(ok)P(lk)P(k)dok} :
» 3 (9)




Clearly, the criterion (9) selects the joint MAP esti-
mates of k and the label sequence 1;. Its main dif-
ference from (7) is that it integrates out the unknown
signal and noise parameters. Of course, once k and I;
are estimated, it is trivial to determine the signal levels
s; and obtain the estimate of X

The evaluation of (9) is easier than that of (6) but is
still computationally intractable. One difficulty is the
evaluation of the normalizing constants Z; needed due
to p{l;). To alleviate this problem, we substitute p(l¢)
by the pseudolikelihood [2)]

o) = [T p(tliliont, ¢) (10)

where ¢ denotes the parameters of the Gibbs distri-
bution, and 9li[i] is the set of neighboring samples of

Ik[4).

[]Another problem in evaluating (9) is the computa-
tion of the integral [g, f(y|lk,0:)f(6:)d0. However,
by Taylor expending f(y|lk,8:) around the maximum
likelihood estimates 8¢, and using asymptotic assump-
tions, we can approximate it by

f(YHk’ ak)

'—1 nj

/ F(¥ e, 6:)£(8£)dBy (11)

where 1; is the estimated label sequence, and n; are
the total number of samples whose label is I;[] = j.

With these approximations and the assumptions
that the additive noise is zero mean Gaussian with level
dependent variance and p(k) = 1/K, the MAP crite-
rion results in

k

1; = argmin E Jlnc:r —lnq(lg)+21nn,
L | 53 j=1
(12)

where 6% is the estimated variance of the samples la-
beled as {[-] = j. The interpretation of the three terms
in (12) is straightforward. The first term is the likeli-
hood which decreases with increasing k. The second
and third terms are penalties for introducing signal
transitions from one level to another and additional
levels, respectively, and they grow with the number of
transitions and k. Note that penalization for the pa-
rameters of the Gibbs distribution is not necessary be-
cause we assume the same parameters are present for
all the models used in (12).

4. IMPLEMENTATION OF THE
PROPOSED CRITERION

The criterion (12) can be implemented by applying the
iterated conditional modes (ICM) algorithm [1}. For

good performance, the ICM requires relatively good
initial conditions. To obtain them we propose to use
the tree-structure (TS) method introduced in [5), which
is a completely data driven scheme. The overall (TS-
ICM) procedure consists of the following steps. First,
assume that £ = 1, estimate the only level §;, and
evaluate the criterion function. Set k = 2, and as initial
conditions use s( ) =5 —¢and §g°) = 81 + ¢, where
€ is some small number, and §; is the result for k =
1. Apply the ICM method, estimate &, and §,, and
evaluate the criterion. Set k = 3 and use as_initial
conditions 5&0 =8 —¢ 5 ) = & + ¢, and 3:(,0) = &,
with §; and 3; being the results for k£ = 2, and continue
with the ICM and the evaluation of the criterion. As
another possible set of initial conditions use 5(10 = &,
'( ) = §3—e,and § s = §3+¢, and again apply the ICM
and evaluate the cnterlon As a final sequence of three
levels, 13, choose the one that has the smaller criterion
value. Next set £ = 4, and continue along the same
lines until the testing of k = K levels is completed.
The solution is the label sequence l; that yields the
smallest criterion value. Once ) is determined, the
signal X; is easily estimated.

5. SIMULATION RESULTS

Our method was tested on synthesized data and ap-
plied to real patch clamp recordings. The synthesized
data records had 2000 samples, three different levels,
and 6 level changes. The signal-to-noise ratio (SNR)
was defined by min|A/o|, where A is the difference
between the levels of two adjacent segments and o the

‘standard deviation of the noise, which was the same for

every segment. The SNR was varied between 1 and 5
in steps of 1. For each SNR, there were 100 trials. The
probability p(le[i]|01(i], @) in (10) was defined by

ep“m[‘]
Z;=1 ep“i[‘]

where ¢ = B, and un,[i] denotes the number of neigh-
bors of i having the label m. The number of neighbors
in the experiment was equal to four, that is, two neigh-
bors on each side. The results are shown in Table 1.
For SNR’s of 2 and higher, the method had very good
performance. Figure 1 at the top shows a typical real-
ization with SNR=2 and at the bottom, the histogram
of the detected level changes in 100 trials. The peaks of
the histogram are at the correct locations of the signal
transitions.

Figure 2 at the top displays a real patch clamp
recording, which is quite complex and has several con-
ductance levels. We applied our procedure to these
data to determine the number of levels and estimate

p(l[i) = m|OL[i]), &) = (13)




e’

Xg. The maximum number of hypothesized levels was
15. The procedure found 10 levels and estimated the
noise-free signal shown at the bottom of Figure 2.

[SNRATI] 21 3 [4]5]

1 0]971 3 |O}O
2 010 98 | 1]1
3 0} 0 98 j210
4 0| 0 1100]0}0
5 0} 099 §1}0

Table 1: The entries represent the number of times k
levels were estimated in 100 trials.
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Figure 1: Top: A realization with 3 levels and 6 transi-
tions for SNR=2. Bottom: Histogram of the estimated
transitions in 100 trials.

1600 v Y v T v T v o
1400
1200

1000

o 2 Py Y

a A " . : A
o 100 200 300 400 S00 €00 700 800 900 1000

1600 - = - - ¥ T |

200

M 2 M A M s s A N
o 100 200 300 400 S00 600 700 800 900 1000

Figure 2: Top: Real data with unknown number of
levels. Bottom: Estimated signal with 10 levels.
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