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Tuesday, April 5

Domain Decomposition Methods I

8:00 - 8:25 Michael Pernice
8:25 - 8:50 W.K. Tsui

8:50 - 9:15 Marc Garbey

9:15 - 9:40 Christina Christara

Nonlinear Problems I

8:00 - 8:25 Masao Igarasi
8:25 - 8:50 Homer F. Walker
8:50 - 10:15  Coffee Break

Domain Decomposition Methods II

10:15 - 10:40  Xiao-Chuan Cai

10:40 - 11:05  Seongjai Kim

11:05-11:30 Tony Chen

11:30 - 11:55 Steven M. McKay

DISTRIBOTION OF 7

Room A

Chair: Seymour Parter

Domain Decomposed Preconditioners with Krylov Sub-
space Methods as Subdomain Solvers

Domain Decomposition Methods for Solvmg an Image
Problem

A Schwarz Alternating Procedure for Singular Perturba-
tion Problems

Schwarz and Multilevel Methods for Quadratic Spline Col-
location

Chair: Homer Walker Room B

On the Convergence Processes of Newton-Raphson Itera-
tion Methods

Choosing the Forcing Terms in an Inexact Newton Method

Chair: Seymour Parter Room A

Domain Decomposition Based Iterative Methods for Non-
linear Elliptic Finite Element Problems

Parallel Iterative Procedures for Approximate Solutions of
Wave Propagation by Finite Element and Finite Difference
Methods

Multigrid and Multilevel Domain Decomposition for Un-
structured Grids

The Use of the Spectral Method within the Fast Adaptive
Composite Grid Method
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Nonlinear Problems II

10:15 - 10:40 Secett Hutchinson

10:40 - 11:05 Rosemary Renaut

11:05-11:30 Randall Bramley

11:30 - 11:55  Matthias Heinkenschloss

12:00 - 4:30  Informal Discussion

Integral Equations and
Inverse Problems

4:45 - 5:10  J. White

5:10 - 5:35 Curt Vogel

5:35 - 6:00 C.T. Kelley

6:00 - 6:25 J.G. Wade

Eigenvélue Problems

4:45 - 5:10 Clemens W. Brand

5:10 - 5:35 Andreas Stathopoulos

5:35 - 6:00 Victor Pan

Chair; Homer Walker Room B

A Two-Level Parallel Direct Search Implementatioﬂ for
Arbitrarily Sized Objective Functions

?a,,rallel Algorithms for Unconstrained Optimizat,ioil_ by
Multisplitting with Inexact Subspace Search - The Ab-
stract

Solving Linear Inequalities in a Least Squares Sense

Numerical Solution of Control Problems Governed by Non-
linear Differential Equations

Chair: Nick Trefethen Room A

Comparing Precorrected-FFT and Fast Multipole Algo-
rithms for Solving Three-Dimensional Potential Integral
Equations

The Numerical Solution of Total Variation Minimization
Problems in Image Processing

GMRES and Integral Operators

Iterative Methods for Distributed Parameter Estimation
in Parabolic PDE

Chair: Roland Freund Room B

Preconditioned Iterations to Calculate Extreme Eigénval—
ues

Overlapping Domain Decomposition Preconditioners for
the Generalized Davidson Method for the Eigenvalue Prob-
lem ‘

New Algorithms for the Symmetric Tridiagonal Eigenvalue
Computation




Workshop: Iterative Software Kernels  Chair: lain Duff Room A
(Evening: 8:00p - 10:00p)

lain Duff Current status of user level sparse BLAS
Michael A. Herouz Current status of the Sparse BLAS Toolkit
Craig C. Douglas : Adding Matrix-Matrix and Matrix-Matrix-Matrix Multi-

ply to the Sparse BLAS Toolkit

Wednesday, April 6

Nonsymmetric Solvers I Chair: Tom Manteuffel Room A
8:00 - 8:25 Tobin Driscoll Conformal Mapping and Convergence of Krylov Iterations
8:25 - 8:50 Kim-Chuan Toh Convergence Estimates for Iterative Methods Via the

Kreiss Matrix Theorem on a General Complex Domain

8:50 - 9:15 N. J. Meyers An Iterative Method for the Solution of Linear Systems
Using the Faber Polynomials for Annular Sectors

9:15 - 9:40 Gerhard Starke Subspace Orthogonalization for Substructuring Precondi-
tioners for Nonsymmetric Systems of Linear Equations

Parallel Computation I Chair: Howard Elman Room B

8:00 - 8:25 Wayne Joubert PCG: A Software Package for the Iterative Solution of Lin-
ear Systems on Scalar, Vector & Parallel Computers

8:25 - 8:50 Claude Pommerell Migration of Vectorized Iterative Solvers to Distributed
Memory Architectures

8:50 - 9:15 Youcef Saad P_SPARSLIB: A Parallel Sparse Iterative Solution Package

9:15 - 9:40 Barry Smith Portable, Parallel, Reusable Krylov Space Codes

9:40 - 10:15  Coffee Break




Nonsymmetric Solvers II

10:15- 10:40 Emanuel Knill
10:40 - 11:05 Jane Cullum

11:05 - 11:30  Karl Gustafson

11:30- 11:55 Olavi Nevanlinna

Parallel Computation II

10:15 - 10:40 Anne E. Trefethen

10:40- 11:05 Gene Poole

11:05- 11:30 Shu-Me: C. Richman

11:30 - 11:55 Michael Herouz

12:00 - 4:30  Informal Discussion
Iterative Methods: Theory

4:45 - 5:10 Eugene L. Wachspress

5:10 - 5:35 W.E. Boyse

5:35 - 6:00 Tugral Dayar

6:00 - 6:25 Eldar Giladi

Chair: Tom Manteuffel Room A

Minimal Residual Method Stronger than Polynomial Pre-
conditioning

Peaks, Plateaus, Numerical Instabilities, arid Achievable
Accuracy in Galerkin and Norm Minimizing Procedures
for Solving Ax=b

Computational Trigonometry

Convergence of Arnoldi Method

Chair: Howard Elman Room B

The Conjugate Gradient NAS Parallel Benchmark on the
IBM SP1

Advancements and Performance of Iterativ_é;e Methods In
Industrial Applications Codes on Cray Parallel/Vector Su-
percomputers

A Component Analysis Based On Serial Reéul‘ts for Ana-
lyzing Performance of Parallel Iterative Programs

Performance Analysis of High Quality Parallel Precondi-
tioners Applied to 3d Finite Element Structural Analysis

Chair: Roland Freund Room A

Recent ADI Iteration Analysis and Results

A Sparse Matrix Iterative Method for Efficiently Comput-
ing Multiple Simultaneous Solutions

On the Effects of Using the GTH method in the Iterative
Aggregation/Disaggregation Technique

On the Interplay Between Inner and Quter Iterations for
a Class of Iterative Methods




Software and Programming Environ- Chair: Steve Ashby Room B

ments

4:45 - 5:10 Are Magnus Bruaset Object-Oriented Design of Preconditioned Iterative Meth-
ods

5:10 - 5:35 Linda Hayes VOILA-A Visual Object-Oriented Iterative Linear Algebra
Problem Solving Environment

5:35 - 6:00 D. Kim Multilevel Adaptive Solution Procedure for Material Non-
linear Problems in Visual Programming Environment

6:00 - 6:25 David R. Kincaid ITPACK Project: Past, Present, and Future

Workshop: Recent Progress and Chair: Graham Carey Room A

Advances in Iterative Software
(Evening: 8:00p - 10:00p)

David M. Young Origins of the ITPACK Project

David Kincaid Recent Developments on ITPACK

Graham Carey Design Considerations for a Portable Parallel Package

Wayne Joubert Adapting Iterative Software Libraries to Parallel Environ-
ments

Rossen Parashkevov Operator-based Iterative Tools

Thursday, April 7

Nonsymmetric Solvers ITI Chair: Anne Greenbaum Room A

8:00 - 8:25 Diederik Fokkema Generalized Conjugate Gradient Squared

8:25 - 8:50 Roland Freund Block Quasi-Minimal Residual Iterations for Non-
Hermitian Linear Systems

8:50 - 9:15 Noel M. Nachtigal A Look-Ahead Variant of TFQMR

9:15 - 9:40 Tedd Szeto Composite-Step Product Methods for Solving Nonsym-

metric Linear Systems




Parallel Computation III

8:00 - 8:25

8:25 - 8:50

8:50 - 9:15

9:15 - 9:40

9:40 - 10:15

Lei Lt

Dan. Hu

H.S. Kohli

John Shadid

Coffee Break

Nonsymmetric Solvers IV

10:15 - 10:40

10:40 - 11:05

11:05 - 11:30

11:30 - 11:55

E. Gallopoulos
Teri Barth

Ron Morgan

David Young

Parallel Computation IV

. 10:15 - 10:40

10:40 - 11:05

11:05-11:30

11:30 - 11:55

12:00 - 4:30

Larry Reeves

A. Basermann

R.P. Silva

Martin Bucker

Informal Discussion

Chair: Dan Quinlan Room B

A Divide-and-Inner Product Parallel Algorithm for Poly-
nomial Evaluation

Parallelizing Sylvester-Like Operations on a Distributed
Memory Computer

Maximizing Sparse Matrix Vector Product Performance in
MIMD Computers

Parallel Performance of a Preconditioned CG Solver for
Unstructured Finite FElement Applications

Chair: Anne Greenbaum Room A

Matrix-Valued Polynomials in Lanczos Type Methods
Variable Metric Conjugate Gradient Methods

Some Comparison of Restarted GMRES and QMR for Lin-
ear and Nonlinear Problems

MGMRES: A Generalization of GMRES for Solving Large

Sparse Nonsymmetric Linear Systems

Chair: Dan Quinlan Room B

Adapting Implicit Methods to Parallel Processors

Parallelizing Iterative Solvers for Sparse Systems of Equa-
tions and Eigenproblems on Distributed-Memory Ma-
chines

A Parallel Implementation of an EBE Solver for the Finite
Element Method

An Implementation of the TFQMR-Algorithm on a Dis-
tributed Memory Machine




Student Paper Winners

4:45 - 5:10 Qing He

5:10 - 5:35 Lina Hemmingsson

5:35 - 6:00 Johannes Tausch

ODE Solvers

4:45 - 5:10 Viladimir Druskin

5:10 - 5:35 A. Lorber

5:35 - 6:00 Andrew Lumsdaine

6:00 - 6:25 Yimin Kang

7:00 - 9:00 Banquet

Chair: Tom Manteuffel and Room A
Steve McCormick

Parallel Algorithms for Unconstrained Optimizations by
Multisplitting

Analysis of Semi-Toeplitz Preconditioners for First-Qrder
PDEs

Equivariant Preconditioners for Boundary Element Meth-
ods

Chair: Paul Saylor Room B

Explicit and Implicit ODE Solvers Using Krylov Subspace
Optimization: Application to the Diffusion Equation and
Parabolic Maxwell’s System

On the Relationship Between ODE Solvers and Iterative
Solvers for Linear Equations

Krylov-Subspace Acceleration of Time Periodic Waveform
Relaxation

Convergence Analysis of Combinations of Different Meth-
ods

Location to be announced

Friday, April 8

Multigrid and Multilevel Methods I

8:00 - 8:25 Jian Shen

8:25 - 8:50 Craig C. Douglas

8:50 - 9:15 Jan Janssen

9:15 - 9:40 Stefan Vandewalle

Chair: Steve McCormick Room A

Implementations of the Optimal Multigrid Algorithm for
the Cell-Centered Finite Difference on Equilateral Trian-
gular Grids

Constructive Interference II: Semi-Chaotic Multigrid
Methods

Multigrid Waveform Relaxation on Spatial Finite Element
Meshes

Time-Parallel Iterative Methods for Parabolic PDEs:
Multigrid Waveform Relaxation and Time-Parallel Multi-
grid




Applications I

8:00 - 8:25 S.F. Ashby
8:25 - 8:50 M.J. Hagger
8:50 - 9:15 Jusst Rahola

9:15 - 9:40 Tom Cwik

9:40 - 10:15  Coffee Break
Multigrid and Multilevel Methods 11

10:15- 10:40 Michael Griebel

10:40 - 11:05 Irad Yavneh

11:05 - 11:30 ~ Michael Jung

11:30 - 11:55 Steve McCormick

Applications II

10:15-10:40 Ray S. Tuminero

1_0:40— 11:056 R. Bauer

11:05-11:30 Karen R. Baker

12:00 - 4:30  Informal Discussion

Chair: Jim Morel Room B

Modeling Groundwater Flow on Massively Parallel Com-
puters

Two Grid Iteration With a Conjugate Gradient Fine Grid
Smoother Applied to a Groundwater Flow Model

Solution of Dense Systems of Linear Equations in Electro-
magnetic Scattering Calculations

An Iterative Parallel Sparse Matrix Equation Solver with
Application to Finite Element Modeling of Electromag-
netic Scattering

Chair: Steve McCormick Room A

On the Relation Between Traditional Iterative Methods
and Modern Multilevel/Domain Decomposition Methods

Multigrid with Red Black SOR Revisited

Implicit Extrapolation Methods for Multilevel Finite Ele-
ment Computations

Multilevel First-Order System Least Squares for PDE’S

Chair: Jim Morel Room B

A Multigrid Preconditioner for the Semiconductor Equa-
tions

Preconditioned CG-Solvers and Finite_Element Grids

Modeling the Diffusion of Phosphorusb in Silicon in 3-D




Multigrid and Multilevel Methods III  Chair: Joel Dendy Room A

4:45 - 5:10 J.E. Dendy, Jr. Grandchild of the Frequency Decomposition Multigrid
Methods

5:10 - 5:35 Van Henson On Multigrid Methods for Image Reconstruction from Pro-
jections

5:35 - 6:00 John Ruge A Nonlinear Multigrid Solver for a Semi-Lagrangian Po-

tential Vorticity-Based Barotropic Model on the Sphere

6:00 - 6:25 C Liu Implicit Multigrid Method for Numerical Simulation of the
Whole Process of Flow Transition in 3-D Boundary Layers

Applications III Chair: Howard Elman Room B

4:45 - 5:10 Thomas Hagstrom Experimental and Theoretical Studies of Iterative Methods
for Nonlinear, Nonsymmetric Systems Arising in Combus-
tion

5:10 - 5:35 Colin Aro Preconditioned Time-Difference Methods for Advection-

Diffusion-Reaction Equations

5:35 - 6:00 D.Rh. Gwynllyw Preconditioned Iterative Methods for Unsteady Non- New-
tonian Flow Between Eccentrically Rotating Cylinders

6:00 - 6:25 -David Silvester Fast Non-Symmetric Iterations and Efficient Precondition-
ing for Navier-Stokes Equations

Workshop: Robust Iterative Methods  Chair: Youcef Saad Room A
(Evening: 8:00p - 10:00p)

Youcef Saad ' _ Iterative solvers in industrial applications: are we kidding
ourselves?

Mike Herouz Some current challenges for industrial CFD applications

Wei Pai Tang Multi-stage ILU preconditioners for semiconductor device
simulation

Larry Wigton Experiences with Matrix-Iterative Solvers at Boeing

Alex Yeremin Numerical experiences with advanced iterative solvers for

industrial applications




Preconditioners I

8:00 - 8:25 FEdmond Chow

8:25 - 8:50 Xigoge Wang

8:50 - 9:15 L. Kolotilina

9:15 - 9:40 Fernando Alvarado

Applications IV

8:00 - 8:25 S.W. Bova

8:25 - 8:50 A.J. Meir

8:50 - 9:15 Louis Howell

9:15 - 9:40 N.A. Hookey

9:40 - 10:15  Coffee Break

Preconditioners II

10:15-10:40 P. Amodio

10:40 - 11:05 J.E. Pasciak

11:05- 11:30  S. Holmgren

Saturday, April 9

Chair: Steve Ashby Room A

Approximate Inverse Preconditioners for General Sparse
Matrices

CIMGS: An Incomplete Orthogonal Factorization Precon-
ditioner

Incomplete Block SSOR Preconditionings for High Order
Discretizations

Block-Bordered Diagonalization and Parallel Iterative
Solvers

Chair: Room B

Iterative Methods for Stationary Convection-Dominated
Transport Problems

Velocity-Vorticity Formulation of Three-Dimensional,
Steady, Viscous, Incompressible Flows

A Multilevel Approximate Projection for Incompressible
Flow Calculations

Simulation of Viscous Flows Using a Multigrid-Control
Volume Finite Element Method

Chair: Steve Ashby Room A

Parallel Preconditioning for the Solution of Nonsymmetric
Banded Linear Systems

Preconditioning the Pressure Operator for the Time De-
pendent Stokes Problem

A Framework for the construction of preconditioners for
systems of PDE




Applications V Chair: . Room B

10:15- 10:40 Maryse Page Iterative Solvers for Navier-Stokes Equations - Experi-
ments with Turbulence Model

10:40 - 11:06  El Tziperman Multilevel Turbulence Simulations

11:05-11:30 M. Kamon » Preconditioning Techniques for Constrained Vector Poten-

tial Integral Equations, with Application to 3-D Magneto-
quasistatic Analysis of Electron Packages

12:00 - 4:30  Informal Discussion

Toeplitz and Circulant Matrix Solvers  Chair: Room A
4:45 - 5:10 Thomas Huckle Iterative Methods for Toeplitz-Like Matrices
5:10 - 5:35 Paul Saylor A Modified Direct Preconditioner for Indefinite Symmetric

Toeplitz Systems

5:35 - 6:00 Fugene E. Tyrtyshnikov Circulant Preconditioners with Unbounded Inverses: Why
Non-Optimal Preconditioners may Possess a Better Qual-
ity than Optimal Ones

6:00 - 6:25 Seymour Parter A Remark on Band-Toeplitz Preconditions for Hermitian
Toeplitz Systems

Saddle Point Problems ' Chair: Room B
4:45 - 5:10 Andy Wathen An Optimal Iterative Solver for the Stokes Problem

5:10 - 5:35 Bruno Welfert On the Convergence of Inexact Uzawa Algorithms

5:35 - 6:00 Xiezhang Li The Asymptotic Convergence Factor for a Polygon Under

a Perturbation

6:25 Conference Adjourns




FEvening Workshops

8:00pm~—10:00pm
Tuesday: [terative Software Kernels

Organizer: lain Duff

Wednesday: Recent Progress and Advances in Iterative Software
(including Parallel Aspects)
Organizer: Graham Carey

Friday: Robust Iterative Solvers
Organizer: Youcef Saad

Audience Participation is Encouraged!
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Domain Decomposed Preconditioners
with Krylov Subspace Methods as Subdomain Solvers

Michael Pernice
Utah Supercomputing Institute
University of Utah
Salt Lake City, Utah 84112

usimap@sneffels.usi.utah.edu

Extended Abstract

Domain decomposed preconditioners for nonsymmetric partial differential equa-
tions typically require the solution of problems on the subdomains. Most implementa-
tions employ exact solvers to obtain these solutions. Consequently work and storage
requirements for the subdomain problems grow rapidly with the size of the subdo-
main problems. Subdomain solves constitute the single largest computational cost
of a domain decomposed preconditioner, and improving the efficiency of this phase
of the computation will have a significant impact on the performance of the overall
method.

The small local memory available on the nodes of most message-passing mul-
ticomputers motivates consideration of the use of an iterative method for solving
subdomain problems. For large-scale systems of equations that are derived from
three-dimensional problems, memory considerations alone may dictate the need for
using iterative methods for the subdomain problems [7]. In addition to reduced stor-
age requirements, use of an iterative solver on the subdomains allows flexibility in
specifying the accuracy of the subdomain solutions. Substantial savings in solution
time is possible if the quality of the domain decomposed preconditioner is not de-
graded too much by relaxing the accuracy of the subdomain solutions.

While some work in this direction has been conducted for symmetric problems
[1, 3, 7], similar studies for nonsymmetric problems appear not to have been pursued.
This work represents a first step in this direction, and explores the effectiveness of
performing subdomain solves using several transpose-free Krylov subspace methods,
in particular GMRES {[6], transpose-free QMR [2], CGS [8], and a smoothed version
of CGS [9]. Depending on the difficulty of the subdomain problem and the con-
vergence tolerance used, a reduction in solution time is possible in addition to the
reduced memory requirements. The domain decomposed preconditioner is a Schur
complement method in which the interface operators are approximated using interface
probing. However, the results apply to overlapping Schwarz methods as well.

Subdomain solves are carried out until a prespecified accuracy is obtained. As a
result the outer iterative method must accomodate variable preconditioning. For this
reason FGMRES [5] is used as the base iterative method. While a strategy which




uses a fixed number of iterations on the subdomains may be employed, this would
rule out methods that initially increase or fail to reduce the residual, such as CGS
and quasi-minimal smoothed methods. It turns out that the low cost per iteration of
these methods makes them desirable in many circumstances.

Numerical experiments conducted with model convection-diffusion problems show
that the effectiveness of the domain-decomposed preconditioner (as measured by the
number of iterations to satisfy a fixed convergence criterion) is not reduced as the
accuracy of the subdomain solves decreases to around 10~%. However as this accuracy
is further reduced, some deterioration in the overall convergence rate is seen; in many
instances this reduced effectiveness is offset by reduced work on the subdomains.
However, very low accuracy of the subdomain solves, around 10~1, has a pronounced
negative effect on the domain decomposed preconditioners (except in the cases where
GMRES is used), and has even been observed to lead to convergence failure in some
cases. These observations have been seen to hold in both constant- and variable-
convection problems.

This work has been submitted for inclusion in the Proceedings of the Seventh
International Conference on Domain Decomposition Methods in Scientific Computing.
A complete report [4] is available on request.
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Domain decomposition methods
for solving an image problem

W.K. Tsui and C.S. Tong
Department of Mathematics

Hong Kong Baptist College
14 Dec 1993

Abstract

The domain decomposition method is a technique to break up a prob-
lem so that ensuing sub-problems can be solved on a parallel computer.
In order to improve the convergence rate of the capacitance systems, pre-
conditioned conjugate gradient methods are commonly used. In the last
decade, most of the efficient preconditioners are based on elliptic partial
differential equations which are particularly useful for solving elliptic par-
tial differential equations. In this paper, we apply the so called covering
preconditioner, which is based on the information of the operator under
investigation. Therefore, it is good for varies kinds of applications, specif-
ically, we shall apply the preconditioned domain decomposition method
for solving an image restoration problem. The image restoration prob-
lem is to extract an original image which has been degraded by a known
convolution process and additive Gaussian noise.




A Schwarz Alternating Procedure for Singular Perturbation
Problems

Authors: Marc Garbey,
LAN, Universit\'(e) Claude Bernard Lyon I, 69622
Villeurbanne Cedex, France
e-mail: mgarbey@lanl.univ-lyonl fr

Hans G. Kaper

MCS Division, Argonne National Laboratory
Argonne, IL 60439

e-mail: kaper@mcs.anl.gov

We show that the Schwarz alternating procedure offers a good algorithm for the
numerical solution of singular perturbation problems, provided the domain decomposition
is properly designed to resolve the boundary and transition layers. We give sharp
estimates for the optimal position of the domain boundaries and present convergence rates
of the algorithm for various second-order singular perturbation problems. The splitting of
the operator is domain-dependent, and the iterative solution of each subproblem is based
on a modified asymptotic expansion of the operator. We show that this asymptotic-
induced method leads to a family of efficient massively parallel algorithms and report on
implementation results for a turning-point problem and a combustion problem,




Schwarz and Multilevel Methods for Quadratic Spline Collocation

Christina C. Christara
Department of Computer Science
University of Toronto
Toronto, Ontario M5S 1A4
CANADA
cccles. toronto.edu

Barry Smith
Department of Mathematics
University of California, Los Angeles
Los Angeles, CA 90024-1555
U.S.A.
bsmith@math.ucla.edu

Smooth spline collocation methods offer an alternative to Galer-
kin finite element methods, as well as to Hermite spline colloca-
tion methods, for the solution of linear elliptic Partial Dif-
ferential Equations (PDEs).

Recently, optimal order of convergence spline collocation methods
have been developed for certain degree splines. Convergence
proofs for smooth spline collocation methods are denerally more
difficult than for Galerkin finite elements or Hermite spline
collocation, and they require stronger assumptions and more res-
trictions. However, numerical tests indicate that spline collo-
cation methods are applicable to a wider class of problems, than
the analysis requires, and are very competitive to finite element
methods, with respect to efficiency.

We will discuss Schwarz and multilevel methods for the solution
of elliptic PDEs using quadratic spline collocation, and compare
these with domain decomposition methods using substructuring.
Numerical tests on a variety of parallel machines will also be
presented. In addition, preliminary convergence analysis using
Schwarz and/or maximum principle technigques will be presented.
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On the Convergence Processes of Newton-Raphson Iteration
Methods

Masao Igarasi
Nihon University
1866 Kameino Fujisawa Kanagawa
Japan

Abstract not available







Title: Choosing the forcing terms in an inexact Newton method

Authors:
Stanley C. Eisenstat Homer F. Walker (speaker) ,
Department of Computer Science Mathematics and Statistics Department
Yale University Utah State University
New Haven, CT 06520 Logan, UT 84322-3900

Abstract: An inezact Newton method is a generalization of Newton’s method for solving F(z) = 0,
F:R"™ — IR", in which each step reduces the norm of the local linear model of F'. At the kth
iteration, the norm reduction is usefully expressed by the inezact Newton condition

WF(ze) + F'(ax) skll < mellF(ze)ll,  me €10,1),

where z; is the current approximate solution and s is the step. In many applications, an 7y is
first specified, and then an s; is found for which the inexact Newton condition holds. Thus 7
is often called a “forcing term”. In practice, the choice of the forcing terms is usually critical to
the efficiency of the method and can affect robustness as well. Here, we outline several promising
choices, discuss theoretical support for them, and compare their performance in a Newton iterative
(truncated Newton) method applied to several large-scale problems.
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Domain Decomposition Based Iterative Methods for
Nonlinear Elliptic Finite Element Problems

Xiao-Chuan Cai*

The class of overlapping Schwarz algorithms has been extensively studied for linear elliptic finite
element problems. In this presentation, we consider the solution of systems of nonlinear algebraic
- equations arise from the finite element discretization of some nonlinear elliptic equations. Several
overlapping Schwarz algorithms, including the additive and multiplicative versions, with inexact
Newton acceleration will be discussed. We show that the convergence rate of the Newton’s method
is independent of the mesh size used in the finite element discretization, and also independent of
the number of subdomains into which the original domain in decomposed. Numerical examples will
be presented.
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Parallel Iterative Procedures for Approximate
Solutions of Wave Propagation by Finite
Element and Finite Difference Methods

Seongjai Kim*

Abstract. Parallelel iterative procedures based on domain decomposition tech-
niques are defined and analyzed for the numerical solution of wave propagation by
finite element and finite difference methods. For finite element methods, in a La-
grangian framework, an efficient way for choosing the algorithm parameter as well as
the algorithm convergence are indicated. Some heuristic arguments for finding the
algorithm parameter for finite difference schemes are addressed. Numerical results
are presented to indicate the effectiveness of the methods.

Key words. Domain decomposition method, Parallel iterative algorithm, Wave propagation,
Robin interface boundary condition.

1. Introduction.

Wave propagation in real media shows the effects of attenuation and dispersion. There-
fore a realistic simulation of wave propagation should be able to reproduce these two ef-
fects. Wave equations are often served by a suitable radiation condition at infinity. Such
problems can be solved numerically by first truncating the given unbounded domain, im-
posing a suitable outgoing radiation condition on the {artificial) boundary of the truncated
bounded domain and then solving the resulting problem using discretization methods.

Let @ ¢ IR%, d < 3, be a bounded domain with a Lipschitz boundary I' = 9. Consider
the following wave problem

—Au —a(z)?u+ig(z)*u = f(z), z€Q,
(1.1) ’ ou -
% +ia(z)u = 0, zel,

where ¢ is the imaginary unit and the coefficients a(z), ¢(z) and a(z) satisfy

0<ag <a(z) <ar < oo,
0< g <qlz) < q < o0,
o =aqa,—i0, o >0, 0; >0,
and are sufficiently regular that the existence and unuqueness of a solution of (1.1) lying

in H°(Q) for some s > 1 for reasonable f are assured. The coefficient « is properly chosen
such that the second equation of (1.1) represents a first-order outgoing radiation condition
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that allows normally incident waves to pass out of ) transparently. The problem (1.1)
describes the propagation of time-harmonic waves such as, e.g., electromagnetic waves
in (conducting) media, discretizations of the time—dependent Schrddinger equations by
implicit difference schemes, inverse scattering problems, seismic waves, and underwater
acoustics.

The wave problem (1.1) seems to be difficult to solve. In addition to having a complex—
valued solution, the problem (1.1} is neither Hermitian symmetric nor coersive; as a
consequence, most standard iterative methods either fail to converge or converge so slowly
as to be impractical, The purposes here are to define massively parallelizable domain
decomposition iterative procedures and indicate efficient automatic strategies for-"choo_sing
iteration parameters.

Concerning the iterative numerical solvers, we refer to Bayliss, Goldstein and Turkel
and Freund [1, 7] for the ¢onjugate gradient-type algorithms, and Douglas, Hensley and
Roberts [4] for an ADI algorithm, A strip-type domain decomposition method by finite
differences for the problem (1.1) in a rectangular domain is constructed by the author [8].

An outline of the paper is as follows. In §2 a domain decomposition is considered
using the Robin interface condition. In §3 a finite element procedure is illustrated and
the corresponding parallel iterative procedure is defined. A convergence result and an
efficient strategy for finding the algorithm parameter are presented in the section. In §4,
an automatic (but heuristic) strategy for finding efficient algorithm parameters for finite
difference solutions of the problem is presented. The section 5 reports some numerical re-
sults to show the effectiveness of the a,Igonthms The last section indicates the conclusions
and possible applications. -

2. Domain decompasition methdd_.
Let {Q;, 7 =1,:.., M} be a partition of (%:

-

ﬁ:U?’iIQJ‘; Qjﬂflkgﬁ, i#k

Assume that 69, j = 1,. ,M , Is also Lipschitz and that €1; is star-shaped. In practice,
with the exception of perhaps a few §2;’s along I', each 1; would be convex with a
piecewise—smoath boundary. Let

Ly =TN00, Tp=Tiy=lno0, D= U=

1rjk=
The weak formulation of the problem (1.1) is given by seeking v € V = H'(Q) such that
(2.1) (Vu, Vo)a — ((a® — ig*Ju, v)q + (iau,v)r = (f,0)q, v eV

Let us consider the decomposition of the problem (1.1) over {QJ} The problem (1.1)
is equivalent to the following: Find u;, 4 =1,..., M, such that

(2.2) 7 ~Auj ~ alz)®u; +ig(x)’u; = f(z), = €y,

, . an . L .
(2.3) B B, + io(z)u; = 0, zely,
(2.4) O +1i8 j—““g“‘”ﬁ“k’ z € Lj,

DN Ovy
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where v; is the unit outward normal from 2, and 3 is a complex (normally chosen to be
a constant) function on ¥ with Red > 0. The consistency conditions are replaced by the
Robin interface boundary condition (2.4). This replacement is often more convenient, see
[11, 8].

Now, let V; = H'(Q;). Testing (2.2) against v € V; and using (2.3)—(2.4), we obtain
the weak formulation for (2.2)-(2.4) over the partition {Q;}: find w; €V}, j=1,..., M,
such that

(Vuy, Vo)a, — ((a® —ig®)u;,v)a, + > _(iBu;,v)r,, + (iow;, v)r,
k

2.5
(22) = Z("%ﬁi + iBur,v)r,,; + (f,v)e,, vEV;.

k Vi

Basic idea of a domain decomposition iterative method is to localize the computations
to smaller subdomain problems. It is {easible to localize to each ; by evaluating the
quantities in (2.2)-(2.4) [resp. (2.5)] related to Q; at the new iterate level and those in
(2.2)—(2.4) [resp. (2.3)] related to neighboring subdomains 0 such that T';; # 0 at the
old level.

3. The finite element method.

Let V" be a finite element space of V' with the regular triangulations [3] not crossing
the interfaces ¥ and of the maximum diameter h, and the local finite element spaces are
defined by V}* = {v|o, : v € V*}. Our analysis below shall include the case in which
{Q;} is a partition of §} into individual elements. The finite element approximation to
(1.1) is given by restricting (2.1) to the space V"; for the existence and uniqueness of the
approximate solution and convergence properties of the method, we refer to [3, 6, 5.

The finite element domain decomposition iterative algorithm can be constructed as
follows: given arbitrary initial guess {u;‘o € th :7=1,..., M}, we build inductively the
sequences {u?n € th :j=1,...,M}, n>1, by solving

(Vu?’", Vo)a, — ((a® - iq2)u?’",v)g_, + Z(iﬁ u?’”,v)rjk + (iau?’”,v)pj
k

(3.1) dulm1
= Z(__—akl/—k— + Z'/B’U:Z,n—la'v)l‘kj + (f"u)Qj » VE th'
k

Here, when we consider the decomposition of the domain into the individual elements,
the following observation is very critical; Since the method is trying to impose the continu-
ity of both the displacement and the flux on each interface, there will be a flux conservation

h

error, i.e., -372 # ——31;—2 unless the approximate solution u* € V" is a linear function over
the domain €2, a totally uninteresting case. So, let us introduce Lagrangian multipliers 0’111
the interfaces {I'j;}. Assume that, when o/ € V}*, the normal component of its flux :;Ui]
on I'j; is a polynomial of some fixed degree 7 and that 7 is independent of I'jz. Set

A" = {A: My, € Pr(Tj) = Aji, Dyi # 0}

note that there are two copies of P, assigned to the set I';x: Ajr and Ay;. Consider the
Lagrangian multiplier to be A;; as seen from §}; and Ax; as seen from ;. Modify (2.4)
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to read
(32) ' - /\jk + zﬁuj = /\kj +ifug, z€ ij.

Then, the parallel iterative process by the hybridized finite element method can be defined,
by dropping the superscript A, as follows:

(3.3) Select u? eV;, 3=1,..., M, arbitrarily,

then recursively compute the sequences uf € V;, n > 1, by solving
(Vu}, Vo)a, — ((a® —ig*)u},v)e, + Z(iﬁ uf,v)r,, + (iou,v)r,
k

3.4
. = ZO\QJ_I + ’L./Bu;cl'l?v)rn +(f,v)q;, veEV;,
k

(3.5) My =B — (A +iBup ), T €Ty

Note that (3.4) is independent of ATy and determines u}; then AT is computed by (3.5).
Tt should be noticed that the algorithm (3.3)—(3.5) is not requiring extra costs on compu-
tation, but, in fact, it is cheaper and leads to an easier numerical implementation.

We have the following theorem.

Theorem 3.1 ([9]). Assumeq > qo > 0 and 8> 0. The iterates {u}, AT, } € V; X Aje
in the algorithm (3.3)—(3.5) converge to the solution {u;, Aji} of the global hybridized finite
element procedure in the following senses:

u? = u; =utlg, in LAQ;),

J
)‘?k and — /\Z hand Aj;c = “)\kj mn L2(F]‘;C),

Y
where u* € V" is the solution of global finite element method. If p(A) is the spectral
radius of the iteration matriz A, then p(A) < 1. Thus, the iterative procedure (3.3)—(3.5)
is convergent for every 3 > 0.

In order to present the rate of convergence in terms of the problem coefficients, the
number of subdomains and the mesh size, we assume the partition {{;} is quasiregular
with the size H. Let H = O(h). This includes the decomposition of the domain into the
individual elements. We quote again the following theorem without the proof.

Theorem 3.2 ([9]). Assume that the positive constant parameter B in the iterative
procedure (3.3)~(3.5) satisfies

(3.6) B =/h=? + h2(af +4b).

Then, the spectral radius p(A) is minimized and bounded as follows:

2
9 —
3.7 Ay <1~ =
( ) ,0( ) = K<h_4 CL% qi;)l/z Yo,

and the iteration (3.3)—(3.5) converges with an error at the n—th iteration bounded asymp-
totically by O().
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Now, we consider two particular examples for (3.7). First, assume ¢ = (O(1). Then,
by choosing the parameter 8 = O(h™!), it follows that the iteration (3.3)-(3.5) converges
with rate bounded by
(3.8) Yo = 1 = ch?.

For our second example, we consider discretizations of time-dependent problems, e.g.,
Schrodinger equation, by implicit difference schemes, then ¢* = A Assume At = O(h?).
Then the choice 8 = O(h~!) leads to the estimate

(3.9) v =1-¢

for some positive ¢ < 1. This bound implies that only some fixed number of iterations,
independent on both H and h, are required for each time step.

4. The finite difference method.

In this section we consider two—dimensional problems. When ¢ = 0, the standard
iterative algorithms (relaxation and extrapolation schemes) fail to converge and conjugate
gradient—type algorithms converge so slowly to be impractical.

Let © be a two—dimensional bounded domain which can be divided by retangular sub-
domains with the interfaces parallel to either coordinate axis. Let §2 denote the centered
second order difference with respect to z, and 8,, 9¢ and Oy be the centered, forward
and backward differences,respectively, for the first order derivatives, in the direction of the
outer normal (here, an exterior bordering of the domain is assumed). Let Ay = &7 + &2.
Then, one proper finite difference approximation to (2.2)-(2.4) for two—dimensional prob-
lems can be defined by

2,,m ;2 — .
(4.1) —Apu} —a*ul +1ig*ul = f, z €8y,
(4.2) Oyuf +iau) =0, zely,
(4.3) Opuf +ifu} = —Opuy ' +1Buy !, z €Ty

Note that the Robin boundary condition is approximated by a combination of forward—
backward differences. This combination is very necessary for both convergence and effi-
cience, and the second-order approximation of the (centered) five point finite difference
scheme would not be destroyed. For each subdomain 1;, only the subdomains shar-
ing an edge as an iterior boundary are considered as the adjacent subdomains Q. For
some proper ordering of grid points, the matrix representation for the iterative algorithm
(4.1)-(4.3) is of the form: T

(4.4) = Q'R+ Q7f, n=1,2,---.

For the constant coefficient problems in rectangular domains (using a tensor product
argument for the strip type domain decompositions), we can find the algorithm parameters
B such that the algorithm converges [8]. In this section we present a heuristic, automatic
method of finding efficient algorithm parameter 3 for general coefficient problems. Con-
sider an L—shape domain and the domain decomposition depicted in Fig.4.1 (i). There
the bold lines denote the interfaces. We shall determine 3, line by line, by using horizental
or vertical mesh lines.
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Fig.4.1: (1). A decomposition of the domain Q with mesh lines. (ii). The tridiagonal system for
the restricted one—dimensional problem on Qy" (i11). The matriz U of the LU-factorization
performed up to the (m — 1)-th row. N ' ‘

Let us find the values of 8 on the dotted points along the line y = yo. Ignoring the
term wu,,, we restrict our problem to the one-dimensional subspace Q¥ := {(z,y) € Q :
¥ = yo} decomposed into three subdomains with two dotted points being the interfaces.
If the points in Q¥ are ordered from left to right, each subproblem can be solved by
inverting a block diagonal matrix (three blocks), where each block is a tridiagonal matrix
of dimension, say, m,.see Fig. 4.1 (ii). First, consider: the tridiagonal matrix corresponding
to the left—end subdomain. When an LU-factorization is performed up to the (m —1)-th.
row; the matrix U is depicted in Fig.4.1 (iii). This factorization is possible even the
tridiagonal matrix has not been assembled on the interface point. We choose 3 satisfying

(4.5) | ~£:i—wm

on the first interface point. By using this 3, one can complete not only the last row of
the matrix but also the first row of the next matrix corresponding to the mid-subdomain:
Now, we consider the second tridiagonal matrix. After performing LU-factorization up
to the (m — 1)—th row, choose 8 for the second interface point as in the first case. For
each mesh line having interface points, including both the horizontal and the vertical
mesh lines, this searching can be continued. This procedure is readily extendable to the
multiple decompositions of more general domains, clearly. We will refer this procedure to
ADOP (alternating direction optimal procedure) in the remalnder of thls paper. It is not
so difficult to check the following lemma..

Lemma 4.1.. Let G be the iteration matriz of the reduced- one— dzmenszonal problem _
of (4.1)~(4.3) restricted on Q¥°, with the parameter 8 found by ADOP. Then the spectral .
radius of Gy is zero, i.e., p(G1) = 0.

The above lemma implies the ADOP parameter 3 would be chosen in such a way that
the spectral radii of the iteration matrices of the one-dimensional alternating direction
problems. are zero. . In the next section, efficiency of ADOP. will be numerically checked.

5. Numerical re‘sults‘.b

This section reports on some experimental data to-illustrate the effectiveness of our
parallel algorithms. The program is implemented in FORTRAN77 with complex double--
precision; and is performed using an IBM RS/6000, serial machine. Let £ = (0,1)2. The
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M,xM, [2x2]4x4] 8x8[064x64

n g 21 22 81
p 0.714 | 0.866 | 0.873 | 0.963

Table 5.1: 1/h =64, w =50, ¢ = ¢1 and g = 60.

M, x M, ]| 64 x64 ] 128 x 128 | 256 x 256

n 76 78 80
Ty 1.4e-1 3.0e-2 7.2e-3
P 0.975 0.956 0.940

Table 5.2: 1/h=M,, w=280,c=ci andg=h"".

coefficients are chosen as follows:

. W .
a(z,y) = W, alz,y) = w, ¢ = a nonnegative constant,

where w > 0 is the angular frequency and c(z,y) is the wave speed. We choose typically
four different functions for ¢(z,y):

C1($7y) = 17
(5.1) e(zy) = em(2—sin(3ra)),
' cs(z,y) = (2—sin(2nw))(2 - sin(4my)),
ca(z,y) = 1+22% +y.
The source function f is selected such that the true solution u(z,y) = qb_(a:)u;_;ﬂyﬁ), where

#(z) = (=1 4 ¢=#% _ 2 Bach subproblem is solved directly. The error is estimated
on the relative LP-norm 7, and the iteration is stopped when s7, < 107*, where

w U =l U= U ey

P el T NUlpeeqey

with p = 2 for finite element solutions, p = oo for finite difference solutions and U™ is the
approximate solution of the n—th iteration. The zero initial values, U® = 0, are assumed.

Finite element parallel iterations. Here we report conputational results for finite
element parallel iterations. The bilinear splines on quadrilateral elements are used as the
basis functions. When we consider the decompositions of the domain into the individual
elements (H = h), the cost of one domain decomposition iteration is approximately as
four times as that of one classical Jcacobi iteration. We choose the wave speed ¢(z,y) = 1.

Table 5.1 contains the number of iterations n and the average rate of convergence
'p for various decompositions M, x M,, when 1/h = 64, w = 50 and ¢ = 60. When
H = 8h ~ 16h, the fastest solutions (in CPU-time) are obtained.

In Table 5.2, the iteration numbers, relative errors and the average convergence rates
are presented, when 1/h = M,, w = 80 and ¢ = A™!: the domain is decomposed into
individual elements. If we choose the time step At = A® for time-discretizations of the
Schrédinger equation by the backward difference, as we expect in anlaysis, a fixed number
of iterations are needed in each time step, see (3.9).

/




8 SEONGJAI KIM

n‘}

45} 30

. 20t .

40_— o. » b4 Rep ...o
- . 10k Ceese®

C »

351 . .

i o o o OF

30+ . I

:L acad -10r. ...’.n.lﬂ.‘..c'o.
| SRR TN TR Y VR S DU | > -20 | STV WS SR WOUT TN S SN WO |
10 20 30 g 1 5 10 15

() - (i)

Fig. 5.1: The boz decomposition (M, x My = 16x16); whenw = 30, ¢ = ¢2, ¢ = 20 and 1/h = 64.
(i). The constant parameters 3 vs. the iteration numbers n. (it). The ADOP pargmeter 3 along
the mesh line y = 0.5 (the values of B on the 15 interface points).

When ¢ = 0, in general, we cannot get a numerical convergence unless the grid is
sufficiently fine.

Finite difference iterative procedures. We report the numerical results for finite
difference parallel iterations using the parameters found by ADOP. In the case of gy > 0,
it is numerically checked that the parameter 3 obtained by ADOP introduces a faster

‘convergence than any other constant parameters, When g = 0, ADOP results in a good
convergence in certain conditions, while constant parameters cannot be used unless ¢ is a
constant. :

In Fig. 5.1 (i), the iteration numbers n with constant parameter 3 varing from 10 to
30 are reported, when w = 30, ¢(z,y) = c2(z,y), ¢ = 20, 1/h = 64 and the decomposition
of the domain M, x M, = 16 x 16. When 16 < 3 < 20, we have the fastest convergence,
and it needs 33 iterations. For the ADOP parameter, the itération converges after 28
iterations. The ADOP parameter along the mesh line y = 0.5 is depicted in Fig. 5.1 (ii).

Notice that the ADOP parameter, in general, cannot be a constant even for constant
coefficient problems: When we consider the strip decomposition My x M, = 16 x 1, the
iteration converges after only 14 iterations, while 19 iterations is needed for the tolerence
sT <1075, :

Table 5.3 presents the numerical results, when 1/h = 128, w = 50, c(z,y) = ¢4(z,¥)
and ¢ = 0. From a computational point of view, the case g = 0 is very interesting: we
do not know of any efficient iterative algorithm for such a case. The standard iterative
methods (relaxations and extrapolations) and conjugate gradient—type algorithms either
fail to converge or converge so slowly. When the domain is decomposed into a relatively
large number of box subdomains, some error oscillations are observed. The following is

1
numerically checked: If max(%)h < 7 and H > 4h for the case ¢ = 0, ADOP introduces

a numerical convergence for strip type decompositions (in fact, for constant coefficient
cases, theoretical convergence can be obtained).
Tables 5.4 and 5.5 show the results for the strip decompositions and box decomposi-
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Myx M, [ 8x1[16x132x1|64dx1]128x1

n 45 109 192 359 609
p 0.930 | 0.971 | 0.983 | 0.991 0.995

Table 5.3: 1/h =128, w =50, ¢{z,y) = ca{z,y) and g = 0.

M, x M, [ 8x1]16x1[32x1][64x1]128x1

n 6 6 9 15 26
p 0.495 | 0.495 | 0.626 | 0.755 0.850

Table 5.4: 1/h =128, w = 60, c¢(z,y) = cs(z,y) and ¢ = 75.

M, x M, [ 8x8[16x16[32x32]64x64]128x128

n 8 8 14 26 49
p 0.590 | 0.590 0.740 0.850 0.918

Table 5.5: 1/h =128, w = 60, c(z,y) = cs(z,y) and ¢ = 75.

tions, respectively, when 1/h = 128, w = 60, c¢(z,y) = c3(x,y) and ¢ = 75. The error for
the global one-domain finite difference solution is 1.48%. When M,, M, < 32, after first
four iterations, the errors are reduced less than 2%. For all wave speeds in (5.1), we have
experienced similar results.

6. Conclusions and applications.

Massively parallelizable iterative algorithms are defined and analyzed for finite element
and finite difference approximates of wave propagation. We can find an efficient iteration
parameter which minimizes the spectral radius of the iteration matrix for the finite ele-
ment problems in conducting media. Such a well-selected parameter shall accelerate the
convergence of the iteration. It is numerically checked that the Lagrangian multipliers
are good approximations for the flux, which can be expected from (3.1) and (3.4). This
information can be applicable, for instance, to adoptive procedures for mesh refinement.

For finite difference approximate solutions, using the parameters obtained by ADOP,
the iteration converges fast for the problem in both conducting media and ideally non—
conducting media. ADOP is tested using various coefficients and different spacings. It
results in a faster convergence than any other constant parameters. In addition to being
efficient, ADOP is an automatic procedure, and its cost is never expensive.

When an iterative (domain decomposition) algorithm is designed, iteration parame-
ters are often introduced to accelerate the convergence of the iteration. For certain model
problems, the parameters can be selected easily and effectively. However, when one con-
siders the iterative algorithm for a realistic problem, the problem of choosing iteration
parameters may not be so simple. Furthermore, for real-valued problems the iteration
is more sensitive to the algorithm parameters than conplex—valued problems; For real—
valued problems, the right-hand side of (4.5) would be 1 — Sh. So the rate of change of
the value is larger than complex cases, when 3 is moving. It is hoped that ADOP could
be an answer for the problem of choosing iteration parameters.

An variant of ADOP is being developed for the finite element approximations with
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the bassis functions presented by a tensor product. The procedure ADOP is readily
applicable to the other types of second order partial differential equations, in particular,
to singularly perturbed problems such as time-dependent problems more efficiently [10].
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Multigrid has proven itself to be a very versatile method for the iterative solution
of linear and nonlinear systems of equations arising from the discretization of PDES.
In some applications, however, no natural multilevel structure of grids is available, and
these must be generated as part of the solution procedure.

In our presentation we will consider the problem of generating a multigrid algo-
rithm when only a fine, unstructured grid is given. Our techniques generate a sequence
of coarser grids by first forming an approximate maximal independent set of the vertices
and then applying a Cavendish type algorithm to form the coarser triangulation. Nu-
merical tests indicate that convergence using this approach can be as fast as standard
multigrid on a structured mesh, at least in two dimensions.







The Use of the Spectral Method within the Fast Adaptive Composite
Grid Method

by

Steven M. McKay
Brigham Young University

The use of efficient algorithms for the solution of partial differential equations has been
sought for many years. The fast adaptive composite grid (FAC) method combines an
efficient algorithm with high accuracy to obtain low cost solutions to partial differential
equations. The FAC method achieves fast solution by combining solutions on different
grids with varying discretizations and using multigrid like techniques to find fast solution,
Recently, the continuous FAC (CFAC) method has been developed which utilizes an
analytic solution within a subdomain to iterate to a solution of the problem. This has been
shown to achieve excellent results when the analytic solution can be found. The CFAC
method will be extended to allow solvers which construct a function for the solution, e.g.,
spectral and finite element methods. In this discussion, the spectral methods will be used
to provide a fast, accurate solution to the partial differential equation. As spectral
methods are more accurate than finite difference methods, the ensuing accuracy from this
hybrid method outside of the subdomain will be investigated.
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A Two-Level Parallel Direct Search Implementation for
Arbitrarily Sized Objective Functions*
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Abstract

In the past, many optimization schemes for massively parallel computers have attempted
to achieve parallel efficiency using one of two methods. In the case of large and expensive
objective function calculations, the optimization itself may be run in serial and the objective
function calculations parallelized. In contrast, if the objective function calculations are rela-
tively inexpensive and can be performed on a single processor, then the actual optimization
routine itself may be parallelized. In this paper, a scheme based upon the Parallel Direct
Search (PDS) technique is presented which allows the objective function calculations to be
done on an arbitrarily large number (p2) of processors. I, p, the number of processors avail-
able, is greater than or equal to 2p; then the optimization may be parallelized as well. This
allows for efficient use of computational resources since the objective function calculations
can be performed on the number of processors that allow for peak parallel efficiency and
then further speedup may be achieved by parallelizing the optimization.

Results are presented for an optimization problem which involves the solution of a PDE
using a finite-element algorithm as part of the objective function calculation. The optimum
number of processors for the finite-element calculations is less than p/2. Thus, the PDS
method is also parallelized. Performance comparisons are given for a nCUBE 2 implemen-
tation.

1 Introduction

In this paper, we describe a generalization of the parallel direct search (PDS) optimization
algorithm [2, 7] to a two-level scheme wherein both the objective function calculation and the
optimization may be parallelized. In the past, most optimization schemes for massively parallel
computers have attempted to achieve parallel efficiency at one of two levels. In the case of
large and expensive objective function calculations, the optimization itself is run in serial and
the objective function calculations are parallelized [1]. On the other hand, if the objective
function calculations are relatively inexpensive and can be performed on a single processor,

*This work was partially supported by the Applied Mathematical Science Program, U.S. Department of
Energy, Office of Energy Research and was performed at Sandia National Laboratories operated for the U.S.
Department of Energy under contract No. DE-AC04-76DP00789 and by NIH grant R01-HL-44747.

Parallel Computational Sciences Department, Sandia National Laboratories, Albuquerque, NM

'Chemical Processing Science Department, Sandia National Laboratories, Albuquerque, NM

$Department of Electrical and Computer Engineering, New Mexico State University, Las Cruces, NM




then the actual optimization routine itself may be parallelized (2, 3]. Through the use of PDS,
we are able to achieve parallel speedup using both techniques, provided we have sufficient
computational resources.

The idea is simply that for parallel applications (i.e., parallel objective function calculations)
one can consider the implementation’s efficiency for a given problem size and determine an
optimal number of processors such that the parallel efficiency is maximized. Often, this number
may be less than the total number of available processors. Thus, using more than this optimal
number may be considered to be inefficient even though the additional processors may provide
a speedup. In terms of the two-level PDS optimization, we can calculate objective functions on
the optimal number of processors, and achieve further speedup by distributing the optimization
work among the remaining processors,

In the following section, we give a brief overview of the PDS optimization technigque and
discuss how we have generalized the approach. Following this, some computational experiments
are described and results given for a particular optimization problem which involves a finite-
element solution of a boundary-value problem as part of the objective function calculation.
Lastly, a summary is given.

2 Two-Level Parallel Direct Search

The multi-directional direct search methods have recently come into favor as derivative-free
optimization techniques [2, 7] for solving the nonlinear unconstrained problem

where f : R® — R. One popular example of the direct search method is the Nelder-Mead
simplex algorithm [4]. Dennis and Torczon’s PDS method uses a multi-directional direct search
approach which can be shown to converge under some mild assumptions {7, 8]. Further, the
algorithm has been developed in the context of a parallel optimization scheme, achieving parallel
speedup by distributing the objective function calculations over some number of processors.

2.1 Parallel Direct Search

The PDS algorithm uses a set of simplex rotations, expansions and contractions to search in
several directions simultaneously. Since these steps are well defined and simultaneous, it is
possible to define a search scheme a priori and perform the simultaneous objective function
evaluations in parallel. In a preprocessing step, a search scheme (grid) of a predetermined size
(s) is generated using the possible simplex operations. This grid amounts to a set of points
at which the objective function will be evaluated. At each iteration, the grid is moved to
coincide with the current minimum location. Thus, the method also has the ability to navigate
non-convex optimization problems.

To parallelize the optimization, the s points in the grid are subdivided and distributed
among p processors. Thus, at each iteration, the individual processors each perform |s/p]
or |s/p| + 1 objective function evaluations. The assumption, however, is that each processor
has the computational resources to evaluate f(z). Further, given this, we can use at most s
processors if s < p.




2.2 Generalized Two-Level Parallel Direct Search

In many optimization problems, the objective function is derived from complex physical pro-
cesses which may themselves be difficult to model. Under these conditions, the evaluation of
f(z) may be computationally expensive and need to be carried out in parallel (e.g., parallel
finite-element models). Thus, the assumption above is no longer valid and, if used, the PDS
method simply degenerates to a serial technique where the objective function is parallelized.
Thus, the possible objective functions range from those that can be performed efficiently on a
single processor to those that may require all the available processors. The metric that should
decide the proper number of processors to use for the objective function calculation is their
parallel efficiency.

Parallel efficiency relative to the minimum number of processors on which the application
can Tun, Pmin, 18 defined in terms of the parallel speedup

man

E(p) =W @)

where the speedup is
Tmin

Here, Trmin is the solution time required on p;, processors and T} is the solution time on p
processors {Pmin < P).

Beginning with speedup, we can consider that speedup due to both the parallelization of
the objective function calculations (level-1) and that due to the parallelization of the PDS
optimization algorithm (level-2). The level-1 speedup is defined as

Tt.
Sl(pl) = ZTILIm P1 2 Pmin (4)
P1
and the level-2 speedup as
T2,
Sm) =" m21 (5)
p2

where p; = [p/p1], the number parallel PDS optimization processes. Then, the effective level-
two speedup relative to pp,;, processors, can be written

sTL

2 - min
1
— pQTmz’n (7)

T'r}z,m + %zr(p2)

where we have assumed that the speedup scales with some function 7(p;).

Thus, for the given problem size and machine size, one can determine the optimal number
of processors (p*) which should be used in calculating the objective function. In the present
implementation, if p* < p/2 then we may also parallelize the optimization using PDS. This
defines the two-level approach. Each objective function calculation is performed on p* processors
while p = |p/p*| of these processes are performed in parallel. Note that for p* = p the original
PDS algorithm results but is simply run in serial while if p* = 1, the original parallel PDS
algorithm results.




Since there is very little overhead associated with parallelizing the optimization!, the parallel
speedup here is nearly linear. Thus, if the application speedup is less than the optimization
speedup, the optimal number of processors on which to evaluate the objective function is

t 3

P* = Pmin. However, if the application is perfectly parallel (linear speedup with slope 1),
then assuming some overhead associated with the parallel optimization, p* = p (serial PDS).

3 Computational Experiments

To assess the performance of the two-level PDS method, we have chosen an optimization prob-
lem which involves a finite-element estimation in the evaluation of the objective function. The
specific problem is to optimize the electrode position and voltage for an implantable defibrillator
configuration [1]. The finite-element problem models the electric current density throughout the
thoracic cavity and involves a mesh of 262,110 trilinear tetrahedral elements and 47,113 nodes.
While this is a large finite-element problem, it is certainly not one which taxes the resources of
a 1024 processor nCUBE 2. In fact, the problem can be solved on only 32 processors of such
a machine (pmin = 32). The finite-element solver is one being developed for message-passing
massively parallel computers at Sandia National Laboratories [5, 6].

For the optimization problem, the unknowns are the coordinates in R® of each of the two
electrode centers and the voltage at one of the electrodes (the other is held at ground). Thus,
n = 7. Further, the objective function is nonlinear and unconstrained. Thus, it is a suitable
real-world test problem for the two-level PDS method.

We first look at the efficiency for the solution of the objective function problem described
above. Figure 1 illustrates the scaled efficiency for the test problem over a range of machine
sizes. Note, that, as expected, the maximum efficiency occurs for p = ppin = 32.

We next use this number for the study of the two-level PDS speedup. Figure 2 illustrates
the nearly linear speedup of the iterative portion of the two-level PDS algorithm?

4 Summary

We have implemented a generalized, two-level version of Dennis and Torczon’s parallel direct
search (PDS) nonlinear unconstrained optimization algorithm. In this implementation, paral-
lelization may be achieved on two levels — both the objective function calculations and the
optimization. Tle parallelization of the optimization portion yields a nearly linear speedup,
thus, the optimal number of processors on which to evaluate the objective function is p*, that
number which yields the highest efficiency for the objective function calculations. For the ex-
ample problem considered, p* = Ppin, the minimum number of processors which may be used
to run the application.

'In the current implementation, this overkead is primarily due to file I/O associated with transferring data
between the controlling front-end process and the parallel optimization processes.

“There is an initialization portion of the PDS code which, in the current implementation, runs on pmix
processors and calculates the objective function values for each vertex in the initial simplex. Thus, the overall
speedup of the algorithm would depend upon home many iterations are required for convergence
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Figure 1: Relative parallel efficiency of the objective function calculations (pmin = 32)
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1. Introduction. In [1] a new parallel iterative algorithm for unconstrained op-
timization by multisplitting is proposed. In this algorithm the original problem is split
into a set of small optimization subproblems which are solved using well known sequen-
tial algorithms. These algorithms are iterative in nature, e.g. DFP variable metric
method. Here we use sequential algorithms based on an inezact subspace search, which
is an extension to the usual idea of an inexact line search. Essentially the idea of the
inexact line search for nonlinear minimization is that at each iteration we only find an
approximate minimum in the line search direction. Hence by inezact subspace search,
we mean that, instead of finding the minimum of the subproblem at each interation,
we do an incomplete down hill search to give an approximate minimum.

Some convergence and numerical results for this algorithm will be presented. Fur-
ther, the original theory will be generalized to the situation with a singular Hessian.
Applications for nonlinear least squares problems will be presented. Experimental
results will be presented for implementations on an Intel iPSC/860 Hypercube with
64 nodes as well as on the Intel Paragon. In the next section we present the original
algorithms and indicate our modifications.

2. The Algorithms.

2.1. Linear Least Squares. Suppose A € R™*" z € R", and b € R™ and that
the least squares solution is required for

(2.1) f(z) = || Az - .

A partition of A can be defined,A = (A, Az,..., A;) where each A; is an m X n;
submatrix of A , and Y i_; n; = n so that

)= I A =3

* This research was performed in part using the Intel Gamma System operated by Caltech on behalf
of the Concurrent Supercomputing Consortium. Access to this facility was provided by Caltech.
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where z = (X1, Xo, ..., X,)T is partitioned consistently with A. For 1 < j < r, define

(2.2) bg(az) =b- ZT:AZ'X,;
: i#j

and take positive scalars af, af > o; > 0, where k is the iteration number, such that

¥
(2.3) > af=1,
=1

then the solution to 2.1 can be found in parallel by solving the subproblems
(2.4) minimize ||A;X; - b-j(xk)ﬂ, 1<5<r

The solution is then given from Algorithm 1 by z**+! = ¥i_, o1 Z3*+1 where for
1<h<r,

i+ _ ij“ ifh=j
h X ,’f otherwise.

Let Bf“ be an m x 1 vector, for 1 <i<randk > 0.
ALGORITHM 1. For all processors i do
Begin
1.k=:0
2. guess an X[
3. calculate Bf = A;XF
4. do while not converged
4.1 get all BJ’-“ forj #i
4.2 calculate b(z¥) =b— Y ,; B
4.3 find Y to minimize | A; X; — b(z®)||
4.4 calculate BF*! = oY AV 4 (1- o) BE
4.5 test for convergence
46k =k +1
end do
End

In this paper we replace the exact minimisation at step 4.3 by the inexact subspace
search.

2.2. Nonlinear Minimization. Let f: R® — R! have positive semidefinite Hes-
sian and have only one stationary point ;.

The problem is to minimize f(x) in the bounded neighbourhood D of z;.
For1<j3<r,let

(2.5) 5= XX, X))

where, for 1 < h <r

— [ Y ith=j
(2.6) Xh _{ X), otherwise.

2




Then the solution of the problem is given by z*+! = 377, a;“'le’k‘H
wherefor 1< h <7,

gikst _ [ YT i h =]
h X f’f otherwise.

In the algorithm let f;(z,Y;) = f(75).
ALGORITHM 2. For all processor i do
Begin
1. k= 0;
2. guess an XF
3. do while not converged
3.1 get all X]lc forj#1
3.2 find Y,-k+1 to minimize fi(z*,Y;)
3.8 calculate XF+! = of TV 4 (1 - o)Xk

1
3.4 test for convergence

35 k==F%+1
end do
End

As in Algorithm 1 we replace an exact minimisation at step 3.2 by an inexact
subspace search.
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Let A € ®™*™ be an arbitrary real matrix, and let b € R™ a given vector. A familiar
problem in computational linear algebra is to solve the system Az = b in a least
squares sense; that is, to find an z* minimizing [|Az — ||, where || - || refers to the
vector two-norm. Such an z* solves the normal equations AT(Az — b) = 0, and the
optimal residual r* = b— Az* is unique (although z* need not be). The least squares
problem is usually interpreted as corresponding to multiple observations, represented
by the rows of A and b, on a vector of data . The observations may be inconsistent,
and in this case a solution is sought that minimizes the norm of the residuals.

A less familiar problem to numerical linear algebraists is the solution of systems of
linear inequalities Ax < b in a least squares sense, but the motivation is similar: if a
set of observations places upper or lower bounds on linear combinations of variables,
we want to find z* minimizing ||(Az — b).||, where the 7** component of the vector
v is the maximum of zero and the s** component of .

When the system Az < bis consistent, that is, when a solution exists that satisfies all
the inequalities, then phase I of any standard linear programming method can find
it. Futhermore when the system is not consistent, linear programming can identify
that case, but does not provide any kind of an “optimal” solution. Other methods
developed for solving linear inequalities include an unusual algorithm by G.W. Stew-
- art, which defines a function that diverges in a direction that converges to a solution
of the inequalities; if no solution exists, the function converges to a unique minimum.

One way of solving the problem is to state it as the quadratic programming problem
in (z, 2)

1T
_ | mini2Tz
(1) (QP) = { subject to Az —b< 2

However, there are serious numerical difficulties with solving a quadratic programming
problem that has a singular objective function; furthermore, most methods require an
active set strategy that can be difficult to implement, particularly when it is necessary

* Work supported by NSF grant CCR-~9120105
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to decide which entries to drop from the active set. The analogue of an active set for
the algorithm described in this paper is automatically determined without difficult
decisions of when to add or drop constraints.

The only algorithm specifically designed for solving linear inequalities in a least
squares sense was developed by S.-P. Han. That algorithm requires finding the min-
imum norm least squares (equality) solution to systems Az = by, where A; is a
submatrix of A consisting of rows of A. This implies that a singular value decompo-
sition or a complete orthogonal decomposition of Aj is required on every iteration.
Both of these decompositions are relatively expensive to compute, and there currently
are no effective update/downdate methods that allow the reuse of work performed
on a previous iteration. This paper will show that a small change in Han’s algorithm
allows an implementation using a QR factorization with column pivoting instead,
and both the robustness and finite termination are retained. We also show that the
algorithm has potential applications beyond simple data analysis by applying it to
linear separability problems. That application requires finding a hyperplane that best
separates two point sets; when the two sets are not linearly separable, a hyperplane
that correctly separates the largest number of points is desired.
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In this presentation we investigate an iterative method for the solution
of optimal control problems. These problems are formulated as constrained
optimization problems with constraints arising from the state equation and
in the form of bound constraints on the control. The method for the solution
of these problems uses the special structure of the problem arising from
the bound constraint and the state equation. Its it is derived from SQP
methods and projected Newton methods and combines the advantages of
both methods. The bound constraint is satisfied by all iterates using a
projection, the nonlinear state equation is satisfied in the limit. Only a
linearized state equation has to be solved in every iteration. The solution
of the linearized problems are done using multilevel methods and GMRES.

In an abstract formulation the control problems under investigation are
given in the form

min  f(z),
st. c(z)=0 (1)
u>0

where z = (y,u)and f: Y XU - R, ¢:Y X U — Z are smooth functions.
In this formulation U is the space of controls, Y is the state space and the
equation c¢(2) = 0 represents the state equation. In the applications we
have in mind the state equation is given by nonlinear partial differential
equations. The bound constraints u > 0 can be replaced by a < u < b.
However we use the form (1) to keep the presentation simple.

Problems like this frequently occur in practice. One example which will
be used in our numerical testings is the control of so—called phase field
models. These models describe the solid-liquid phase transition in a pure
material [2], [4], [6]. They involve the temperature u of the material and the
phase function ¢ which indicates the liquid or solid state of the material. The




boundary between the two phases can be described by I'(z,t) = {(z,t) €
Q@ | ¢(z,t) = 0}. The medium is purely solid if p(z,t) = —1 and it is
purely liquid if ¢(z,t) = +1. The model consists of a coupled system of
two nonlinear parabolic differential equations. The corresponding control
problem is to follow a prescribed temperature and/or phase by controlling
the heat input to the system through distributed or boundary controls. In
the following formulation of this problem we follow the notation in [2], 3],
[6] and denote the control by f and the states by (u, ). The mathematical
description is given by

34
min —

2 ﬁ 2 Y 2
jon o llu ~ uallza) + S lle — wallzagq) + EE

subject to the state equation

wu+ips = kKAu+tf
on Q@=Qx(0,T).
o = E2Ap+g(p) + 2u

with Neumann boundary conditions %u =0, 79'8‘6‘/’ = 0on 90 x (0,T),
and initial conditions given by u(z,0) = ug(z), ¢(z,0) = wo(z) 2 € Q. The
admissible set F 4 is defined by bound constraints on the control:

fadz{flflowgfs.fupp on Q}

The state equation contains the nonlinear function g which usually is of the
type g(z) = 0.5z — 0.523. The constants &, £, 7, and ¢ denote the heat
conductivity, the latent heat, the relaxation time, and the length scale of
the interface, respectively.

Difficulties in the numerical solution of these types of problems arise from
the nonlinearity of the state equation, the presence of of control constraints
and the size of the problem. For example, the number of variables in the
discretized optimality system for the optimal control of the phase field model
is of the order 108.

Our algorithm is derived by combining SQP methods for the solution of
equality constraint problems with the projected Newton method for prob-
lems with simple bound constraints. A more detailed description is given
below. The algorithm only requires the solution of the linearized state equa-
tion and the (linear) adjoint equation in each step and generates iterates
which satisfy the bound constraints. Moreover we introduce a merit func-
tion and a Amijo-like line search procedure to enforce global convergence.
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For the control problem governed by the phase field model the algorithm al-
lows a decoupling of the system of parabolic equations such that only linear
parabolic equations have to be solved. The implementation of this algorithm
uses multilevel methods and GMRES to compute the steps.

As mentioned before our method is derived combining SQP methods and
projected Newton methods. Projected Newton methods for the solution of
optimization problems with simple bound constraints have been introduced
by Bertsekas [1]. For the solution of a problem like (1) these methods require
the elimination of the constraint ¢(z) = 0. If we assume that the derivative
of ¢ with respect to y is continuously invertible, then, by the implicit function
theorem there exists a function y(u) implicitly defined through

c(y(u),u)=0.
Using this function (1) can be formulated as

min  ¢(u) = f(y(u),u).
st. u>0 ! (2)

Under the assumption on the derivative C, the objective function ¢ is twice
differentiable.

For finite dimensional problems projected Newton methods generate it-
erates of the form

ups1 = Plug — akD;1V¢(uk)), (3)

where P denotes the projection onto {u|u > 0}. The matrix Dy is a projec-
tion of the Hessian V3¢ and is given by

Dy = L+ diag(V*(ur)) Ly + LV (ur) e,

where A} = At (w) = {i | ()i = 0, Od(ux)/0u; > 0}, 4F" = {1,...,n}\
A:, and J; : IR™ — IR™ is the indicator function for the index set A defined
by

LR R (m)i={ o igd

The matrix Dy, is called diagonal with respect to A*. It is shown by Bert-
sekas that, under appropriate assumptions the active set is identified after
finitely many iterations: A(ug) = A(u,) = {¢ | w; = 0} for all k& > k,. For




iterations k > k, the projected Newton method is equivalent to Newton’s
method for the unconstrained problems on the set of inactive indices and,
thus, is locally g—quadratic convergent. The analysis of projected Newton
methods is generalized to infinite dimensional problems in [7]. The simple
projection in (3) and the convergence properties make the projected Newton
method very attractive for problems like (1) for which the state y can be
efficiently computed as a function of the control u. However, for control
problems governed by nonlinear partial differential equations the solution of
the state equation in every iteration is extremely expensive and makes this
method impractical. Instead, one would like to use a method that make use
of the simple projection, but solves the nonlinear state equation only as the
sequence of iterates converges. Such a generalization of projected Newton
methods was introduced by Kelley and Sachs [8] and analyzed for control
problems governed by ODEs. Their starting point is the system of neces-
sary optimality conditions for (1). The result is an algorithm which in each
step requires the solution of a projected linearized Kuhn—Tucker system and
which is locally convergent with q—order 1 + p for some p € (0,1).

We use a different approach for the generalization of the projected New-
ton method in finite dimensions. We compare SQP methods for the solution
of

min  f(z)
st. c(z)=0 (4)
with the projected Newton method. To ensure global convergence of the al-
gorithm we introduce a constraint merit function and incorporate an Amijo—
like line search procedure. Locally, our method is very similar to the algo-
rithm proposed in [8].
The Lagrange function for (4) is given by

L(z,\) = f(z) — ATe(2), (5)
and the Kuhn-Tucker conditions for (4) have the form

VL(z,A) = Vf(z)-C(z)A = 0, (6)
VaL(z,A) = c(z) = 0,
where CT denotes the Jacobian of ¢. If Newton’s method is applied for the

solution of the Kuhn-Tucker system, then at each iteration the following
system has to be solved:

( Veol(z,)) —C(z) ) ( 8z ) _ ( V.f(z) — C(z)A ) o
C(z)T 0 s c(z) ’




If V..L(z,]) is positive definite on the null space of C(z)T, then (7) is
uniquely solvable. Using the fact that the Jacobian C, of ¢ with respect
to y is invertible, one can establish the following equations for the step

Sz = (3y:3u):
—B(2, )1 T(2)" (V. f(z) + Vi.L(z, M)r(=)),
—Cy(2) T Cu(2)su — Cy(2) T e(2),

Su

Sy

where
r(z) = ( “Cy("’())—TC(z) ) , T(z)= ( —Cy(z)—ITCu(z)T ) ,

and B(z,)) = T(z)T V2, L(z, ) T(z).
We extend the projected Newton method in the following way: The
Hessian V2¢ is replaced by B, an approximation of the reduced Hessian

B(zg, Ax) and the subset of the active set is determined using a modification
of the reduced gradient T(z)TV . f(z):

A¥(u)= {i|u; =0, (T(2)TV.f(z)+ a(z)); > 0}.
If the projected matrix
Dy = Ly diag(Bi)ly+ + Lse Byt
is invertible, we define

3y =D (T(24)" V2 f(2r) + b(zk)),
ur(a) P(uy + asy),
ve(a) = ye - aCy(zk)‘Tc(zk) — C'y(:r:;,)‘TC’,‘(:I:,.,)T(‘u.,e ~ P(ue + asuz).)
8

The vectors a(zk), b(zx) and the approximation By of the reduced Hessian
are motivated by the desire to avoid second order derivatives and to allow for
quasi-Newton methods. Our formula for the Lagrange multiplier estimate
is given by

Ho

Az) = Cy(z) "'V, f(=). (9)
Our algorithm generates iterates of the form
(Fr+1, Uk41) = (ge(ar), ur(ax)),

where aj > 0 is some step size. The new Lagrange multiplier estimate is
given by Agr1 = A(¥k+1,Uk+1), cf. (8). For the choice of the step size we
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need a merit function which monitors the progress in reducing the function
value of f and in approaching the feasible set {z|c(z) = 0}. We use the
merit function

¥(z,0) = £(z) - Mz)"e(a) + Zlle(=)]}3

Since our algorithm generates iterates which satisfy the inequality con-
straints we have the unusual situation of a constrained merit function:

min &(z, p)-

The step size ap is chosen by an Amijo-like step size rule such that a suffi-
cient decrease in the merit function is obtained.

If the constraints are linear, i.e. if ¢(y, u) = Cy+ Bu, then our algorithm
is equivalent to the projected Newton method by Bertsekas, provided the
starting point (yo,uo) is feasible.

Form the presentation (8) one can see that quasi-Newton methods can
be used to approximate second order information. However, if second order
information is available, then the iteration can also be performed by solving
the projected linearized Kuhn-Tucker system

Vol VyuLlpse ¢, 8 Vyf — CyA
lﬁ-‘vuyL 1;4+" VuuL-Li+° + Ag _'1‘;1+‘Cu 8y | = — Vuf — Cul ’
cr CIL4e 0 s c

(10)
where A is a positive definite diagonal matrix satisfying Ap = L+ Aply+,
i.e. Ay is zero in all rows and columns with indices i € A%°. In (10) we
omitted the arguments zx, A and used A instead of A;r . For certain control
problems this formulation may be favorable. In fact, for the control of
the phase field model (10) is used. The structure of the control problem
allows a reformulation of this system, which results in a decoupling of the
equations. The new system is then solved using a multilevel method in
combination with GMRES. In our numerical tests the method shows a fast
linear convergence and the time needed to solve the nonlinear problem (1)
roughly grows linearly with the discretization. It can also be observed that
the method hardly requires more work than for the unconstrained case.
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COMPARING PRECORRECTED-FFT AND FAST MULTIPOLE
ALGORITHMS FOR SOLVING THREE-DIMENSIONAL POTENTIAL
INTEGRAL EQUATIONS

J. WHITE*, J. R. PHILLIPS! AND T. KORSMEYER}

1. Introduction. Mixed first- and second-kind surface integral equations with 1 and
;%% kernels are generated by a variety of three-dimensional engineering problems. For
such problems, Nystrém type algorithms can not be used directly, but an expansion for
the unknown, rather than for the entire integrand, can be assumed and the product of
the singular kernal and the unknown integrated analytically. Combining such an approach
with a Galerkin or collocation scheme for computing the expansion coeflicients is a general
approach, but generates dense matrix problems. Recently developed fast algorithms for
solving these dense matrix problems have been based on multipole-accelerated iterative
methods [1, 2, 3, 8], in which the fast multipole algorithm is used to rapidly compute the
matrix-vector products in a Krylov-subspace based iterative method. Another approach
to rapidly computing the dense matrix-vector products associated with discretized integral
equations follows more along the lines of a multigrid algorithm [4], and involves projecting
the surface unknowns onto a regular grid, then computing using the grid, and finally
interpolating the results from the regular grid back to the surfaces.

In this paper, we describe a precorrected-FFT approach which can replace the fast
multipole algorithm for accelerating the dense matrix-vector product associated with
discretized potential integral equations. The precorrected-FFT method, described below,
is an order nlogn algorithm, and is asymptotically slower than the order n fast multipole
algorithm. However, initial experimental results indicate the method may have a significant
constant factor advantage for a variety of engineering problems.

2. Problem Formulation. In this paper we consider only a simplified discretization
applied to a first kind formulation, though the techniques generalize to mixed formulations
and more complicated discretizations. The approach used is to formulate the exterior
Dirichlet problem using a single layer charge density denoted o. It then follows that o
must satisfy the integral equation

(1) P(z) = /;urfaces a(m')————«l-—da', @ € surfaces.

llz — 2|

where ¢ (z) is the known surface potential, da’ is the incremental conductor surface area,
z, z' € R?, and ||z|| is the usual Euclidean length of z.
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A standard approach to numerically solving (1) for o is to use a piece-wise constant
Galerkin scheme. That is, the surfaces are discretized into n panels, and it is assumed that
on each panel i, a charge, ¢;, is uniformly distributed. Then for each panel, an equation
is written which relates the known i-th panel potential, denoted P;, to the sum of the
contributions to that potential from the n charge distributions on all n panels. The result
is a dense linear system,

2 Pg=p

where P € R™™", ¢ is the vector of panel charges, 7 € R" is the vector of known panel
potentials, and

1 1 ,
(3) Py = wa; /p ol /p el M dadd’,
where a; and a; are the areas of the ¢-th and j-th panel.

The dense linear system of (2) can be solved to compute panel charges from a given set
of panel potentials. If Gaussian elimination is used to solve (2), the number of operations
is order n®. Clearly, this approach becomes computationally intractable if the number of
panels exceeds several hundred. Instead, consider solving the linear system (2) using a
Krylov-subspace style iterative method. The dominant costs in such an algorithm will be
calculating the n? entries of P using (3) before the iterations begin, and performing n?
operations to compute Pq on each iteration. Described below is a precorrected-FF'T based
algorithm which, through the use of approximate grid projections, avoids forming most of
P and reduces the cost of forming Pq to order nlogn operations.

3. The precorrected-FFT method. After a three dimensional problem has been
discretized into panels, consider then subdividing the cube containing the problem into
an m X m X m array of small cubes so that each small cube contains only a few panels.
Several sparsification techniques for P are based on the idea of directly computing only
those portions of Pq associated with interactions between panels in neighboring cubes. The
rest of Pq is then somehow approximated to accelerate the computation [7].

One approach to computing distant interactions is to exploit the fact that evaluation
points distant from a cube can be accurately computed by representing the given cube’s
charge distribution using a small number of weighted point charges. In particular, if the
point charges all lie on a uniform grid, then FFT can be used to compute the potential at
these grid points due to the grid charges. More specifically, one method for approximating
Pgq in nlogn operations has four steps:

e directly compute nearby interactions,

e project the panel charges onto a uniform grid of point charges,

e compute the grid potentials due to grid charges using an FFT, and

e interpolate the grid potentials onto the panels.
The difficulty, as will be made clearer below, is that the calculations using the FFT on
the grid do not accurately approximate the nearby interactions. And in addition, this
poor approximation must be subtracted from the result before accurate direct calculation
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of nearby interactions can be substituted. This subtraction can be performed at almost
no cost by modifying the way the nearby interactions are computed, a step we refer to as
precorrection, and is described below.

3.1. Projecting onto a grid. For panel charges contained within a given cube, the
potentials at evaluation points distant from the given cube can be accurately computed
by representing the given cube’s charge distribution with a small number of appropriately
weighted point charges on a uniform grid thoughout the given cube’s volume. For example,
consider the cube embedded in the center of a 3 x 3 x 3 array of cubes, and assume that
the potential will be evaluated at points exterior to the 27 cube array. Then, since the
potential satisfies Laplace’s equation, the error in the point charge approximation over the
entire exterior can be minimized by minimizing the potential error on the surface of the
cube array.

The above observation suggests a scheme for computing the grid charges used to
represent charge in a given cube a. First, test points are selected on the surface of the
3 x 3 x 3 cube array which has cube a as its center. Then, potentials due to the grid
charges are forced to match the potential due to the cube’s actual charge distribution
at the test points. Since such collocation equations are linear in the charge distribution,
this projection operation which generates a subset of the grid charges, denoted ¢, can be
represented as a matrix, W,, operating on a vector representing the panel charges in cube
a, ¢, In particular, if there are GG grid charges and A panels, then

pst -1 pat
g —
) %= Wata = [ 1.1 ] [ 1.1 ]q“’

where P9t € R{G-1*G is the mapping between grid charges and test point potentials and
is given by
1

A
®) P = =

Pt ¢ RG-1)x4 ig the mapping between panel charges and test point potentials and is given
by

1
6 P =/ o(z')————dd.
( ) + panel § ( )“ilff — (E,“
Here 2! and z7 are the position of the i-th test point and the j-th grid point. The rows of
ones in (4) insure that the sum of grid charges is equal to the net charge in the cube. For an
alternative approach, based more generally on matching multipole expansion coefficients,
see [6].

3.2. Using the FFT. For a general three dimensional problem, consider subdividing
a cube containing the entire problem domain into a m X m x m array of small cubes. Then,
the collocation approach above can be used to generate point charge approximations for




charge distributions in every cube, effectively projecting the charge density onto a three-
dimensional grid. For example, if the representative point charges are placed at the cube
vertices, then the resulting charge distribution will be projected to a (m + 1) x (m + 1) x
(m + 1) uniform grid. Fast multipole algorithms also effectively create a uniform grid by
constructing multipole expansions at the center of each cube, but due to sharing, the point
charge approach can be more efficient. For example, a point charge at a cube vertex is used
to represent charge in the eight cubes wlidch share that vertex.

Once the charge has been projected to a grid, computing the potentials at the grid
points due to the grid charges.is a three-dimensional convolution. We denote this as

(7 Yole g k) = D k(=15 — 5’k — K)ge(¢, ', ¥').
it ' k!

where ¢, 3,k and ¢/, j', k' are triplets specifying the grid points, 1, is the vector of grid point
potentials, g, is the vector of grid point charges, and k(i —¢',j — j',k — k') is the inverse
distance between grid points i, 7, k and ', j', k’. As will be made clear below, A(0,0,0) can
be arbitrarily defined, and is set to zero. The above convolution can be computed in nlogn
time using the Fast Fourier Transform.

Once the grid potentials have been computed, they can be interpolated to the panels
in each cube using the transpose of W, [4]. Therefore, projection, followed by convolution,
followed by interpolation, can be represented as

(8) Vi = W HWg,

where g is the vector of panel charges, ¥ss is an approximation to the panel potentials,
W is the concatenation of the W,’s for each cube, and H is the matrix representing the
convolution in (7).

3.3. Precorrecting. In vy of (8), the portions of Pq associated with neighboring
cube interactions have already been computed, though this close interaction has been poorly
approximated in the projection/interpolation. Before computing a better approximation,
it is necessary to remove the contribution of the inaccurate approximation. In particular,
denote as P, the portion of P associated with the interaction between neighboring cubes
a and b, denote the potential at grid points in cube a due to grid charges in cube b as H,,
and denote ¥, and ¢, as the panel potentials and charges in cubes a and b respectively.

Then

9) Yo = tayy + (Pap — WEHLWE)) g5

will be a much better approximation to ,.

Assuming that the Pg product will be computed many times in the inner loop of an
iterative algorithm,

(10) < = (Pay — WEHLWY))

will be expensive to initially compute, but will cost no more to subsequently apply than

P, p.




4. Conclusions. Using the above notation, the precorrected-FFT algorithm for
computing Pq can be briefly described as two steps. First compute

(11) brse =W HWq
using the FFT to sparsify H. Then, for each cube a, compute

(12) o= D, P gyt v,

b € neighbors

Numerical experiments indicate that using a uniform grid with an average of eight grid
points associated with each cube (making G = 27 in (4)) results in potentials outside nearest
neighbors which have errors similar to those produced by evaluating second-order multipole
expansions (which have nine coefficients) outside second nearest neighbors. Assuming a
homogenous distribution of eight panels per cube, this implies that for commensurate
accuracy, the precorrected-FFT method has a complexity of (243 + K4 log2n) * n, and
the fast multipole algorithm has a complexity of at least 2700n. So, although the fast
multipole algorithm is asymptotically faster, for an efficient FFT program, this will only
be of practical significance for extremely large n.

It should be noted that the above result is not general. The fast multipole algorithm
retains its linear-time behavior even in the arbitrarily inhomogenous case [5]. The
precorrected-FFT method is preferable when the distribution can be made to look
homogenous. More detailed experiments are required to better understand these pragmatic
issues.
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THE NUMERICAL SOLUTION OF TOTAL VARIATION
MINIMIZATION PROBLEMS IN IMAGE PROCESSING

C. R. VOGEL * AND M. E. OMAN

Consider the minimization of penalized least squares functionals of the form
. ,
(1) flu) = 2l Au 2] + / V| da.
o)

Here A is a bounded linear operator, z represents data, || - || is a Hilbert space norm,
o is a positive parameter, [, |Vu| dz represents the total variation (TV) of a function
u € BV(Q), the class of functions of bounded variation on a bounded region 2, and
| - | denotes Euclidean norm. In image processing, u represents an image which is to
be recovered from noisy data z. Certain “blurring processes” may be represented by
the action of an operator 4 on the image u. Two cases of special interest are

(i) Denoising. Here A = I, the identity operator. One wishes to extract the

exact image from a noisy recorded image z = Uepger +€.
(ii) Deblurring. Here A is a convolution operator

Au(z) = / k(z —y)u(y) dy, z€Q,
Q
and one wishes to deconvolve noisy data z = Auegqer + €.

In the deblurring case, the operator equation Au = z is ill-posed, and discretiza-
tions of it are highly ill-conditioned. The purpose of penalty terms like the TV
functional [, |Vu] de in (1) is to impose stability in a manner which incorporates cer-
tain a priori information about the unknown solution.  The TV functional penalizes
highly oscillatory solutions while allowing discontinuities or very steep gradients in
the solution. The qualitative differences between solutions obtained with TV and the
standard quadratic penalty functional [, |Vu|?® dz are illustrated in Figures 1 and 2
below.

For further discussion of TV methods in image processing, see the seminal papers
by Rudin and Osher, et al, [7], [8]. The numerical methods presented in these two
papers are analyzed in [6]. For a detailed discussion of TV and functions of bounded -
variation, see [5]. TV penalty methods are considered in [9]. For an abstract analysis
of TV penalty methods, see [1]. TV methods have recently beeri applied to the
electrical impedance tomography (EIT) problem, a parameter identification problem
in elliptic PDE [4].

While the minimizer of the TV penalized functional {1) has very desirable features,
the functional itself has some characteristics which pose very serious challenges for
numerical analysts. The Euler-Lagrange equations (first order necessary conditions
for a minimizer) are formally

Vu

(2) o(w) E A*(Au—2z) - aV - (W) =0, z€9,
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du
3 — =0, z€a
(3) on €
When A = I (the denoising case), this is a second order elliptic PDE. When A is
an integral operator (the deconvolution case), it is an integro-differential equation.
Certain difficulties arise from the fact that the differential operator, which can be
expressed in “diffusion operator” form

(4) D)~V (s(0)V), w0 o,

[Vl
is highly nonlinear and degenerate in the sense that the diffusion coefficient « is neither
bounded above nor away from zero. Moreover, as a consequence of the nondifferentia-
bility of the Euclidean norm at the origin,  is not differentiable. Nondifferentiability
and the lack of an upper bound can be overcome by replacing £ with a smooth ap-
proximation

1
rp(u) = W’

Even with this replacement, the operator D is still not coercive, or strongly elliptic.
Additional difficulties arise when Q is a region in two- or three-dimensional space.
To obtain high resolution images, one must apply a high level of discretization, which
results in very large (highly nonlinear) systems. When A = I, these systems are
sparse. However, when A is an integral operator as is the case with deconvolution,
these systems are no longer sparse.

The solution approach taken by Rudin and Osher in [7], [8] was essentially to
replace (2) with a time-dependent PDE

(5) 8>0.

du
(6) il —g(u), =€, t>0,

and then integrate from some initial guess to steady state using an explicit time~
marching scheme. This approach is essentially a gradient descent method with a
fixed step size. It is very slow to converge and step size selection is problematic.

An alternative approach considered in [9] uses Newton’s method to minimize a
smooth version fg of the functional in (1). With a line search added for robustness,
the iteration takes the form

1. Obtain s by solving the linear system

(7) Hp(u™)s = —gg(u¥)).
2. Find an approximate solution A* to the 1-D “line search” subproblem

i (k)
(8) ng\lglfg(u + As).

3. Update the approximate solution u(¥+1) = ¢ 4 X *s.
Here f3, g3, and Hg are the objective function, gradient, and Hessian (second deriva-
tive), respectively, obtained by replacing [Vu| with 1/|Vu|? + 3 for some g > 0. For
any positive § and any fixed discretization, this algorithm is locally quadratically con-
vergent. However, the size of the neighborhood about the solution where quadratic
convergence is obtained depends strongly on 7. This neighborhood is large when
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B 1s relatively large. As might be expected, the size of the neighborhood decreases
dramatically as G becomes small.

An obvious shortcoming of Newton’s method lies in the computational complexity
of solving the linear system (7). Recently obtained results obtained using a “trun-
cated Newton method” (see [3]) with a preconditioned conjugate gradient iteration
to solve the linear system (7) will be presented. The performance of FFT-based
preconditioners (see [2]) based on the block-Toeplitz matrix

(9 C=A"A+alg
will be discussed. Here Lg is the matrix representing a discretization of the linear
constant coefficient diffusion operator

,C[gu = — V- (VU)

1
g
This is an approximation to the Hessian of the functional f, v/|Vul? + 8 dz obtained
by setting u equal to a constant.

Also to be presented are results obtained using a fixed point iteration:

: -1
(10) WD = (4744 aDy(u®)) A7 k=012,
Here Dp(u) is a discretization of the linear diffusion operator
(11) Dyu)p = =V - (r5(u)Vv),

i.e., the linear operator in (10) depends on the previous iterate u*) via the diffusion
coefficient (5). In numerical experiments conducted up to this date, this iteration
seems to display monotonically convergence in the sense that the objective functionals
fs(u*) converge to zero monotonically. The rate of convergence appears to be linear,
but seems not to depend strongly on 3. In fact, convergence has been obtained using
extremely small values of 3, for which Newton’s method is not feasible. This fact,
together with apparent global convergence properties, makes this method a strong
competitor to variants of Newton’s method.

Further work is proceeding in two directions: (i) acceleration of the convergence
rate; and (ii) the efficient solution of the (large) linear systems in (10).
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GMRES AND INTEGRAL OPERATORS *
C. T. KELLEY'AND Z. Q. XUE!

Abstract. Many discretizations of integral equations and compact fixed point problems are
collectively compact and strongly convergent in spaces of continuous functions. These properties
not only lead to stable and convergent approximations but also can be used in the construction
of fast multilevel algorithms. Recently the GMRES algorithm has become a standard coarse mesh
solver. The purpose of this paper is to show how the special properties of integral operators and their
approximations are reflected in the performance of the GMRES iteration and how these properties
can be used to strengthen the norm in which convergence takes place.

We illustrate these ideas with composite Gauss rules for integral equations on the unit interval.

Key words. Multilevel methods, GMRES iteration, Psendospectrum, Collective Compactness

AMS(MOS) subject classifications. 65F10, 65J10, 65R20,

1. Introduction. In this paper we consider the performance of the GMRES [9]
iteration for linear equations of the form

(1.1) Av=u—Ku=f

on a separable Hilbert space H. In (1.1) K € COM(H) the space of compact opera-
tors on H. Throughout this paper we assume that A is a nonsingular linear operator
on H. We consider convergence rate estimates of the form

(1.2) Irellr < mellroller

where the sequence of real numbers {7} converges to zero and is independent of the
right hand side f of (1.1). We also consider right hand side dependent estimates of
the form ‘

(1.3) llreller < 7(k, 7o)

The compactness of K implies that the GMRES iteration will converge superlin-
early [6], [8]. These estimates are presented in both forms (1.2) and (1.3). One of
our goals in this paper is to investigate how such convergence estimates are changed
if the operator K is approximated.

Rates of convergence of the form (1.2) or (1 3) can be derived from resolvent
integration [7], [8] for any K such that I — K has bounded inverse and 1 is in the un-
bounded component of the spectrum of K. If K is compact more precise information
can be obtained, in fact the GMRES iterates converge r-superlinearly to the solution
in a way that is independent of the right hand side. This means that the sequence
{7k} converges g-superlinearly to zero. In this case the sequence {Tk} can be directly
related to spectral properties of K.
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! North Carolina State University, Center for Research in Scientific Computation and De-
partment of Mathematics, Box 8205, Raleigh, N. C. 27695-8205, USA (TimKelley@ncsu.edu,
xue€math.ncsu.edu). This research was supported by National Science Foundation grant #DMS-
9024622. Computing activity was also partially supported by an allocation of time from the North
Carolina Supercomputing Center.
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Our motivation is the case where K is an integral operator on L?(%)

() Ku(x) = / k(z, y)u(y) dy

for a compact @ C RN and t € C(Q x ). Here H = L?}(Q) and K : H —» C(Q). In
this case K € COM(H) and COM(H,C(R2)). Hence, if the right hand side f of (1.1)
is continuous, then the solution u will also-be continuous. It is natural, therefore,
to try to solve (1.1) in the space of continuous funetions. The GMRES iteration,
however, is based on Hilbert space orthogonality and converges in the topology of LZ.

The typical discretizations based on quadrature {2] rules also raise questions. We
will approximate integrals by quadrature rules

N
| 1@ s v = Y £l
i=1
and assume that
Jim I() = [ fte)ae

for all f € C(Q?). We then approximate K by
<
K(u)(z) ~ Kn(u)(2) = ) _ k(z,z] u(z] )wf.
i=1 ‘

It is known [1] that the sequence {Kn} is strongly convergent (i. e. Kyu — Ku
) in C(£2), but not norm convergent, and that the sequence is collectively compact.
These two properties imply that I — Ky has a bounded inverse in C{Q) and that the
solutions of u — Kyu = f converge to the solution of (1.1).

The d@pproximate equation

(1.5) Avu=u—EKnyu=f

has a solution u” for N sufficiently large. One can compute u” by solving the ﬁnité
dimensional system for @ € RY,

N
(1.6) (Ana) = — Y _ k@Y, 2w = fi = f(=F)
et ‘

N

to recover u™ (z)) = u; for the values of u™ at the nodal points of the quadrature

rule. Then

N
u™(z) = f(z) + Z k(z, xf’)ﬁ]wf
ji=1
These considerations raise two questions. How is the sequence {7} affected when
(1.1) is replaced by (1.5)7 We solve (1.1) in L? and (1.5) in R¥. Can we quantify the
manner in which the convergence of the GMRES iteration for (1.1) governs that for
(1.5)7 The compactness properties of K and Ky are determined by the smoothness
properties of the function k. Can the L? convergence of the GMRES iteration be
replaced by convergence in the topology of C(Q2) {or an even stronger topology if the
kernel & is sufficiently smooth) in an efficient way? The purpose of this paper is to
provide a partial answer to the first question and to resolve the second.
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2. Convergence Rate Estimates. If we let P denote the set of polynomials
of degree k and denote the set of residual polynomials by

Pr = {p € Pi,p(0) = 1}
it is well known [9] that

lirkller < {lp(A)rolla

for all p € Pr with equality holding for at least one pr € Pj. This is an estimate of
the form (1.3).

If we let rkN = f — Anu; be the residuals of the GMRES iteration for Aya = f
we have

I llry < P(AN)rg ||
for all p € Px. In particular, if (&) ); = uop(z]¥) we have by strong convergence that

Irlls < llpe(An)rd | rw
(21 = |lpe(An)rollzz + o(1)
= [lpx(A)rollz= + o(1).

as N — oo. Hence the convergence of the GMRES iteration for the finite dimensional
problem is governed by that of the infinite dimensional problem even though Ax and
Ay are not defined on L2. However, this is less than completely satisfactory in that
the o(1) term is dependent on L* norms of up, f, and k, and moduli of continuity. It
is also not clear how large N must be to capture the convergence rate at iteration k.
While (2.1) may be all that one can expect in a general setting, one can obtain more
precise results for special cases,

If the quadrature rule is a composite Gauss rule, it was shown in [5] that a norm
convergent sequence of operators may be used in place of Axy. This fact was used
to construct very efficient multilevel methods in that paper and can be used here to
make more precise estimates than (2.1). We now turn to estimates of the form (1.2)
and norm convergent sequences.

We will approximate K by operators that are near to K not only in the operator
norm on H, but also in the Hilbert-Schmidt norm. This, in conjunction with results
from [8], will immediately imply a rate estimate of the form (1.2) but with a sequence
{7} that is valid for all operators near K.

The central point here is that a Hilbert-Schmidt norm convergent sequence of
finite-rank operator approximations to K can be constructed that give rise to the
same finite dimensional systems as the traditional quadrature rule based strongly
convergent sequence. Moreover, the GMRES iterates in the function space (with
the L? inner product) and for the finite dimensional system (with a weighted RV
inner product) can be related by a simple unitary map. Hence the behavior of the
GMRES iteration for the finite dimensional system is determined by that for the
infinite dimensional problem.

As an example consider the composite midpoint rule. Here we take m subintervals

M =((¢—1)/m,i/m) for 1 <i < m. The quadrature nodes are z* = (i —.5)/m and
the weights are h = 1/m. If we approximate K by

(2.2) Kmu(z) = /0 Em(z, y)u(y) dy
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where ky, is the piecewise constant function on [0, 1] x [0, 1] defined for z € Int(I]*)
and y € Int(I*) by

- (2.3) km(z,y) = k(2" 25" )5 (2)17 (v)-
then K,, — K in the Hilbert-Schmidt norm. It is easy to see that the system
(2.4) u—Kpu=f

is nonsingular for m sufficiently large.

Let || - lls denote the Hilbert-Schmidt norm. If k is Lipschitz continuous, say,
then ||K — Km|lgs = O(h) and we can use the methods of {8] to show that if r]* =
f — ur + Kmuy are the residuals for the GMRES iteration for u — Kpyu = f and (1.2)
holds then

(2.5) lrgllze < (7 + O(R))|lrollza-

Let V™ be the space of piecewise constant functions on the intervals {I*}. When
restricted to V™ the system (2.4) is the same as the finite dimensional system (1.6)
and therefore the iterations for the finite dimensional system also satisfy (2.5).

3. Convergence in a Stronger Norm. The results in this section require a
more complex setting, which we now describe abstractly. Our setting is that of [4]
where issues similar to those raised in this paper were considered in the context of
Broyden’s method [3] for linear and nonlinear equations. Let H be a real Hilbert
space and let X C H be a Banach space such that the inner product (-, ) in H is
continuous from X x X — R. This implies that there is Cx such that

(3.1) llullr < Cxljullx

forallu € X. Let K € COM(H,X) the space of compact operators from H to X.
Of course we may also regard K as an element of COM(H) the space of compact
operators on H. In the context of the integral operator (1.4) discussed in § 1 H =
L3 (Q), X = C(R), and Cx = \/m(2) where m is Lebesgue measure.

Having established a rate estimate {1.2) for the sequence of residuals, we show in
this section that the GMRES iteration may be modified to produce a sequence that
converges with the same rate in the norm of X.

ProrosSITION 3.1. Let {ux} be the sequence of GMRES iterates. Assume that
(1.2) holds for some sequence {ry}. Let @iy = ug + r¢. Then

(3.2) llae — v*{lx < & leea,xysm(A)melluo — v™|x-

Proof. First note that (1.2) implies that
(3.3) llur = w*llar < 7ern (Aljuo — w"|la.
Since
= up +rp = f+ Kuy,
continuity of K as a map from H to X implies that

lae — w*|lx = [ K (ur — v")lx < K| ecaxyllue — uw*|le.
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This completes the proof. [1
Note that iy is as easy to compute as ug upon exit from the main loop in GMRES.
An algorithmic description of GMRES is:
ALGORITHM 3.1. Algorithm gmres(u, f, A, ¢€)
Lr=f—Au,vi=r/lrll2, p=llrlle, B=p, k=1
2. While p > €ljbll2 do
(a) viy1 = Avy
forj=1,...k
i hjp = v{ij
1. V41 = Vg4l — hjkvj
(8) hryii = |lveallz
(c) vir = vig1/|[vi1ll2
(d) e1 =(1,0,...,0)T € R¥+!
Minimize ||Be; — Hryllpe to obtain y.
(¢) p=Ber — Hiyl|px-
3. up =up+ Viy.
We can use the fact that

ry = f — Aug = Vig1(Ber + Hry) = ro + Vip1 Hry

to recover up with no additional operator-vector products involving A. In fact if
z = Hypy and we define a vector

w= (wlana L) wk+1)T € Rk+1
by w; = z; +y; for 1 <7<k and wgy1 = 2k41, we have
U = g + Vep1w

which can simply replace the computation of uy in step 3 of gmres.
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ITERATIVE METHODS FOR DISTRIBUTED PARAMETER ESTIMATION
IN PARABOLIC PDE

C. R. VOGEL* AND J. G. WADE!

The goal of the work presented is the development of effective iterative techniques for
large-scale inverse or parameter estimation problems. In this extended abstract, a detailed
description of the mathematical framework in which the authors view these problem is pre-

sented, followed by an outline of the ideas and algorithms developed.

1. Conceptual framework. Distributed parameter estimation problems often arise in
mathematical modeling with partial differential equations. They can be viewed as inverse
problems; the “forward problem” is that of using the fully specified model to predict the
behavior of the system. The inverse or parameter estimation problem is: given the form of
the model and some observed data from the system being modeled, determine the unknown
parameter(s) in the model. These problems are of great practical and mathematical interest,
and the development of efficient computational algorithms is an active area of study.

The estimation problem may be viewed mathematically as that of inverting the “for-
ward” or “parameter to output” map F : @ — Z, where ¢ and Z are, respectively, the
“parameter” and “observation” spaces. For a given g € @, the “output” of the model F(q)
is compared to the data Z € Z, and the goal is to find a suitable q € @ for which

F(q) ~ z.

Generally F is composed of two maps, F(q) = CS(q). Given a g € @, the solution of the
PDE comprising the model is given in terms of the “solution” operator §(g). Then, some
partial information of the solution (to be compared with Z) is extracted by application of
the “observation operator” C. Typically, C involves evaluation of traces or moments.

Since Z contains only partial knowledge of the system, the inversion is usually “ill-posed”
the Hadamard sense. L.e., 7! may not exist, may be one-to-many, or may be unbounded.
Thus these proBlems share many features of other important problems such as those arising
in image processing and first kind integral equations. A proper understanding of the ill-
posedness is crucial for successful numerical treatment.

* Department of Mathematical Sciences, Montana State University, Bozeman MT 59717. Research was
supported in part by the NSF under Grant DMS-9106609 and by the Center for Interfacial Microbial Process
Engineering at Montana State University, an NSF-sponsored Engineering Research Center, and the Center’s
Industrial Associates. ,

t Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403-
0221. Part of this work was carried out while the second author was a visitor at the Institute for Scientific
Computation, Texas A&M University, College Station, TX 77843, and was supported in part by Department
of Energy under contract #SK966-19.
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A widly used approach, discussed below, is that of “output least-squares”, in which the
goal is to minimize

#(q) % J1F(0) - 3l (1)

To simplify the functional analysis, it is also assumed Q is a Hilbert space. One of the
advantages of the least-squares approach is that it allows for incorporation of regularization
techniques, such as that of Tikhonov, for attenuating the ill-posedness. Then (1.1) becomes
&)(q) % 21 F(a) ~ 3ll3 + 5 la — aolh (12)
for some gg € @}, some a > 0, and some seminorm | - |g. The parameter go can embody any
available prior knowledge of the system; this approach also has an interpretation in terms of
Bayesian statistics [3]. The choices of @ and the norm |- |g affect the extent and nature of
the regularization. A typical choice for |- |g is the H' (Sobolev) seminorm.
This conceptual arrangement is fairly standard. It is substantially the same as that
found in, for example, [1, 4, 6].

2. Example Problem. For focus, consider the following example. Let  be the unit

square in R?, and consider the parameterized diffusion equation

%(t,z,y;q) =V - q(z,9)V(u(t,z,9;9)) (2:3)

The initial conditions are u(0,z,y;¢) = 0. The boundary conditions are specified in terms
of the outward normal component of the flux ¥(¢,z,y; q) def 9(z,¥)V(u(t,z,y;q) and are as
follows: along y = 0 and y = 1 no flux is allowed, along # = 0 the flux is specified by a
function b(t,y), and along = = 1 the flux is equal to —ru(t,1,y;q) for some r > 0.

Let the observation operator C be the trace of u along I's,: for ¢t € [0,%f], so that
[Cu](t,y) = u(t,1,y). The inverse problem in this example, then, is to determine g¢(z,y)
from knowledge of the response on I'yy; to a “signal” b(t,-) applied at I';,.

3. Minimization schemes. Many practical iterative optimization methods for least-
squares problems fall broadly within the “quasi-Newton” class. Here, at each g in the
iterations, a local quadratic model of &(*) is formed based the second order Taylor expansion.
The Hessian is appoximated by, say, H,(ca), which is constructed by various means. The
methods which have this general structure include the Gauss-Newton (GN) method and its
more robust variations such as the Levenberg-Marquardt method, as well as gradient-based
secant methods such as BFGS.

For example, in the GN-based methods the Hessian is approximated by

H = J*(qe)J (q6) + B, (3.4)
2




where B > a and J(q) is the Fréchet derivative operator, or Jacobian, of F at g. Thus these
methods require that J(gx) or some approximation of it be computed on each iteration.

The “action” of this operator on a given §g € Q is

T@)sg = Jim ~ [ Flas +60) — Flar)]- (33)

It is usually possible to carry out this limit explicitly for a given problem. For the example
described above, J(gx)dq = Céu where fu = fu(t, z,y) satisfies

%? — V- (V6) +V - (6qVu). (3.6)

with homogeneous initial and boundary conditions.

4. Key properties of distributed parameter inverse problems. Generally, dis-
tributed parameter estimation problems are complicated by (%) the number of degrees of
freedom, which is infinite in principle, and (%) ill-conditioning, which can be severe.

Suppose that in the example above, g,u,y,b and Z are all appoximated on an n X n grid
in space and with m levels in time. Then the approximation of F is a map from R¥ to R¥,
where N = n? and M = n x m, J is an M x N matrix, and the Hessian H is N x N. The
cost computing one column of J is the numerical solution of a PDE such as (3.6) (or (2.3) if
finite differencing based on (3.5) is used). Moreover, it must be emphasized that J and H,
though large, are generally not sparse. Hence, even the storage of the J and H can become
a difficulty. For example, with n = 32, H is a 1024 x 1024 full matriz. For these reasons,
inversion of F is an enormous computational problem even for values of n and m considered
modest by numerical PDE standards.

Because of the ill-posedness of these problems, different criteria than are used for well-
posed problems must be adopted by which to judge the success of methods. Rather than
ask, “how accurately can we get the solution” (which, in general, is nonunique anyway), one
should ask “how much information can we hope to obtain about g from the data, and how
can we obtain it?” An extremely useful tool in this regard is the singular value decomposition
(svp) of J,

J=UxV*.

Assume that the singular values {o;} are arranged in decreasing order. The ill-posedness
typical of distributed parameter inverse problems is reflected in that F and J are compact
operators, so that o; — 0 as j — co. In fact this decay to zero often occurs at an ezponential
rate (see, e.g., [2, 4, 6]), in which case the problem may be called “severely ill-posed”.

A key observation is this: although after discretization J(g) is a large, full matrix, ill-

posedness implies that it has a very low effective rank. Hence it can be approximated well
3




in terms of the dominant “few” singular values and vectors, by its “truncated singular value
decompostion” (TSVD). For example, if after discretization, J is an M x N matnx, and if

all but the largest L singular values are to be truncated, then
J= JT = UTETV; (47)

where X7 = diag(1,...,01) and Ur and Vr are matrices of size M x L and N x L, respec-
tively, defined in the obvious way. For severely ill-posed problems, ¢141/07 < 1, and hence
the approximation is accurate, for relatively small L, e.g., L < N. |

Iterative methods for computing the TSVD in linear inverse problems were presented in
[6]. They require the means by which to apply the operator to a given §g € @ as well as its
adjoint J* to a given 6Z € Z. When F involve J involves solution of parameter-dependent
PDE followed by pointwise or trace evaluation, this adjoint computation is non-trivial. These
and other practical and theoretical issues will be discussed for these methods.

5. The contributions of this work. In [6], preliminary exploration of the the use
of the TSVD for nonlinear problems was presented. A more complete development of these
ideas is the goal of the present work. Specifically, modifications of quasi-Newton methods
by the incorporation of the TSVD will be discussed. Practical and theoretical issues such as
the choice of truncation level and its relationship to regularization and the computation and
convergence of the ad_]omt J* will be treated w1th numerical results based on the example
discussed above.
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Preconditioned Iterations to Calculate Extreme
Figenvalues
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Common iterative algorithms to calculate a few extreme eigenvalues of a
- large, sparse matrix are Lanczos methods or power iterations. They converge at
a rate proportional to the separation of the extreme eigenvalues from the rest
of the spectrum. Appropriate preconditioning improves the separation of the
eigenvalues. Davidson’s method and its generalizations exploit this fact.

We examine a preconditioned iteration that resembles a truncated version
of Davidson’s method with a different preconditioning strategy.

Keywords. Davidson’s method, eigenvalues, preconditioning, sparse matri-
ces.

Overview. The matrices we are considering are discretizations of elliptic dif-
ferential operators on large grids. They are sparse, symmetric and positive
definite. In a typical application, a few of the eigenpairs at the lower end of
the spectrum are sought. For matrices of this kind, the Lanczos algorithm con-
structs an orthonormal basis of a Krylov space. At each step, it adds another
vector to the basis and uses essentially the Rayleigh-Ritz procedure to extract
approximate eigenvectors from the Krylov space.

Davidson’s method [3] also uses the Rayleigh-Ritz procedure, but enhances
the subspace at each step by a vector (D — 8I)~(A — 6I)y, where D is the
diagonal part of A; # and y are the most recent approximations to the desired
eigenvalue A and eigenvector z. The subspace generated in this way is not a
Krylov space, but as # converges to A, it asymptotically resembles a Krylov
space generated by (D — AI)"}(A4 — AI). Frequently, the extreme eigenvalues
of (D — AI)~}(A — AI) have a distribution more favorable than the eigenvalues
of A, and the method then converges rapidly. (D — 8I) can be viewed as a
preconditioner to (A — #I). ‘Generalizations of Davidson’s method use more
elaborate preconditioners to (A — 81) [4, 5, 2].




For an n X n-matrix A of the type we are considering, the Kaniel-Paige theory
estimates O(y/n) iterations for the Lanczos method to find an approximate
eigenpair. Thus, a linear combination of O(y/n) basis vectors will finally form
the approximate eigenvector. Implementations of the Lanczos algorithm usually
write these basis vectors to disc storage. However, for n ~ 10%, even a basis
of modest size (as compared to /n), say two hundred vectors, will occupy
disc space in the gigabyte range. Davidson’s method, too, has to store all
basis vectors; but in addition, it has to orthogonalize explicitly each new vector
with respect to all previously computed basis vectors. Therefore, both methods
become inefficient as the dimension of the subspaces increases.

We investigate a preconditioned iteration that does not rely on high-dimensional
subspaces. It uses the operator A=1(A —68I) to build up the subspace, where A
is a preconditioner to A (and not to A — 81, as in the usual version of David-
son’s method; we note that some preconditioners we use would lead to unstable
methods if they were applied to 4 — 61 ). For A = A our method reduces
essentially to inverse iteration, for A = I it becomes a shifted power iteration
(plus steepest descent optimization).

In its basic version, the method just builds up two-dimensional subspaces
and restarts, i.e., it generates a new approximation for the eigenvector via
a one-dimensional minimization of the Rayleigh quotient. Of course, higher-
dimensional subspaces accelerate the convergence, but our numerical compar-
isons show that the increasing computational work and data traffic quickly bal-
ance against the higher rate of convergence.

We analyze the convergence of this method and prove that—with some as-
sumptions on the matrix and the preconditioner—the method converges glob-
ally, for any initial approximate eigenpair (8, y). For preconditionings based on
modified incomplete factorization, the number of iterations required to reduce
the initial error ||Ay— 0y} by some fixed constant is of order O(y/n) (the same as
for the Lanczos method, but no high-dimensional subspaces are involved). For
a large class of preconditioners we show that the speed of convergence depends
on the condition number x(A~1A4). The general ideas in these proofs are: show
that the only fixed points in the mapping associated with the iterative proce-
dure are the exact eigenvectors of the original matrix; show that the eigenvector
corresponding to the desired eigenvalue A is the only point of attraction, while
all other eigenvectors are repelling fixed points; estimate the spectral radius of
the Jacobian to obtain bounds on the rate of convergence.

A block version of this method finds more than one eigenpair at either end
of the spectrum. It is possible to insert as an inner iteration a low-dimensonal
Lanczos process. In this variant, the outer iterations converge quadratically.

We present numerical experiments with various model problems and do-
mains. For preconditioning we use DKR, MIC(p, ¢} (modified incomplete fac-
torizations), INV(p) (block-incomplete factorizations) with small p and ¢ (for
the abbreviations see [1]), and hierarchical-basis multilevel preconditioners. We
compare the number of iterations and the total computing time for these meth-




ods with a standard Lanczos Algorithm. We study the influence of subspace
dimension, i.e., the restart frequency.

Our results generally indicate (especially for large problems, n = 10%) that
an efficient (multilevel) preconditioning and frequent restarts outperform meth-
ods that. construct a large orthonormal basis (like the Lanczos method). For
multilevel preconditioners, using polynomial acceleration with certain scaled
and shifted Chebyshev polynomials at each level, the number of iterations (as
is to be expected) does not depend on the size of the problem.
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1 Introduction

The solution of the large, sparse, symmetric eigenvalue problem, Az = Az, is central to many
scientific applications. Among many iterative methods that attempt to solve this problem, the
Lanczos and the Generalized Davidson (GD) are the most widely used methods. The Lanczos
method builds an orthogonal basis for the Krylov subspace, from which the required eigenvec-
tors are approximated through a Rayleigh-Ritz procedure. Each Lanczos iteration is economical
to compute but the number of iterations may grow significantly for difficult problems. The
GD method can be considered a preconditioned version of Lanczos [4, 2]. In each step the
Rayleigh-Ritz procedure is solved and explicit orthogonalization of the preconditioned residual
((M —XI)"Y(A—AI)z)is performed. Therefore, the GD method attempts to improve convergence
and robustness at the expense of a more complicated step.

Variations of the Schwarz domain decomposition algorithms are extensively used for solving
linear systems arising from Partial Differential Equations [3]. They solve restrictions of the prob-
lem on different subdomains independently, and then integrate the partial solutions. For this
reason they have become popular on parallel computers. Solving the subdomain problems is ex-
pensive in large, sparse matrices and therefore Schwarz algorithms have been alternatively used
as powerful preconditioners [3, 1]. Their power is further enchanced by the fact that they allow
for domain overlapping. Increased domain overlapping as well as the use of a coarse grid solver
compensates for the convergence deterioration with the number of subdomains. When no over-
lapping is used, the popular additive and multiplicative Schwarz algorithms are the usual block
Jacobi and Gauss-Seidel ones. o

Schwarz domain decomposition algorithms can be used to precondition the algebraic eigen-
value problem as well. The additive and multiplicative Schwarz methods have been applied on
the GD method for solving the equation (M — AI)§ = (4 — AI)z in a multicomputer environ-
ment. However, in this environment the subdomain overlapping causes some eigenvalue-specific
problems. This paper presents the changes that are necessary to solve these problems. Some
preliminary experimental results are also given.

*This work was supported by National Science Foundation under grant numbers ASC-9005687 and DMR-
9217287, and by AHPCRC (University of Minnesota) under Army Research Office grant number DAALO03-89-
C-0038.

tComputer Science Department, Vanderbilt University, Nashville, TN.

$Computer Science Department, University of Minnesota




2 Problems from Subdomain Overlapping on GD

Assuming that the smallest eigenpair of Az = Az is sought and B is an initial basis of an
approximating subspace, a conceptual description of the GD algorithm follows|[7, 6):

GD Algorithm
Step 1. Compute projection § = B~ AB.
Step 2. Solve Sc = Ac
Step 3. Compute the residual R = (ABc¢ — ABe).
Step 4. Precondition: R' = (M — AI)"1R.
Step 5. Orthogonalize: b = (I — BBT)R'.
Step 6. Add normalized vector ¥'/||b'|| to B and repeat from 1.

The distribution of the algebraic problem onto the multicomputer is similar to the one in
Sobolev spaces. Each processor holds a number of rows (nodes) of the matrix and the corre-
sponding components of the eigenvectors and work arrays. Usually, a subdomain is associated
with the rows on each processor and overlapping subdomains hold a number of the same rows.

On multicomputers, subdomain overlapping alters the dot product. The reason for this is that
the overlapped regions of vectors contribute to the dot-product more than once. More specifically,
if D is the overlap diagonal matrix, where D; ; is the number of processors on which row i appears,
for any distributed vectors z,y the altered product (.,.)ou is given by:

(2,9)out = (2, 9)D = (D2,3),

In linear systems of equations this is not a problem by itself, since the Galerkin condition does not
depend on the dot-product. However, the Rayleigh-Ritz procedure is sensitive to the dot-product:

z = Be, (Az — Az,B)p=0 = BTDABc - ABTDBe=0.

A second problem is that the (.,.)on dot-product describes the correct change only when the
overlapping regions are the same in different processors. However, preconditioning operates on
different subdomains with different sections of A, and the resulting overlapped regions in different
processors do not coincide. Thus, the dot-product does not have a succinct formula as the above
one and simple scaling cannot be used.

3 Proposed Solutions

o The problem of non coinciding overlapping regions in different processors, needs to be dealt with
first, because otherwise the effect of the dot-product is not easily recordable. The problem can be
faced by introducing a communication step after preconditioning. The overlapped regions of the
preconditioned vector are communicated and weighed (averaged by D~!) over all the processors.
Since the size of overlaps is usually much smaller than the dimension of A this should not present
a bottleneck in the algorithm. After this step, all overlapped vector components have identical
values on the processors and the dot-product can be safely assumed to be (.,.)ou-

o There are two ways to deal with the change in the dot-product. The simplest (and most
intuitive) one is to correct the effect of the dot-product by scaling one of the vectors back with
D1, The dot-product defined by (z, D™ 1y)ow = (2, DD~ 1y) = (z,y) is equal to the correct (non-
overlapping) one. This obvious solution has two disadvantages: the GD library routine must be
modified accordingly for the new dot-product, and requires k + 2 scalings in each iteration, where
k is the size of the basis.




e A different approach to the same problem is to consider the scaled matrix 4, = D~3AD% and
the scaled initial basis B, = = D~3B. If the GD algorithm is applied to these scaled matrices
with (., .)out dot-product and with the above averaging after preconditioning, it gives the correct
eigenvalue and the scaled eigenvector. To show this claim the following are necessary.

Let the rows of the matrix A span RV. Let also the rows of the matrix local to subdomain %
span the subspace L;. If I; is the orthocanonical basis of L;, P = LIF is an orthogonal projector
onto L;. The section of A on L; is defined as: A; = PAP = I;I,-T AI,-I,-T . Although A; is not
invertible, its restriction to L; can be inverted. Let A]" be defined as:

A7t = LT AT

With this definition, the algebraic formulation of the additive and multiplicative Schwarz precon-
ditioners is:
M7 =AT +. .+ A (additive),

=T -(I-A7"A)-(I- A;'A))A™Y  (multiplicative).
Lemma 1 The inverted sections of A, are the scaled inverted sections of A, i.e.,
(A7 = D 54;'Ds.
Proof.

L(IT A L) T

= LUTD 3ADSI) [T

= LUTLIFD 3 ADILITL) I

= L((IFD L) (ITAL)IF D3 L)L

(4.)°

LI D3y (I ALY (iF D3 L) T (1)
= LIFD-3L,(TAL) ' IFDiLIT (2)
= DsL(IFAL) I D3
= D iA;'D3.

The transition from eq. (1) to eq. (2) is justified because D is a diagonal matrix and I; part of
the identity matrix. a

As a consequence of the above Lemma, the additive and multiplicative Schwarz preconditioners
derived from the scaled A, are simply the scaled preconditioners of A.

Proposition 1 If M, is the additive or multiplicative Schwarz preconditioner of A, , and M is
the corresponding preconditioner of A, then

M'=D-3iM™1Di.

Proof. For the additive case a:nd from Lemma 1
Ma 1= t=1(A8):— - E;: —EA—1D2 = (Zz—l A:I)D% = D_%M—ID%'
For the multiplicative case:

= (I~ (T - (A7 447" = (I - TT,(T - D5 A7 ADY) D=3 471D} =

~3(I - [I%,(I - A;1A)A-1D5 = D~3M-1D3, o

W1th the above results it is easy to show that each step of the GD procedure, applied to A,

with starting ba.s1s B,, computes the correct eigenvalues of A and their corresponding eigenvectors
scaled by D~ 5. Assume ||B|| = 1 for the original (not the overlapped) norm.
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Step 1 The computed projection matrix is S = (B,, A;Bs)ovt = BTD-3DD-3ADiD"iB =
= BT AB, i.e., the same with the correct projection of the unscaled matrix.
Step 2 This depends only on S and therefore is not affected.
Step 3 The residual R, = (A, — AI)B,c = D'%R, where R is the residual of the unscaled method.
Step 4 According to Proposition 1, R, = M7 R, = D"iM~'DiD~3iR = D~ R, where R' is
the preconditioned residual of the unscaled method.

Step 4’ Both the scaled and unscaled versions, introduce different values on the overlapping
regions of R’ and R/. Thus, they both require a global summation and scaling:

R« DY (Y, R '(J))’ R « D~ l(zq R'()), and the relatlon R! = D=3 R’ still holds.
Step 5 The orthogonalized vector ¥, = R, — By(B,, R,)ot = D~3(R' — BBTR') = D3V,
where b’ is the correctly orthogonalized vector of the unscaled version.
Step 6 The computed norm of b/ is ||b}]|? = (b.,})ont = b"* D~ 1DD3b = bTH. Therefore the

norm computed is the correct norm of the new basis vector ¥ of the unscaled case.
The algorithm can now repeat from Step 1.

Severa.l applications scale the matrix A before the GD is applied. In these cases the scaling
D~3 AD3 can be done at no additional cost. M need not be explicitly scaled since it is extracted
from A. Scaling the matrix A may also be beneficial in cases of sparse matrices with large overlap
where the GD requires many iterations.

Another way of exploiting the above alternative algorithm is not to scale the matrix A but
to record the effects of the scaled one in the matnx-vector multiplication and preconditioning
routines. Since A, = D~iAD? and M1 = — D~iM-1D3, an operation of any of these two

matrices (say F) to a vector from the above algorithm can be formed as D~ (F(Dzb))). This
is equivalent to scaling the vector by D3 before the operation with F and by D~ after the
operation, i.e., two scalings per operation. Moreover, the scaling after the preconditioning (by
D‘%) can be combined with the scaling from averaging (by D~!) into one scaling by D™a. Thus,
this approach costs 3 scalings per GD iteration and is much cheaper than the initial approach.

4 Preliminary Results and Conclusions

The use of overlapping domains in additive and multiplicative Schwarz preconditioners for the GD
is demonstrated with some preliminary results on Tables 1 and 2. The codes used are described
in [1, 5, 7], and the experiments are carried out on a PVM 4-node multiprocessor. No underlying
grid is considered and the partitioning of the matrix is performed through automatic domain
decomposition tools. The subdomain problems are solved with ILU(0).

On both tables the overlap is denoted by two numbers; the number of breadth first search
levels that a domain is expanded, and the maximum number of additional nodes per level al-
lowed. The number of GD iterations is reported for the additive (Add) and multiplicative (Mult)
preconditioners. On Table 1, the matrix used is BCSSTKO07 from the Harwell-Boeing collection.
Its dimension is 420 and it has poor eigenvalue separation for the lowest part of the spectrum.
The lowest eigenpair is sought for. Two steps of the corresponding Schwarz method are applied
in each iteration. For the Add method the overlap (10,2) improves the convergence significantly,
while (8,6) takes more than three times the steps. Improvements for the Mult method are more
consistent with larger overlaps.

On Table 2, the matrix used comes from atomic structure calculations [7]. Its dimension
is 748 and it has fairly good eigenvalue separation for the lower spectrum. The third lowest
eigenpair is sought for. Two steps of the additive preconditioner (five for the multiplicative) are
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Overlap Overlap

Levels 0 2| 10 4 8 Levels 0 4| 10 4 8
Ovl / level 0 2 2 2 6 Ovl / level i 2 2 6 6
Iterations | 454 | 402 | 360 | >700 | >1000 Iterations | 233 | 258 | 189 | 153 | 154

Table 1: BCSSTKOT: Iterations for Additive (left) and Multiplicative (right) preconditioned GD

applied in each iteration. Similarly to the previous case, better and more consistent convergence
improvements are observed for the multiplicative algorithm.

Overlap Overlap

Levels | 0} 4:10| 8| 10 Levels 0| 410 8| 10
Ovl/level | O 2| 2| 6] 6 Ovl/level | O 2| 2| 6| 6
Iterations | 31 | 31| 32 [ 28 | 28 Iterations | 25} 24 | 21| 21 | 24

Table 2: Matrix 748: Iterations for Additive (left) and Multiplicative (right) preconditioned GD

These preliminary experiments show that similarly to algebraic linear systems an efficient
partition of the algebraic eigenvalue problem requires knowledge of the underlying structure or
the use of automatic domain decomposition tools.

Acknowledgement: The authors would like to thank Todd Goehring for the partitioning routines.
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1. Introduction.

In this paper, we propose some new techniques in order to accelerate the convergence
of the bisection method for the eigenvalues of a real symmetric tridiagonal (hereafter rst)
matrix A (compare [Par|, [GL], [B], [LPS], [PR}]).

We recall (see our section 3) that the bisection algorithm approximates all the eigen-
values Ag,...,An, A1 > Az > -+ 2> A, of an n X n rst matrix A within an error bound ¢,

0<t< A1 — An, by using

4n?[H(t)] + O(n) (1.1)

arithmetic operations where
H(t) =log,((A —Aa)/H) « (1.2)

Our new algorithms involve
(4n? 4+ O(n)) [(log, H)? + log, n + vlog, H] (1.3)

arithmetic operations where v varies from 4 to 5.5/log, 3 = 3.47. (Note the decrease of the
complexity bound from O(H(t)) in (1.1) to O(log H(t)) in (1.3); see the derivation of the
estimate (1.3) and some further comments in section 10 and, for a further improvement,
see section 5 and table 10.6.) Furthermore, some features of our algorithms suggest that
(unlike the bisection method) they tend to perform substantially better on the average
input than the estimate (1.3) indicates.

The techniques used may be of some independent interest. In particular, by employing
Newton’s iteration for a k-fold zero of a polynomial, our algorithm 6.1 ensures a nearly
quadratic convergence, right from the start, to single and multiple eigenvalues of A or
to their clusters, as soon as each of these eigenvalues or, respectively, of their clusters is
sufficiently well isolated from the other eigenvalues of A. The desired isolation is énsured by

using the bisection procedure and the double exponential sieve algorithm of [BOT] with its

new improvement (see some alternative techniques in [P87], [P89a], [PD]). And we show in
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section 9 a simple but novel extension of Newton’s iteration techniques, leading to a nearly
cubic convergence rate, right from the start. This makes our techniques potentially useful
for the study and design of other iterative algorithms. Actually, in this paper, we develop
the earlier approach of [P87], originally applied to approximating complex polynomial zeros
and based on Weyl’s construction; our present techniques can in turn be easily extended in
order to improve this approach of [P87] to the latter problem. This direction seems to be
even more promising from the application point of view, because the polynomial zeros are
usually sought with a much higher precision than the eigenvalues of a symmetric matrix.
Another promising extension of this work is apparently to improving the known divide-
and-conquer algorithms for the symmetric tridiagonal eigenvalue problem (see remark 4.1

in section 4).

Our paper is organized as follows: We recall fast methods for the evaluation of the
characteristic polynomial of A and of its derivatives, in section 2, and the bisection algo-
rithm, in section 3. In section 4, we present the structure of our main algorithm, give its
informal description and also define the two basic concepts, of separation and isolation.
In section 5, we recall the double exponential sieve process of [BOT] for the eigenvalue
isolation. In section 6 we describe our algorithm 6.1 for approximating the well-isolated
(clusters of) eigenvalues of A. Rapid convergence of this algorithm is proved in section 7,
and the algorithm is further accelerated in section 9. In sections 8-10, we summarize
our study by presenting (in sections 8 and 9) our two algorithms for approximating the
eigenvalues of an rst matrix and (in section 10) their computational complexity estimates,

shown both in formal expressions and in tables (for two samples of specific problem sizes).

2. Definitions and auxiliary results.

Hereafter, A denotes the n x n rst matrix, a; denotes its entry (¢,2), 8; denotes its

entries (j —1,7) and (4,7 — 1); pi(z) = det(zI; — A;) denotes the characteristic polynomial
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of the ¢ x ¢ leading principal submatrix A; of A,

A, = A, pn(z)=p(z)=det(zl, — A),

p()=1, pE)=z-0,
pi(z) = (z — a;) pj—1(2) = Bi_,pj-2(z) (2.1)
wherei =1,...,n; j = 2,...,n. Due to (2.1), it suffices to use 2n — 3 multiplications and

2n — 1 additions to evaluate the sequence pi(z),...,pa(z) for any fixed z (assuming that
the values 3?7 have been precomputed for all h, in n — 1 multiplications). The number of
sign agreements in this sequence equals the number n_(z) of the eigenvalues of A that are
less than z ([GL, p. 438], [Par, p. 131}).

Furthermore, 4n — 8 multiplications and 4n — 5 additions suffice to evaluate both p(z)
and its derivative p'(z) ([BP]). Indeed, introduce an auxiliary variable z, replace px(z), for
h=3,j—1,5 -2, by pa(z+2) mod 22 = pp(z)+z p,(z) in (2.1), and recursively compute
pr(z) and p(z) from the resulting expressions for pa(z + z) mod 2?. Likewise, we may
replace pp(z) for h = j,j7 — 1,7 — 2 in (2.1) by pa(z + z) mod 2® and then recover p(z),
p'(z) and p"(z) from pu(z + z) mod 23 = pr(z) + 2p}(z) + 2*pj(z)/2.

Remark 2.1. The above approach can be extended to the evaluation of higher order
derivatives of the polynomial p(z) and to computing its coefﬁcienté.

We will measure the computational complexity by the number of the evaluations of

n_(z), p(z) and p'(z) and will deal with real semi-open intervals of the form
[a,0) = {z,a <z <b}.

Hereafter, all logarithms are to the base 2, and t > 0 denotes the tolerance to the

absolute errors of the output approximations to Ay,..., A,, the eigenvalues of 4, where

M 2Ag 22 A
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3. Bisection algorithm.

Next, we will recall the bisection algorithm for approximating the eigenvalues of A
(compare [B], [PR], [LPS]).

Algorithm 3.1.

Input: an n X n rst matrix A, two real numbers An+1 and Ag, such that A 47 < A, <
A1 < Ao, and an error tolerance t > 0.

Output: approximations (within the absolute error bound t) to the n eigenvalues of
A in the interval [An41, Ao)-

Initialize: call the interval [An41, Ag) suspect.

Recursive step: for every suspect interval [g,r) such that r —gq > 2t, compute

n-( ! ; - ); call the subinterval [%7 r) suspectif n_(r) > n_{(g+r)/2); call the subinterval

lq, 9%) suspect if n_(g;-_r_) > n_(q); remove the label “suspect” for the interval [g,r).

Stopping criterion: end the computation when all the suspect intervals have length
at most 2t; for each of these intervals, output its midpoint and the number of the eigen-
values of A lying in it.

To estimate the computational cost of the bisection algorithm, note that in each its
recursive step, there is at least one eigenvalue in each suspect interval, and thus, there are
at most n suspect intervals at each recursive step.

On the other hand, in step s, each suspect interval has length (Ao — A41)/2%, so that
S = ﬂog(ﬁ#ﬂﬂ —1 steps suffice to arrive at the intervals of length at most 2¢, at which
point we output the soluiton. Each s-th of these S steps requires k(s) < n evaluations of
n_{z), at the midpoints of each of the k(s) < n suspect intervals. This leads to (1.1) since

the extremal eigenvalues A\; and A, of an rst matrix can be easily approximated ([GL],

[P90]), so that we may assume, say, that Ap11 — Ao < 2(A1 — Ap).

4. Separation and isolation.
Our objective is to modify the bisection algorithm to accelerate its convergence. We
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will still rely on the recursive partitioning of the input interval [An4+1,A¢) by its interior
points, but not necessarily by the midpoints of suspect intervals. One of our two major
tools will be Newton’s iteration algorithm, which‘is well known to have local quadratic
convergence. In fact, we will show (in sections 7 and 9) its superlineér (nearly quadratic
or nearly cubic) convergence right from the start, provided that we start with an approxi-
mation to a single eigenvalue (or to a cluster of eigenvalues) sufficiently well isolated from
all the other eigenvalues of A. We will quantitatively specify the term “sufficiently well”
by using the concept of an isolation ratio ([P87], [P89]), abbreviated as ir. For an interval
J = [m — £,m + £), its isolation ratio, ir(J), equals H/{, H being the distance from m to
the nearest eigenvalue of A not lying in J itself, so that H > ¢, ir(J) > 1.

Now, if we have a cluster of the eigenvalues of A4 in a fixed real interval J, coniaining
no other eigenvalues of A and having its isolation ratio at least 8n, then we will prove (near)
quadratic convergence of Newton’s iteration algorithm 6.1 of sectionvﬁ to this cluster, right
from the start. Furthermore, our modified algorithm 9.1 of section 9 reaches nearly cubic
convergence, right from thé start, if ir(J) > 2 + 4y/n. Moreover, the same algorithms
remain effective under the above bound on ir(J), no matter whether all the ei_»genvélues of
A in J form a single cluster or not. In the latter case, the algorithms conver_gev(with the
same speed) not to a common approximation point for all the eigenvalues of A in J (such
a point cannot exist in this case), but to a splitting point defined as follows:

A partition of an interval {a,b) by its internal point z is called a separation step if
n_{a) < n_(z) < n_(b), (4.1)

and then z is called a splitting point.

Clearly, there can be at most n—1 separation steps of the bisection or of any recursive
partition algorithm. Due to this bound n — 1, we juét need to devise a recursive partition
algorithm whose every sufficiently long sequence of successive recursive steps, including no

separation steps, rapidly converges to the eigenvalues of A. We will indeed show such an
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algorithm in the next sections (where “sufficiently long” will be interpreted as the order
of logn), and in fact, the only remaining problem is to ensure high isolation ratios of the
initial approximation intervals. Indeed, if the isolation ratios are high enough, already
the Newton iteration algorithms rapidly converge either to an approximation point or to
a splitting point. Since there can be at most n — 1 separation steps, it follows that at
most 2n — 1 (in the worst case!) applications of these algorithms will give us the desired
approximations to the n eigenvalues of A.

Let us next turn to the problem of isolation. Looking for the increase of the isolation
ratio of the original input interval, we will employ, in particular, the following simple result:

Fact 4.1. Let i(J) = 1+ u for a suspect interval J (see algorithm 3.1). Then the
bisection of J either outputs two 3usp;ect intervals of half length (and then the bisection is
a separation step) or else defines a single suspect subinterval J* of J (of half length) such
that

ir(J*) >1+2u.

If h bisection steps have been successively applied to the interval J of fact 4.1 such
that ir(J) > 1 + u and if neither of them turned out to be a separation step, then their
output suspect subinterval of J has length |J|/2* and has an isolation ratio of at least
1+ 2ku. ‘ |

In the next section we will recall an algorithm from [BOT)] that, for any interval J of
fact 4.1, rapidly computes either a splitting point in J or a subinterval Jy of J such that all
the eigenvalues of A in J lie in Jo and ir(Jg) > 3, in which case u > 2, 1 +2hu > 1 4 2h+1,
We will also show a further improvement of this algorithm.

Summarizing, our approach has the folldwing structure (compare section 8).

1) apply improved algorithm of [BOT], to ensure (after sufficiently many separation
steps) an isolation ratio of at least 1+ 2v for a fixed v > 1 (v = 1 in the version of [BOT]),
for every eigenvalue or every cluster of the eigenvalues of A4;

2) apply the bisection algorithm to increase the isolation ratios to at least 8n or to at
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least 2 + 4/n;

3) apply Newton’s iteration (algorithm 6.1) or its refinement (algorithm 9.1) to obtain
approximations to the eigenvalues of A within the fixed tolerance to the errors.

The process may be interrupted (at most n — 1 times) by the separation steps, and
then it is recursively repeated.

Remark 4.1. Steps 1) and 2) can be inclﬁded in all the known divide-and-conquer (d.-
c.) eigenvalue algorithms ([BP], [C], [DS]), to ensure faster convergence of the subsequent
iterative processes (which vary for various d.-c. algorithms). Such an inclusion has been
elaborated in [BP], but now we may also incorporate new improvements, of step 1 (shown
in the next section) and of the subsequent Newton iteration (by using our algorithm of
section 9). The pc;wer of the application of our approach is accentuated in the case of the
d.-c. algorithms because they immediately furnish us with approximate separation of the

eigenvalues of A.

5. Double exponential sieve.

For simplicity, we will study the case where a (single or multiple) eigeniralue A lies in
the interval [0,2) and is the only eigenvalue of A lying in this interval, and we will only
comment on the extension to the general case at the end of this section. |

By applying one bisection step, we will first specify in which interval, [0,1) or [1,2),
A lies. Without loss of generality, let 0 < A < 1. At this point, to see the main difficulty,
assume that A lies very near 0 and that so do some negativeleigenvalues (Sf A. (This
situation so far has no perfect solution in the known implementations of the divide-and-
conquer algorithms, [C], [DS].) In this case, the bisection process yields the isolation too
slowly. Indeed, it is much more efﬁcient in this case to compute n_(z;) not for z; = 27¢
but for z; = 2‘2i, ¢ = 0,1,.... This is precisely the strategy of our next algorithm, and

this strategy (after its refinement) turned out to be the most effective means for rapidly

ensuring higher isolation.




Let us next formally describe the algorithm.

For a fixed tolerance ¢, 0 < t < 1, we will seek two real values a and b such that
0<a<A<bLl

and either

b—a <2t (5.1)

(in which case |A — (a + 8)/2| < t, so that the point (a + 0)/2 approximates A within the
error bound t) or else

b < 2a (5.2)

. (in which case the isolation ratio of the interval [a,b) is at least 3).

The double ezponential sieve algorithm of [BOT) computes the desired values a and
b in [loglog(1/(2¢))]? evaluations of n_(z). More precisely, the algorithm of [BOT] has
been devised for approximating real polynomial zeros; we will restate it for the symmetric
eigenvalue problem and will then improve it a little.

The algorithm first successively evaluates n_(z;) for z; = 2"2‘, t=1,...,91, where

g1 = min{[loglog(1/(20))] , _min {i, n—(e:) <n-(D}} .

If g1 = [loglog(1/(2t))], then 0 < A < 2¢, and we satisfy (5.1) by setting a = 0, b = z,,.
Otherwise, A lies in the interval J = {A, a1 = 24, < A< 243 = b}. If g; = 1, then
ir(J) > 5/3, and we increase this ratio to at least 11/3 in at most 2 applications of fact 4.1.
Otherwise, we apply the same double exponential sieve procedure to the latter interval.
Let g; denote the number of the evaluations of n_(z) in these applications. Then we either

satisfy (5.1) by setting a = ay, b= a3 = ay + (b; — a1)272"* or else obtain that
as = ay + (b] - 01)2_2g2 S A <a + (b1 - a1)2_2”—1 = bZ .

Since b; — @; < 1, the length of the latter interval, b — a3, is less than a; if g2 > ¢1, and

in this case, we set a = a;, b = by, and satisfy (5.2). Thus, it remains to consider the

9




case where g, < ¢1. Recursively, we arrive at a decreasing sequence of positive integers

{91, 92,93, ..} ending with a term g, such that setting
a=a,, b=1by,

satisfies (5.1) and/or (5.2). Since the sequence {gi,g2,...} strictly decreases, we have
u < ¢1, so that the overall number of the evaluations of n_(z) in the entire process is at
most
u
To=)Y gi<1+42+-+g=(1+1)91/2, g1 = [loglog(1/(2t))]. (5.3)
i=1

Extension. If the input interval [0,2) has been replaced by any interval J of length
2L, which may contain several eigenvalues of A, then the above process can be immediately
extended so that, in at most (g} +1)g} /2 (for g7 = [loglog(L/(2t))]?) evaluations of n_(x),
we either compute a splitting point z in J [compare (4.1)], thus defining a separation of the
eigenva,lues'of A from each other, or else output a subinterval Jof J containing the same
eigenvalues of A as J and such that |J| < 2¢ (which ensures the desired approximation to
all the 2L eigenvalues of A in J) and/or ir(J) > 3 (which ensures good initial isolation of
these 2L eigenvalues from the other eigenvalues of A).

Improvement. The double exponential sieve process can be applied with any base
1+ v > 1, rather than with the base 1 + v = 2, as in [BOT], that is, we may initially set
T; = (1+v)'2i and compute n_(z;) as above, for i = 1,..., g1(v); then we shall recursively
apply a similar process to the intervals {A, Ty, (») < A < Tg(0)=1}, K =1,2,...,u{v). In
this case, the complexity estimate (5.3) (extended to any interval of length 2L) changes

into the estimate

T3 (v) = (91(v) + 1) 92(v)/2, g1(v) < [log (log(L/(2t))/ log(1 + v))] , (5.4)

and the lower bound on the isolation ratio of the output interval of the double exponential

sieve process remains equal to 3, except for the case where g; = 1, and then this ratio
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changes from 3 to 1+ 2/v. In the latter case, & applications of fact 4.1 increase the ratio to
at least 1 4+ 213 /v which is at least 3 if h > logv. Thus, we shall extend the complexity

bound (5.3) (adjusted to the interval L) to the following estimate:
To(v) = max {T3(v), [logo]} , (5.5)

which we may optimize by choosing an appropriate value for the parameter v. In particular,
consider the two cases:
(a) log(L/(2t)) = 69, 91(1) =T,
(b) log(L/(2t)) = 34, g:(1) = 6.
Then we may set v = 512 in case (a), v = 64 in case (b) and obtain from (5.3), (5.5)
that
To =Tp(l) =28, To(v) =9, in case (a),
To=To(1) =15, To(v) =6, in case (b),

Due to the influence of the choice of v on the subsequent computations, it turns out

to be more effective to set
v=19, To(v) =10, in case a), (5.6)

and

v=34, Ty(v)=6, incaseb). (5.7)

Remark 5.1. The equations (5.3) and even (5.5) give us overly pessimistic estimates,
because for a random A, chosen under the uniform probability distribution on the interval

from 0 to 1, we have that
Probability{gi(v) > i} = (1 + v)_Qi ,

and similarly, Probability{gi(v) > i} also rapidly decreases to 0 as i grows, for all k.

Moreover, the same effect can be achieved by means of the randomization of the choice of

v, rather than A.




6. Accelerated computation in the case of good initial isolation.

In this section we will propose an algorithm that, for a given interval J having a
sufficiently high isolation ratio N, either separates the eigenvalues of A in J or approxi-
mates all of them (within a fixed tolerance t to the errors) at the cost of O(loglog(|J|/t))
evaluations of n_(:c) The choice of N will be specified in sections 7-10.

We will first formalize our task as the following computational problem:

Problem 6.1. Input: real a, b, NV, ¢ and integers j, k, n_(a),.n_(b) such that
t>0, b>a, >0, k>1, j+k<n,

Ajtk+1 S a-C<aS< A r < S A <b< b+ C L) . (6.1)

where C = (b - a)(N —1)/2.
(Due to the above relations, the interval [a,}) contains exactly & eigenvalues of A,
that is, Aj41,...,A;4+k, and has an isolation ratio of at least N.)

Output: a real u such that
Ajpr =t S p < Aj +t (6.2)

and the integers n_(p —t), n_(p + t).

Once these output values are available, we have that either

n(u+t)=n_(b), n_(u-1t)=n_(a)

(in which case

p—t< A <o <A <p 4t

so that pu approximates all the eigenvalues Aj41,...,Aj4x within the error bound t) or

n_{pu+1t) <n_(b) [and then u + ¢ is a splitting point,

Ajrk S+t < Ajp]
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or n_(y —t) > n_(a) [and then p —t is a splitting point,
Ajrk <p—t< Xl

To solve problem 6.1, we will apply Newton’s iteration for computing the k-fold zero
of a function. Since we deal with a cluster of the zeros of p(z), Qell isolated from the other
zeros of p(z) (because we assume that N and C are large), this cluster should behave like
a k-fold multiple zero of p(z), and Newton’s iteration is expected to converge rapidly. Our
analysis in the next section confirms tlﬁs expectation. |

Let us next formally describe a recursive algorithm that realizes this idea in order to
solve problem 6.1.

Algorithm 6.1. Initialization: set ag = a, by = b, Ny = :N, to = (bo —ao)/2.

Recursive step i, ¢ = 0,1,.... Choose a nonnegative h; (according to remark 6.1

below) and compute

¢i = bi + (b; — a)hs | (6.3)
pi = ci = kp(en)/p'(c5) (64)
tisn = 2(b; — ai)(hi + 12 M; [ (k — 2(h; + 1) M;) (6.5)

where
M; = max { n—j—Fk ] }. (6.6)

Ni+1+2h;° N;—1-—2h;
[Note that (6.4) represents Newton'’s iteration for approximating a k-fold zero of p(z).] If
ti+1 < t, then output g = y;, compute and output n_(g—1t), n_(p+1) and end. Otherwise

compute aj41 = p; — tiy1, bix1 = pi +tiy1, n-(aiy1) and n—;(bi-é-l)- If
n_(a) < n_(a,-_H) ,

output 4 = a;y1, compute and output n_(u —t), n_(u + ) and end. Otherwise, if

n_(bit+1) <n-(b),
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output p = b;;1, compute and output n_(p —1t), n_(p + t) and end. Otherwise, set

(Ni — 1)(k —2(hi + 1)M;)

Nitr = 4(hi +1)2 M;

1, (6.7)

where M; is defined by (6.6), and go to step ¢ + 1.

Remark 6.1. Esfimating the complexity of our computations in sections 7, 8 and 9,
we will focus on the cases where h; = 0 and h; = 1, providing also the analysis in the case
of any positive h; < (N; — 1)/2 (in section 7) and h; < (N; — 2)/2 (in section 9). The
two choices of h; = 0 and h; = 1 for all 7 lead to about the same complexity estimates
for our algorithms. Due to the symmetry, this analysis can be extended to the choice of
h; < —1 [after the respective ad;justment of the expressions (6.5) and (6.6) for ¢; and Af;].
The choice of h; < —1 in the cases where ai--— Aj+k+1 > A; — b; and of h; > 0 otherwise

should slightly improve the convergence of the algorithm.

7. Analysis of algorithm 6.1.

To analyze algorithm 6.1, we will assume that 2h; < N; — 1 and will first recall that

n

—p'(z)/p(z) = trace( (A — zI)™) = > 1/(Ar —z),

r==1

a< A <b, r=3+1,...,7+k,
Arfa-C, r=j+k+1,...,n,
ATZb_{—C’ r=1"",j’

where C = (b—a)(N —1)/2 [as in (6.1)].

For large C and N and for smaller positive hg, the reciprocals of the eigenvalues of
A — I from the interval [a,b) dominate in the entire sum —p'(z)/p(z) = >.7_, 1/(Ar — 7)
if @ < ¢ < b Therefore, —p'(z)/(kp(z)) well approximates the average value Sp/k of
these k largest reciprocals. On the other hand, k/S; must lie between Aj4; and Ajii,

and consequently, —kp(z)/p'(z) must lie in or near the interval {Aj;1,A;+x). When we
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compute —kp(z)/p'(z), we may include the latter unknown interval in a small subinterval
of [a,b) lying about pg of (6.4) and having a higher isolation ratio than [a,b). We will next
formalize this argument and will apply it recursively, to prove both rapid growth of the
isolation ratio and rapid decrease of the interval length in the recursive process.

Examine step ¢, for ¢+ = 0; denote that h = hy, My = M (to simplify the notation).

Since cg = b + (b — a)h [see (6.3)], the latter inequalities imply that

(a=b)(h+1)< A ~cp<{a—-b)h, r=j5+1,...,5+k,

Ar—co (N +1+2h)a-0b)/2, r=j+k+1,...,n,

Ar—¢g 2 (N —=1-2h)b-a)/2, r=1,...,7.

Therefore,
J+k 1 k
= < oo
So= ) e SGThnED” (7.1)
r=)+1
150 2 (7.1a)
R e
2(n—j—k) = 1
<Si= ) <0,
(N+1+2h)a—-1b) ik Ar — ¢
1 2j
0< 8= < ,
2 ggArﬂm“(N-1—2M@—a)
[S1 + S| <2M/(b—a),
M= <
max iy T o N1 9k S N_1_o%
[compare (6.6)]. It follows that
_Ple) I~ 1 Soq Si+S: S
e i D Db w3 Chtay bl ACL LR
2(h+1)(n -1
ol =151 + Sal/1So] < 2k + 1) Mk < 2 F DO D) (7.2

k(N —1-2h)
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Consequently,
k p(Co) _ k

- = . 7.3
Pleo) ~ T+ A5 3
We now deduce from (6.1) and (7.1) that
jtk
1 < _SLO_ _ l Z 1 < 1 ’
/\j+1 — Cg k k'r=j+1 /\j - Cg /\j+k — Cp
and therefore,
(a - b)(h + 1) S /\j+k — Cy S k/So S /\j+1 -y < (a b b)h s (74)
Aj+k S (k/So) +co < Ajpa (7.5)
On the other hand, recall from (6.4) and (6.5), for 7 = 0, that
po = co — kp(co)/p'(co) (7.6)
t=2(b—a)(h+1)2M/(k—2h+1)M) . (1.7)

Our choice of h and N will guarantee that |p| < 1, and we deduce from (7.2) that

2k + )M AR+ )M 2R+ 1)M
P/ + P S a1 S W2t T DM/R) ~ k—2(h % )M

Combining the latter inequality with the bound k/|Se| < (b~ a)(h + 1), of (7.4), and with

the equations

klp{ IP(CO) l
I(1+p)So] ~ 'p'(co)

[implied by (7.3)] and (7.7), we obtain that

klp] g Be) p(co) + 1 l (7.8)

iz P (<o)

=@+ 05~

From (7.5) and (7.8), we now deduce that

P(Co)

1
Aj1+t4 2 (k/So) + co + K| + 3.—‘ > co— kP(CD)/p'(CO) s
0

p'(co)
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and due to (7.6), we conclude that
Aje1+ 11 2> po -
Similarly, we deduce from (7.5), (7.6) and (7.8) that
Ajyr —t1 <o .

If t; <t, we satisfy (6.2) by setting p = pg. Otherwise, we have 3 cases:

Case a). n_(ug —t;) > n_{a). Then
Aj+k < po —t1 < Ajya

and u = po — t, satisfies (6.2).
Case b). n_(ug —t;) = n-(a), n—(uo + t1) < n_(b). Then

Atk S po +t < Ajgr

and pu = po + t; satisfies (6.2).
Case c). n_(uo —t1) =n_{a), n—(po +t1) = n_(b). Then

po—t1 < Ajer S Ajg1 < po+t1,

and by setting
ay = po —t1, by = po +t1, (7.9)

we bracket the eigenvalues Aj1k, ..., Aj+1 in the interval a1, by ) of length 2¢;. The distance
from po to the nearest eigenvalue of A lying outside the interval [a;,b;) is at least C — ¢;

[for C of (6.1)]. Therefore, the isolation ratio of this interval is at least

b —
2t

_ (N =1)(k—2(h+1)M)
- 4(h+ 1M B

Ny =(C/t)—1=—2(N-1)-1 1, (7.10)

which is (6.7) for : = 0, and we will choose N = yn so as to ensure that Ny +1 > N —1

and, therefore, 2¢t; < b — a.
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Thus, the first step of algorithm 6.1 either solves problem 6.1 or reduces its input
interval [a,b) to a shorter interval [a;, b;), contajning' exactly the same eigenvalues of A.
In the latter case, we again arrive at problem 6.1, with a, b, N replaced by ay, by, Ny,
respectively [according to (7.9), (7.10)], and recursively repeat step ¢ of algorithm 6.1, for
i=1,2,....

From (6.6), we obtain that

n-—1
C L e
'M'—N,'—l—-Zhi

Substitute this bound into (6.7) and (6.5) and deduce that

k—2(h; + 1)M; _
4(h; + 1)?(n — 1)

.N.'_+1 > (N; — YN —1-2h) 1.

N;~1 < 4(6,’ - a;)(h; + 1)2(n - 1)
Nig1 — (N —1=2h)(k —2(h; + 1)M;) ’

bit1 — @i+1 = 2ti41 < 2t

for : = 0,1,.... It follows that

biy1 — Qiv1 n
b, —a; —.O(kNg)’

For a sufficiently large N, this implies a superlinear {and actually almost quadratic)
growth of N; (with the growth of ¢) and a respective decrease of t;.

To give specific estimates, let us next set h; = 0 for all : (compare remark 6.1). apply

the above lower bound on N;;;, and obtain that
(4n — 4)(Niy1 + 1) = (N; — 1)%(k — 2M;)
>(N;i =1k =(2n=2)/(Ni~1))=(N; = 1)(N; = 2n + 1) .

Assume that N = yyn, 7o > 6, and recursively deduce that

N,'+1>",','+1n, Yi+1 =(7i—2)75/4, i=0,1,...
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Set v; = 4yf + 2,1 = 0,1,..., and obtain that 7j,; > (7}‘)2" for all integers ¢ > 0 and

7 > 0. It follows that, for any fixed 7 > 0,

Niws > @)% +2)n

4n — 4

Bitjr/ties < Niyj—2n+1 <O
wn] 28+ . -
tivjer < (Y7 t;, i=0,1,... (7.11)

In particular, for j = 0, we obtain that
tiar < () (b - a)/2.
Hereafter, we will denote that
H = log((5 — a)/(2t))
[which corresponds to (1.2) with b — a = 2(A\; — A,)], and we now obtain that
T(v3) = Nog(1 + H/log 75)] — 1 | | (7.12)

recursive steps of algorithm 6.1 suffice to solve problem 6.1 assuming that N = yn, v > 6,
v3 > 1, and h; = 0 for all ¢.

In particlar, we have:

T(2) = [log(H +1)] =1, (7.12q)
T(4) = [log(H +2)] — 2, (7.12b)
T(8) = [log(1+ H/3)] -1, (7.12¢)
T(16) = [log(H +4)] — 3, (7.12d)

and we need to set N = 10n, N = 18nr, N = 34n and N = 66n in order to arrive at
(7.12a), (7.12b), (7.12¢) and (7.12d), respectively.
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Let us now set h; = 1 for all :. Then

M < (n=1)/(N:i=3),
16(n — 1)(Nig1 +1)/(Ni — 1) > (N: — 3)(k — 4M;) = (N; — 3)(k — 4(n — 1)/(N; — 3))
= k(Ni—3)—4(n—1)> N; —4n + 1
since k > 1.

It follows that, for N = yn and for a sufficiently large v, we have:
Niy1 > 7i+in ,

7i+1=(’}'i'—4)7i/163 Z=0317

Set i = 16vF + 4 and deduce that
R Cr) LN P O
for all integers ¢ > 0 and j > 0. Therefore, for any fixed integer j > 0, we have:
Nixj > (16(1))% +4)n ,

<),

16n — 16
tivs tiv; <

which again gives us (7.11), (7.12), (7.12a), (7.12b) and (7.12c), although this time for
a slightly distinct expression of v4 through v, = «, that is, for v§ = (y0 — 4)/16. In
particular (assuming h; = 1 for all ), we now need to set. N =36n, N =68n, N =132n
and N = 260n in order to arrive at (7.12a), (7.12b), (7.12c) and (7.12d), respectively.
Remark 7.1. The same techniques of the analysis would improve the bound (7.12)
for £ > 1. A small improvement {with a more difficult analysis job) could also be obtained

based on choosing positive 7 in (7.11).

8. The eigenvalue algorithm.




Combining the algorithms of the previous sections, we will now accelerate the bisection
algorithm 3.1. We will first restate the eigenvalue problem for any fixed interval [a,b) as
follows:

Problem 8.1. Input: an n X n rst matrix A4, real a, b, ¢t and the integers k, n_(a),
n_(b)such that t >0, a< b k=n_(b)—n_(a) >0,0<n_(a) <n_(d) <n.

Output: a splitting point z, such that (4.1) holds, or an approximation, y, within
the tolerance ¢, to all the eigenvalues of A lying in [a, b).

In the latter case, p serves as a desired solution to the eigenvalue problem on [a, b).
In the former case, we reduce the eigenvalue problem on [a,b) to two smaller eigenvalue
problems on two subintervals. Proceeding recursively, we will arrive (in at most k — 1
steps) at the former case for problems 8.1 on all tﬂe subintervals; the solutions on these
subintervals combined define a solution of the original eigenvalue problem on the input
interval [a,b).

An algorithm for the solution of problem 8.1 now follows, with the choice of the
parameters v, N and h; according to the recipes of sections 5-7.

Algorithm 8.1.
1°. Fix an appropriate positive v and apply the double exponential sieve process of section 5
to the interval J = [a,b). The process either solves problem 8.1 or outputs a subinterval
J of [a, b) containing the same eigenvalues as the input interval [a, b), and in this case, the
process also outputs ir_, a lower bound 3 or 1+ 2/v on the isolation ratio of J.

2°. In the latter case, fix a sufficiently large N and apply [log((N — 1)(ir- — 1))]
bisection steps to the interval J. This either solves problem 8.1 or else outputs a subinterval
J*of J containing the same eigenvalues as J and having an isolation ratio of at least N
(see fact 4.1).

3°. In the latter case, choose nonnegative h;, 2 = 0,1,..., and apply algorithm 6.1 to
the interval J*.

Since there can be at most k£ — 1 separation steps, approximating all the k eigenvalues
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of A in [a, b) requires at most 2k —1 calls for algorithm 8.1, that is, in a pessimistic estimate,
at most (2k — 1)(Tp(v) + T (v, N)) evaluations of n_(z), for k < n, and (2k — 1)T5(N)

evaluations of p(z)/p'(z) where

To(v) = max {T5(v), [logv]} , Tg(v) = (91(v) + 1)g1(v)/2 , g1(v) = [log icﬁl_—-i—-l_tﬁ] ’
(8.1)
[compare (5.4) and (5.5)],
Ti(v, N) = [log((N — 1)v/2)] , (82)

Ta(N) = [log(cH + d)] . (8.3)

H = log((b — a)/(2t)); [a,b) is the input interval, ¢ > 0 is the tolerance to the output
errors, the constants ¢ and d should be defined depending on the choice of the values NV
and h;. In particular, by choosing N = (47§ + 2)n, h; = 0, for all 2, or N = (164§ + 4)n,
hi = 1, for all i, we arrive at Ty(N) = T(1), where T(1Z) satisfies (7.12).

Remark 8.1, The worst case factor 2k—1 in the above estimates is overly pessimistic.
Indeed, the number of recursive calls for each stage 1°, 2°, 3° of algorithm 8.1 actually
varies from k to 2k — 1, and if it reaches the value 2k — 1, then the number of iteration
steps in éach call to stages 1° and 3° must be substantially less than the estimates (8.1),
(8.3) shows (these estimates would have implied the output error of t/(2[log k]), and thus

the algorithm should stop earlier).

9. Acceleration of algorithm 6.1

When we apply algorithm 6.1 at step 3° of algorithm 8.1, we may have available some
approximations to all the eigenvalues of A [not only to Ajt1,...,Aj4+&, lying in the input
interval [a, b)]. Next, we will use such approximations in order to accelerate the convergence
of algorithm 6.1 and to decrease the value of NV used in this agorithm. For this purpose,

we will further weaken the already decayed influence of the reciprocals 1/(A, — ¢;) of the
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remote eigenvalues A,, for r < j and r > j + k, on the value p'(¢;)/p(c;i). We yield this
simply by subtracting (from this value) 1/(A} — ¢;), the approximation to such reciprocals,
readily available since ¥ are available. Our further analysis shows that, indeed, this well
serves our purpose. To simplify the presentation, we will only show (in some detail) the
first recursive step (accelerating step 0 of algorithm 6.1) and will assume that we are given

approximations AX to all the eigenvalues A, of A4, for r = 1,...,n, such that
[Ar— A <t =(b—a)/2. (9.1)

In fact, we may ensure this assumption by arranging the steps of algorithm 6.1 so as to
always work with the largest of the available suspect intervals output at stage 2°.
We now modify algorithm 6.1 by replacing the values p;, involved in the expression

(6.4) of the recursive step ¢, by the values u} defined as follows:

*=Ci+k/qz',

= 1
gi = — /\*_ . Z A*_c-’

p(Cz) r_j+k+l r 1

t =0,1,.... [The evaluation of the two latter sums and their subtraction from —p'(¢;)/p(c;)
requires 3(n — k) extra arithmetic operations for each i.] Hereafter, we will refer to this
modification of algorithm 6.1 as to algorithm 9.1 and will refer to the respective modifi-
cation of algorithm 8.1 as to algorithm 8.1a.

We need to specify the choice of the parameters h; and N in this algorithm. We may
set h; = 0 for all 7, which should lead to faster convergence of the algorithm, but leaves
the value r{c¢;) = —p'(c;i)/p(ci) unbounded. To avoid overflow, we should first compute the
reciprocal 1/7(¢;) and end the computation detecting some eigenvalues of A in the interval
(bi — t,b;) if this reciprocal value is close to 0.

Another option is to assign small positive values to h;, which should prevent the

computer from overflow since

Pl => e <+ g C=(b-a(¥ =12,
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If V denotes the minimum value that causes overflow, then the bound |p’(¢;)/p(c;)| < V is
n—-k

ﬁ)’ and thus it is sufficient to choose positive
- hi

guaranteed for any h; exceeding k/(V —
h; of the above order.
To ensure rapid convergence of algorithm 9.1, we need a milder restriction on the

parameter N than in the case of algorithm 6.1, namely, we will set
N=0n?24+2,

for a constant © to be specified later on.

Next, we will analyze algorithm 9.1 extending our analysis from section 7. Setting

again Sp = Ef, :f 41 I:l—_c;’ we obtain that
7 n
qo = SO + Zdr -+ Z dr , (92)
r=1 r=j4+k+1
1 *—Ar
d. = 1 Ar for all r | (9.3)

T h—c M-co (r—co)(M—co)’

We recall that, unless j < r < j + k, we have the bound,

1 2
Pr—col S (N—1-2h)(b-a)’

which we extend to the bound

1 2
< I
|Ar —co] T (N —2—-2h)(b~a)

due to (9.1).
Combine these bounds with (9.1)-(9.3) and obtain that

90 = Sol < (n — E)/((N —1=2h)(N -2 - 2h)t") .

Denote

pr= (g0 — 50)/50 )
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so that g = (1 + p*)S;. Deduce from the latter relations and from (7.1a) and (9.1) that
k/|Sol < (b—a)(h+1),

1p*] < 2(h + 1)(n — k)/((N =1 = 2R)(N — 2 — 2h)k) . (9.4)

Our choice of (small) h and (large) N will guarantee that |p*| < 1, and we will obtain the

following bound:

|k/So — k/qol = |p*(k/So)/(1 + p*)| < 11,

for

1 =2(h +1)*(n — k)b —a)/((N =1 =2h)(N —2—2R)k(1 + p*)) .
We have from (7.5) that

1 S 1 k
S%S‘———“—, /\j+k_§—0+co_<_/\j+1,

Aj+1 — Co Aj+k — Co S

and it follows that

Ak =t Spg=cot+k/g < Ajpr +17 .

Thus, step 0 of our modification of algorithm 6.1 [based on the replacement pg of (6.4) by
pg] either solves problem 8.1 or else brackets the eigenvalues Aj1,...,Aj4; in the interval

(a7, b]) of length 2t} where
G-t Beoptt

The isolation ratio of this interval is at least

Ny =(b-a)(N-1)/(2t7) - 1
(9.5
=14 p*|(N = 1)(N — 1 — 2h)(N — 2 — 2R)k/(4(h + 1)2(n — k)) = 1 , )

which is substantially larger than N;4; of (7.11) for ¢ = 0 and for large N = Nj.
Replacing a, b, N by af, b}, N{, we may recursively repeat the computations. The

above estimates for the growth of N and for the respective decrease of the interval length
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b — a can be recursively extended if we follow the (already pointed out) policy of always
applying our algorithm to the currently largest approximation interval, thus improving the
currently worst approximations to the eigenvalues of A. For N = 9 n%%%?, © > 1, we have
that

on’S/N; =0(1),

which shows a nearly cubic growth of the isolation ratio in the transition from {a,d) to
[a},b}). b— a, the length of the interval [a, ), decreases at a similar rate in the transition
to by — aj, the length of [a}, b]).

Let us now set h = 0, denote N = N, and obtain that
(4n—4)(N{ +1) 2 (Ng = D(Ng —1)(Ng —2)—2(Ng — )] = (Ng = 1)((Ng)* ~3Ng —2n+4].

Similarly, we may bound the isolation ratios NV} , in terms of N at the next recursive
steps 1 = 1,2, ... provided that h; = 0 for all ¢.
Setting N = N} = Q¢n!/? + 2, for Oy > 4, we may recursively deduce from these

bounds that
Ny >0iin'2 42, 0,4 =(02-2)0,/4, i=0,1,...
Denote OF = (0,/2) — 1, and obtain that
0; =20 +2,
Niy1 > (207, + 202 4 2,
> (002, i=0,1,....
Therefore, for all integers ¢ > 0, j > 0, we have that
> (O

Nitj > (203)% +2n'/? 42
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For any fixed j > 0, we have:

4dn — 4

‘t,’+' 1/tiv; = N . — 1)/(1’\7: I 1) < = — < ((_)*5)_3" ,
it / J ( i+ +i+1 (Az’+j)2"31\i+j"’2n+4 J
i =0,1,..., and consequently,
wy(1-37F1))2 .
titi+1 <(@j) s, 1=0,1,... (9.6)
In particular, for j = 0, we obtain that
(1-8*

. t1y2
tit1 <(63) (b—a)/2,

and therefore, for H denoting log({b — a)/(2t)), we have that
T(©%) = [(log(1 + 2H/log ©3))/ log 3] — 1 (9.7)

recursive steps of algorithm 9.1 suffice to solve problem 6.1 provided that h; = 0 for éll 1
and N = (203 +2)n'/2 +2, 03 > 1, Og > 4.
Remark 9.1. Setting 7 > 1, we may extend (9.7) to similar bounds for any Of >
3/2-1.

In particular, we obtain that

T(2) = [(log(1 + 2H))/log 3] - 1, (9.7a)
T(4) = [(log(1 + H))/log3] - 1, (9.7b)
T(8) = [(log(3 + 2H))/log 3] — 2, (9.7¢)
T(16) = [(log(2 + H))/log3] — 1, (9.7d)

and we need to set N = On!/? + 2, with O taking the values 4, 10, 18 and 34 in order to
arrive at (9.7a), (9.7b), (9.7c) and (9.7d), respectively.
Let us also supply the estimates in the case where h; = 1 for all 7. In this case, we

deduce from (9.4) and (9.5) that

16(n —1)NJ +1 > (Ng —1)[(Ng =3)(Ng —4) —4n+4] = (N5 —1)[(Ng)? = TNy — 4n + 16]
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and similarly bound the isolation ratios N} of the intervals [a;, b;) computed at the next

recursive steps ¢ of algorithm 9.1, for : = 2,3,....

Setting No = Ogn!/2 +2, for Oy > /20, we deduce that
N:>0int/2 42, 041 = (@2 ~4)0;/16, i=1,2,...
Now, we denote that
O =(0;/4)—2, 0,=40]+2

and deduce that
:+1>(®:)3, 7::0,1,....
Then, using the equations

tigr  NF-1 16n —16
t;  Nr,+1 (N} —7TN}—4n+16"’

we again deduce the bound (9.6), (9.7), (9.7a)—(9.7d), although this time we assume a
distinct expression for ©g through O3, that is, G¢ = 40§ + 2. In particular, we need to set
that N = N¥ = Oon'/? 4+ 2 (for O, taking the values 10, 18, 34 and 66) in order to arrive
at (9.7a), (9.7b), (9.7c) and (9.7d), respectively.

Remark 9.1. Seeking convergence acceleration at the expense of performing a little
more work per iteration, we may generalize algorithms 6.1 and 9.1 by replacing (6.4) by

more general expressions, such as

fii = ci — (k)7
n n

- 1
qi=Z O — Z(}\*_c‘ - Z Or —c)d

r=j+1 r=)+k+1
for some fixed natural d > 1, say, for d = 3. Note that the value

Z (T;j_—ci)g = trace ((A,- - ciI)‘d)
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can be computed by extending the techniques of section 2. [In the extension of the same
approach to approximating polynomial zeros, pointed out in the introduction, the latter
value can be easily obtained from the d leading coefficients of the input polynomial p(z),

by using Newton’s identities.]

10. Summary of the complexity estimates.

We are now ready to summarize our previous analysis into the estimates for the
arithmetic complexity of the solution of problem 8.1, assuming that k = n, a < A, <
A1 <b,b—a < 2(A;1 — Ag). We recall (8.1)-(8.3), recall the need for 3n extra arithmetic
operations in every iteration of algorithm 9.1 (versus algorithm 6.1), apply the operation

count for the evaluation of p(z) and p'(z) from section 2,Aand obtain that
(4n® 4+ O(n))(2To(v) + 2T1 (v, N) + vTa(N)) (10.1)

arithmetic operations suffice for the solution (for any choice of v > 0 and N, according to
sections 5, 7 and 9) provided that either vT3(N) = 47T(+2) [compare (7.12)] or vTH(N) =
5.5T(0}) [compare (9.7)], depending on which of the algorithms 8.1 or 8.1a we apply. The
estimate (10.1) implies the estimate (1.3) of the introduction.

Next, we will calculate the value
T(N,1) =2Tp(1) + 277 (1, N) + vT>(N) (10.2)

for both our policies of choosing h; in algorithms 6.1 and 9.1 (that is, for setting h; = 0 or
hi = 1 for all 1). We will consider the two cases:

a) n = 1000, H = log((b — a)/(2t)) = 70,

b) n =500, H =log((b—a)/(2t)) = 35.
We first obtain from (8.1) that

g1(1) = [log69] =7, To(1) =28, in the case a), (10.3a)

g1(1) = [log34] =6, To(1) =15, in the case b), (10.3b)
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The values of T3(1, N} = [log(N ~1)] —1 (as the functions in v and ©) and the values
of vT5(N) (as the functions in 4§ and ©3), associated with the values of N of our interest,
are displayed in Tables 10.1, 10.2 and 10.3. Tables 10.4 and 10.5 relate 4 to 7§ and O to
©§. Table 10.6 collects the values 2T5(1), 2T1(1, N) and vT3(N) for all choices of ~5, O,
including also subdivision of the values 2T;(1, N) into the two cases, where h; = 0 and
h; = 1, respectively. In the two bottom lines of Table 10.6, we display the values T(1, N),
defined by (10.2), for each of the two cases (where h; = 0 and h,; =1).

The values shown as the numerators of fractions correspond to the case a), and ones
shown as the denominators correspond to the case b). »

The data for T'(1, V) can be compared to the values 128 (in case a)) and 64 (in case b)),
which represent thé-complexity of the bisection algorithm. Table 10.6 shows that with a
successful choice of the values 7} and ©f, we may obtain superior worst case estimates. In
parentheses in the third and in the two last lines of Table 10.6, we show these estimates
decreased, due to optimizing the value v [compare (5.6) and (5.7)].

Furthermore, unlike the case of the bisection algorithm (whose worst and average case
complexity is about the same, algorithms 8.1 and 8.1a, for a large class of input matrices,

may actually perform substantially faster than the worst case bounds suggest (compare

remarks 5.1, 7.1 and 8.1).
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Table 10.1. Ty(1,N) and Ty(v,N) for N = yn and N = On!/2 + 2, v = 19/3 4.

| l [ | [ | I |
|y | 10| 18] 34| 66| 36 | 68 | 132|260 | ;
I A N N R
T T 1
| © ! | 4 |10 |18 [34 |66 |
I R
T T 7T 1T 1T ] Pl T
60 B B B o o o o B
(Ta(o, N (391 (B G G )] () (39)] 391 G (9] (1)) (D] (33)
S Ot Tl s sl e sl B
Table 10.2. vT3(N) = 4T(+3).
Y 2 4 8 16
" 4T(d) 24/20 20/16 16/12 16/12

Table 10.3. vT3(N) = 5.5T(0}).
o; 2 4 8 16

55T(0) | 22/16.5 | 16.5/165 | 16.5/11 | 16.5/11
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Table 10.4.

” 2 4 8 16

v (for h; = 0) 10 18 34 66

v (for h; = 1) 36 68 132 260
Table 10.5.

CH 2 4 8 16

© (for h; =0) 4 10 18 34

O (for h; = 1) 10 18 34 66
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Table 10.6.

(the case of v = 19/3.4 is shown in parentheses)

Yo 2 [ 4 [ 8 [ 16
| I |
| ©5 l |2 | 4 | 8 | 16 |
I l | 1
| 2T5(1)(2To(v)) | 56/30  (20/12) |
| ((10.3a), (10.3b)] {
l } l l [ i I | li
| 271 (1, N) | 26/24 | 28/26 | 30/28 [32/30 |12/12 |16/71 [18/16 | 20/18 |
{ ngl(v’ )N)) i(34/30) }(36/30) }(38/32) }(40/34) i(2‘7/16) I[(24/._ I {26/20) ; 28/22) {
i=0
e bl
| 273 (1, N) [ 30/28 |32/30 |34/32 |34/32 |16/14 |18/16 |20/18 |22/20 |
% EiTl(v,)N ) :(38/32) |(40/34) |(42/36) {(44/38) (24/20) %("6/”0) {("8/”) %(30/94) {
i =1

| (Table 10.1) | | I I | l l | |
| | I | l | l | ! l
I | | | | L s | s | 1
| vT2(N) | % | % | 13 | 33 s 1% & & |
| (Tables 10.2, | I | l I l I | I
| and 10.3) 1 | I | | I I 1 |
I l | | I | | | | |
| | l ! | | | | | !
| T(1,N) o - S N 5 S xS b SR |
| (i = 0) I | I | | | l | |
| (T(v,N)) (B 1) 1GH (B G (& 1B (%) |
| | | i ! | | l ! |
| | I | ! | | | I I
| T(1,N) N N AT - I
| (hi = 1) | | | I l | ) l | |
| (T(v, N)) |8 1) 1) () (&%) (8D 155D (%8 |
l l l | | | I I 1 l
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Tuesday Evening’s Workshop

[terative Software Kernels

Organizer: lain Duff

Abstract

This workshop will focus on kernels for iterative software packages. Specifically, the three
speakers will discuss various aspects of sparse BLAS kernels.

Speakers

e lain Duff, Rutherford Appleton Laboratory
“Current status of user level sparse BLAS”

We discuss the current status of the User Level Sparse BLAS proposed by Duff, Marrone, and
Radicati. In particular we indicate how it has evolved in response to comments from potential
users. We indicate examples where the kernels have been used and discuss the status and
availability of the software implementation.

(Joint work with G. Radicati and M. Marrone.)

e Michael A. Heroux, Cray Research, Inc.
“Current status of the Sparse BLAS Toolkit”

We discuss the current status of the sparse BLAS toolkit proposed by the speaker and his
collaborators. In particular, we will emphasize some of the latest modifications which make
the toolkit more flexible and useful. We show examples of where optimal implementations of
these kernels has had a dramatic impact on the performance of key application codes. Finally
we discuss some of the software development issues, current status of the development project,
and plans for future enhancements.

(Joint work with Sandra Carney and Guangye Li.)

s Craig C. Douglas, Yale University
“Adding Matrix-Matrix and Matrix-Matrix-Matrix Multiply to the Sparse BLAS Toolkit”

We discuss a proposal to add a set of sparse matrix multiplication routines to the sparse
BLAS toolkit. These routines would be of great benefit in multilevel and/or domain decom-
position procedures in certain situations which are common in hard engineering and science
problems. As examples, suppose only a fine grid matrix is available or the cost of the using a
discretization module to generate smaller matrices is greater than the cost of solving the fine
grid problem by a reasonable unigrid procedure. Memory issues will also be discussed.










Conformal mapping and convergence of
Krylov iterations

Tobin A. Driscoll® Lloyd N. Trefcthen!

Connections between conformal mapping and matrix iterations have been
known for many vears. The idea underlying these counections is as follows.
Suppose the spectrumn of a matrix or operator A is comtained in a Jordan
region E in the complex plane, with 0 ¢ K. Let ¢(z) denote a conformal map
of the exterior of F onlo the exterior of the unit disk D, with ¢(ec) = oo

o(0)

Then 1/]¢(0} is an upper bound for the optimal asymptotic convergence
factor of any Krylov subspace iteration. This idea can be made precise in

*Speaker.  Clenter for Applied Mathematics, Cornell University, lthaca, NY 14853
(driscoll@cam.cornsll.edu).

"Deparunent. of Computer Science, Cornell  University, Jthaca, NY 14853
(LNTQcs. cornell, edu)




various ways, depending on the matrix Heration, on whether A is finite or
infinite dimensional, and on what bounds are assumed on the non-normality
of 4. -
‘This talk will explore these connections for a variety of matrix examples,
“making use of a new MATLAB Schwarz-Christoflel Mapping Toolbox de-
veloped by the first author. Unlike the carlier Fortran Schwarz-Christoffel
package SCT'ACK, the new toolbox computes exterior as well as interior
Schwarz-Christoffe] maps, making it casy to experiment with spectra that
are not necessarily symmefric about an axis.
With the aid of many graphs, we shall illustrate a variety of issues in
matrix iterations, including:

e The behavior of GMRES vs. QMR, BCG, etc.,

e the gap between true and ideal iterations (i.c., between minimizing

lIp(A)bl] and |[p(A)])),

e transient vs. asymptotic behavior,
~In particular, we illustrate and comment vpon the three-part convergence

scenario described by Nevanlinna, in which the convergence of an iteration
is [irst sublinear, then linear, then suporlinear.




Convergence Estimates for Iterative
Methods Via the Kreiss Matrix Theorem
on a General Complex Domain

Kim-Chuan Toh* Lloyd N. Trefethen'

What properties of a nonsymmetric matrix A determine the convergence
rate of iterations such as GMRES, QMR, and Arnoldi? If A is far from
normal, should one replace the usual Ritz values — eigenvalues notion of
convergence of Arnoldi by alternative notions such as Arnoldi lemniscates —
pseudospectra?

Since Krylov subspace iterations can be interpreted as minimization pro-
cesses involving polynomials of matrices, the answers to questions such as
these depend upon mathematical problems of the following kind. Given a
polynomial p(z), how can we bound the norm ||p(A4)|| in terms of (i) the size
of p(z) on various sets in the complex plane, and (i) the locations of the
spectrum and pseudospectra of A?

This talk reports some progress towards solving these problems. In par-
ticular, we present theorems that generalize the Kreiss matrix theorem from
the unit disk (for the monomial A™) to a class of general complex domains
(for polynomials p(A)).

Specifically, let A be an N x N matrix with spectrum A. The Kreiss
Matrix Theorem gives bounds based on the resolvent norm ||(z] — A)~1}| for
| A™|| if A is in the unit disk, or for ||e®4]| if A is in the left half-plane. We
generalize these results to the complex domain F, giving bounds for || F,,(A)||
if A C E, where F, denotes the nth Faber polynomial associated with E.

*Speaker. Center for Applied Mathematics, Cornell University, Ithaca, NY 14853
(kc@cam.cornell.edu)

TDepartment of Computer Science, Cornell University, Ithaca, NY 14853
(LNTQcs. cornell. edu)




Let @ be the conformal map from E° onto the exterior of the unit disk. One
of our bounds takes the form

K <sup||Fa(4)],  |E(A)] < CKn,

where K is the “Kreiss constant” defined by
K = inf {|l(1 = A7 < c|@()| /(19(=)] - 1) V= ¢ E}

and C' depends only on £. Analogous estimates are also established in which
|F,,(A)|| is bounded in terms of N instead of n.

If £ = [-1,1], then the Faber polynomials reduce to the Chebyshev
polynomials. In this familiar special case our theorems establish connections
between the norms ||T,,(A)|| and the size of the Kreiss constant of A with re-
spect to [—1, 1]. These results have implications for the convergence of Krylov
subspace iterations applied to non-normal matrices with real eigenvalues.

Of course, matrix iterations cannot be expected to lead exactly to Faber
polynomials for any particular set . Fortunately, this is not a essential
restriction. By means of an inequality due originally to Bernstein in 1912,
our results can be extended to general polynomials p(n).




An Iterative Method for the Solution of Linear
Systems Using the Faber Polynomials

for Annular Sectors

N. J. Myers,
Department of Mathematical Sciences,
University of Durham,
South Road,
Durham, DH1 3LE, England.
n.J.myers @ durham.ac.uk

December 1993

Abstract

We give a hybrid method for the iterative solution of linear systems of equations
Ax = b, where the matrix (4) is nonsingular, sparse and nonsymmetric. As in a
method developed by Starke and Varga (1993) the method begins with a number
of steps of the Arnoldi method to produce some information on the location of the
spectrum of A. Our method then switches to an iterative method based on the Faber
polynomials for an annular sector placed around these eigenvalue estimates. The Faber
polynomials for an annular sector are used because, firstly an annular sector can easily
be placed around any eigenvalue estimates bounded away from zero, and secondly the
Faber polynomials are known analytically for an annular sector. Finally we give three
numerical examples, two of which allow comparison with Starke and Varga’s results.
The third is an example of a matrix for which many iterative methods would fail, but
our method converges.







1 Introduction

Hybrid algorithms have recently been used to solve
Ax =b (1)

where A is a large, sparse, real, nonsymmetric, nonsingular matrix. These methods
usually involve two stages, the first is to use an iterative method that does not depend
on any information about the coefficient matrix, and the second is to use a parameter
dependent iterative method based on some information obtained in the first stage.

In the first stage Starke and Varga (1993) used Arnoldi’s method to produce some
estimates of the eigenvalues of the matrix A. They then placed a polygonal region, €2,
around these estimates. Using a numerical conformal mapping package they computed
the parameters in the Schwarz—Christoffel representation of the conformal map, 1,
from the exterior of the unit disc onto the exterior of 2. From these parameters they
generated the Faber polynomials for the region ) recursively. In the second stage they
used these Faber polynomials as iteration polynomials. Similarly in our method we
will use Arnoldi’s method as the first stage. In the second stage, however, we will use
the Faber polynomials for an annular sector, placed around the eigenvalue estimates,
as the iteration polynomials. There are a few reasons for this choice: firstly an annular
sector can easily be placed around any eigenvalue estimates bounded away from zero,
secondly the Faber polynomials are known analytically for an annular sector, and finally
using an annular sector allows us to consider cases of matrices that Starke and Varga’s
method could not deal with (for real matrices, specifically when we get two eigenvalue
estimates Ay, Az such that Ay < 0 < Ay). It is also expected that our method will
perform particularly well for cases like example 2 here (example 6.3 in Starke and
Varga), where Starke and Varga’s region did not enclose the spectrum of the matrix
and the annular sector will.

2 The Faber polynomials for an annular sector

According to the Riemann mapping theorem, given a region D in the extended
complex plane, whose complement is simply connected, we can find a unique function
@, such that ,

) z
lim —¢(—)— =1

Z—00 Z

?

which maps the complement of D conformally onto {w : [w| > p}, the complement of
a disc of radius p. The function ¢ has a Laurent expansion

¢(z):z+a0+%1—+...

about the point at infinity. The Faber polynomial F,(z), of degree n, is found by
taking the polynomial part of the Laurent expansion of [¢(z)]".

The mapping functions (or their inverses) are known analytically for only a few
specific regions in the complex plane. In a recent paper (Coleman and Myers, 1993)
we gave the inverse mapping and the Faber polynomials for the annular sector

Q={z:R<|z|<1,0 <|argz| <@}, 0<é<m,

1




in terms of two parameters a and b which depend on 6 and R, and using them we
generated {B;} (the coefficients of w™' in the Laurent expansion at infinity of the
inverse mapping). From these coefficients we then generated polynomials ¢,(2) using
the recurrence relation

n—1 n=1 v
$n(2) = (2= Bo)bn-1(2) = 3 Brbnt1(2) = 3 Bez"F — (1 4+ )8y,

and finally, the scaled Faber polynomials Fy,(z) = F,(z)/p" were found by

o () 4o )

where p is the transfinite diameter of ) which also depends on a and &.

2.1 Scaling the sector and the Faber polynomials
We define the annular sector Q(Ry, Rz, ) as

Q(R1,R,0) = {z: Ry <|z| < Ry, 8 <]argz| <x}.

Given the Faber polynomial of degree n,

FnZ:n nn*- _’Z,
(2) = 2" + o (p)

for the annular sector (R, 1,8), with R = R;/R», we will need to find the Faber
polynomial of degree n for the annular sector

Q=1{Z:Ri<|Z|<Ry, 6—n<argZ<2r—0—n}

/N

7T

R, (

\

\{r)

~.

S

Figure 1. The annular sector Q.
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Figure 1 shows the annular sector @, which is simply the annular sector Q(Ry, R2,0)

rotated through an angle —n where € [0,27) is the angle, measured in the clockwise

direction, which the bisecting ray of the sector makes with the negative real axis.
Note that the exterior of Q(R,1,6) is mapped onto the exterior of Q by

Z = Roe 2.

Then F,(z) = F,(Ze'"/Ry) and the corresponding monic Faber polynomial for Q is

n n_—Iin Zeiﬁ
Fn(Z):R26 nFn< R2 )
3 The hybrid method
3.1 Arnoldi’s method

Arnoldi’s method (Arnoldi, 1951) is used to compute m eigenvalue estimates of a
nonsymmetric matrix A € R™*". We start with an initial vector vy € IR"™ such that

|vi]]z = 1. An orthonormal basis for the Krylov subspace Ky, := span {v1,..., Am vy}
is constructed via the Gram—Schmidt process. For j =1,2,...,m
hi,j = V;-FAVJ' i:l,...j

J
V41 = AVJ' - E hi,jv,-

i=1
~ Vit
hjvrg = Vitlly, Vi i= 2=
1+1,7
provided hj41,; is different from zero. Now with Vj,, := [v1,...,vy] (so Vi, € R™™™)

and Hy, = [h; ;] 1<i<j<m (so Hp, € R™*™) we have
AVm = VmHm + v'm+1e£

and

VEAV,, = Hp,

with e, = (0,...,0,1)T € R™.
The eigenvalues {\;}2, of the Hessenberg matrix H,, were used as estimates for
the eigenvalues of A.

3.2 Sector determination

Given some eigenvalue estimates {A;}72,, the next stage is to place a sector of an
annulus around the eigenvalue estimates, and use the known, suitably scaled, Faber
polynomials for this region as iteration polynomials.

The modulus and argument of each eigenvalue are found, with the arguments
defined on (—m,x]. We set Ryin to be the smallest eigenvalue modulus and Rpae
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to be the largest eigenvalue modulus. We then place the eigenvalue arguments in
increasing order, {a;},, so that the smallest is first (a;) and the largest is last (o),
and look for the largest separation between adjacent arguments. That is we set = to be
the largest of 27 — (ayy — 1) and ;41 — a; for 1 = 1,...,m — 1. The half-angle of the
required sector is @ = (27 — z)/2. Finally we must determine 5, which as mentioned
previously is the angle the bisecting ray of the sector makes with the negative real axis.

If z = aj31 — «; for some j € {1,...,m — 1} then
n =[x — ajt1 — «j(mod2r) € [0,27),
otherwise if ¢ = 27 — (@, — a1) then

n = [r — ay — &](mod2r) € [0, 27).

RBmin

Rmax

Figure 2. An annular sector placed around some eigenvalue estimates
with the radii, the half-angle and the rotation from the
negative real axis marked.

As stated above, the Faber polynomials for this region are used as iteration poly-
nomials. Therefore a, b and p must be determined for this sector. The first step is
to find a, b and p for the sector with inner radius Ryyin/Rmaz, outer radius 1 and
angle § = 7 — «, centred on the negative real axis. To do this we use modified Newton
iteration with numerical integration to solve the two defining equations for a and b
as described in Coleman and Myers (1993). The transfinite diameter is also found by
numerical integration. Then we scale and rotate this sector onto the required sector,
and change the Faber polynomials accordingly.




3.3 The iteration polynomial

Starke and Varga (1993), amongst others, have shown that Faber polynomials
can be very useful for polynomial matrix iterations. Not only are Faber polynomials
near—best with respect to the maximum norm, but their norms are also small on level
sets for the region on which they are defined. This is a good property for dealing with
non-normal matrices where eigenvalues can be very sensitive to perturbations.

Many iterative methods for solving (1) can be written as,

Xm = X0 + ¢m-1(A)ro,

where ¢,,—1 a polynomial of degree m — 1, is called the iteration polynomial. We define
the error e,, := A~ 'b — x,,, and the residual r,,, := b — Ax,,. Then

r, = b — A(XO -+ qm_l(A)I'()) = (I — Aqm_l(A))I'o

and

em = A7 ry, = (I — Agm—1(A4))ey.
With the residual polynomial p,,(z) = 1 — zgm-1(2), so that p,,(0) = 1, these two

equations can be written as ry, = pn(A)re and e, = pn(A)eg. Therefore, for any
consistent pair of matrix and vector norms on C”

Iem]l < llpm(Alllive]l and  lem]] < lpm(A)lllleoll  (m = 1),
and the aim is to choose polynomials p,,, in the set
II,, = { polynomials of degree m | p,,(0) = 1},
such that ||p,(A4)| is as small as possible. For our residual polynomial, we will choose

Fi(2)
Fr(0)

pm(2) =

4 Implementation

We will use the number of vector operations (a vector operation is n scalar mul-
tiplications and n scalar additions, where n is the dimension of the system) as an
indication of the speed of convergence of the method (Nachtigal et al. 1992 and Starke
and Varga, 1993). If we let [ denote the average number of elements per row in the
matrix A, then a matrix—vector multiplication costs ! vector operations.

Firstly we must consider the cost of Arnolid’s method, that is how many vector
operations it takes to get m; eigenvalue estimates for the matrix A. For the j*% step,
J =1,...,my, of Arnoldi’s method, calculating w; = Av; involves ! vector opera-
tions, calculating h; ; = viw ; fori=1,...7 involves j vector operations, computing
Vi+1 = Wj — >_7_ h;;Vv; requires j vector operations, and finally the norm involves

)




one vector operation. So in total the number of vector operations involved in Arnoldi’s
method is

mi
SN +i+i+tD)=mll+2+m].
j=1

Secondly we consider how many vector operations are involved in implementing
a polynomial iterative method using a Faber polynomial of degree m. As in Starke
and Varga (1993) we will implement the iteration polynomial, ¢m-1(2) = (Fn(0) —
Fr(2))/Fr(0)z = ag,m + @1,m% + « - + &m—1,m2™ " in a Horner-type iteration. This
requires m(l + 1) vector operations. The Horner iteration is of the form

Wy = Qpm—1,mFold,

W ::AWj_l + Am—1—jmTold, j=1,...,m—1,
Xnew = Xold + Wm—1,
FPrew = b — Axnew-

In the examples, we neglect the work involved in choosing the particular sector
of the annulus, as this should be negligible compared to the work involved in the
iterations.

5 Examples

We now consider three examples of nonsymmetric matrices, the first two of which
are examples 6.2 and 6.3 of Starke and Varga’s paper (1993). Unless otherwise stated
the degree of the iteration polynomial will be the same as the number of eigenvalue
estimates taken. The curve which starts furthest to the left in the figures will be the
one with the least number of eigenvalue estimates.

Ezrample 1
We consider discretising the boundary value problem

~Autrug = fz,y), (a,y) €S
u(z,y) = g(z,y), (z,y) € as,

by central differences on the unit square S := (0,1) x (0,1) with boundary 85. This
leads to solving a system of equations

(B®1N+IN®C)X:b

where N = 32,
2 -1 2 —14+p
B=|"1 and C = —l-w
.. . —1 ~14p
-1 2 —1—pu 2




with u = 7(h/2), where h is the meshsize of the discretisation.

Following Starke and Varga we consider this example, with different initial esti-
mates Xo and right hand sides b. The results are shown in Figures 3 to 6. In all cases
our method does at least as well as Starke and Varga’s. When we consider non random
xp and b our method seems to converge faster than Starke and Varga’s. For example
when we have b = (1,...,1)T, xo = 0 (Figure 6), our method using 32 eigenvalue esti-
mates and a polynomial of degree 32 converges to 107! as fast as Starke and Varga’'s
ARNOLDI/FABER(40) does, and certainly faster than their ARNOLDI/FABER(32)
does.

Ezample 2
The Grear matrix example. In this example we consider the matrix

& 1 1 1
-1 & 1 1 1 .
A = 1 9 1 1 1 c IR] 24%x1024

This is example 6.3 in Starke and Varga’s paper, it is a shifted version of a matrix in a
paper by Trefethen (1992), which originated in a paper by J. Grear (1989). Starke and
Varga chose it to illustrate that their method would even work if some of the spectrum
of the matrix was situated in the left—half plane. Starke and Varga also point out that
it is surprising their method would even work at all because some of the spectrum of
the matrix is not included in their polygonal region.

The results for this matrix with a random b and x4 are shown in Figure 7. Our
method with 24 eigenvalue estimates converges whereas Starke and Varga’s did not.
However, it is interesting that with 48 eigenvalue estimates our method and Starke and
Varga’s are comparable.

Ezample §
Finally we consider the matrix

A= 1 1 € R200%200

This is & matrix whose eigenvalues are real and situated on both sides of the origin,
so Starke and Varga’s method (and many other iterative methods) cannot be used.
Once again we use a random b and x. The results using an iteration polynomial of
degree 16 with 16 and 32 eigenvalue estimates are shown in Figure 8. Although the
method diverges initially it eventually converges, and because our calculations are done
in double precision the method only converges to 10~% and 107° respectively.
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SUBSPACE ORTHOGONALIZATION
FOR SUBSTRUCTURING PRECONDITIONERS
FOR NONSYMMETRIC SYSTEMS OF LINEAR EQUATIONS

GERHARD STARKE*

Abstract. For nonselfadjoint elliptic boundary value problem which are preconditioned by a
substructuring method, i.e., nonoverlapping domain decomposition, we introduce and study the con-
cept of subspace orthogonalization. In subspace orthogonalization vartants of Krylov methods the
computation of inner products and vector updates, and the storage of basis elements is restricted to a
(presumably small) subspace, in this case the edge and vertex unknowns with respect to the partition-
ing into subdomains. We investigate subspace orthogonalization for two specific iterative algorithms,
the generalized minimal residual algorithm (GMRES) and the full orthogonalization method (FOM).
This is intended to eliminate certain drawbacks of the Arnoldi-based Krylov subspace methods men-
tioned above. Above all, the length of the Arnoldi recurrences grows linearly with the iteration index
which is therefore restricted to the number of basis elements that can be held in memory. Restarts
become necessary and this often results in much slower convergence. The subspace orthogonaliza-
tion methods, in contrast, require the storage of only the edge and vertex unknowns of each basis
element which means that one can iterate much longer before restarts become necessary. Moreover,
the computation of inner products s also restricted to the edge and vertex points which avoids the
disturbance of the computational flow associated with the solution of subdomain problems. We view
subspace orthogonalization as an alternative to restarting or truncating Krylov subspace methods for
nonsymmetric linear systems of equations. Instead of shortening the recurrences, we restrict them to
a subset of the unknowns which has to be carefully chosen in order to be able to extend this partial
solution to the entire space. We discuss the convergence properties of these iteration schemes and its
advantages compared to restarted or truncated versions of Krylov methods applied to the full precon-
ditioned system. Subspace orthogonalization can be applied to general elliptic problems divided into
substructures and, in a purely algebraic framework, to arbitrary systems of linear equations decoupled
by node separators. In our computational experiments, however, we will focus on a specific precondi-
tioner for elliptic boundary value problems in two dimensions which was introduced and analyzed in
a recent paper by Cai, Gropp and Keyes.

* Institut fiir Praktische Mathematik, Universitat Karlsruhe, Englerstrasse 2, D-76128 Karlsruhe,
Germany. E-mail starke@ipmsuni .mathematik.uni-karlsruhe.de
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PCG: A Software Package for the Iterative Solution of Linear Systems on
Scalar, Vector and Paralle]l Computers

A great need exists for high performance numerical software libraries transportable across parallel
machines. This talk concerns the PCG package, which solves systems of linear equations by
iterative methods on parallel computers. The features of the package are discussed, as well as
techniques used to obtain high performance as well as transportability across architectures.
Representative numerical results are presented for several machines including the Connection
Machine CM-5, Intel Paragon and Cray T3D parallel computers.

Wayne Joubert G. F. Carey
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MIGRATION OF VECTORIZED ITERATIVE SOLVERS
TO DISTRIBUTED MEMORY ARCHITECTURES

CLAUDE POMMERELL* AND ROLAND RUHL}

1. Introduction. Both necessity and opportunity motivate the use of high-
performance computers for iferative linear solvers. Necessity results from the size
of the problems being solved—smaller problems are often better handled by direct
methods. Opportunity arises from the formulation of the iterative methods in terms
of simple linear algebra operations, even if this “natural” parallelism is not easy to
exploit in irregularly structured sparse matrices and with good preconditioners.

As a result, high-performance implementations of iterative solvers have attracted
a lot of interest in recent years. Most efforts are geared to vectorize or paralielize the
dominating operation—structured or unstructured sparse matrix-vector multiplica-
tion, or to increase locality and parallelism by reformulating the algorithm—reducing
global synchronization in inner products or local data exchange in preconditioners.

Target architectures for iterative solvers currently include mostly vector super-
computers and architectures with one or few optimized {e.g., super-scalar and/or
super-pipelined RISC) processors and hierarchical memory systems. More recently,
parallel computers with physically distributed memory and a better price/performance
ratio have been offered by vendors as a very interesting alternative to vector su-
percomputers. However, programming comfort on such distributed memory parallel
processors (DMPPs) still lags behind.

In this paper, we are concerned with iterative solvers and their changing comput-
ing environment. In particular, we are considering migration from traditional vector
supercomputers to DMPPs. Application requirements force us to use flexible and
portable libraries. We want to extend the portability of iterative solvers rather than
reimplementing everything for each new machine, or even for each new architecture.

Several research groups have defined languages and implemented compilers that
increase DMPP programming comfort and allow portable coding at least of applica-
tions requiring highly structured computations, like dense matrix linear algebra, or
finite difference and finite element methods applied to regular grids. The definition of
High Performance Fortran (HPF) standard [5] is a try to standardize various efforts
based on Fortran language extensions. However, HPF only provides minimal support
for the parallelization of more irregular computations like linear algebra on general
sparse matrices, or finite element or finite volume methods applied to irregularly re-
fined grids. For the efficient parallelization of such applications, a high-level language
DMPP compiler must support extensive run-time analysis, and the language—in con-
trast to HPF—must include constructs to dynamically distribute data and control
flow.

2. Porting PILS with Oxygen. PILS [9] is a Package of Iterative Linear
Solvers targeted to the solution of very large, irregularly sparse, unsymmetric, ill-
conditioned systems of linear equations. It is integrated into a number of applications,
including several semiconductor device simulators, where the solution of hundreds
of ill-conditioned linear systems with an irregular sparsity structure dominates the

* AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974-0636, USA
t CSCS-ETH, Swiss Scientific Computing Center, CH-6928 Manno, Switzerland




overall execution time [3]. PILS and its client applications have been used regularly
over three years now, at several dozens of academic and industrial sites.

Not all linear systems arising in the client applications can be solved efficiently
by only one preconditioned method. PILS therefore includes a large number of itera-
tive methods, preconditioners, and other variants for iterative solvers, and combines
them in a flexible and automatically adapting way. PILS runs on RISC workstations
and vector supercomputers from all major manufacturers. Sparse matrices are stored
in colored jagged diagonals based on a partitioning by matchings [13, 7]. This data
structure is optimized to achieve a high level of vectorization on regular and trans-
posed matrix-vector multiplications and the solution of sparse triangular systems for
incomplete factorization preconditioners. The operations are coded in Fortran with
compiler directives in a way that their optimization for a given pipelined computer is
easy for the manufacturer’s vectorizing compiler. The data structures themselves, as
well as all other tasks that do not require vectorization for efficiency, are handled in
C+4+ code.

In the present project, we extended the portability of PILS to DMPPs, by using
the parallelizing Fortran compiler Oxygen [12]. Oxygen compiles for a variety of
DMPP platforms, including the Intel Paragon and iWARP, the Parsytec SC256 [11],
the Fujitsu AP1000 [4], and Thinking Machines’ CM5 [14]. The latter two machines
were used to evaluate our strategy quantitatively.

" In this project, Oxygen’s capabilities for automatic parallelism detection [6] were
not used. That is, Oxygen was used to compile sequential Fortran enhanced with user-
specified parallelization directives. This input language features a global name space
much like HPF. In contrast to compilers of languages which had some influence on the
HPF definition (e.g., Kali, Crystal, Fortran D, Superb, Arf), and also in contrast to
the first HPF compilers commercially available (e.g., the HPF subset compiler from
Applied Parallel Research), Oxygen includes several features that make it especially
well suited for supporting the parallelization of irregular computations in general and
PILS in particular: :

e Oxygen directives include constructs to dynamically distribute data and control-
flow in parallel programs. '
e Run-time analysis supports a global name space even in program segments
that include arbitrarily nested dependences on elements of distributed arrays.
This mechanism is more genéral than the generation of inspector/executor
. pairs supported by other systems [2].
e Not only remote fetches, but also remote updates of disiributed data are
allowed. That is, we do not restrict ourselves to the “owner-computes rule”.
¢ All processors in Oxygen-generated parallel programs execute duplicates of
the sequential part, and synchronize only implicitly through local communi-
cations as required by data exchanges. Many of the above mentioned compi-
lation systems use collective communication routines which implies at least
one global synchronization at the end of each parallel loop.
Some of the above features are supported also by few other experimental systems (for
instance, remote updates by Arf). However, for the DMPP parallelization of PILS,
all features were crucial.

The irregular sparsity structure of the matrices is run-time information that Oxy-
gen iranslates into message-based communication at the point where this information
is used in the algorithm. Remote updates make transposed matrix operations just as
transparent and efficient as regular matrix operations. Asynchronous overlapping of




different phases of the computation, particularly during different colors in the solution
of sparse triangular systems within incomplete factorization preconditioners, reduces
total execution time by ten percent or more in comparison to a version with global
synchronizations between parallel loops.

We chose to execute all sequential parts of the solver software—including the
construction of data structures and the interface to client applications—on the host
of the parallel machine. The two parts of the package communicate via a remote
procedure call interface, enhanced by a software cache for distributed data (such as
matrices and vectors).

This separation has the consequence that the client application does not see and
does not need to know whether the version of the solver library it is using runs sequen-
tially on the host, or in parallel on the attached DMPP. Thus, the client application
does not need any adjustment. Furthermore, preconditioners based on approximate
factorization with numerical dropping, specialized for certain very ill-conditioned lin-
ear systems, run on the host without any additional performance penalty for their
lack of parallelism. The separation of sequential and parallel parts of the code was
actually present in PILS as the separation of data structuring written in C++ and
vectorizable parts written in Fortran.

Mapping neighboring vertices in the sparse graph of the matrix to the same or
neighboring processors is crucial in order to achieve locality in the communication
patterns during matrix-vector multiplication. Although the PILS code was originally
targeted to vector computers, the only essential addition to it, for efficient DMPP
parallelization with Oxygen, was the implementation of a two-dimensional geometric
mapping heuristic [8].

3. Experimental results. Table 1 summarizes the characteristics of the test
problems we used to evaluate our approach. All problems are extracted from real
simulations within several semiconductor device simulators, and selected to display a
typical variety of problem sizes and complexities within typical large device simula-
tions.

Table 2 reports benchmarks using Bi-CGSTAB as the iterative solution method,
preconditioned by a D-ILU preconditioner in split position. Due to the non-deterministic
summation sequence in the manufacturer-provided global reduction routines, the num-
ber of iterations for convergence often varies slightly from one run to another; there-
fore, we expressed speedup in Table 2 only as the time for one serial iteration over
the time for one parallel iteration. The CM5 achieves less speedup than the AP1009,
because of a difference in communication/computation speed ratio [1].

Table 3 details experiments with several other variants of iterative solvers in PILS,
measured on an 8 x 8 AP1000. Several of these variants are required for different kinds
of linear systems occurring in real problems.

More measurements and further details on the parallelization strategy can be
found in [10].
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TABLE 1
Problem characteristica.

|| LDDH | DR15E | BIPOL3D20KH BP25E | DR15C| BP25C |

Grid dimension 2-D 3-D 3-D 3-D 3-D 3-D
# PDEs 1 1 1 1 3 3
# unknowns 2674 15564 20412 25642 46692 76926
# nonzeros 18614 | 143710 263920 234436 | 986042 | 1618414
matrix density (nz/row) 7.0 9.2 13.0 9.1 21.1 21.0

: TABLE 2
Ezecution times per tieration in seconds and speedup of the PILS Foriran code. Table entries
denoted with n.a. (not available} could not be filled due to the memory requirements of the largest
problems. All parallel times used in this paper siem from real measurements. However, some
of the problems were too large to fit on a single PE. In these cases, we eztrapolated serial time
from measurements on SparcStations with comparable performance characteristics. Speedup numbers
based on such ezirapolations are printed in italica.

machine Problem
#processors || LDDH | DR15E | BIpoL3D20kH | BP25E | DR15C | BP25C

serial execution times (s)
CM5 1| 0.14 0.76 1.23 1.23 . 7.1
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AP1000 8.0 14.0 13.2 8.5 n.a.

AP1000 10.5 21.8 22.0 14.2

AP1000 11.7 324 33.3 19.7




TABLE 3
Timing of various variants of methods, for one particular problem on an 64-processor AP1000.
The total solution time ts the sum of the PE time, the host communication titme, and the matric load
time. The laitter is 44 seconds with ILU preconditioning, and 22 seconds for all the other variants.

The PE time is compared io performance on a SparcSiation 1+ in the rightmost column.

Herative Precon- Rer- Time (seconds) PE
Method ditioner ations || on slowest | for host-PE | speedup
PE protocol over §S1+
reference
Bi-CGSTAB | split D-ILU | 65 | 23.1 6.4 18.9
other methods
Bi1CG split D-ILU 130 45.9 10.7 19.4
CGS split D-ILU 78 27.2 7.5 19.9
GMRES(10) | split D-ILU 388 87.4 42.1 19.3
GMRES(c0) | split D-ILU 89 41.6 374 24.0
other preconditioners
Bi-CGSTAB | right D-ILU 67 334 8.5 17.8
Bi-CGSTAB split ILU 61 38.0 5.8 18.1
Bi-CGSTAB | split SSOR 69 24.6 7.3 17.9
nested iterative solvers
GCR(o0) GMRES 17 43.0 21.1 19.2
GCR{o0) Bi-CGSTAB 11 41.4 15.5 17.7
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Abstract

Iterative methods are gaining popularity in engineering and sciences at a time where the compu-
tational environment is changing rapidly. P_SPARSLIB is a project to build a software library for
sparse matrix computations on parallel computers. The emphasis is on iterative methods and the use
of distributed sparse matrices, an extension of the domain decomposition approach to general sparse
matrices.

Oune of the goals of this project is to develop a software package geared towards specific applications.
For example, we will test the performance and usefulness of P_SPARSLIB modules on linear systems
arising from CFD applications. Equally important is the goal of portability. In the long run, we wish to
ensure that our package is portable on a variety of platforms, including SIMD environments and shared
memory environments.

Currently, we are using the CM-5 as our development platform and we are focussing our current
efforts on message-passing distributed memory environments. Thus, we have recently implemented most
of the important iterative solvers such as GMRES, BiCG, BiCGSTAG, TFQMR, DQGMRES, etc., as
well as a few of the standard parallel preconditioners, such as multicolor (block) SOR, SSOR, and the
wavefront (block) ILU(0). We have also developed a number of (new) graph partitioning algorithms
which allow to partition a given graph automatically.

The concept of distributed sparse matrices exploits partitionings of the adjacency graph into sub-
graphs. Similarly to the PDE framework, the key idea is to recover the global solution from the separate
solutions on the nodes associated with each subgraph. We will first present a number of tools that are de-
voted to implementing these ‘graph decomposition’ methods. These include graph partitioners, coloring
algorithms, and a few other preprocessing algorithms. We will then describe a few preconditioning tech-
niques designed for distributed sparse matrices. These techniques include block SOR, multicolor Block
ILU, block Jacobi with overlap, as well as a preconditioning technique based on the Schur complement
approach.
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Krylov space accelerators are an important component of many algorithms for the
iterative solution of linear systems. Each Krylov space method has it’s own particular
advantages and disadvantages, therefore it is desirable to have a variety of them available
all with an identical, easy to use, interface.

A common complaint application programmers have with available software li-
braries for the iterative solution of linear systems is that they require the programmer
to use the data structures provided by the library. The library is not able to work
with the data structures of the application code. Hence, application programmers find
themselves constantly recoding the Krylov space algorithms.

The Krylov space package (KSP) is a data-structure-neutral implementation of a
variety of Krylov space methods including preconditioned conjugate gradient, GMRES,
BiCG-Stab, transpose free QMR and CGS. Unlike all other software libraries for linear
systems that we are aware of, KSP will work with any application codes data structures,
in Fortran or C. Due to it’s data-structure-neutral design KSP runs unchanged on both
sequential and parallel machines. KSP has been tested on workstations, the Intel 1860
and Paragon, Thinking Machines CM-5 and the IBM SP1.

We will discuss the design philosophy of KSP and how we are able to provide
an object oriented library to pre-existing applications. To illustrate the power of this
approach we mention an application to magnetostatics that involves solving a large
dense, (but well conditioned) linear system in the inner loop. By using the KSP it was
a minor change to the application code from using direct methods with LAPACK to
Krylov space iterative methods.

KSP is part of our Portable, Extensible, Toolkit for Scientific computation (PETSC).
PETSc is a large toolkit of software for portable, parallel (and serial) scientific com-
putation. All of PETSc is available by anonymous ftp from info.mcs.anl.gov in the
directory pub/pdetools.
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Minimal Residual Method Stronger than Polynomial Preconditioning

Two popular methods for solving symmetric and nonsymmetric systems of equations are
the minimal residual method, implemented by algorithms such as GMRES, and polynomial
preconditioning methods. In this study results are given on the convergence rates of these
methods for various classes of matrices. It is shown that for some matrices, such as
normal matrices, the convergence rates for GMRES and for the optimal polynomial
preconditioning are the same, and for other matrices such as the upper triangular Toeplitz
matrices, it is at least assured that if one method converges then the other must converge.
On the other hand, it is shown that matrices exist for which restarted GMRES always
converges but any polynomial preconditioning of corresponding degree makes no progress
toward the solution for some initial error. The implications of these results for these and
other iterative methods are discussed.
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Peaks, plateaus, numerical instabilities,and
achievable accuracy
in Galerkin and norm minimizing
procedures for solving Ax = b

Jane Cullum*

December 14, 1993

Abstract

Plots of the residual norms generated by Galerkin procedures for .
solving Az = b often exhibit strings of irregular peaks. At seemingly
erratic stages in the iterations, peaks appear in the residual norm
plot, intervals of iterations over which the norms initially increase
and then decrease. Plots of the residual norms generated by related
norm minimizing procedures often exhibit long plateaus, sequences of
iterations over which reductions in the size of the residual norm are
unacceptably small. In an earlier paper [1] we discussed and derived
relationships between such peaks and plateaus within corresponding
Galerkin/Norm Minimizing pairs of such methods.

In this paper, through a set of numerical experiments, we examine
connections between peaks, plateaus, numerical instabilities, and the
achievable accuracy for such pairs of iterative methods. Three pairs
of methods, GMRES/Arnoldi, QMR/BCG, and two bidiagonalization
methods are studied.

*IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
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COMPUTATIONAL TRIGONOMETRY
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Abstract. By means of my earlier theory of antieigenvalues and antieigenvectors, a
new computational approach to iterative methods is presented. This enables an explicit
trigonometric understanding of iterative convergence and provides new insights into the
sharpness of error bounds. Direct applications to Gradient descent, Conjugate gradient,
GCR(k), Orthomin, CGN, GMRES, CGS, and other matrix iterative schemes will be given.

Keys to this theory are my minmax theorem [4] for bounded strongly accretive oper-

ators

sup inf |[(eB-Dz||*= iof sup ||(eB - Dz|?,
1

llz||=1 —oo<e<o0 —00<Ee<0 |4

and my nonlinear Euler equation [5,7]
2|l Auj|?||u||®*(Re A)u — ||ul|*Re (Au, u) A* Au — || Aul|*Re (Au, u)u = 0,

which is generally satisfied by both the first antieigenvectors and all of the eigenvectors of
A. This new theory will be seen to be a significant extension of the Rayleigh~Ritz theory
variationally characterizing eigenvalues and as such will comprise a new spectral theory

which will have numerous uses.
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CONVERGENCE OF ARNOLDI METHOD
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This note summarizes some results on (a monitored version of) the Arnoldi
method in Hilbert spaces. The interest in working in infinite dimensional spaces
comes partly from the fact that only then we can have meaningful asymptotical
statements (which hopefully give some light to the convergence of Arnoldi in large
dimensional problems with iteration indices far less than the dimension).

1.The Set-up.

Let H be a separable Hilbert space and A € L{H) a bounded linear operator
in H. The computational task is to find the spectrum of A, ¢(A). By ”Arnoldi
method” we mean the following: Select a nonvanishing initial vector b € H and
orthogonalize the Krylov subspaces K,(A,b) :=span{b, Ab,..., A" 1b}. Let {p;}
denote the monic polynomials of degree j such that the vectors v;41 = p;(A)b with
J=1,...,n form a basis for K,(A,b). Let P, be the orthogonal projection in H
onto K,(A,b) and put A, for P, A when restricted into K,,(4,b).

Proposition 1. The spectrum of A,, and the set of zeros of p,, are equal.

In general, the limit set of the zeros of the polynomials and the spectrum of
A need not have much in common. Our remarks will however concern a moni-
tored version of Arnoldi where we only look at those indeces j for which the ratio
i (A)b]i/Hp;—1(A)b|| tends to 0. To that end put

(1.1) Bi = lips (A)bl|
and consider any sequence J := {jn, } such that

Bim
Bm—1

In other words, if you write down the Hessenberg form with vectors vj41/[|vj+1]|
as the basis, then these ratios show up on the j + 1, j—diagonal. Restricting to the
index set J thus means that the operator A has an ”almost invariant” subspace of
dimension j,, and, consequently, the spectrum of A and that of A;  are related.
The existence of J so that (1.2) holds, is guaranteed for all quasialgebraic operators,
see [N1], [N2],-and thus in particular whenever the spectrum is at most countable.

— 0.

(1.2)

Definition 1. Given a sequence {E;} of compact sets we denote by w{E;} the
set of z such that there exists an increasing sequence ng and Ap € E,, such that
Ak - Z.

In particular w{o(A; )} is the set of all accumulation points of the zeros of

{pjn }-
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Proposition 2. If (1.2) holds, then w{o(4;,)} C o(A).

Proposition 1 is essentially in Householder’s book (or in this form in [N2}).
Proposition 2 is also simple, see Proposition 5.4 in [N2].

2. Example.

Let S be the ”bilateral” shift in [5(Z)
Sex = epqa.

Starting from b := eg gives p;(A) = X and in particular B; = 1. Notice that
along any subsequence the zeros of p; always stay (and accumulate) at the origin
which lies with distance 1 from the spectrum of S (which is the unit circle).

Let K (A, b) be the closure of span{b, Ab, 4%b, ...} and denote by Ay the restric-
tion of A to the invariant subspace K(A,b). Then in this example o(Sp,)) is the
closed unit disc while ¢(.S) only contains the unit circle.

3. Effect of initial vectors.

'The example above shows that o(Ap)) can be properly larger than o(A).

Almost a tautology. From the Krylov information {b, Ab, A%b, ...} we can only
try to compute o Af))- »

Notice, however Proposition 2 which is about ¢(A4) and not about a(Apy).

Proposition 3. The set Hy of initial vectors b such that
(3.1) do(A) C o(Ap)
does not hold, is of first (Baire) category.

Combining these facts, we can only try to compute o(Ap)), but on the other
hand, apart from an exceptional set of initial vectors Hg the true spectrum will be
included.

Proposition 4. If o(A) is totally disconnected, then for all b
O'(A[b]) & O'(A).

These facts are discussed in {N2), in particular Proposition 3 follows from a result
of Vrbova.

4. Approximation of isolated components.

Let E be an isolated component of 6(Ap)). Then the following holds.

Proposition 5. Let U be an open set such that £ C U and UNo{Ay) = E. If
(1.2) holds, then there exists k such that for j, > k.

o(A; YNU # 0.

This is a special case of Theorem 4.1 (ii) in [N and V].




5. Main theorem.

Let us put [}[(A — T)~ | = oo for A € o(T).
Definition 2. Given a sequence {T,} C L(H) we set (in [N2])

AAT,} = {\] liminf [|(A = T,)"Y| = oo}

and
A{T,} = {A| limsup [|(A ~ Tn)al‘l = co}.

If these sets agree, then we say that A{T,,} exists (and it is defined by A{T},} =
AMAT.}.

The main result is the following
Theorem. If (1.2) holds, then A{A; } exists and
A{Ajm} = O'(A[b]).

This follows from results in [N and V]. The computation of A{4; } is shortly
discussed in [N2].
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The Conjugate Gradient NAS Parallel
Benchmark on the IBM SP1

Anne E. Trefethen* Tong Zhang!

The NAS Parallel Benchmarks are a suite of eight benchmark problems
developed at the NASA Ames Research Center. They are specified in such
a way that the benchmarkers are free to choose the language and method of
implementation to suit the system in which they are interested. In this pre-
sentation we will discuss the Conjugate Gradient benchmark and its imple-
mentation on the IBM SP1. The SP1 is a parallel system which is comprised
of RS/6000 nodes connected by a high performance switch. We will compare
the results of the SP1 implementation with those reported for other machines.
At this time, such a comparison shows the SP1 to be very competitive.

*Speaker. Cornell National Supercomputing Facility, Cornell University, Ithaca, NY

14853 (aet@tc.cornell.edu)
tDepartment of Mathematics, Cornell University, Ithaca, NY 14853
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Advancements and Performance of Iterative Methods in Industrial
Applications Codes on CRAY Parallel/Vector Supercomputers
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This paper will focus on recent work in two widely used industrial
applications codes with iterative methods. The ANSYS program, a
general purpose finite element code widely used in structural
analysis applications, has now added an iterative solver option.
Some results are given from real applications comparing performance
with the tradition parallel/vector frontal solver used in ANSYS.
Discussion of the applicability of iterative solvers as a general
purpose solver will include the topics of robustness, as well as
memory requirements and CPU performance. The FIDAP program is a
widely used CFD code which uses iterative solvers routinely. A
brief description of preconditioners used and some performance
enhancements for CRAY parallel/vector systems is given. The
solution of large-scale applications in structures and CFD includes
examples from industry problems solved on CRAY systems.







A Component Analysi? Based on Serial Results
or
Analyzing Performance of Parallel Iterative Programs
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Abstract. This research is concerned with the parallel performance of iterative methods for
solving large, sparse, nonsymmetric linear systems. Most of the iterative methods are first presented
with their time costs and convergence rates examined intensively on sequential machines, and then
adapted to parallel machines. The analysis of the parallel iterative performance is more complicated
than that of serial performance, since the former can be affected by many new factors, such as
data communication schemes, number of processors used, and ordering and mapping techniques.
Although we are able to summarize results from data obtained after examining certain cases by
experiments, there are two questions remain: (1.) How to explain the results obtained? (2.) How
to extend the results from the certain cases to general cases 7

To answer these two questions quantitatively, we introduce a tool called component analysis
based on serial results. This component analysis is introduced because the iterative meth-
ods consist mainly of several basic functions such as linked triads, inner products, matrix-vector
multiplications, and triangular solves, which have different intrinsic parallelisms and are suitable
for different parallel techniques. We first express the parallel performance of each iterative method
as a weighted sum of the parallel performance of the basic functions that are the components of
the méthod. Then, we separately examine the performance of basic functions and the weighting
distributions of iterative methods, from which we obtain two independent sets of information when
solving a given problem. In this component approach, all the weightings require only serial costs
not parallel costs, and each iterative method for solving a given problem is represented by its unique
weighting distribution. The information given by the basic functions is independent of iterative
method, while that given by weightings is independent of parallel technique, parallel machine and
number of processors. So, these two independent sets of information allow us to give answers
quantitatively to the above two questions.







Performance analysis of high quality
parallel preconditioners applied to 3D
finite element structural analysis.
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Michael A. Heroux? Qasim Sheikh
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1 Abstract

The solution of large systems of linear equations is a crucial bottleneck when
performing 3D finite element analysis of structures. Also, in many cases the
reliability and robustness of iterative solution strategies, and their efficiency
when exploiting hardware resources, fully determine the scope of industrial
applications which can be solved on a particular computer platform. This is
especially true for modern vector/parallel supercomputers with large vector
length and for modern massively parallel supercomputers.

Preconditioned iterative methods have been successfully applied to in-
dustrial class finite element analysis of structures. The construction and
application of high quality preconditioners constitutes a high percentage of
the total solution time. Parallel implementation of high quality precondi-
tioners on such architectures is a formidable challenge. Two common types
of existing preconditioners are the implicit preconditioners and the explicit

*Corresponding Author: 655 Lone QOak Drive, Eagan, MN 55121 USA, email:
mike.heroux@cray.com, Phone: (612) 683-5628, Fax: (612) 683-3099




preconditioners. The implicit preconditioners (e.g. incomplete factorizations
of several types) are generally high quality but require solution of lower and
upper triangular systems of equations per iteration which are difficult to
parallelize without deteriorating the convergence rate. The explicit type of
preconditionings {e.g. polynomial preconditioners or Jacobi-like precondi-
tioners) require sparse matrix-vector multiplications and can be parallelized
but their preconditioning qualities less than desirable.

We present results of numerical experiments with Factorized Sparse Ap-
proximate Inverses (FSAI) for symmetric positive definite linear systems.
These are high quality preconditioners that possess a large resource of par-
allelism by construction without increasing the serial complexity.

Let A be an n x n symmetric positive definite matrix and let A = LLT
be its Cholesky decomposition. We compute a matrix G1, with a given fixed
sparsity pattern of off-diagonal entries such that Gy approximates L~ and
minimizes the Frobenius matrix norm

N7 = XLallr = \/trl(I = XLa)(I — XL4)),

over all matrices X with the given sparsity pattern. The construction
of G requires solution of n linearly independent systems each of size equal
to the number of nonzeros in a given row of G. Thus the construction of
" (G is highly parallel. Also, no knowledge of elements of L is required dur-
ing the construction phase. The application of the preconditioner requires
multiplication by lower and upper triangular sparse matrices.

We solve 3D equilibrium equations for linear elastic orthotropic materials
approximated by the p-version of the finite element methods using the FSAI
preconditioners and the well known block SSOR preconditioner to compare
the convergence properties and serial cost of these two methods.

‘The FSAI preconditioner with a stable version of block CG algorithm
is used to solve industrial class problems extracted from NASTRAN and a
proprietary finite element package for tire design. We show that these new
parallel preconditioners can solve rather difficult industrial class problems
without increasing serial complexity. The performance of these new precon-
ditioners is compared with the performance of well known highly optimized
direct solvers as well. The numerical experiments are performed on Cray
Y-MP and Cray C-90.
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ABSTRACT FOR COPPER MOUNTAIN CONFERENCE

TITLE: RECENT ADI ITERATION ANALYSIS AND RESULTS
AUTHOR: FEugene L., Wachspress

DATE: November 9, 1993

Some recent ADI iteration analysis and results are discussed.
Discovery that the Lyapunov and Sylvester matrix equations are
model ADI problems [1] stimulated much research on ADI iteration
with complex spectra. The ADI rational Chebyshev analysis parallels
the classical linear Chebyshev theory. Two distinct approaches have
been applied to these problems. First, parameters which were optimal
for real spectra were shown to be nearly optimal for certain families
of complex spectra. In the linear case these were spectra bounded by
ellipses in the complex plane [2]. In the ADI rational case
these were spectra bounded by "elliptic—function regions™ [3]. The
logarithms of the latter appear like ellipses, and the logarithms of
the optimal ADI parameters for these regions are similar to the
optimal parameters for linear Chebyshev approximation over superimposed
ellipses. W.B. Jordan’s bilinear transformation of real variables to
reduce the two-variable problem to one variable was generalized [4]
into the complex plane. This was needed for ADI iterative solution of
the Sylvester equation.

For more general spectral regions, there are classical

algorithms for finding asymptotically optimal parameters for the

linear Chebyshev problem [5]. This theory was generalized by Starke [6]
to the rational ADI problem. This work stimulated further research by
Istace and Thiran (7], who applied nonlinear optimization techniques to
computation of optimal parameters for any specified number of
iterations.

Another development which is less well analyzed deals with three-
variable problems with real spectra. Several approaches have been used
here, one of which was discussed in a seminal ADI iteration paper [8].
A recent attempt has been made to treat two variables jointly with

an inner ADI iteration. The effect of this inner iteration on the
composite scheme has been analyzed, and numerical studies have been
performed to support the theory [9]. This approach appears to be well
suited for model ADI preconditioning where relatively modest error
reduction is required of the ADI iteration for each ADI-CG cycle.
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A Sparse Matrix Iterative Method for Efficiently
Computing Multiple Simultaneous Solutions

W. E. Boyse and A. A. Seidl
Lockheed Palo Alto Research Laboratories
3241 Hanover Street
Palo Alto, CA 94304-1191

November 23, 1993

1 Abstract We coneider the solution of large sparsc complex symmetric indefi-
nite systems of equations where multiple solutions are required. This type of problem
occurs in calculating monostatic radar cross sections in electromagnetic scattering using
the finite element method.

The Quasi Minimum Residual (GQMR) [3] method, ideally suited for these matrices,
is generalized using the block Lanczos algoritlun tu sulve Llocks of solutions simultane-
ously. The algorithm is presented and a natural convergence criterion is proposed which
is shown to be as effective as the usual equation residual in monitoring convergence.

A preconditioner is used in conjunction with this iterative method to accelerate
the convergence. This preconditioner, denoted IC(T) [3, 6, 1] is computed by retaining
the largest elements in each row of the factor as it is computed row by row. Thus, the
nonzero structure of the imcomplete factor is determined by the numerics and is not
restricted to the structure of the original matrix as are “classical” IC precomnditioncrs.
The definition of “largest” may also be adjusted to alter the degree of “completeness”
of the incomplete factor.

The performance of block QMR iterative method and preconditioning strategy is
evaluated on a large finite element problem. The matrix used is real symmetric indefinite
and of rank 270,000, This example shows that the IC(T) precunditioner is superior to
none or the IC preconditioner in terms of wall clock time to solution.

The block solution capability of the iterative method is evaluated on 1, 2, 4, and
8 simultaneous solution. There is significant convergence acceleration [2] accompany-
ing multiple simultaneous solutions, as predicted and observed by [4] in the confext
of eigenvalue problems. This block solution method also provides another degree of
parallelism which can be exploited in the numerical implementation.
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On the Effects of Using the GTH Method in the
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Abstract. The iterative aggregation-disaggregation (IAD) technique is an
effective method for solving finite nearly completely decomposable (NCD)
Markov chains. Small perturbations in the transition probabilities of these
chains lead to a considerable change in the stationary vector. Therefore, NCD
Markov chains are referred to as being ill-conditioned. During an IAD step,
this undesirable condition is inherited by the coupling matrix and one confronts
the problem of finding the stationary vector of a stochastic matrix which has
weighty diagonal elements close to one. In this paper, we investigate the effects
of using the Grassmann-Taksar-Heyman (GTH) method to solve the coupling
matrix formed in the aggregation step. Then, we extend the idea in such a way
that this direct method can be incorporated into the disaggregation step. Fi-
nally, we discuss various implementation issues, demonstrate the effect of using
the GTH method in the IAD algorithm on various examples, and elaborate on
the conditions under which it should be applied.

1 Introduction

Nearly completely decomposable (NCD) Markov chains are irreducible stochastic matrices
that can be ordered so that the transition probabilities have a block structure in which
the non-zero elements of the off-diagonal blocks are small compared to those of the diagonal
blocks. Such matrices often arise in queueing network analysis, large scale economic modeling,
and computer systems performance evaluation. The problem is to find a nontrivial solution
to the system

(1.1) 7P =, Iwllh =1

where P is a (n X n) irreducible stochastic matrix and # is the (1 X n) stationary vector. For
a formal definition and notation of NCD Markov chains please refer to [3].

NCD chains that appear in applications are quite large and sparse, possibly having more
than thousands of states. For such large chains, direct methods cause an immense fill-in
during the triangularization phase of the solution process, and due to storage requirements
they are not recommended. Additionally, the ill-conditioned nature of these chains generally
invalidate the feasibility of other iterative methods. Aggregation is often necessary to make
computation tractable with available resources, and in order to circumvent the described
problems, IAD algorithms have been developed (see [2] for example).

The idea in IAD methods is to observe the system in isolation in each one of the diagonal
blocks as if the system is completely decomposable, and to compute the stationary vector of
each diagonal block. However, there are two problems with this approach. First of all, since
the diagonal blocks are substochastic, the off-diagonal weights must somehow be incorporated
into the diagonal blocks. Secondly, the probabilities obtained through the above approach are
conditional, and this condition has to be removed by weighing each probability subvector by




the probability of being in that group of states. Only if these two problems are overcome, can
one form the stationary vector of the Markov chain by weighing the subvectors and pasting
them together. » '

A stochastic complement is the transition probability matrix of a smaller irreducible
Markov chain obtained by observing the original process in the corresponding block of states.
Hence, by finding an approximation to each stochastic complement, we can get around the
first problem (see [3] for details).

To determine the probability of being in a certain block of states, one needs to form
the irreducible coupling matrix which shrinks each block down to a single element. The
stationary vector of the coupling matrix gives the stationary probability of being in each one
of the block of states. So, we essentially compute the weighing factors mentioned before.

In the next section, we discuss how a modified version of Gaussian elimination (GE) may
be used to enforce stability in the solution of the coupling matrix. In §3, we extend the idea
so that it can be used in a non-singular system of equations with a substochastic coefficient
matrix. §4 discusses certain implementation issues, and §5 is about numerical experiments
with the IAD algorithm on NCD chains.

2 Solving the Coupling Matrix

The coupling matrix is an irreducible stochastic matrix of order N (= number of NCD blocks)
Our goal is to solve the singular system £C = £ subject to ||£]l; = 1. Being an irreducible
stochastic matrix, the coupling matrix has a unique eigenvalue that is equal to 1. All other
(N — 1) eigenvalues are close to 1. The distance of these other eigenvalues to 1, obviously
depends on the off-diagonal weights in C.

A careful inspection reveals that one can solve the equivalent system

(2.1) (I-CcTEr =0, el =1

more effectively. (I — CT) is a singular M-matrix and we are seeking the unique null vector
that has a unit-norm of 1. For such a matrix, the pivot element at each step of the direct
solution method is bounded by 1 and consequently, there is no need for pivoting if column
diagonal dominance is preserved throughout the computation.

Since C has a subdominant eigenvalue close to 1, iterative methods tend to have a slow
convergence rate when applied to the above system. On the other hand, certain stability
issues need to be addressed if direct methods are used. As shown in [4], ordinary GE is not
stable in the presence of rounding errors on a coupling matrix having very weighty diagonal
elements. Hence, it is necessary to apply some sort of pivoting strategy in order to proceed
with GE. Otherwise, the algorithm breaks down to the contrary of general belief.

Our motivation in trying to come up with a remedy for the above situation is the GTH
algorithm in [1] and the direct method in [4]. The original GTH algorithm emerges from
probabilistic arguments, and the idea is to calculate the stationary vector of a Markov chain
using only nonnegative numbers and avoiding subtraction operations. It has been shown
that this algorithm achieves significantly greater accuracy than other algorithms described
in the literature. Interestingly, the inspiration for the algorithm presented in [4], which is
specifically for the solution of NCD chains, has been the GTH algorithm.

Let o
A=[aj]=1-CT.

An observation made in the above papers is that, if A is partitioned in the form




_ [ A Ap Un A
A_(An A22)=>( 0 fizz)’

provided A;; is a nonsingular M-matrix, then the Schur complement of 4,3, (i.e., the result of
performing Gaussian elimination through the block A;;, where Uy, is upper-triangular), As,,
is a singular M-matrix having 0 column sums just as the initial matrix A. The properties of a
singular M-matrix coupled with the GTH idea of avoiding subtractions and negative numbers,
suggests the following modification to GE. At each step of GE, rather than calculating the
pivot element in the usual way, one can correct the pivot by replacing it with the negated
sum of the off-diagonal elements in the unreduced part of the same column as the pivot in
the matrix under consideration. When one mentions the GTH method, it is this approach
used in calculating the pivot elements that is implied.

3 Using the GTH Method in the Disaggregation Step

In a given iteration, the disaggregation step of the IAD method uncouples the NCD chain to
obtain a new estimate for the stationary vector. To achieve a yet better approximation for

(k+1))T

x = (w1, 72, - -, 7N), at the (k + 1)* iteration, one solves for («; ,in

(3.1) (I - PD)(aH T = 3T,

where 7r§k+1) is the (k + 1)** approximation to x; and b; = ¥, 7r§k+1)Pj,- + Xisi z§k+1) Py
fori=1,2,---,N.

Here, P;; is the ith row, j*# column block of dimension (n; X n;). In what follows, P;,
(P,;) is the i** row (column) of blocks with P; removed; e is a column vector of 1’s and its
length is determined in the context it is used. Clearly, P;; is a strictly substochastic matrix of
order n;, and b; # 0, implying a nonsingular system of equations. If the matrix in the above
linear system had been stochastic, then we could clearly employ the same technique utilized
in solving the coupling matrix. However, by adding one more equation and augmenting the
matrix with b7, we can put the system into the form

(3-2) Wi, (D) = o,
where
n; 1
_(I-P7 ¥\ m
Wi = ( w W 1’
w = (P,-,.,e)T, w = —be, and 1'r‘,-("+1) is introduced so that the solution vector has as many

columns as the coefficient matrix. In other words, (w, @) sums up the columns of W; to 0.
The values of 1 and #;(¥*1) are irrelevant, because just as in (2.1), we have a singular system
with (n; + 1) equations, and after W; is reduced to upper-triangular form, the last row will
be all 0’s. Hence, the reduction needs to be carried out for only n; steps. What needs to be

done for the computation of (1r§k+1) )T is, to use the first n; elements of column (n; + 1) in

the upper-triangular matrix as the right-hand side in the back substitution phase.

It is not possible to put GE to use in the disaggregation step in problems, where || Pi |l
(degree of coupling) is less than € (machine epsilon). On the other hand, GTH computes row
(n; + 1) in W; by using the non-zero elements in P;,. Hence, GTH may be applied to solve
such blocks.




4 Implementation Considerations

As mentioned before, NCD chains confronted in real-life applications are generally large and
sparse. This property necessitates the design and employment of sparse storage schemes,
which essentially store only the non-zero elements in the matrix that is operated on.

So far, we considered the application of GTH (and GE, for that matter) to the systems
(2.1) and (3.1). We wrote (3.1) in the form (3.2) so that its coefficient matrix is a singular
M-matrix with 0 row sums just as in (2.1). Now, let us write the alternative non-transposed
system of equations that may be solved. The system that corresponds to (2.1) is

(41) AT =0, el =1.
Similarly, the equivalent of (3.2) is

(4.2) (n{¥ D) 2OV T = g,
Define

Scheme 1: The transposed system of equations (2.1) and (3.2).
Scheme 2: The non-transposed system of equations (4.1) and (4.2).

Unless otherwise specified, by reductions we mean row-reductions. Our last assumption is
that the coefficient matrices are supplied to both schemes in the non-transposed version. This
is fairly reasonable, since the matrices are generated by following the possible transitions from
a given state implying a row-wise generation.

The advantage of reducing the coefficient matrices in scheme 1 rather than the ones in
scheme 2 to upper-triangular form is twofold:

¢ The pivot element at each step of the reduction is bounded by 1.
e Only the upper-triangular matrix needs to be stored during the reduction process.

Although, the pivots in scheme 2 are not necessarilly bounded by 1, the growth factor
still cannot be greater than 1. However, both the upper-triangular matrix and the lower-
triangular matrix, which encompasses the multipliers, have to be stored during the triangu-
larization process. On the other hand, scheme 1 calls for the transposition of the coefficient
matrix before executing GE or GTH. In the following section, we talk about issues related
to numerical experiments.

5 Numerical Results

We have experimented with the IAD algorithm in sparse storage. All routines used are
part of the software package MARCA (Markov Chain Analyzer) (see [5]). The routines are
written in FORTRAN and compiled in both double and quadruple precision floating-point
arithmetic. We have experimented with the software package on a SUN SPARC station 2.
For each problem solved, the residual and the relative error in the solution are computed. We
would like to see how GE and GTH behave comparatively for problems both GE and GTH
may be employed in the aggregation and the disaggregation steps of the iterative algorithm.
Therefore, we have experimented with both scheme 1 and scheme 2 type implementations in
MARCA.

We have worked on three problems. Although the order of the matrices considered in the
first two problems are quite small, we think it is instructive to examine the effects of using the
IAD algorithm on such problems. The third problem investigated is a real-life example and
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had been studied with different parameters in the past. The transition probility matrix for
this problem is large, and close to the identity matrix. All three problems will be discussed
at the conference.

In all three problems, both JAD with GE and IAD with GTH have converged to the
stopping criterion with a residual in the order of machine epsilon. For each problem, the
number of iterations taken by both methods are the same. However, the relative error in
IAD with GE is much larger than that of IAD with GTH in the first two small problems
where GTH has a relative error almost in the order of machine epsilon. Furthermore, it is not
very clear how good a measure relative error is for matrices having stationary probabilities
in the order of machine epsilon, as in the third problem. One other observation regarding
the results of problem 3 is the difference between execution times for scheme 1 and scheme 2
type implementations.

6 Conclusion

QOur interest lies in the computation of the stationary vector of ill-natured NCD Markov
chains. The GTH method, which avoids subtractions, is a much more stable version of GE.
For that reason, it is a good candidate to be used in the two-level IAD algorithm. We have
experimented on several problems, applying this idea versus GE in the IAD technique. The
GTH way of calculating the pivot element by taking the negated sum of the off-diagonal
elements in the unreduced part of the pivot columm proves to be valuable for singular M-
matrices, and it is shown to be quite effective on the problems of interest.

In conclusion, ordinary GE should definitely be avoided in both steps of the iterative IAD
algorithm when solving NCD chains with a degree of coupling less than machine epsilon.
However, if just a rough approximation to the stationary vector of a large NCD Markov
chain is sought in a short time, IAD with GE may be used. On the contrary, if relative error
in the stationary vector of the NCD chain is deemed as of utmost importance, then IAD
with GTH has to be recommended. Examination of several sparse storage formats for both
GTH and GE has indicated one disadvantage of the GTH method. The time to execute the
IAD algorithm on large irreducible NCD Markov chains tends to be longer when the GTH
method is used in the aggregation and disaggregation steps of the iterative solver. Memory
requirement of the GTH algorithm is generally slightly higher than that of GE; nevertheless
this mostly depends on the sparse storage format chosen.
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1 Introduction

Iterative algorithms for solving linear systems of equations often involve the solution of a
subproblem at each step. This subproblem is usually another linear system of equations.
For example, a preconditioned iteration involves the solution of a preconditioner at each
step. In this paper, we consider algorithms for which the subproblem is also solved iter-
atively. The subproblem is then said to be solved by “inner iterations”, while the term
“outer iteration” refers to a step of the basic algorithm. The cost of performing an outer
iteration is dominated by the solution of the subproblem, and can be measured by the
number of inner iterations. A good measure of the total amount of work needed to solve
the original problem to some accuracy € is then, the total number of inner iterations. To
lower the amount of work, one can consider solving the subproblems “inexactly” i.e. not
to full accuracy. Although this diminishes the cost of solving each subproblem, it usually
slows down the convergence of the outer iteration.

It is therefore interesting to study the effect of solving each subproblem inexactly on the
total amount of work. Specifically, we consider strategies in which the accuracy to which
the inner problem is solved, changes from one outer iteration to the other. We seck the
“optimal strategy”, that is, the one that yields the lowest possible cost.

In this paper, we develop a methodology to find the optimal strategy, from the set of
slowly varying strategies, for some iterative algorithms. We apply this methodology to the
Chebychev iteration (Cl) and show that for CI, a strategy in which the inner-tolerance
remains constant is optimal. We also estimate this optimal constant. Then, we discuss
generalizations to other iterative procedures.

The convergence rate of the constant strategy Cl has been previously studied by Golub
and Overton [1]. We shall use some of their results in this work. Other papers which study
the use of inner and outer iterations include Nicolaides [2], Pereyra [3], Nichols [4], Dembo
et al [5], and a recent paper by Elman and Golub [6].
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1.1 Problem Statement

To formalize this problem, we let § = {6,}52,, be a sequence of tolerance values. The j’th
* component of §, §;, is the relative error in the residual, required in the solution of the
subproblem at outer iteration j. Therefore §; € (0,1) and the number of inner iterations
at step j is approximately f:_—ll%gé‘—gﬂ. In this estimate, p is the convergence factor of the
method which is used in the solution of the subproblem. We then define N(¢,8) to be the
number of outer iterations needed to reduce the initial error by a factor of € for strategy é
. It follows that the total number of inner iterations required to achieve this accuracy e is

proportional to
N(e,8)-1
Cle,6 )= >, -—logé;. (1)
i=0
Our objective is to minimize C(e, § ) with respect to 8.

In this minimization, it seems reasonable to consider slowly varying monotonically de-
creasing strategies. We examine such strategies due to the following heuristic argument.
When §; = é for all j and b<< 1, we are solving the inner problem to a very high accuracy.
Then, the amount of work required at each step, is very large. Although the number of
outer iterations in this case is small, we still do a lot of work and hence C(e, é) is large. On
the other hand if & ~ 1, each subproblem requires only a few inner iterations. However,
a severe slow down or even divergence of the algorithm can occur. Thus, the number of
outer iterations N(e, §) in this case is very large, and C(e, 8 ) is again high. Between these
two extremes, one can consider a variable strategy &, for which dg is not too small, but §;
decreases slowly to zero as j — oo. For such a strategy, —log §; in (1), is relatively small
for many values of j. Furthermore, since §; is decreasing, we expect the number of outer
iterations to be smaller than it is if the tolerance is fixed at §,. Hence, we hope that the

use of a low accuracy initially and a higher accuracy as the algorithm proceeds, is more
cost effective.

In view of the heuristic arguments above, we consider the set S of slowly varying
strategies

5/
S= {5 [ 6 = 6(Bk), 0< B <<, 5= O(1), Ve >0:6(0) > 6(:17)} (2)
In (2), the function é(z) is assumed to be continuously differentiable and ¢’ denotes it’s
derivative. The condition ‘;—' = O(1) insures that 6(8k) varies slowly as a function of k.

The last condition implies that the initial tolerance is the lowest. However, the strategies
in § are not necessarily monotonically decreasing.

Since § depends on the function §(z), we interchange between the two notations from
here on. Furthermore, to make the problem easier to analyze, we use the fact that

2?;%’6)_1(— log ;) ~ ~ Jted) log 6(Bt)dt, and redefine the cost

Cle,8) = — /0 N e 8(Bt)t. (3)




We can now restate the problem as follows. Find 6* € § such that

C(e, 6™) = min C(e, 6). (4)

ses

The outline of this paper is as follows. We first solve problem (4) for the Chebychev
iteration. In Section 2, we review the method and describe previous results. In Section
3, we obtain an approximation to the error bound for the variable strategy CI. Using this
bound, in Section 4, we show that for CI, the optimal strategy is § = constant. We also
estimate the optimal constant. Finally, in Section 5, we generalize this approach to other
algorithms that satisfy a certain set of conditions. In appendices 1 and 2 we present a few
numerical calculations that demonstrate the accuracy of our results from sections 3 and 4.

2 Review of the Chebychev Iteration

In this section, we first describe the Chebychev iteration (Manteuffel [7]). Then, we describe
the constant and variable strategy variants of CI. Finally, we review some results which are
relevant to this work.

The Chebychev iteration can be used to solve the real n x n system of linear equations
Az =b (5)

using the splitting
A=M—- (M- A). (6)

It requires that the spectrum of M~1A4 be contained in an ellipse, symmetric about the
real axis, in the open right half of the complex plane. We denote the estimates of the foci
of such an ellipse by ! and u. Furthermore, we assume here that M ~1 A is diagonalizable.

The exact Chebychev method is defined by

z1 = 20 + azo | (7)
Ti41 = Tp—1 + wk+1(azk + T, — .’Ek_l), k= 1,2, ... (8)
where
JWZ]c =Tk, Ty = b— A:Ek, (9)
2 u+!
— — 10
Wit = 2 i) . (11)
cry1(p)

In (7), the initial iterate zo is given, and in (11), cx denotes the Chebychev polynomial of
degree k.




The constant strategy version of the method is obtained by replacing the equation for
2z in (9) by R )
Mze=ri+q, lall<élinll, 6€(0,1) (12)

Then, the variable strategy scheme is obtained by replacing 6 by &k in (12).
If we denote the error at step k by
€ =T — Tk, ' (13)
and define,
K=IT—aM™A, K=VIV~! X = Diag(c;), (14)
then, it can be shown that provided po; # %1,
-1 k
” V ek ” S p T(k’ 6_)1 . (15)
Il V=teq || = |cosh(kcosh™ (p))]

In (15), 7(k, é) satisfies the recurrence equation
7(k+1,68) — 2(1 + A&)7(k,8) + 7(k —1,8) = 0, (16)
with initial conditions
7(0,8) =1, 7(1,6) = 1 + 2A4,. (17)
The constant A in (16) is given by
alpl | VZIMT | AV |
p

A=

, p=maxl|e%], 6; =cosh™(uo;). (18)
M

Equations (15) - (17) were obtained in an equivalent form by Golub and Overton [1] for
the constant strategy case.

3 Asymptotic Approximation of the Error Bound for
Variable Tolerance Chebychev Iteration

In this section, we complete the error analysis of CI for the case where the tolerance of the
inner iteration varies slowly. In order to do so, we evaluate the right hand side of (15).
Therefore, we first seek a solution to equation (16) for 7(k, §) when the strategy & = 6(3k)
belongs to §. Since we do not know how to solve that equation for an arbitrary strategy
6(Bk), we derive the asymptotic expansion of it’s solution for small 3. To emphasize the

fact that 7(k,8) now depends on the parameter 3, we denote it by 7(k, 6, ). We calculate
only the leading order of the expansion for 7.

To simplify the analysis we assume that the function é(z) is constant on [0, 3]. This
assumption is not very restrictive since it only requires that we change the value of 6 to
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equal ;. Moreover, since 6 is slowly varying the impact on the cost of this change is
negligible.

The method we use is similar to the W.K.B method (Bender and Orszag [8}) for linear
ordinary differential equations with a small parameter, and the ray method (Keller {9]) for
linear partial differential equations with a small parameter. These methods have recently
been adapted to linear difference equations with small parameters (see Giladi and Keller
[10], Knessel [11], and references therein).

Let us now obtain an approximate solution to equation (16) when é; = 6(3k) belongs to
S. Since we are looking for an asymptotic expansion of 7(k, §, 3) for small 8, we introduce
in this equation the new scaled independent variable z = fk. Then, we write 7(k, 3,6) in
the form

7(k,6,8) = R(z,6, B). ‘ (19)
When (19) is used in (16), it leads to the following equation for R

R(z + B3,6,8) = 2(1 + Aé(z))R(z,8,8) — R(z — 3,4, B). (20)

In order to solve (20), we recall that homogeneous linear difference equations with con-
stant coefficients have solutions which are exponentials. The solutions are not exponentials
though, in the case of variable coefficients. However, their asymptotic expansions, with
respect to a small parameter, are generally exponentials multiplied by power series in the
parameter. Therefore, we seek the asymptotic expression for R(z,§, #) for small 8, in the
form

R(z, 8,6) ~ e"CVP(K (2, 8) + BKs(z,8) + F Kol 6) + .. ). (21)
The functions ¥(z, ), K(z,6), K1(z,8)... are to be determined to make R satisfy (20).

Substitution of (21) into (20), and multiplication by e~*/? yields
eWEeHBA V@B K (1 + B8,6) + BK:(z + B,6) +...) =

2(1 + Ad(2))[K(z,6) + BK1(z,6) + .. .]—
e~ WE@=¥e-BNIB(K (2 — B,6) + BKyi(z — B,8) +...). (22)

We now express each side of (22) in powers of 3, assuming that ¥ (z + 3,6), ¥(z — 3, 6),
K(z + 8,6), etc.. can be expanded in Taylor series in powers of 3. Then, we equate the
coeflicients of each power of 3 on the left hand side of (22), to the same power of 8 on the
right hand side. The coeflicients of 3° and of 8%, yield the following equations for ¥(z, §)
and K/(z,8) respectively, ‘

e?s — 2(1 + Aé(z))e¥* +1 =0, (23)
tanh(v,) Ky + E%EK = 0. (24)




Although (23) is a non-linear ordinary differential equation for ¥(z, §), it is a quadratic
in e¥* and can easily be solved for 1., with the result

Valc, 8) = log (1 + A8(z) £ /(1 + 8(z)A) — 1) — +cosh™I(1+ A(z)).  (25)
Integrating (25) yields, with ¢ a constant of integration
¥(z,8) = + / " cosh™ (1 + A8(¢))dt + a. (26)
0

We note that 1, in (25) depends on z only through é(z). Hence, we introduce the function
®(6) defined as
®(6) = ¥(z,6) = + cosh (1 + A8). (27)

Then, (26) can be rewritten as

¥(z,8) = + /0 " B(6(t))dt + a. (28)

As we shall see in Section 4, the properties of ® are very important in determining the
optimal strategy for CI.

We now solve equation (24) for K. A slight manipulation of that equation yields
& _ _COSh(l/)x) 1/)12

K~ sinh(y,) 2 (29)
Integrating (29), leads to the solution for K, with b a constant of integration
b
K(z,8) = _ . (30)
Vlsinh(4.(z,6))]
Now, we use expression (25) for ¥, in (30) to obtain
b
- K(z,0)= (31)

((1+ Ad(z))> —H/e

To obtain the leading order of 7(k, 6, #), we substitute expression (28) for v in expression
(21) for R. Then, we use the result in (19) and substitute ¢ = 8% to find

7(k, 6, 8) ~ K(Bk,6)(AepJo ®ENe 4 pe=} [i" 260)dt) (32)

where ®(8) is defined in (27) and K(z,6) is given by (31). The constants A and B are de-
termined to make right hand side of (32) satisfy the initial conditions (17) for 7. Therefore,
we obtain

K(B,6)  K(0.6) = Xos A B

1 142A6(0) el @) . .
’ K(0,6)

A= 2sinh[Z ¥ (8(t))di]




Since §(z) is constant on [0, 3] we see from equation (31) that K(0,6) = K(8,6). Further-
more, we may replace %fé@ ®(6(t))dt by ®(6(0)). Then, we substitute (33) in (32) to obtain
after some manipulation the leading order of 7

K(Bk,6 2 1 ok 3 % asinas
T(k‘,(s, ,6) ~ Ié(ﬂo 76)) [1 + G—Q‘(&(O)) Sinh (E‘/O (I)((S(t))dt) + e-ﬁ fo (I)(&( ))d] . (34)

When é(z) = 6 is constant for all z > 0, (25) implies that %, = 0. In this case, we see
from (24) that K is also a constant. Hence, the right hand side of (34) simplifies to

ﬁi@?ﬁ sinh(k®(6)) + e=+20). (35)
-

Note that expression (35) is the exact solution of (16) and (17) when & = & is a constant.
It agrees with the solution obtained by Golub and Overton.

After a few outer iterations, the exponentially decaying term in (34) can be neglected.
Furthermore, we perform the change of variable s = t/8 in (34) and thus introduce the
function

o(k, 6) = f;gf% ‘i) — eim(o)) sinh ( /0 : <I>(6(ﬂs))ds) - (36)

Then, we approximate the bound for the error in the right hand side of (15) with

o(k,8)p*
| cosh(k cosh™ (12))|”

B(k,6) = (37)

We now briefly discuss the validity of the approximation (36). When § = § is constant,
expression (36) is exact up to an exponentially decaying term and it is very accurate after
a few iterations. When ¢ is not a constant, the approximation is based on expression
(34), which is valid for § << 1 and Sk = O(1). Therefore, the accuracy decreases as the
number of outer iterations ¥ — oo, and for a fixed k, increases as § — 0. We are currently
attempting to derive error bounds for this expansion. In Appendix 1, we present a few
numerical calculations that demonstrate it’s accuracy for a few variable strategies in §. As
we shall see, even for large values of &, it is very accurate. For most practical purposes this
accuracy is sufficient. In the next section, we find the optimal strategy for CI based on the
bound (37). We show that a limited region of validity is not a problem in this case.

4 Constant strategy is optimal

In this section, we show that the optimal strategy for the Chebychev iteration is to choose
6 equal to a constant. Our conclusion is based on the approximate error bound (37), which
we derived in the previous section. The numbers N(e¢,§) and C(e, §) in (3), are hard to
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determine precisely. Therefore, we introduce the quantities Ng(e, §) and Cp(e, ), which
are the number of outer iterations required to reduce the error bound (37) to ¢ and the
associated cost, respectively. Based on the following theorem, we shall conclude that a
constant strategy is optimal for CIL.

Theorem 1 Assume that a linear system of equations is solved to accuracy €, using the
Chebychev iteration, with some variable strategy 6. Then, there exists a constant strategy
5(5, €), for which the cost )

Cr(e,6) < Cr(e,6).

Proof: Given the variable strategy 6 and the accuracy €, used in the solution of the linear
system, we define the associated constant strategy 6(é, €)

A o (747 @(6(8t))d
= ¢! .
8(8,€) ( No(e.6) (38)
The function @ in (38) is defined in (27).
In Lemma 1, we show that Np(e, 5) < Npg(e, é). Therefore,
N Np(ed) A n n R
Cale, ) = — / log §dt = —log 6Ng(e, ) < —log $Ns(e, §). (39)
0
In Lemma 2, we show that R '
—log 6Ng(e,6) < Cg(e, 6). , (40)
Using (40) in the right hand side of (39), proves the theorem.
Lemma 1 .
Ng(e, 6) < Ng(e, 8) (41)

Proof: By definition of Ng(¢, §) the bound for the error B(k,§) in (37) satisfies
B(Ng(e,6),6) < e.

Therefore, to prove (41) it is sufficient to show that after Np(e, ) outer iterations, the
bound for the error associated with the variable strategy is greater than the one associated
with the constant strategy. Hence we need to show

B(Nz(e,6),8) > B(Ns(e, 6), 6). (42)
We see from (37) that (42) is equivalent to the following inequality

~

o(Na(e,6),6) > o(Ns(c,8),9), (43)
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where ¢ is defined in (36). To prove (43) we begin by rewriting expression (36) for o(k, §)
with k£ = Np(e, §),

(Ns(e, ), 6) = i 61(5(0)) K(ﬁg 1(90(6635) %) inh ( / el <I>(6(Bt))dt> L (44)

Then, we note that ® is monotonically increasing from (27) and that for all non-negative
z: 6(0) > () from (2). Therefore,

o _ do o B(6(B1))dt
= <
o(d) - LT < as0)), (15)
2 > 2 =—.
4 14 e~2060) = 1 4 ¢-2()
Furthermore, we see that K(8Ng(e, é),8)/K(0,6) > 1 from equation (31). Using this and
(46) in the right hand side of (44) we obtain

Np(e,8) .
sinh (NB(C, §)p0~? ( 2 N:ng t))dt)) = o(Np(e, §),6).

(46)

o(Np(e, 6),6) > m

(47)

Lemma 2 R
—log 6Ng(€,8) < Cr(e, 6)

Proof: From the definition of ® in equation (27), we find that ®~!(z) = ﬂfﬂ. There-

fore,

%2-2- (—— log Q_l(x)) = (cosh(z) —1)"" > 0

and —log ®~'(z) is stricly convex on the interval {®(6(z)) | 0 < z < Npg(e, §)}. It follows
from Jensen’s inequality that

f;VB“»&)q)(g(ﬁt))dt) - S log @10(5(B1))dt _ Ca(e, )

. NB(€,5) NB(E,(S) a NB(E,(S)'
(48)

—log¢§= —log @' (

Multiplying (48) by Npg(e, §) proves the lemma.

Remarks

1. The proof is not affected by the limited region of validity of the approximation (37).
Since if the approximation is highly accurate for iterations k¥ < M, we first modify 6
to be a constant on the interval [0, M] as we did above. We denote this new strategy
by 6,. For é; the approximation (37) is exact, up to an exponentially decaying term,
on the interval [0, M]. Therefore, the region of high accuracy of (37) for é; is [0, 2M].
We can now proceed by induction until we have a constant strategy on [0, Ng(¢, d)]
which is more efficient then the original strategy.
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2. Assuming the error bound (37) is equally sharp for any strategy § € S, we conclude
from Theorem 1 that the optimal strategy for CI is a constant.

We now show how to estimate the optimal constant § for CI. We note from (37) that for
any iteration N

R oV sinh(N®(6))
BN, 8) < 21 o oh (N cosh = (u)

~ 9V llog p+@(8)—Re(cosh™ (u))] ' (49)

Then, by equating (49) to some accuracy € and using (27), we obtain

N 3) log2 — loge
€,0) ~ .
i Re(cosh™' (1)) — log p — cosh™ (1 + Ad)

An estimate of the cost is then

5 —log §(log 2 — log €)
CB(E, 5) 1 1 -
Re(cosh™ (p)) — log p — cosh™ (1 + Ad)

Q

(51)

The right hand side of (51) can be easily minimized with respect to é using a standard
minimization technique. The original variational problem (4) is reduced to a simple opti-
mization problem.

The determinatibn of the optimal constant depends on our knowledge of the parameters
p and p. These are often determined adaptively while solving the system [12]. We are
currently studying the algorithmic aspects of finding the optimal parameter.

5 Generalization to Other Iterative Procedures

In this section, we consider a class of iterations which satisfy the following condition:

o There exists a bound on the error, B(N, §), which can be written as
B(N,6) = F(N)7(N, 5, 5). (52)

In (52), F is known and 7(N, §, 3) satisfies a recurrence equation of the form

m

Y Ai(6)T(k—34,6,8)=0, &=206(85), B<<I, (53)

=0

with appropriate initial conditions. Note that the coefficients A; in (53) depend on j
only through é;.
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The Chebychev and Richardson iterations satisfy the above condition. We are currently

attempting to identify other m-term linear iterations as candidates for this class. We note
that the bound (15) has the form (52) where

k

_ P
Fk) = | cosh(k cosh™(u))|’ (54)

while equation (16) is in the form (53). The asymptotic methods described in Section (3)
can be applied to equations of the form (53).

If the recurrence (53) has three terms for some iterative procedure, the approximate
solution has a form similar to (34). Then, the proof of Section 4 can be used to show that
a constant strategy is optimal, provided the following criteria are satisfied:

1. ®(8) is monotonically increasing in é.
2. —log®~! is convex.

3. K(é(z)) is monotonically decreasing in 6.

When it is not determined that the optimal strategy is constant, it is hard to obtain
Ng(e, 6) from B(N,$) in (37), without making further assumptions on §. In this case,
we propose to restrict the minimization to a subclass of §. One possible example is the
three parameter family §(8k) = E(ff??lo_v) where 1 < v < 2 and A, B > 0. Then, we
equate B(N, §) to some accuracy € and manipulate the result to obtain approximations to
Ng(e, 6) and Cp(€, ), as we did at the end of Section 4. This.reduces (4) to an optimization
problem in the parameters of the strategy. Many methods exist to solve such a problem
(Gill, Murray, Wright [13]).
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Appendix 1

In this appendix, we present a few numerical calculations that demonstrate the accuracy of
the expansion derived in section 3. In each calculation, we solve equation (16) for (%, é, 3)
by iteration for all 0 < k < 2000. Then, we compute the approximate solution o(k,§) in
(36) for each k£ which is a multiple of 10 and is less than 2000. We present the relative
error in this approximation.

For these calculations, we use in equation (16) strategies from the three parameter
family 6; = FUTAW)T)’ k > 1, ég = 8,. The value of the parameter A is fixed at 1. The
parameters B and v and the value of # vary from one experiment to the other. The value of
A in equation (16) is set to 37. We also experimented with larger values of A and obtained

similar results.

In table 1, we present the maximum with respect to k, of the absolute value of the
relative error in percent. Each entry in this table corresponds to a calculation with a
different strategy. The strategy is determined by the parameters B and 3. All strategies
in this table have - set to 1. Table 2 is analogous to table 1 but there v = 1.5.

B\B | 1 | .01
1.01 | 0.74 | 0.05
1.10 |{0.74 | 0.05
1.50 | 0.74 | 0.05
2.00 | 0.73 | 0.05
5.00 |0.72 | 0.07
10.00 | 0.71 | 0.07
100.00 | 0.70 | 0.11

Table 1: Maximal relative error in (%).

B\B | 1 | .01
1.01 |0.44 | 0.06
1.10 |0.44 | 0.06
1.50 | 0.46 | 0.05
2.00 |0.48 | 0.05
5.00 |0.59 | 0.05
10.00 | 0.72 | 0.05
100.00 | 1.64 | 0.13

Table 2: Maximal relative error in (%).




Appendix 2

In this appendix, we present a few numerical experiments that validate the analysis of
section 4. In each experiment, we solve a linear system with CI and some variable strategy
6. The system is solved to some accuracy €. Then, we solve the same system with the
associated constant strategy 6(6,¢). Strategy é is defined in (38) with Ng(e, ) replaced
by N(e,6). We check if the predictions of Lemma 1 and Theorem 1 hold in practice. The
accuracy of these predictions depends on the convergence factor p of the method used for
the inner-iteration. If p is close to 1, the relative error between f%ﬂ nd —lf% is
usually small. In this case, the cost in (1) and in (3) is truly proportional to the total
number of inner iterations. Furthermore, since 6 assumes in practice only the value p* for
some k = 1,2,3..., it is better approximated when p is close to 1. Hence, we expect that
the analysis will closely fit the experiments whenever p is close to 1. When p is small, some
fluctuations around the predicted behavior is expected. Our experiments cover both cases
of p.

In these experiments, we solve the symmetric system

Az = b, (55)
arising from the central difference discretization of the equation
d2
f( ) + (sin(10z) + 1) * C f(z) = g(=), (56)

in the interval [0,1]. The boundary conditions are homogeneous . The right hand side b
in (55) is chosen at random. The splitting matrix M is obtained from the discretization of

the equation
d f (x)

+Cf(z) = g(), (57)

with the same boundary conditlons. The number of interior points is N = 100 and the
accuracy € = 10712, All initial iterates are 0.

In all our experiments, we use strategies from the family é; = BTG +( ) k>1, 6 = 6.
The values of v and A are fixed at 1. The parameter B and the value og B vary from one
experiment to the other. For each variable strategy 6, the associated constant strategy B
is computed from (38) with Np(e, §) replaced by N(e,8). In the right hand side of (38) @
depends on A and we evaluate A exactly. However, we note that the expression for ¢ is
not very sensitive to fluctuations in the value of A.

In the first series of experiments we set C' = .05 in (56) and (57).

We use two methods for the inner iteration. The symmetric Gauss Seidel, with con-
vergence factor p = .905, and S.S.0.R, with a smaller convergence factor p = .643. In
the S.S.0.R iteration, the relaxation parameter w is the optimal parameter w* of S.0.R.
In each experiment, we log the number of outer iterations and the total number of inner
iterations for the variable and constant strategy cases.
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Tables 3 and 4 correspond to the case where the inner iteration is the symmetric Gauss
Seidel. In table 3 we report the difference in the total number of inner iterations between
the variable strategy case and the associated constant strategy case. All entries in the table
are in (%) that is, each entry is computed by

Nin(ev 5) - Nin(ea 8)

- *100. (58)
N,‘n(ﬁ,é)

The number N, (¢, ) in (58) is the total number of inner iterations performed when solving
the system to accuracy € with strategy 6.

Each entry in table 3 corresponds to a different strategy. The strategy is determined
by the parameters B and 3. Note that not all strategies are slowly varying. We also note
that all entries in this table are positive. Hence, there is agreement with Theorem 1.

B\B| 1] 5] 1] 2
1.01 | 3.62 | 3.59 | 5.44 | 1.62
1.10 | 3.34 | 4.92 | 4.79 | 3.77
1.50 | 4.06 | 3.65 | 3.86 | 3.64
2 [3.19|4.11|3.75|3.23
5 |1.82]2.94 341|342
10 | 1.45|2.72 | 2.66 | 2.71
100 | 0.73 | 1.67 | 2.10 | 2.03

Table 3: Difference in number of inner iterations in (%).

In table 4, we present the difference in the number of outer iterations between the
variable strategy case and the constant strategy case. We see that all entries except one
are non-negative. Hence, there is very good agreement with Lemma 1.

B\p
1.01
1.10
1.50
2
5
10
100

OO0 O DO A e

O OO DO Oen

O DO DO N s |

[ i e R e Y e Y e B e

Table 4: Difference in number of outer iterations.
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Tables 5 and 6 are analogous to tables 3 and 4 respectively. They correspond to the case
where the inner iteration is solved with S.S.0.R. The negative entries in these tables do
not agree with the predictions of our model. However, the magnitude of these fluctuations
is small. These fluctuations are expected in this case since p is small.

B\B| .1 5 1 2
1.01 | —1.18 | 0.96 |2.33 | 5.08
1.10 | 0.78 | 2.24 |1.75| 7.55
1.50 | 6.25 | —2.04 | 2.17 | 3.46
2 | -1.75| 1.75 | 7.07 | —0.91
5 | —2.33| 2.96 | 2.73 | —0.40
10 | 1.09 | 3.83 |0.20| 3.66
100 | 1.28 | —0.74 | 4.06 | 3.88

Table 5: Difference in number of inner iterations in (%).

B\B| 1] 51 |2
1016 | 1[0 0
110 | 5 | 0 | =10
150 | -1 1 [ 1]0
2 |1 |=1]0 o0
5 |1]01(-1]0
10 | 0|—-1]010
1000 01]170

Table 6: Difference in number of outer iterations.
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In the last set of experiments we set C' = .001 in (56) and (57) and use the symmetric
Gauss Seidel method for the inner iteration. In this case, the convergence factor is p = .973.
As tables 7 and 8 demonstrate, we have perfect agreement with the predictions of Lemmas
1 and 2.

B\B| 1] 5] 1] 2
1.01 | 2.81 | 2.24 | 2.61 | 3.04
1.10 | 1.18 | 1.81 | 2.56 | 3.03
1.50 | 1.01 | 2.27 | 2.65 | 3.02
2 1092227286 |3.22
5 |4.06)264)3.33]355
10 |1.30|2.82 324381
100 | 1.36 | 0.96 | 0.87 | 1.29

Table 7: Difference in number of inner iterations in (%).

B\Bl1[5]1]2
101]1]0|0]0
110 0{01{0|0
1.50 | 0] 0]0}0
2 |ojlofo]o
5 11]0]0]0
10 |[o|ofo]o
100 {0o]|0f0]o0

Table 8: Difference in number of outer iterations..

We are currently performing further experimentation with two dimensional problems.
We are also experimenting with the optimal constant.

16




References

[1] G.H. Golub and M.L. Overton. The convergence of inexact chebyshev and richardson
iterative methods for solving linear systems. Numer. Math., 53:571-593, 1988.

[2] R.A.Nicolaides. On the local convergence of certain two step iterative procedures.

Numer. Math., 24:95-101, 1975.

[3] V.Pereyra. Accelerating the convergence of discretization algorithms. SIAM J. Numer.
Anal., 4:508-533, 1967.

[4] N.K.Nichols. On the convergence of two-stage iterative process for solving linear equa-

tions. SIAM J. Numer. Anal., 10:460-469, 1973.

[5] S.C.Eisenstat R.S.Dembo and T.Steihaug. Inexact newton methods. SIAM J. Numer.
Anal., 19:400-408, 1982.

[6] H. C. Elman and G. H. Golub. Inexact and preconditioned uzawa algorithms for saddle
point problems. Technical report, Stanford University, June 1993.

[7] T. A. Manteuffel. The tchebyshev iteration for nonsymmetric linear systems. Numer.
Math., 28:307-327, 1977.

[8] C. M. Bender and S.Orszag. Advanced Mathematical Methods for Scientists and En-
gineers. Mc. Graw Hill, 1978.

[9] J.B.Keller. Rays, waves and asymptotics. Bull. Am. Math. Soc., 84:727-750, 1978.

[10] E. Giladi and J. B. Keller. Eulerian number asymptotics. To appear in Proceedings of
the London Royal Society, Series A, 1994.

[11] C. Knessl. The wkb approximation to the g/m/m queue. SIAM J. Appl. Math.,
51:1119-1133, 1991. '

[12] T. A. Manteuffel. Adaptive procedure for estimation of parameters for the nonsym-
metric tchebychev iteration. Numer. Math., 31:187-208, 1978.

[13] W.Murray P.Gill and M.Wright. Practical Optimization. Academic Press, 1981.

17










Object-oriented Design of
Preconditioned Iterative Methods*

Extended abstract for CCIM 94

Are Magnus Bruaset**

January 3, 1994

In this talk we discuss how object-oriented programming techniques can be
used to develop a flexible software package for preconditioned iterative methods.
The ideas we describe have been used to implement the linear algebra part of
Diffpack, which is a collection of C++ class libraries that provides high-level
tools for the solution of partial differential equations. In particular, this software
package is aimed at rapid development of PDE-based numerical simulators,
primarily using finite element methods.

Over the past few years there has been a growing interest in numerical soft-
ware engineering based on object-oriented principles. The experiences made
in the computer science community suggests that this approach can lead to
considerable savings in cost of development and maintenance for numerical ap-
plications as well. Object-oriented languages, e.g. C++, encourage modular
programming in that subroutines and the data items on which they operate
can be grouped together in a class. Moreover, details that are specific to the
actual implementation of a class can be marked as private. Such data hiding
permits a high level of transparency, directing the user to focus on the public
interface of the class rather than irrelevant details. In this way it is simple to
replace the private parts of a class with a new implementation without changes
in the application program, or even offering the user a uniform interface to a
range of alternative methods. The class concept also permits the programmer
to derive new classes from old ones, in that data members and functionality
can be inherited. This makes it easier to separate generic code segments from
problem-specific parts of the program, thus reducing redundancy and encour-
aging reuse of existing software. In general, an object-oriented design can lead
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Research (NTNF) through program no. STP.28402: Toolkits in indusirial mathematics at the
Center for Industrial Research (SI).

**SINTEF SI, P.O. Box 124 Blindern,N-0314 Oslo, Norway. The author’s email address is
Are .Magnus.Bruasetsi.sintef.no.




to higher flexibility and provide a better fundament for future expansions than
what is possible with traditional functional programming. However, for most
scientific computing applications special care should be taken to ensure that the
gained flexibility still permits a high level of computational efficiency.

By its nature, linear algebra is object-oriented and provides evident building
blocks like matrices and vectors with associated operations, e.g. matrix factor-
izations and dot products. From a computational point of view, the picture
gets a bit more complicated when we want to represent matrices with different
structural properties, such as dense and sparse formats. However, the use of
inheritance and mechanisms for data hiding allows an elegant solution to this
problem. In particular, we will show how a wide range of matrix storage for-
mats are implemented in Diffpack in a way that is totally transparent to iterative
solvers. Moreover, we discuss an object-oriented framework for implementation
of preconditioners and Krylov subspace methods, which makes it very easy to
implement new solvers.

Matrix formats. Any specific matrix format in Diffpack is derived from the
abstract base class Matrix which defines the member functions that are in com-
mon for all types of matrices, such as the matrix by vector product. The purpose
of this design is that any code segment that operates on a Matrix can be applied
to any matrix format, e.g. a general sparse matrix, without knowledge of its in-
ternal representation. Consequently, the actual matrix format may be chosen
interactively rather than at compile-time. At present, Diffpack supports several
matrix formats: dense, banded, diagonal, tridiagonal, structured sparse and
general sparse matrices as well as point operators. The latter format represents
a sparse matrix as a computational molecule, thus providing the functionality
needed for iterative methods at very low storage cost. It is easy to add new
matrix formats to the package without changes in previously defined classes.

Solving linear systems. The linear system Az = b is conveniently repre-
sented by its own class LinEqSystemStd. If this system is to be solved by a
preconditioned iterative method, the actual preconditioners can be implemented
as additional data members of a derived class representing the preconditioned
system. The left and right preconditioners Cr and Cg are then instanced by
objects from the Precond hierarchy which provides a generic interface to precon-
ditioners whether represented by a preconditioning matrix or by a self-contained
algorithm, such as a multigrid sweep. For example, we may have a C of type
PrecRILU and a Cg of type PrecNone, representing a relaxed incomplete LU
factorization applied to the left and no right preconditioner (Cr = I).

Once we have established a system, preconditioned or not, it may be solved
by a direct or iterative method implemented as a derivation of the base class
LinEqSolver. Regardless of the chosen method, the solver is invoked simply by
a call to the current member function solve. For direct methods, we restrict the




coefficient matrix to be of a type that know how to factorize itself, e.g. a banded
matrix. Similar restrictions may also be present for certain types of precondi-
tioners. The LinEgSolver hierarchy have several levels providing a suitable
environment for implementing stationary iterations and Krylov subspace meth-
ods. In particular, when implementing a new solver, we derive a new class which
defines the corresponding solve function. The framework provided by its base
class automatically gives access to a wide range of convergence monitors. These
objects, which can be instructed to act as stopping criteria for the iteration or
merely to monitor the convergence history for later graphing, are implemented
as a separate collection of classes. Several monitor objects can be combined at
run-time to achieve compound convergence criteria, using serial and/or paral-
lel couplings. In order to communicate information such as residual vectors or
precomputed inner products from the iterative solver to a convergence monitor,
the framework supplies a communication block. This concept allows exchange
of data between the solver and external modules without redundant storage, e.g.
by letting a convergence monitor access the residual vector through a pointer
rather than passing the vector itself. In fact, the communication block also
allows coupling to other external objects than convergence monitors, e.g. an ob-
ject that computes eigenvalue estimates on basis of parameters from an iteration
such as CG or BiCGSTAB. These estimates are put back into the same commu-
nication block and are thus available to convergence monitors, preconditioners
or iterations that rely on spectral information.

The suggested design is a serious attempt to offer developers a robust frame-
work for implementation of linear solvers based on modern programming para-
digms and tools. It is believed that the availability of object-oriented program-
ming environments like the one proposed here can give significant contributions
to future developments of linear algebra software.

Availability. It has been decided to release the Diffpack system as a public
domain package. According to current plans, the release will take place in the
late summer of 1994.
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Overview

Application of iterative methods to solve a large linear system of
equations currently involves writing a program which calls iterative
method subprograms from a large software package. These subprograms
have complex interfaces which are difficult to use and even more difficult
to program. A problem solving environment specifically tailored to the
development and application of iterative methods is needed. This need
will be fulfilled by Voila, a problem solving environment which provides a
visual programming interface to object-oriented iterative linear algebra
kernels.

Voila will provide several quantum improvements over current
iterative method problem solving environments. First, programming and
applying iterative methods is considerably simplified through Voila's
visual programming interface. Second, iterative method algorithm
implementations are independent of any particular sparse matrix data
structure through Voila's object-oriented kernels. Third, the compile-link-
debug process is eliminated as Voila operates as an interpreter.

Specifications for Voila's visual programming language, object-
oriented kernels, and interpreter interface will be presented in the full
paper. Implementation of Voila is in progress on a Sun SPARC station
where all components of Voila will be integrated and verified. Voila will
then support additional implementations of the interpreter and associated
object-oriented kernels on other supercomputer platforms.




Problem Solving Environment

Voila is a problem solving environment tailored to algorithms which
solve large sparse systems of linear equations. Most of these algorithms
are based upon iterative application of basic linear algebra operations.
Voila is an environment for expediently implementing and applying these
iterative algorithms..

The Voila environment is partitioned into two primary components,
the visual programming interface and application execution interpreter.
The visual programming interface is hosted on a workstation supporting X
Windows. The interpreter will be hosted on multiple classes of computers,
from workstations to supercomputers. This partitioning allows users to
select the computational host most appropriate for executing their
particular application.

Application Execution
Interpreter

7 Application Execution
Interpreter

Visual Programming
Interface

Application Execution
Interpreter

Visual Programming

Visual programming in Voila will be very expressive and intuitive
for both novice and experienced users. Coding through Voila's visual
programming interface involves selecting icons from a library and wiring
the icons together in a data flow diagram. Voila's visual programming
language has two significant departures from conventional data flow
diagrams. First, the lines which connect icons represent objects as opposed
to passive data. Second, control flow is implicitly expressed in the
diagrams via composite subdiagrams. In Voila's data flow diagram




paradigm icons represent either operations performed by objects or
operations performed by macros. A macro is a composite subdiagram
which is independently coded in Voila and stored for reuse in Voila's
library.

Novice users implementing their applications will be assisted by
Voila with interactive macro browsing and automatic interface checking.
Macros for iterative methods will include system builders, preconditioners,
methods, accelerators, and parameter estimators. As a user selects macros
from the library Voila will assist the user by noting correct interfaces and
disallowing incompatible interfaces.

Object-Oriented Kernels

The kernels of Voila's visual programming language will include
object classes for iterative linear algebra. These intrinsic classes include
the usual scalars and vectors; however, the significant innovation in Voila's
classes is the class hierarchy for linear operators. The root of this class
hierarchy is an abstract base class from which all specific linear operator
classes are derived. The linear operator base class defines the system
properties and vector operations required by iterative method algorithms.
It is through this class hierarchy that iterative algorithms are made
independent of any specific data structure for sparse systems.

The derived linear operator classes can include conventional sparse
systems such as diagonal matrices, permutation matrices, banded matrices,
or common sparse matrix data structures. The derived classes may also
include composite matrix data structures. These composite matrices could
include assemblies of row/column blocked submatrices, band blocked
submatrices, or summations of mapped matrices.

Iterative algorithms such as system builders, preconditioners,
methods, accelerators, and parameter estimators will be programmed by
experienced users and stored in Voila as macros. These macros will utilize
linear operator classes which are as close to the base class as the algorithm
permits. This allows the iterative algorithms to be instantiated with a
matrix class which is optimal for a particular application or computational
environment.

In reter

Visually programmed applications are executed by Voila's
interpreter. While the visual programming task is performed entirely on a
user's workstation, execution of the application will typically be performed
on a supercomputer. The programming and execution tasks have been
separated to place each task on the most appropriate hardware.




Voila's approach of using an interpreter as opposed to a code
generation scheme is motivated by the observation that the majority of the
‘compute time for solving large sparse (or dense) linear systems is spent in
the linear algebra kernels. In comparison, the compute time required to
sequence these kernels is trivial. The additional compute time incurred
interpreting a kernel based algorithm, as opposed to compiling and linking
the same algorithm with the kernels, is not considered to be significant.
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Abstract

Multigrid solution technique to solve a material nonlinear problem in a visual program-

ming environment using the finite element method is discussed.

The nonlinear equation of equilibrium is linearized to incremental form using Newton-
Rapson technique, then multigrid solution technique is used to solve linear equations at

each Newton-Rapson step.

In the process, adaptive mesh refinement, which is based on the bisection of a pair of

triangles, is used to form grid hierarchy for multigrid iteration.

The solution process is implemented in a visual programming environment with dis-

tributed computing capability, which enables more intuitive understanding of solution pro-

cess, and more effective use of resources.
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Abstract

A status report is given on past, present, and future work in the de-
velopment of research-oriented software packages. Our current and future
work involves the following areas of research and associated software de-
velopment:

e Parallel Iterative Software Using Kernels
e Visual Programming

o Research on Iterative Algorithms

e Objective-oriented Design

The overall objective of this research is to advance iterative methods soft-
ware technology.

Introduction

In solving partial differential equations using finite difference or finite element
methods, the most computationally intensive part is the solution of large sparse
systems of linear and nonlinear equations. Such problems arise in many im-
portant engineering application areas such as oil reservoir simulation, numerical
weather prediction, nuclear reactor simulation, etc. To obtain accurate numer-
ical solutions, it is usually necessary to have a very fine mesh and/or a large
number of elements. In either case, one is ultimately faced with solving systems
of immense size with only a relatively few nonzeros entries per row. Iterative

*This work was supported, in part, by the National Science Foundation under Grant ASC~-
8917592, the Department of Energy under Grant DE-FG05-93ER 25183, Cray Research, Inc.,
under Grant LTR DTD, and Texas Advanced Research Program under Grant TARP-212 with
The University of Texas at Austin.




methods are ideally suited for such problems. Nevertheless, the resulting solu-
tion techniques can require an extensive amount of computer time and computer
memory even on a uniprocessor supercomputer. The use of iterative methods,
new software environments, and/or multiprocessor computers may be the only
way to solve many important applications involving 3-D problems.

Past

The Center for Numerical Analysis has an active program of research on iter-
ative algorithms for solving sparse linear systems of algebraic equations with
special emphasis on systems arising in the numerical solution of partial differen-
tial equations. An important aspect of this work, known as the I'TPACK Project,
has resulted in the development of several research-oriented software packages.
ITPACKV 2D is a package of seven iterative algorithms for solving sparse lin-
ear systems with symmetric positive definite or midly nonsymmetric coefficient
matrices. The iterative algorithms in this package have been vectorized and
parallelized for efficient use on vector and parallel computers such as the Cray
Y-MP, the Alliant, the Sequent Symmetry, etc. By employing wave-front tech-
niques, the modified software has resulted in an improved performance of several
of the iterative algorithms that could not be vectorized previously. Recently,
a parallel version of ITPACKV was written and tested on the Cray Y-MP and
it resulted in a significant increase in the speed of these solvers. Since there is
substantial scalar (uniprocessor) work in these algorithms for estimating param-
eters, the initial results indicate the need for the development of new algorithms
with parallelization in mind from the beginning.

The latest and by-far the most powerful ITPACK package is called NSPCG
since it contains many NonSymmetric Preconditioned Conjugate Gradient pro-
cedures. This package allows for the use of a wide variety of iterative algorithms
suitable for use on vector supercomputers and for both symmetric and nonsym-
metric systems.

Both ITPACKV 2D and NSPCG are now part of the Cray Applications Li-
brary of Software. Moreover, the ITPACKYV 2C package was incorporated into
the ELLPACK package for solving elliptic partial differential equations.

Present

Our current work calls for research, development, and implementation of iter-
ative basic linear algebra subprograms (Iterative BLAS) for use with iterative
algorithms for solving large sparse linear systems. Special emphasis will be
placed on coding and testing of scalar and parallel versions of iterative algo-
rithms using these subprograms for solving systems with either symmetric or
nonsymmetric coefficient matrices on multiprocessor computers.




A primary goal of the research is the development of software and the test-
ing of it on large systems arising from applications. Techniques for optimizing
software on parallel computers will be investigated. The goal is to find, develop,
and test software for computational kernels that are common to a large class of
iterative methods. The main objective is to develop fundamental operations for
various iterative algorithms using these kernels so that they parallelize regardless
of the particular sparse matrix storage scheme being used or the particular par-
allel computer architecture being used—without jeopardizing the convergence
properties of the underlying procedures.

This research will be part of an international effort to establish standard
computational kernels to be used in developing efficient and portable imple-
mentations of iterative algorithms for sparse matrix problems on high perfor-
mance computers. We plan to consult and work with others involved in similar
projects. Some of the problems that have to be overcome is keeping the interface
for the suite of codes simple yet functional and flexible for many different data
structures and for various iterative algorithms. This is particularly difficult to
achieve on different parallel architectures.

Future

The objective of our future research is to advance iterative method software
technology, specifically in regard to ITPACK, in the following four areas:

o Parallel Iterative Software Using Kernels
e Visual Programming

o Research on Iterative Algorithms

e Object-oriented Design

The current programming environment for the application of iterative methods
will be changed in several ways. First, computational kernels will be imple-
mented for use in parallel environments. Second, visual programming will be
introduced to provide a user friendly interface. Third, basic research will con-
tinue on iterative methods for nonsymmetric systems and for parallel computer
architectures. Finally, a ITPACK library will be designed to support object-
oriented design concepts.

Visual Programming

Visual programming would be a natural interface for ITPACK on a worksta-
tion or workstation-supercomputer network. Major components of the package
could be developed as modules containing an integrated set of computational
kernels. The user could select individual modules from a menu and connect



them together by drawing lines on a visual display. The software would then
construct a program containing these modules. Some of the modules might be
for the basic method, accelerator, preconditioner, adaptive procedure, stopping
test, and graphical output. It would be relatively easy to experiment with new
methods and combinations of old methods. The programmer/analyst could tai-
lor the code to the particular application being investigated. The addition of
new modules would be a simple matter of adding a new entry in the menu. This
interface will allow ITPACK users to program in ITPACK by “wiring” icons to-
gether and defining parameters through context sensitive menus. Development
of the visual programming interface begins with designing the visual language
from the entity-relationship (ER) model of the iterative method domain to in-
sure compatibility. (Entity-relationship modeling provides a mechanism to con-
cisely represent knowledge about a domain.) The interface is realized through
the development of an interactive editor and a translator.

Parallel Iterative Software Using Kernels

This part of our future work is for research, development, and implementation
of iterative basic linear algebra subprograms (Iterative BLAS) for use with it-
erative algorithms for solving large sparse linear systems. Special emphasis will
be placed on coding and testing of parallel versions of iterative algorithms using
these subprograms for solving systems with either symmetric or nonsymmetric
coefficient matrices on multiprocessors. The goal of this project is research in the
theory of parallel iterative methods and the development of parallel ITPACK-
type software. Techniques for optimizing software on parallel computers will be
investigated. The goal is to find, develop, and test software for computational
kernels that are common to a large class of iterative methods. The main objec-
tive is to develop fundamental operations for various iterative algorithms using
these kernels so that they parallelize regardless of the particular sparse matrix
storage scheme being used for the matrix problems or the particular parallel
computer architecture being used.

Research on Iterative Algorithms

One of the goals of this project is to develop algorithms and programs that make
maximum use of the potential of parallel computers for solving large sparse
systems of linear algebraic equations by iterative methods. To achieve this goal
one must consider both “fine grain” and “coarse grain” parallelization. Fine
grain parallelism at the basic linear algebra level is needed to insure that each
iteration is carried out efficiently and this involves the sparse storage structure
and the manipulation of vectors and sparse matrices. In addition to the fine
grain parallelism it is necessary to use algorithms that are rapidly convergent
and that also have “high level” or “coarse grain” parallelism. We have been
carrying on research on iterative algorithms for many years with the primary




focus on methods for sequential and, more recently, for vector computers. We
now plan to continue our research on iterative algorithms, with the focus more on
algorithms for parallel computers. We plan to emphasize the following areas: the
iterative solution of nonsymmetric linear systems; rational iterative methods;
and adaptive iterative methods.

Object-oriented Design

The object-oriented kernels will be used to develop a kernel-based interpretive
program. This “number crunching” program will interpret a text based macro
language to declare kernel objects and perform operations on those objects. The
program will provide a MATLAB-type of capability but with object-oriented
kernels for both traditional linear algebra and iterative algorithms. The macro
language will be constructed using the ER model of the iterative method do-
main. This will insure consistency between the macro language and the object-
oriented kernels. Iterative algorithms from current versions of ITPACK will
be implemented as modules in the macro language of the interpretive number
cruncher program. The use of an interpretive program allows iterative algo-
rithms to be developed, tested, and applied to solve problems without having
to compile and link a new program. This approach will significantly reduce the
effort in implementing new algorithms by eliminating the cumbersome code-
compile-link-debug loop.

Summary

Many years of research have gone into the development of the ITPACKV and
NSPCG packages for solving large sparse symmetric and nonsymmetric systems of
linear algebraic equations by various iterative methods. The proposed research
would build on this experience in using iterative methods and would expand
both the theory and applications into the new areas of scientific computing.
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Wednesday Evening’s Workshop

Recent Progress and Advances in
Iterative Software (including Parallel Aspects)

Organizer: Graham Carey (with D. M. Young, D. Kincaid and W. Joubert)

Abstract

The purpose of the workshop is to provide a forum for discussion of the current state of itera-
tive software packages. Of particular interest is software for large scale engineering and scientific
applications, especially for distributed parallel systems. However, we will also review the state
of software development for conventional architectures. This workshop will complement the other
proposed workshops on iterative BLAS kernels and applications.

The format for the workshop is as follows: To provide some structure, there will be brief
presentations, each of less than five minutes duration and dealing with specific facets of the subject.
These will be designed to focus the discussion and to stimulate an exchange with the participants.

Issues to be covered include: The evolution of iterative packages, current state of the art, the
parallel computing challenge, applications viewpoint, standards, and future directions and open
problems.

Speakers

e David M. Young, University of Texas at Austin
“Origins of the ITPACK Project”

¢ David Kincaid, University of Texas at Austin
“Recent Developments on ITPACK”

e Graham Carey, University of Texas at Austin
“Design Considerations for a Portable Parallel Package”

¢ Wayne Joubert, Los Alamos National Laboratory
“Adapting Iterative Software Libraries to Parallel Environments”

e Rossen Parashkevov, University of Colorado at Denver
“Operator-based Iterative Tools”

Audience participation is strongly encouraged!




