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Executive Summary

Nearly all large commercial buildings have heating, ventilation and air conditioning (HVAC)
systems, lighting systems, safety and other systems controlled by a computer—a dedicated server
with a building energy management system (BMS). However, these BMSs are proprietary with
each building’s assets (that is, fans, valves, pumps, and their setpoints) named and coded
uniquely by the BMS vendor or engineer; building analytics and control algorithms are written
specific to the assets and the building. Thus, any control updates or analytics to improve building
performance—especially critical to reduce greenhouse emissions or improve load flexibility—
are labor intensive and costly. In addition, the decreasing costs of sensors and 10T devices, as
well as the increased penetration of networked monitoring and control systems, had led to an
enormous amount of data available. Increased access to this operational data presents new
opportunities to develop and deploy novel data-driven use cases including fault detection and
diagnosis algorithms, intelligent controls, and grid interactivity. Such data-driven processes are
particularly important because they can use data to automatically diagnose and understand a
building, rather than relying upon expert-driven advice.

Although operational building data is now available, it is not accessible to software developers,
building scientists, and other stakeholders for two primary reasons. First, this data is largely
locked away in vendor-specific silos with proprietary interfaces and limited facilities for data
discovery and analysis. Second, there is no standard labeling or organizational scheme for the
data produced by buildings. Together, these characteristics pose significant challenges for the
development and configuration of intelligent, data-driven building processes. Each piece of
software must be manually configured (i.e., “ported”) to each building, a painstaking and error-
prone process.

To address these issues, the Brick schema was developed so the same analysis or control
algorithms can work on a variety of buildings if each is digitally represented in a Brick data
model. The motto is “write once, run anywhere”: we want to “reuse” the diagnostics, analytics,
and control algorithms (such as ASHRAE Guideline 36) in multiple buildings, not have to write
a unique proprietary algorithm for each building. In addition, we want to translate across
different data representations in the building lifecycle—from design to construction to operation
and maintenance (Figure 1).

The Brick schema is an open source, permissively licensed development for standardizing digital
representations of buildings and their data sources. Specifically, Brick is a graph-oriented
metadata ontology that defines a taxonomy of types for categorizing common assets, data
sources and other entities in buildings; it also defines a family of expressive properties that
describe the relationships between these entities. Together, the taxonomy and properties enable
the creation of machine-readable digital representations of buildings (a Brick model) that use a
consistent vocabulary. A consortium of universities and industry partners collaborated in the
development of Brick using field trials and testing in developing eight representative applications
over six buildings. Brick succeeded in these initial experiments because of the flexibility of the
underlying graph model and the extent of the vocabulary it defined.
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Figure 1: Skewering the silos: the Brick schema allows translations across the data siloes in a building’s

lifecycle.

Building
Energy Modeling

T

ﬁ L'DM OpenStudio
nnnnnnnnnnn el
MODELING MODE l.l.[ A n““ui“g
Spawn .
e
e | ENEIQY
| | Plus
Design/Modeling Construction/  Operation/  Renovation/

Commissioning Maintenance Repair/Upgrade

The goal of this project was to further the development of Brick to extend it beyond an academic
project with demonstrated success in a small field study, to a practical choice for industrial and
commercial stakeholders seeking to realize value from building data. To do this, we executed
four objectives: (1) expand the Brick schema including its modeling capabilities and vocabulary,
(2) develop tools for integrating Brick with existing digital technologies and representations in
buildings, (3) develop an open-source analytics platform to facilitate use of Brick in delivering
data value, and (4) demonstrate Brick-driven analytics and controls in real settings. Through
these objectives, we have established and begun to execute a technology transition plan that has
dramatically increased the impact and adoption of Brick in industrial, commercial, and academic
settings.

Brick Schema Expansion

Over the course of this project, the team has delivered five new releases of the Brick ontology:
1.1.0 (Jul 2020), 1.1.1 (Jan 2021), 1.2.0 (Feb 2021), 1.2.1 (Aug 2021), and 1.3.0 (Oct 2022).
Each of these releases expanded the set of building assets, data sources, properties and
subsystems that can be modeled using the Brick schema. The specific additions were informed
and implemented by a growing community of international contributors. Today, Brick defines
over 1200 classes (equipment, data sources, assets, building components), 44 entity properties
(datasheet and nameplate characteristics), and 33 relationships. This includes substantial efforts
to expand Brick’s capabilities to capture energy storage and generation systems, plug loads and
end-use devices, radiant systems, and initial support for heat pumps. We have also published
extensions to Brick which permit modeling of occupants and occupant data as well as
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relationships between Brick entities and building information models, building control networks,
and archival data storage.

Brick Integrations

The original release of the Brick schema was distributed as a standalone solution whose effective
usage required software engineering as well as graph data model expertise. Over the course of
this project, we have developed five integrations between Brick and existing technologies and
standards that significantly simplify the process of bootstrapping a Brick model from for a real
building. These integrations also make Brick part of a larger ecosystem, ensuring it is a “safe
bet” for stakeholders: Brick complements existing technological investments rather than
competing with them.

We have developed Brick translators for multiple technologies that span the lifecycle of a
building and align with existing industry standards: BuildingSync (an energy auditing schema
based in part on the ASHRAE 211 standard), Modelica (language for simulation models),
Control Description Language (vendor-agnostic specifications of control sequences, being
incorporated into the ASHRAE 231P standard), Project Haystack (a prevailing tag-based
metadata solution), and BACnet (a standard network protocol formalized as the ASHRAE 135
standard). In addition, we have also developed alignments with emerging metadata efforts: the
RealEstateCore ontology (focusing on spatial building elements and property management) and
the VBIS asset management system. All of these integrations and alignments are released under
permissive open-source software licenses, and have assisted in the adoption of Brick by making
it easier for stakeholders to use Brick with their existing building technologies.

Open Source Analytics Platform

To demonstrate how Brick supports the execution of portable analytics applications, we created
and currently host an open analytics platform—Mortar—that provides access to hundreds of
millions of data points spanning over 50 buildings. Each of these buildings is modeled using
Brick; users and applications use the Brick model to discover and retrieve the available data. The
Mortar platform presents a fundamentally different approach to organizing and disseminating
building data. Existing building data is available largely through building management systems,
which organize data by annotating data streams with human readable but ultimately unstructured
labels. Contextual information which relates these data streams to the building and its
subsystems is typically not available in a machine readable form. By pulling this contextual
information out into a standard form, a Brick model, it becomes possible for applications to
discover and filter through data for many buildings at once without the user having to develop a
specialized understanding of each of those buildings and their data. This introduced the notion of
portable building applications: applications which can execute over many buildings with
minimal or zero reconfiguration.

To prove the impact of portable building applications, we have released an initial library of
portable building analytics, available online as open-source programs, which execute on the
Mortar analytics platform.
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Demonstration of Brick-Driven Controls

Through this project, we have demonstrated one vision of the next generation of intelligent, data-
driven building analytics and controls. Standardized sequences of operation such as ASHRAE
Guideline 36 for high-performance HVAC systems can be difficult to deploy on real buildings
because of the heterogeneity of the building subsystems and their labels — the same issues that
plague deployment of data-driven analytics. We have demonstrated the use of Brick to capture
the required metadata about a building that allows a program to integrate a standardized building
control language (CDL) with a standard communication protocol (BACnet) to implement these
high-performance controls on buildings with minimal manual intervention. What is significant is
that the entire controls deployment was achieved with publicly available, non-proprietary
resources that can be executed over multiple buildings with

Thus, we used standardized sequences of operation (ASHRAE Guideline 36) to define the best
practice controls, an open-source schema (Brick) to represent the required metadata in a
structured format, a standardized communications protocol (BACnet) to communicate with the
controllers, and (proposed) standardized building controls language (CDL) to implement these
controls. These are all non-proprietary resources that are publicly available and can be used in a
scalable manner that is portable between buildings. That applies even though those buildings
have different automation systems, point names, HVAC topologies, etc. To our knowledge, this
is the first time the ’full stack’ of these different components has been implemented to perform
closed loop control in a real building. The controls continue to operate in the building as writing
this report.
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Goals and Objectives

The goal of this project is to develop the nascent open-source common data schema, Brick, into a
demonstrated and tested tool that, through the implementation of advanced algorithms and
analysis, can enable the scaling of major energy savings, improved building performance, and
grid responsiveness across commercial buildings at low cost.

The objectives of the project are to:

1. Expand the Brick schema (the categories and names of building subsystems and
equipment, and relationships among them)

2. Develop tools and translators for adding information to and from Brick models

3. Develop an open-source building analytics platform,

4. Test open-source building analytics and controls (e.g. ASHRAE Guideline 362, Open
Building Controls (OBC)3) on several buildings, and

5. Develop a technology transition plan.

We have expanded the Brick schema: Over the course of the project, we have produced two
minor and three major releases of the Brick schema: 1.1.0 (Jul 2020), 1.1.1 (Jan 2021), 1.2.0
(Feb 2021), 1.2.1 (Aug 2021), and 1.3.0 (Oct 2022). Each of these releases incorporated further
extensions of the Brick ontology, as detailed in this report. In addition, we released an occupant-
oriented extension of the Brick ontology for modeling building occupants and occupant data.

We developed tools and translators: We have implemented and released translators (which
transform or infer Brick metadata from existing sources) for five protocols and data formats:
BACnet (standard communication protocol), Modelica/CDL (modeling and control languages),
IFC (building information model), Project Haystack (metadata tagging standard) and
BuildingSync (energy auditing schema). In addition, we have established semantic alignments
(obviating the need for translation) with the VBIS asset classification system and the
RealEstateCore ontology.

We developed an open-source building analytics platform, Mortar: Mortar has been released
under a permissive open-source license, and is currently being used to host more than 100
million data points spanning more than 50 real buildings. Each of these buildings is represented
by a Brick model, facilitating data discovery and consistent interpretation of data with respect to
the building. The platform implements an API for data discovery and retrieval over all buildings
in the platform, and has been used to develop several building analytics applications.

We developed and tested several buildings analytics and controls: using the Mortar platform
(which incorporates the Brick schema), we developed and tested 5 analytics and fault detection
applications that each ran on multiple buildings with minimum reconfiguration. We also
developed and tested two control applications—duct static pressure reset control and hot water
supply temperature reset control—that were executed on real buildings with the help of Brick
models of those buildings.

2 http://gpc36.ashraepcs.org/
3 http://obc.Ibl.gov/
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We developed a technology transition plan for Brick, including significant industry
engagement, release of open-source tools, outreach to stakeholders, and public presentations and
publications of the work achieved during this project. We have assisted in the creation of the
Brick Consortium, Inc., a 501(c)(6) organization intended to support the research and
development of the Brick ontology. The consortium currently consists of academic
representatives from UC Berkeley, Colorado School of Mines, and Carnegie Mellon University;
it also has industrial representation from Carrier, Clockworks Analytics, Johnson Controls Inc,
Mapped, Schneider Electric, and Siemens. In addition, we have held several webinars and
workshops, published 16 publications and 1 PhD thesis, and released many public materials that
educate and evangelize Brick.
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Project Activities

Brick endeavors to standardize descriptions of components in buildings through a dictionary of
building terms, a set of relationships among these pieces, and a data model that integrates Brick
with other tools and data models. This open-source effort “skewers the silos” of independent data
models currently marking all points of the life of a building, from design to construction to
operation. A flexible but standard schema can enable “portability” of analytics, modeling, and
controls from one building to another.

This project brought together researchers in computer science, mechanical engineering, and
building science with expertise in building modeling and controls to further develop Brick, to
increase its usability, and increase its adoption.

The project was divided into three budget years with five tasks in each period. The following
describes each task’s progression over the three years.

Task 1: Expand Brick Schema

The goal of this task was to identify and select new metadata (descriptive annotations for data
sources) to be added to the Brick schema, expand the Brick schema extensions after defining the
most appropriate tools and applications, and then release the expanded schema in the public
realm. These new metadata were informed by our experiences with (a) building equipment,
sensors, and other data sources, and (b) the applications and other use cases which are potential
consumers of a Brick model. A Brick model is a digital representation of a building and its
composing assets (e.g., equipment, locations) and data sources.

Demonstrate Brick models for >50 buildings

The first milestone of this task (1.1.1) was to demonstrate Brick models for at least 50 buildings,
with each model “complete” to the extent that they enable at least two control and/or analytics
applications.

We developed Brick models capturing the structure of Heating Ventilation and Air Conditioning
(HVAC) systems, lighting systems, spatial composition, and building-level metering for 108
buildings in California. 92 of the buildings are large office buildings with Air Handling Unit
(AHU)-based HVAC systems, and the rest are smaller commercial buildings that are Roof Top
Unit (RTU)-based.

For AHU-based systems, the Brick models capture the flow of air through the equipment and
into the spaces (AHU to Variable Air Volume (VAV) box to HVAC Zone) as well as the points
of actuation and control associated with the equipment in those flows. To create these Brick
models, we scraped the point labels available in the building management system (BMS) and
authored a Python program to infer from those point labels the names and types of equipment
and in the building and the connections between them. We then associated the data sources
(points) exposed in the BMS with the inferred equipment.

For the RTU-based systems, the Brick models capture the associations between thermostats, the
packaged rooftop units, and the zones and rooms conditioned by the rooftop units. We authored a
Python program to extract this structure from exported Revit models (a type of Building
Information Model containing structural and mechanical information about a building). Because
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buildings with RTU-based systems typically do not contain unified digital infrastructure such as
a BMS, we augmented the information available in the Revit model with manufacturer-specific
“scrapers” that extracted metadata about any networked lights, thermostats, plug load controllers
and other consumer-level devices installed in the building. This allowed us to augment the Brick
model with metadata beyond what was immediately available in the BIM.

These Brick models are complete enough to enable at least two applications: the detection of
“rogue zones” (zones whose airflow or temperature is lower than the setpoint for extended
periods) and stuck dampers.

Expand Brick schema to represent 80% of large commercial buildings

Through year 1, we identified the set of end-use applications which could benefit from access to
a standard digital representation of building data source (i.e., Brick), and a set of existing
building software tools which would either be potential sources or consumers of Brick metadata.
We surveyed the metadata required by these tools and applications and expanded the Brick
schema to include all necessary metadata definitions. To evaluate the coverage of the Brick
ontology over large commercial buildings in the US, the research team developed two
approaches: a top-down approach using a national survey and a bottom-up approach based on
BMS data from several representative buildings.

Top-down approach

The U.S. Energy Information Administration (EIA)'s Commercial Buildings Energy
Consumption Survey (CBECS) is the only nationally representative source of statistical
information on the nation’s commercial buildings, including their energy-related building
characteristics and energy usage data. The CBECS survey has been conducted on a sample of
6720 buildings representative of commercial buildings from the 50 States and the District of
Columbia.

To appraise the Brick schema ability in representing metadata information in commercial
buildings, we used the most recent available version of the U.S. Energy Information
Administration's Commercial Buildings Energy Consumption Survey (CBECS) Data variable
codebook (2012)+ (XLS) as a comprehensive benchmark for our analysis.

We evaluated the Brick schema (v1.2.a) coverage by mapping the CBECS variables to the Brick
ontology. Prior to the mapping, we selected relevant variables that lie within the scope of the
Brick schema. While the CBECS data survey includes building characteristics (such as building
structural characteristics, energy sources and uses), energy usage data and energy providers, the
Brick ontology aims at describing the multitude of subsystems in buildings (HVAC, lighting,
electrical, security, control systems), which are core to the development of smart analytics and
control applications.

We selected variables that fall within the following categories: Buildings Geographic Features
and Locations, Cooling/Heating Equipment Types and Controls, Lighting, Electricity Generation
and Storage Technologies, Occupancy Control and Others. It is important to note that Brick has
the ability to represent HVAC, Security, Safety Equipment and Locations concepts in much

4 https://www.eia.gov/consumption/commercial/data/2012/xIs/2012microdata_codebook.xlsx
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more depth than CBECS. This is the case also for the actual relationships that describe
interactions among devices and building spaces.

In version v1.2.a, Brick only covered 55% of the selected CBECS variables, but had the capacity
to represent 98% of them. Relevant use cases have already been defined for 28% of those
unrepresented concepts and their additions will be covered in future versions of the Brick schema
(bringing coverage up to 83%). Most of these additions have been incorporated into the Brick
1.3.0 release, and more will emerge in minor 1.3.x releases.

On average, Brick was able to cover 71% of the selected CBECS concepts out of those
represented across the 6720 buildings sampled. We see the need for a more focused and
integrated assessment of the existing overlap between CBECS and Brick buildings data contexts
and use cases.

Bottom-up Approach

Based on BMS points from three representative buildings, we evaluated the expansion of the
Brick schema by comparing the coverage of Brick at the time this project began (v1.1) to version
1.2.0, which was current at the time of the analysis.

We evaluated the coverage of the Brick ontology using the building management system (BMS)
points from three buildings: San Mateo Office Building (SMC), Sacramento Municipal Utility
District Office Building (SMUD), and David Brower Center Office Building (DBC). We
compared the coverage of the previous schema version of Brick (1.1) to 1.2.a. We define
“coverage” as the percentage of unique types of BMS points that were wholly describable in the
given version of Brick. We only evaluated the BMS points where we could extract information
on the point to determine its intended measurement or purpose. This is especially true for DBC
where unidentifiable points were more prominent. The total number of points downloaded from
DBC’s BMS was 4,333 but were left with 1,218 points that were identifiable. Some example
point names that were unidentifiable include the following:

NAE00806603BECA/Field Bus1.CW Pump 8.Analog Values.AV43
NAE00806603BECA/Field Bus1.HW Pump 5.Analog Values.AV-38
NAE00806603BECA/Field Bus1.Radiant Pump 3.Analog Values.AV-36
NAE00806603BECA/Field Bus1.CW Pump 7.Binary Values.BV-21

SMC is a typical office building with variable air volume with reheat zone terminal units; both
SMUD and DBC have high thermal mass radiant heating and cooling systems for their primary
HVAC system. The results are summarized in Table 1 below. Since SMC uses a typical VAV
system, there was already a 100% coverage with Brick version 1.1. However, SMUD and DBC
contained systems, hydronic system points, and measurements not previously defined in Brick.
These buildings contained a radiant system with their specialized measurements and setpoints
(e.g., embedded temperature sensors and setpoints), underfloor distribution ventilation system,
heat pumps, and exhaust systems. The additional Brick classes added to version 1.2.a increased
the coverage by at least 10%.
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Table 1: Summary of Brick ontology coverage on three different buildings using Brick version 1.1 and
1.2.a

Building[No. Points | No. Entities|Brick Version|Coverage of all point|Coverage of unique classes
SMC  [506 | 15 1.1 100% 100%
1.2.a 100% 100%
SMUD (1581138 1.1 84% 81%
1.2.a 99% 98%
DBC 1218|136 1.1 89% 88%
1.2.0 99% 99%

Based on system types and points described in ASHRAE Guideline 36 (public standard used in
industry), we evaluated whether 80% of the points/classes are covered in Brick v1.2.a. ASHRAE
Guideline 36, High-Performance Sequences of Operation for HVAC Systems, was created to
develop and maintain best-in-class standardized (air-side) HVAC control sequences. The
document presents these sequences in reference to a set of HVAC equipment configurations and
common Building Automation System “points”. The coverage of Brick is evaluated based on the
full set of systems and points mentioned in the Guideline 36 - 2018. The results of such analysis
are illustrated in Table 2.

Table 2: Summary of Brick ontology coverage based on ASHRAE guideline 36 concepts

Type Coverage in Brick
1.2.0
Points 86%

Equipment | 81%

Feedback on expanded Brick schema

Another task in year 2 was to report on feedback from the Brick community. In 2021, the Brick
forum had 178 members, which grew to 296 members in 2022. New members regularly post
questions and answers to other questions. Technical users continue to engage on the Brick
GitHub issue tracker, requesting extensions to and clarifications of the Brick ontology. Examples
of Brick community engagement include expanding Brick to model district heating systems,
expanding the set of definitions for electrical metering, expanding the set of room and location
types supported by Brick, and a larger family of minor bug fixes and concept additions.

In order to better communicate with the Brick community, the Brick Roadmap page was
launched (http://roadmap.brickschema.org), which tracks the immediate and future development
plans for Brick.
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Dr. Fierro with Johnson Controls International, who has helped to organize an Industry
Consortium for Brick, organizes a set of bi-weekly Working Groups that bring community
members together with the Brick development team around four distinct efforts: ontology

development, conversion tools for Brick, curation of public reference models with timeseries
data, and the development of Brick applications.

Finally, we note that Brick compares favorably to other ontology and schema (Table 3).

Table 3: Summary of Brick compared to other schema

Modeling Support Brick Project Haystack IFC BOT SAREF
HVAC Systems yes yes yes no no
Lighting Systems yes partial yes no no
Electrical Systems yes yes yes no no
Spatial Information yes no yes yes no
Sensor Systems yes yes generic  no yes
Control Relationships yes no generic no no
Operational Relationships yes no generic  no no
Formal Definitions yes no yes yes yes

Review and release the expanded schema

In the final year of the project, we reported on several extensions to the Brick schema; all of
which can be found on GitHub in the Brick repository (https://github.com/BrickSchema/Brick)
unless indicated elsewhere.

Occupancy

One of the most recent set of extensions, the Occupancy modeling extensions may be found here:
https://github.com/gtfierro/brick-occupancy-extension. The extension introduces some classes
for describing properties of the building occupants.
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Figure 2: schematic drawing of occupancy modeled in the Brick schema (Figure from Brick Occupancy
Extension paper’)
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The extension introduces several new classes of equipment:

Ceiling Fan

Personal Devices:
Portable Fan
Portable Heater
Desktop Light
Envelope Equipment:
Door

Window

Plug Meter

The extension also incorporates plug meters as a new subclass of brick:Electrical_Meter. The
model directly supports modeling the relationships between occupants, the devices they interact
with, and the energy consumption of those devices.

Interoperability with other ontologies: REC, Project Haystack and ref-schema

As is described further in the Tools and Translators section below, we developed a Brick
extension to harmonize the Brick ontology with the RealEstateCore (REC) ontology. This
extension (https://github.com/RealEstateCore/RECA4/tree/main/Ontology/SHACL/Brick) clarifies
the semantic relationships between Brick and REC concepts. It also lays the groundwork for
future changes to both BRICK and REC to make them more complementary. This extension
marks many months of collaboration with the core REC development team. More recently, the

5 https://www.sciencedirect.com/science/article/abs/pii/S0926580522001807
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development teams for Brick and REC held multiple seminars®’ showing how Brick and REC
can be used together in the same metadata model. This high level of interoperability was the
result of more than a year’s worth of development by the Brick and REC development teams.
REC 4, the most recent version of the REC ontology, incorporates Brick concepts directly in its
definition. Brick 1.3, the most recent version, likewise contains direct support for REC concepts.

We have developed interfaces between Brick and both Project Haystack tags and the ref-schema
(https://github.com/gtfierro/ref-schema) for interoperability between ontologies and other digital
models. The ref-schema has been incorporated into the current draft of the ASHRAE 223P
standard. The ref-schema includes support for relating parts of a linked data model (like a Brick,
REC or 223P model) to IFC models, BACnet networks and timeseries databases.

We are continuing to develop other extensions and have community involvement in several
areas, such as heat pumps and meters. The Brick v1.3.0 release notes are listed at
https://github.com/BrickSchema/Brick/releases/tag/v1.3.0 : this details the set of extensions and
changes to Brick. The Brick consortium approval process was utilized for the first time in order
for this release to take place.

6 https.//memoori.com/will-a-unified-smart-building-metadata-standard-become-reality/
7 https://www.realestatecore.io/reccon22/
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Task 2: Develop Tools and Translators

The second major task that evolved through the three-year project was developing the tools and
translators between Brick and other data models.

Identify list of required interfaces with Brick

In order to consider a wide adoption of Brick, we identified general categories of end users who
would benefit from improved data schema translation across data, data models, and tools. Table
4 lists these potential end users, what goals each has, and what application each would use.

Table 4: General categories of Brick applications

Regents of the University of California, Berkeley

Source Data
User Application |Goal Relationship to Brick | Applicability |Model:
Get data out of existing
BAS/BMS into a High priority
timeseries database for (to help FM
Building Improve building comfort [ease in visualization, control
facilities (reduce complaint), or analytics, and to aid in | buildings
managers | Operation energy performance. performance better BACnet
Get data out of existing
BAS/BMS in large
commercial (or from
networked Lots of BACnet
Improve building comfort [thermostats/whole existing (using tools
(reduce complaint), or building data in small  |buildings--high |such as “The
energy performance buildings) in a format  |need to Building
(energy efficiency, reduce |that can be used for improve EE, [ Adaptor” for
Energy demand charges, reduce  |third party/proprietary |implement DR, |large
services energy during peak tools analysis, FDD, and integrate  |commercial
providers| Analytics demand). controls (EE, DR) DER buildings)
Open Building
Controls
(OBC)
Develop controls Control
Energy specifications (Guideline |OBC and CDL, Upgrading Description
controls 36) to upgrade existing ASHRAE 231p, Ctrl-  [legacy building | Language
engineers|Controls buildings. Flow controls (CDL)
Energy Test controls on existing Testing new
controls large commercial buildings | Spawn of Energy Plus, |control
engineers|Controls through models Modelica sequences BACnet
Relatively new
buildings, so
Energy fewet: mb
controls Create Brick models from number, but
engineers| Design IFC IFC translator pefhaps IFC
quicker to
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make Brick
model.
Create Brick models from
Energy Modelica/Spawn of Energy Testing new
controls Plus/Energy Plus to be able | Spawn of Energy Plus, |control
engineers|Modeling to design and test controls |Modelica sequences BACnet
Convert Haystack Value for
Project|Controls/ Reuse analytics developed |schema to Brick schema | Project Project
Haystack users|Analytics using Haystack or Brick to Haystack Haystack users | Haystack
Energy data
analyzers
(evaluation,
program
development, Value for
verification, Translator to BuildingSync
benchmarking)| Analytics Use BuildingSync BuildingSync users BuildingSync

Outline integration pathway for at least four data models

We identified four translations to focus on: BACnet to Brick, Modelica energy models, and
Control Description Language (CDL) control sequences to Brick, IFC to Brick, and Project
Haystack to Brick. We also considered BuildingSync to Brick. Figure 3 shows the various silos
of building data at various stages of the building lifecycle, from design, modelling, controls,
operation, and analytics.
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Figure 3: Many different metadata standards and technologies are applied over the course of a
building’s lifecycle, but are relatively siloed and thus non-interoperable. We propose a method for
continuously mining a single, coherent semantic metadata from these various representations over

time.
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BMS Point labels from a building management system are perhaps the most common source of
digitized building metadata, but also the most varied and least standardized. Point labels act as
identifiers for sensors, actuators, alarms, parameters and other “registers” in a SCADA or BMS
system; as a result, they may contain some semantic information such as the point’s location,
function and some related equipment. However, they are often unstructured, building-specific,
inconsistent, and reliant upon vendor-specific conventions for consistent interpretation. This

motivates the creation of tools and techniques which can extract structured and standardized
metadata—such as Brick—from these representations.
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Although several research efforts exist to automate this process® °, these techniques rely upon
heuristics and learned statistical techniques whose efficacy is hard to measure for a more general
population of buildings, whose labels may not be as regular. To this end, we have released a
dataset of building labels'® that seeks to make a broader diversity of building labels available for
researchers. We are also pursuing the creation of tools that are less automated but offer a
structured workflow for non-computer scientists to parse and convert their building label
metadata to Brick.

In collaboration with JCI and using data donated by UC Davis, we have been working on an
open-source tool which converts specially structured CSV files and spreadsheets to functioning
Brick models?!. Rather than requiring users to be fluent in semantic web technology, these new
tools only ask that users can fill out a spreadsheet template. The tool integrates with the open-
source OpenRefine tool*?, which presents users with a powerful web interface for cleaning and
parsing labels. After parsing labels in OpenRefine, users can export the data to a CSV file which
can then be converted into a Brick model. We have documented this workflow in a YouTube
video®®. We have organized an informal working group of individuals from several “smart
building” startups, government bodies and other researchers to discuss and evaluate this tool and
other metadata conversion techniques.

We have used this technique to extract Brick models for more than 10 different buildings, all
with different point label structures, and are continuing to develop the tool.

The recently-released BuildingMOTIF tool** from NREL also incorporates the CSV import
feature, inspired by the work in this project.

Industry Foundation Classes (IFC) is a standard format and data model for building
information modeling, designed for the exchange of data related to the design and construction
of a building. The IFC standard describes many common types of HVAC and lighting equipment
as well as sensors. However, because of the focus on the design and construction phases of the
lifecycle, IFC does not explicitly represent the context or configuration of these entities within
the structure of their respective subsystems (for example, is a particular fan a supply fan or an
exhaust fan?) This information can be inferred by expert inspection of an IFC model, but cannot
be easily determined in a programmatic manner.

8 Jason Koh, Bharathan Balaji, Dhiman Sengupta, Julian McAuley, Rajesh Gupta, and Yuvraj Agarwal. 2018.
Scrabble: Transferrable Semi-Automated Semantic Metadata Normalization using Intermediate Representation. In
The 5th ACM International Conference on Systems for Built Environments (BuildSys *18), November 7-8, 2018,
Shenzen, China. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3276774.3276795

9 Bhattacharya, Arka A., et al. "Automated metadata construction to support portable building applications."
Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built
Environments. 2015.

10 Gabe Fierro, Sriharsha Guduguntla, and David E. Culler. 2019. Dataset: An Open Dataset and Collection Tool for
BMS Point Labels. In The 2nd Workshop on Data Acquisition To Analysis (DATA’19), November 10, 2019, New
York, NY, USA. ACM, New York, NY, USA, 3 pages. https://doi.org/ 10.1145/3359427.3361922

11 https://github.com/gtfierro/brick-builder

12 https://openrefine.org/

13 https://youtu.be/L KeXMvrxXzE

14 https://github.com/NREL/BuildingMOTIF/
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Green Building XML (gbXML) is an XML-based data exchange format for building
information modeling, similar to IFC. While it only represents simple building geometry
compared to IFC, it can represent a variety of HVAC and Lighting equipment and — importantly
— groups related equipment, rooms and zones together. This kind of contextual information
permits greater inference of Brick relationships than IFC. Both gbXML and IFC are common
export formats for BIM tools such as Autodesk Revit.

BuildingSync is an XML-based schema designed to capture energy audit data in line with
ASHRAE Standard 211. The standard requires the reporting of high-level operational parameters
of the building (floor area, occupancy classification, operating hours, etc.), primary system
information (heating, cooling, lighting, process loads, etc.), as well as historical energy
consumption, benchmarking information, and target performance objectives. This information is
then used by the energy auditor to provide the building owner with recommendations for
achieving energy reduction goals or mandates. Energy audits, such as those enabled by
BuildingSync, are often conducted at various points in a building’s lifecycle. For example, New
York City’s Local Law 87 requires an energy audit to be performed every 10 years for existing
buildings over 50,000 square feet. This strategy is seen as a key feature in many Building Energy
Performance Standards (BEPS) and other mandates issued by cities to reduce the energy
footprint of the existing building stock.

Modelica Buildings Library and Control Description Language (Modelica/CDL): Modelica
is a declarative, equation-based modeling language used to model engineered systems. In
Modelica, components are represented by modular models coupled to each other through
connectors to form systems. Connectors can represent input/output ports for control signals, or
physical ports such as for representing a flange of a valve through which fluid flows. The
Modelica Buildings Library contains component and system models for building and district
energy and control systems. The Control Description Language (CDL) is a subset of Modelica
used to express control sequences for building automation systems in a vendor-independent
format. CDL aims at enabling the digitization of the design, specification, deployment and
verification of building control sequences. CDL sequences can be integrated with building
models and the Modelica Buildings library already contains CDL representations of high-
performance HVAC control sequences (e.g., ASHRAE Guideline 36). Simulations of these
models can aid in comparing the performance of different control sequences, testing their correct
specification, and commissioning their correct implementation in buildings.

Project Haystack (Haystack) is a popular tag-based data model that describes equipment and
points (data sources) in buildings for use during the operational phase of a building. Haystack
does not formally define how well-known concepts should be described. As a result, tag usage is
inconsistent between Haystack models, which limits the interpretability of the resulting model
and the extent to which it can be integrated with other metadata sources. Recent work
ameliorates these issues through a method for automatically aligning Haystack tags with existing
formal definitions.

Brick is built over the extensible RDF graph-based data model, which can be easily extended to
include additional properties and concepts. The RDF data model organizes information into
triples: 3-tuples of a subject, predicate and object. The subject and object represent classes
(groups of entities with common properties) or entities (instances of classes); the predicate
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represents a relationship between the subject and object or a property of the subject whose value
is the object.

The proposed approach to continuous metadata integration, represented in Figure 4, is as follows.
A metadata source is a digital representation of a building whose structure, syntax and
semantics are informed by some metadata standard or data model. The representation may
change over time, e.g., to add additional detail during commissioning or to reflect the impact of
repairs and retrofits. A driver is a software process that produces Brick metadata from an
underlying metadata source. For structured or standardized metadata sources such as
BuildingSync and IFC models, this may be accomplished through direct translation of the
source’s concepts and structures to Brick. For less structured and ad-hoc sources such as
Haystack models and BMS labels, a driver may infer Brick metadata through a statistical or
heuristic-based approach. The driver continually produces Brick metadata from the most recent
version or “snapshot” of the underlying metadata source, even as that source changes. The driver
places no requirements on how the Brick metadata is produced or inferred, but represents the
Brick metadata as a set of RDF triples. An integration server is a logically centralized process
that consumes Brick metadata from a collection of drivers and produces a unified Brick model
representing the union of the collected metadata. Because different metadata sources are
traditionally created at different times and by independent stakeholders, the unified metadata is
likely to contain mistakes, disagreements and inconsistencies. To address this issue, the
integration server incorporates a novel reconciliation algorithm (analogous to the “merge”
operation in Git) that attempts to resolve the differences between the metadata reported by the
drivers. The integration server maintains a Brick model which is accessible by applications and
other external services such as Mortar.

Figure 4: Overview of the proposed approach: drivers interface directly with existing metadata sources
stored in local file systems, or accessed via file shares or networked services. Drivers continuously
publish inferred Brick metadata to a central server, which produces a unified model.
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Drivers are software processes that produce Brick metadata from an underlying metadata source.
Drivers report the Brick metadata to the integration server via a metadata synchronization
protocol, described below. The metadata synchronization protocol decouples the method of
inferring or producing Brick metadata from how that metadata becomes integrated into the
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authoritative model. This allows the proposed system to incorporate new metadata sources and
novel methods of Brick metadata inference.

Figure 5 describes at a high level the operation of a driver and its interaction with the integration
server per the metadata synchronization protocol. The protocol operates over HTTP. The driver
POSTSs a list of JSON messages to the integration server when the metadata source changes.
Each message contains the Brick metadata inferred for an entity (virtual, logical or physical
“thing”) along with the following fields:

e id: a name or other identifier for the entity, as given by the metadata source

e raw: identifies the encoding (e.g. JSON, XML) and content of the original metadata that
defined this entity. May contain additional metadata not expressed in Brick

e source: identifies the metadata source

e timestamp: denotes the time at which the metadata source was read, corresponding to a
consistent “version” of the underlying metadata

e triples: a list of RDF triples constituting the Brick metadata produced from the raw
record

Figure 5: Example record published by the BuildingSync driver, showing the original metadata (raw)
and the inferred Brick metadata (triples).

1 {

2 "id": "RTU-1",

3 "raw": {

4 "content": "<auc:Delivery ID=\"RTU-1\">

5 <auc:DeliveryType>

6 <auc:CentralAirDistribution>

7 <auc:AirDeliveryType>Central fan</auc:AirDeliveryType>

8 <auc:FanBased>

9 <auc:CoolingSupplyAirTemperature>73</auc:CoolingSupplyAirTemperature
10 </auc:FanBased>

1 </auc:CentralAirDistribution>

12 </auc:DeliveryType>",

13 "encoding": "XML"},

14 "source”: "BuildingSyncDriver",

15 "timestamp": "2020-07-16T2@:02:50",

16 "triples": [["http://example.com/building#RTU-1",

17 "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type",

18 "https://brickschema.org/schema/1.1/Brick#Rooftop_Unit"]]
19 }

The server saves all received messages in a local database, indexed by the timestamp field. When
the server performs the reconciliation algorithm to produce a unified metadata model, it by
default only considers the messages corresponding to the most recent timestamp per driver. By
extension, the server can also produce a unified metadata model for any point in the Brick
model’s history, provided a driver was publishing metadata at that time. This allows applications
to access the history of changes in a building, but through the interface of a standardized, unified
representation rather than an ad-hoc collection of diverse metadata sources.

The triples field can contain arbitrary Brick metadata to be relayed to the server. Typically, this
involves type information (vavl is a brick:VAV), system composition information (vavl is
downstream of ahul), telemetry association (vavl has temperature setpoint temp_spl) and
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location information (tstatl is in Room 410). The triples may also define extensions to the Brick
ontology, such as to describe additional properties of an unusual device or point.

Drivers / Metadata Source

We implement the following drivers for integrating several common building metadata standards
and data models into a Brick model. For each driver, we explain the structural and semantic
mapping between the metadata source and Brick. We only focus on a particular version of each
metadata source below. The architecture permits the development of separate drivers for
different versions of each metadata source.

BuildingSync: Buildings represented via the BuildingSync schema are captured in an XML
document; a single document may contain multiple buildings. Elements in a BuildingSync
document describe systems (e.g., the kinds of heating and cooling subsystems in an HVAC
system), properties of systems (e.g., expected energy consumption, cooling or heating capacity)
and properties of buildings (e.g., year of construction, floor area). The children of a given
element in the document describe both the properties of that element as well as relationships to
other elements. The driver uses the following approach to map BuildingSync elements to Brick
entities: First, the driver uses XPath expressions to find elements with certain attributes or
properties that match a Brick class definition. Then, this type is refined by searching for
additional properties that may further elucidate the type of the entity described by that element.
For example, the BuildingSync auc:Chiller element aligns with the Brick brick:Chiller entity
type. If the auc:Chiller element in the BuildingSync document contains a auc:ChillerType
property with the value “Absorption”, then the driver can infer the more specific Brick class of
brick:Absorption_Chiller.

The initial type mapping exercise identified 27 direct concept mappings, primarily for locations
and equipment types. BuildingSync captures limited information pertinent to point information
(in comparison to Haystack and CDL / Modelica), although certain limits and set points may be
captured.

Project Haystack: Popular Haystack implementations can export a Haystack model as a
collection of documents. Each document contains the tags and key-value pairs that describe each
Haystack entity; Haystack entities represent sites, points and pieces of equipment. As the
Haystack model is updated and maintained, the driver can request additional exports in order to
update the produced Brick metadata.

The structure of a Haystack model has a straightforward mapping to Brick: each Haystack entity
corresponds to one or more Brick entities, and the generic links between Haystack entities
(called refs in Haystack parlance) correspond roughly to Brick relationships. However, because
the semantics of a Haystack model are not well-defined, the precise types of Haystack entities
and relationships between them must be inferred. The Haystack driver adopts the inference
engine described in (Fierro et al, 2019) to produce a Brick model from an exported Haystack
model.

The driver operates as follows: the driver loads the most recent exported Haystack model into
memory and partitions it by the documents corresponding to each Haystack entity. For each
entity, the driver uses the inference engine from (Fierro et al, 2019) to produce a set of RDF
triples representing the Brick metadata for that entity. Each original Haystack document and the
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inferred triples are packaged into the standard message schema, using the value of the id field
from the Haystack document as the name of the entity. The set of these messages is then
transmitted to the integration server.

Modelica/CDL: Modelica and CDL models consist of a set of connected objects; these can be
exported to a JSON document using the modelica-json tool. The JSON export contains detailed
information about building components, their connections and the control sequences. Control
sequences in CDL and Modelica models of the HVAC system can also embed Brick information
(and other semantic information) as annotations, which are also included in the JSON export
when they are made available in the source model. The driver operates as follows. From a JSON
export, the driver first extracts all the Brick semantic information from the annotations, if
present. The next is an inference step, where the translator uses the Modelica class of each
instantiated object and assigns a Brick type if such a mapping exists. This treats each Modelica
object as a Brick entity: for example, every instance of the Modelica class
Buildings.Fluid.Sensor. Temperature can be translated into a Brick: Temperature_Sensor entity.
Then, the driver traverses the connect statements in the Modelica model to extract the sequential
(brick:feeds) and compositional (brick:hasPart) relationships between objects and add these to
the corresponding Brick entities. connect statements in the Modelica model can also provide
spatial metadata such as rooms and thermal zones. Lastly, the driver uses the CDL representation
of control sequences to extract the inputs and the outputs of controllers in order to identify
brick:hasPoint relationships between equipment, actuators and measurement sensors. Although
there is a good deal of semantic metadata that can be obtained from Modelica/CDL models,
because the models target simulation, they also contain information that cannot be directly
represented in a Brick model. This includes properties such as heat transfer parameters for a
cooling coil.

Industry Foundation Classes. For IFC, the data format description includes the EXPRESS file
format and requires a special parser. Colleagues at BuildingSmart have an IfcOWL project with
EXPRESS to RDF converter2.'®> We may also look at OpenStudio. The mapping consists of a
few steps: instantiate location and zone entities from IFC, instantiate points from IFC, and record
each IFC document.

After the release of IFC4, Dr. Fierro and JCI worked with the developers of BlenderBIM (an
open-source IFC editor and visualizer) to incorporate support for Brick in a release of the
BlenderBIM plugin®®. This included support for (a) linking a Brick model to an IFC model (and
vice versa), and (b) automatically inferring Brick metadata for IFC entities (and vice versa).

Metadata Reconciliation

Because the set of metadata sources for a building are developed independently over time, they
may present incomplete or incompatible perspectives on the building, its subsystems and data
sources. We propose a reconciliation algorithm for merging the Brick metadata proposed by a set

15 https://technical.buildingsmart.org/standards/ifc/ifc-formats/ifcowl/
16 https://twitter.com/BlenderBIM/status/1461098241970384898
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of drivers into a single logically and semantically valid model. This unified model can be used to
configure portable applications. The algorithm is executed at the integration server.

First Stage: Record Linkage. The first stage of the algorithm performs two kinds of record
linkage on the associated names or labels of each entity. The record linkage step uses traditional
string matching techniques to produce clusters of entities based on the names of those entities.
The name of an entity can be derived from string-valued properties such as rdfs:label or the URI
of the entity if no string-valued properties are found. The goal of this step is to use the semantic
information sometimes encoded in entity labels as one heuristic for linking. Due to different
naming conventions between metadata sources, there can often be greater similarity scores
between entities from the same source than between entities of different sources. For this reason,
the algorithm assumes that all entities reported by a metadata source are distinct and only
clusters entities from different metadata sources.

The second record linkage step leverages semantic information from the proposed types of each
entity to do type-aware clustering. The algorithm identifies all entities that have a proposed type
that is a Brick class (entities with an rdf:type property with a value that is a class from the Brick
ontology) and associates with the entity all of the Brick classes which are equal to or are
superclasses of the given type. If two or more sources have the same number k of entities of a
given type, the algorithm produces k clusters containing one entity from each source that have
the highest pairwise similarity between their names. The clusters produced by this second step
are added to the set of clusters produced by the first step.

Second Stage: Graph Union. The second stage of the algorithm takes as input the clusters of
entities from the first stage and builds and validates the graphs formed by merging their
associated triples. The algorithm also adds statements to the Brick model to associate the
different identifiers for the same entity (this uses the owl:sameAs property).

Unlike many other metadata sources, Brick is built over formal logic. This allows continuous
validation of a Brick model as metadata is added to it, which helps the algorithm produce a
logically valid model through the reconciliation process. The logical validation is implemented
by a process called an OWL-RL reasoner; this process also generates logical consequences of the
statements in a Brick graph. The reasoner examines the graph G for each cluster and produces a
set of exceptions. These exceptions indicate that either the entities in the cluster are not
equivalent, or the metadata associated with those entities is incorrect. Examples of exceptions
include:

e incompatible entity types, e.g., if a cluster contains entities of two types which are
disjoint

e incompatible relationships, e.g., if the values of an entity’s properties and relationships do
not match the definition of those properties and relationships

e semantic “sniff tests”: qualities of the Brick graph that are not logical violations but may
indicate deeper issues. The primary example of this is an entity’s types should all be
subclasses or superclasses of each other.

When exceptions occur, the algorithm can optionally re-cluster entities using more selective
thresholds, or, as in the implemented prototype, it can request human input on the failing cluster.
The algorithm then repeats the graph union step. These steps are iterated until no exceptions are
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logged, after which all of the clusterproduced graphs are merged into a single graph. The
algorithm performs one last verification pass on this unified graph; if this passes, the unified
graph is returned as the authoritative metadata model.

Human-aided Disambiguation. When the algorithm logs exceptions for the entities in a given
“bad” cluster, the algorithm can ask for external input on how to proceed. First, the algorithm
asks if it should split the bad cluster into two or more smaller clusters; this can be performed
automatically by adjusting the clustering hyperparameters or manually by specifying the new
clusters explicitly. If reclustering occurs, then the algorithm begins another iteration of the graph
union phase above using the new clusters.

If reclustering does not occur, then the algorithm asks for manual resolution of the graph
contents before proceding to the next cluster. This typically involves choosing which Brick class
to assign to a group of entities, but may also require editing properties and relationships of
entities.

We illustrate the behavior of the algorithm with the following example. Consider two metadata
sources shaystack and sbsync which correspond to a Project Haystack and BuildingSync
representation of a building, respectively. The drivers for these sources produce the Brick
metadata listed in Figure 6. The algorithm begins by clustering the entities. The first string
matching phase places bldg:bsync-meter and bldg:ph-meter into the same cluster because their
labels are sufficiently similar (“main-meter” vs “Main Meter””). The labels bldg:bsync-ahu-1 and
bldg:ph-rtu-1 are not grouped because the labels are too dissimilar.

Figure 6: Example Brick metadata produced by BuildingSync and Project Haystack drivers. The
rdfs:label property denotes the original name or identifier of the entity in the metadata source.

1 # BuildingSync: ahu-1

2 bldg:bsync-ahu-1 rdf:type brick:Air_Handler_Unit ;

3 rdfs:label "AHU-1" .

4 # BuildingSync: main-meter

5 bldg:bsync-meter rdf:type brick:Building_Power_Meter ;
6 rdfs:label "main-meter" .

7

8

# Haystack: rtu-1

9 bldg:ph-rtu-1 rdf:type brick:Rooftop_Unit ;
10 rdfs:label "RTU 1" ;
11 brick:hasPoint bldg:ocat-1 .

12 # Haystack: main-meter
13 bldg:ph-meter rdf:type brick:Power_Meter ;
14 rdfs:label "Main Meter" .

The second type-aware phase examines the Brick-defined classes for the remaining entities.
Using the Brick ontology, the algorithm infers that because brick:Air_Handler_Unit is a
superclass of brick:Rooftop_Unit, each source has metadata for one air handler unit. Because
each source has the same number of instances of that type, the algorithm clusters those entities
by label similarity. This results in bldg:bsync-ahu-1 and bldg:ph-rtu-1 being placed in the same
cluster. The difference in specificity between the original sources is due to the fact that
BuildingSync does not differentiate between subclasses of air handler units, but Haystack does.

The algorithm proceeds by unifying the triples for the entities in each cluster and validates the
logical and semantic soundness of the resulting graph. In this simple example, the algorithm only
needs to verify that the types of each pair of entities are compatible. This is true:
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brick:Air_Handler_Unit is a superclass of brick:Rooftop_Unit and brick:Power_Meter is a
superclass of brick:Building_Power_Meter. Finally, the two graphs are merged into a single
Brick model (Figure 7).

Figure 7: The inferred unified metadata model for the triples in Figure 5. Note that the more specific
type for each entity was chosen and that extra properties from the original source are carried through.

1 bldg:rtu-1  rdf:type brick:Rooftop_Unit ;
2 brick:hasPoint bldg:oat-1 .
3 bldg:meter rdf:type brick:Building_Power_Meter .

Evaluation

We evaluate the proposed approach by implementing a fully functional prototype and measuring
aspects of its execution on a set of real and artificial sites. As structured, digital representations
of buildings become more standardized and widely available, we envision this framework to
serve a vital role in integrating this information over time. The prototype is open-source and is
available online under a permissive license at https://github.com/gtfierro/shepherding-metadata.

Models and Sites

Table 5 lists the sites with more than one available metadata source that were used through the
evaluation. The Carytown site is drawn from the set of example Project Haystack sites. We
developed a BuildingSync model for the Carytown based on available metadata. The "DOE
Medium Office" is the reference building for a new construction, medium office in Chicago,
United States that has been described in the set of U.S. Department of Energy Commercial
Buildings Benchmark. We used the Modelica model that had been developed for a single floor
(four perimeter zones and one core zone) of this building as part of the Modelica Buildings
library and developed Project Haystack and BuildingSync representations for this building.

Table 5: Sites and Metadata sources for evaluation

Site Name Metadata Sources

Carytown BuildingSync, Project Haystack

DOE Medium Office | Modelica, BuildingSync, Project
Haystack

In order to understand the behavior and performance of the drivers, we assembled a set of
publicly available models for each of the targeted metadata sources. In total, we measured 9
Haystack models, 18 BuildingSync models, and 16 gbXML models. These models are not for the
same set of buildings. Instead, the population of buildings for each metadata source offers an
empirical measurement of Brick metadata availability.

Driver Implementation

We developed three drivers for extracting Brick metadata from existing metadata sources. The
prototyped drivers are all implemented in Python 3 and are built over a simple framework that
provides:

e an API for interacting with the metadata synchronization protocol
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e an embedded web server for viewing and extracted records and inferred Brick metadata
from an executing driver
 tools for detecting and reacting to changes in metadata sources.

This set of features reduces the developer overhead of producing a driver by abstracting away
common elements of the protocol and implementation. The embedded web server presents a
simple read-only JSON API that permits a user or automated tool to debug the driver’s output
without the use of an external server. Although presented prototype is implemented in Python, its
implementation is short (~100 LOC) and uses modules from the standard library, so there are
few technical barriers to implementing its functionality in other languages.

We now review the implementation of each of the three drivers to understand how well the
metadata synchronization protocol fulfills the inference needs of existing metadata sources.

Project Haystack Driver: The Haystack driver is built over the inference engine described in
(Fierro et al, 2019) and available as part of the opensource brickschema Python package. The
driver only required a few lines of code to read a JSON export of a Haystack model, feed this to
the inference engine, and extract the inferred Brick metadata. The division of a Haystack model
into a set of entities is natural: each Haystack document becomes one or more Brick entities,
with relationships between them. Due to the high degree of overlap in the modeling domain of
Haystack and Brick models, most of the Haystack metadata is translated into its Brick
equivalent. One exception is the timeseries information embedded in Haystack models (such as
the current value and timestamp of a point), which has no direct representation in Brick.

BuildingSync Driver: The BuildingSync driver operates by using XPath expressions to
conditionally extract parts of a BuildingSync XML document and translate the information to
Brick metadata. The driver accepts a list of BuildingSync-to-Brick mappings in tabular form,
making the driver easy to extend with additional mappings. However, the amount of Brick
metadata obtained from a BuildingSync model is limited compared to what can be inferred from
a Modelica or Project Haystack model. This is due to a difference in scope: BuildingSync
describes properties and performance characteristics of building systems, rather than the
individual components and relationships addressed by other metadata sources. As a result, a
BuildingSync model may be a better target for exporting data from a unified Brick model.

gbXML and IFC: Both gbXML and IFC perform data exchange during the design, construction
and commissioning phases of a building’s lifecycle. However, it was much more straightforward
to extract Brick metadata from gbXML models than IFC models; this is supported by the higher
degree of Brick metadata extracted from gbXML models as seen in Figure 8. (Figure 8 shows the
distribution of the number of Brick triples that each driver produced per entity across all of the
buildings). This is for two reasons. Firstly, although newer versions of IFC (e.g., IFC 4.1) can
provide more equipment and sensor information which is relevant to Brick, we only had access
to older models (targeting IFC 2x3) which do not have as broad a vocabulary. Secondly, the
flexibility and generic approach of the IFC data model results in a complex schema in which
related pieces of information are often separated by many intermediate objects. The relative
simplicity of gbXML resulted in a more complete metadata driver.

Modelica/CDL: The Modelica/CDL driver initially attempts to assign Brick types to objects in
the Modelica model based on its the Modelica class. Next, Brick relationships (brick:feeds,
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brick:hasPart, brick:hasPoint) are extracted by traversing the different connect statements in the
model and from the inputs and outputs of CDL blocks. However, as with any programming
language, Modelica allows the developers to create custom components and models that do not
use the Buildings library templates and conventions. In such cases, the type mappings mentioned
earlier might fail and the driver has to rely on heuristics on the element names, comments and
Brick-specific annotations included in the models to extract information.

For instance, Modelica declarations are of the form “className instanceName comment;”.
Hence from the declaration Buildings. Fluid.Actuators.Dampers.Exponential damRet(...) "Return
damper™; the driver can extract the brick type (brick:Damper) from the Modelica class name, and
it can infer the location (i.e., the return section of the AHU), from the Ret string in the instance
name damRet or from the comment, allowing to refine the Brick type to brick:Return_Damper.

Although Modelica/CDL models can provide a significant amount of semantic metadata, there
are still gaps that have to be addressed (modeling fire equipment, thermostat equipment etc. in
Modelica, representing CDL control specifications in Brick etc.). We are working with the
developers of the Modelica Buildings library to continue the development of this driver to
address these gaps and to possibly encode the Brick mappings directly in the library. A key
update is the explicit inclusion of semantic information as annotations so that the Modelica/CDL
translator can extract more granular information (e.g.: Brick:Return_Air_Temperature_Sensor
instead of a simple Brick: Temperature_Sensor). The syntax of these annotations is undergoing
review as part of ASHRAE 231p committee. Once finalized, it can support providing more
information about the points and equipment present in the energy models and control sequences.

Figure 8: The distribution of the number of triples inferred per record for each driver.

Project Haystack | —|

etadata Source

Brick triples per record

To compare the behavior of each of the drivers, we executed each driver on a collection of
publicly available metadata sources and measured the number of records and triples each
produced. Recall that a record is a Brick entity represented in a metadata source, and that triples
each contain two entities and a relationship between them. Figure 9 shows the distribution of the
total number of triples obtained for each model.
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Figure 9: The distribution of the total number of triples inferred each driver. Note the log-scale on the
X axis

Evaluation of Reconciliation Algorithm.

To develop an understanding of how the algorithm behaves, we collected sites with more than
one metadata source and executed the system end-to-end to produce a unified metadata model
for each site. The list of sites is contained in Table 6.

Table 6 contains the results of executing the reconciliation algorithm on the metadata from each
site. The Union column contains the proportion of triples in the unified model that were
contributed by each source; this includes redundant triples. The Unique column contains the
proportion of triples in the unified model that came only from that source. The Common column
contains the proportion of triples that came from all of the available metadata sources. Between
these quantities, we can understand the diversity of the metadata from each of these sources and
how complementary they are to one another.

Table 6: Results of executing the reconciliation algorithm on the metadata from each site.

Site Name Metadata Source | Union | Unique | Common | Model Size (Triples)
Haystack 15.3% | 100%
2
Carytown BuildingSync | 47% | 100% | ° 80
Haystack 16% 100%
DOE Medium Office | Modelica 41.9% | 100% 8% 1,698
BuildingSync 8% 100%

Although there are only a few sites and models, we can observe some general behavior about the
metadata extracted from the available drivers. First, the metadata from Haystack and
BuildingSync drivers are mostly complementary and there is little overlap between them. This
aligns with the respective scopes of each metadata source: BuildingSync describes holistic
properties of systems that may not be covered by Project Haystack models (at least in a standard
way). Secondly, Modelica drivers provide more Brick metadata than Haystack drivers. This also
aligns with the detailed treatment of HVAC systems found in Modelica models compared with
the coarse-grained modeling found in Haystack.

For all sites, the metadata common to all drivers was very low. This is to some extent due to the
completeness of the drivers at time of writing, but is also limited different levels of detail and
different perspectives of a building that are communicated by different metadata sources. The
metadata from each driver was also completely unique. Even there is some overlap in the entities
described by each driver, no two drivers actually produced Brick metadata at the same level of
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detail or level of completeness. For example, one sensor was identified as a brick:Flow_Sensor
by the Modelica driver and a brick:Return_Air_Flow_Sensor by the Haystack driver.

Demonstration of three interfaces

In the third year, we reported on the demonstration of at least two of these interfaces: Modelica-
Brick, BACnet-Brick, and IFC-Brick.

Demonstration of Modelica-Brick Translator

The Modelica-Brick translator takes as input a JSON export of a Modelica/CDL model (the
JSON export has been generated using the modelica-json tool). The translator treats each
instance of a Modelica model in the document as a Brick entity, and assigns a Brick class to
entities whose class is defined in the Modelica Buildings Library. To infer relationships between
these entities, the translator examines the ports for each Modelica instance; these are connected
by connect statements to other instances of Modelica models. From these statements, it can infer
the Brick relationships brick:feeds, brick:hasPart and brick:hasPoint.

We demonstrate the operation of the Modelica-Brick translator using the publicly available
Modelica instance of the DOE Medium Office. It is a reference building for a new construction,
medium office in a large U.S. city that has been described in the set of U.S. Department of
Energy Commercial Buildings Benchmark. We used the Modelica model that had been
developed for a single floor (four perimeter zones and one core zone) of this building as part of
the Modelica Buildings library. The translator we developed has been published at:
https://github.com/gtfierro/shepherding-metadata/.

We developed a web server that allows us to interact with the output of the translator. In this
example, we hosted the server at http://localhost:8081. Using this application, Figure 10 shows
the list of elements extracted from the Modelica model (using the endpoint
http://localhost:8081/ids). Now, Figure 11 shows in detail the relevant Brick triples for a
particular element, ‘heaCoi’, which is the heating coil of the air handling unit
(http://localhost:8081/id/heaCoi). Now the actual representation of the heaCoi in the model and
the graphical representation of the Brick triples are shown in Figure 12 and 13. More details
about the software, the methodology and the demonstration can be found in the papers published.
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Figure 10: List of elements extracted from Modelica

"cor",
"sou",
"eas",
"nor",
"wes",
"“flo",
"eco",
"heaCoi",

10 "cooCoi",

11 "fanSup",

12 "senSupFlo",
13 "senRetFlo",

WU B Wk

14 "TSup",
2= "dpDisSupFan",
16 "TRet",
17 "TMix",

18 "Voutl",

19 "TSupCor",

28 "TSupSou",

21 "TSupEas",

22 "TSupNor",

23 "TSupWes",

24 "VSupCor_flow",
25 "VSupSou_flow",
26 "VSupEas_flow",
27 "VSupNor_flow",
28 "VSupWes_flow",
29 "senRelPre",

38 "vav",

31 "terHea",

32 "damOut",

33 ""damExh",

34 ""damRet",

35 "cor.vav",
36 "cor.terHea",
37 "sou.vav",
38 "sou.terHea",
39 "eas.vav",
40 "eas.terHea",
41 "nor.vav",
42 "nor.terHea",
43 "wes.vav",
44 "wes.terHea",

45 "flo.sou",
46 "flo.eas",
47 "flo.nor",
48 "flo.wes",
49 "flo.cor",
58 "flo.senRelPre",

51 "eco.damOut",
N "eco.damExh",
53 "eco.damRet"
54 1]
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Figure 11: The list of triples relevant to the heaCoi element in the Modelica model

1-{
2 "id": "heaCoi",
3- "record": {
4 "content": "{\"content\": \"N/A\"}",
5 "encoding™: "“JSON"
] 8
7 "spurce": "ModelicalSONDriver",
] "timestamp": "2022-04-25T11:54:17",
9- "triples": [
18- [
11 "http://example.com/doe-building#heaCoi",
12 "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type",
13 "https://brickschema.org/schema/Brick#Heating_Coil"
14 1,
15~ [
16 “http://example.com/doe-building#heaCoi",
17 "http://www.w3.0rg/2000/01/rdf-schema#label”,
18 "heaCoi"
19 1,
28 - [
21 "http://example.com/doe-building#heaCoi",
22 "https://brickschema.org/schema/Brick#feeds",
23 "http://example.com/doe-building#cooCoi"
24 1,
25+ [
26 “http://example.com/doe-building#heaCoi",
27 "http://www.w3.0rg/2000/01/rdf-schema#label”,
28 "heaCoi"
29 ]
38 ]
1}

Figure 12: A partial view of an air handler unit in the Modelica model, focusing on the heaCoi element

heaCoi cooCoi
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Figure 13: Corresponding Brick instance of the components shown in Figure 12

brick:Heating_Coil

type

heaCoi

feeds

brick:Cooling_Coil brick:Fan
typ type
» cooCoi L fanSup

Demonstration of BACnet-Brick Interface

We have developed an extension to the open-source py-brickschema library” which uses the
BACO library to discover BACnet networks, scan for BACnet objects, and produce a basic Brick
model which contains relevant metadata about each of the BACnet objects. Figure 14 contains an
example of what this basic Brick model may contain.

Figure 14: Snippet of a discovered BACnet network expressed as a Brick model

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

<urn:bacnet-scan/dev123> a bacnet:BACnetDevice ;

bacnet:device-instance 123 ;
bacnet:hasAddress "101:3" .

<urn:bacnet-scan/dev123/1> a brick:Point ;

ref:hasExternalReference [ a ref:BACnetReference ;

bacnet:
bacnet:
bacnet:
bacnet:
bacnet:
bacnet:

object-description "FANA&D" ;
object-identifier 1 ;

object-name "FANA&D" ;

object-type "binaryOutput" ;
object0f <urn:bacnet-scan/dev123> ;
unitsi M(0FF'; "on")" 1,

ref:BACnetReference ;

bacnet

bacnet:
bacnet:
bacnet:
bacnet:

:object-description "INLET" ;
bacnet:

object-identifier 1 ;

object-name "INLET" ;

object-type "analogInput" ;
object0f <urn:bacnet-scan/dev123> ;
units "degreesFahrenheit" ] .

The produced Brick model uses the recently-developed ref _schema'® to capture the relationship
between instances of the Brick 1/0 Point class (including sensors, alarms, setpoints, etc) and the
BAcnet objects they represent. This initial model does not attempt to classify each of the
discovered BACnet objects, but does contain all of the relevant metadata for each BACnet

7 https://github.com/BrickSchema/py-brickschema/
18 https://github.com/gtfierro/ref-schema
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object. This can be accessed by downstream tools to classify objects as Brick points or extract
other useful information such as system composition and topology.

Embedding the object identifier and device address inside the Brick model makes it possible for
different tools to use BACnet and Brick together. For example, a tool could automatically
determine which BACnet points to trend by querying a Brick model. Another tool could retrieve
the current value of a Brick point by accessing the “present-value” property on the linked
BACnet object when necessary.

To facilitate inferring the Brick types for each of the discovered points, we have created a web-
based tool for inferring Brick point types from the labels gathered from BMS systems. The tool
is available online and is open-source®. It implements the W3C Reconciliation API, which
works with other data cleaning tools like OpenRefine?. We have also produced a YouTube video
showing how OpenRefine works with our web tool to produce a Brick model?. We anticipate
that the output of the BACnet-Brick interface could work with other tools and techniques such as
The Building Adapter.

Demonstration of IFC-Brick Interface

We have also produced initial work on interfacing between the Industry Foundation Classes
(IFC) BIM standard and Brick. This consists of two components.

The first is a mapping between IFC concepts and Brick classes that facilitates determining the
corresponding “types” of an entity in both standards. This is reinforced by the development of
“foreign keys” between an IFC and Brick model using the “ref” schema --- any Brick entity can
point to its corresponding representation in an IFC model. The upshot is Brick does not have to
duplicate any of the semantic information which is best captured by an IFC model, such as
geometry. Instead, consumers of a Brick model can access an IFC model in a standard way to
retrieve the information they require.

The second component is an extension of the open-source BlenderBIM plugin? for Blender
which enables the co-authoring of a Brick model while an IFC model is created. A simple drop-
down suggests the most appropriate Brick type for each IFC entity and will maintain the Brick
model for the user. The plugin also leverages IFC’s native “library” features to populate the
bidirectional link from entities in an IFC model to their corresponding representations in a Brick
model. In addition, the plugin leverages traversal algorithms over the IFC model to populate
some of the relationships between Brick entities.

Demonstration of Haystack-Brick translation

We have developed and demonstrated a translation from Project Haystack to Brick, and released it
in Brick 1.1. Table 7 describes the results from inferring Brick entities from five tagged Haystack
entities.

19 https://github.com/BrickSchema/reconciliation-api
20 https://openrefine.org/

2 https://www.youtube.com/watch?v=LKcXMvrxXzE
22 https://blenderbim.org/

Page 37 of 77


https://blenderbim.org/

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings
Regents of the University of California, Berkeley

Table 7: Results from Haystack to Brick Translation
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| 22 23 | 86.4% 3 74% 4
2 | 147 | 168 | 89.8% | 15| 5.0% 6
3| 149 | 145|738% | 39| 6.6% 7
4 | 2183 | 1755 | 86.7% | 290 | 17.6% 46
5 | 6474 | 6236 | 93.0% | 451 | 19.5% 41
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Task 3: Develop an Open Source Analytics Testbed (Mortar)

The third task of the project was to develop a testbed filled with data and Brick models from
many existing buildings in order to test analytic algorithms across these data.

General architecture of platform

We have designed and implemented an open-source analytics platform named Mortar, which
integrates expressive semantic metadata expressed in Brick with high-performance timeseries
storage and retrieval. Through the Mortar API, applications describe their data requirements
using queries against Brick models. Brick queries allow applications to describe the context of
the requested data rather than the names of specific data sources which. Thus, Brick queries can
be re-used across buildings without needing to be rewritten. This reduces the effort in running a
Mortar-based analytics application across multiple buildings.

Figure 15 below contains a sample interaction with the Mortar API from the Python
programming language. The program describes and retrieves a dataset containing a year of data
for air flow sensors and setpoints as well as their associated equipment (such as a VAV) and
HVAC zone.

Figure 15: Sample Mortar interaction

1 import pymortar

3 client = pymortar.Client()

4

5 request = pymortar.FetchRequest(

6 # sites=[ <some list of sites here> ]

7 views=[

8 pymortar. View(

9 name="airflow_points",

10 definition="""SELECT 7sensor ?setpoint ?equip WHERE {
11 ?sensor rdf:type/rdfs:subClassOf* brick:Air_Flow_Sensor
12 ?setpoint rdf:type/rdfs:subClassOf* brick:Air_Flow_Setpoint
13 ?sensor bf:isPointOf ?equip .
14 ?setpoint bf:isPointOf ?Yequip
15 };

16 "

17 )

18 1,

19 dataFrames=[

20 pymortar.DataFrame(

21 name="sensors",

22 aggregation=pymortar.MEAN,

23 window="30m",

24 timeseries=[

25 pymortar. Timeseries(

26 view="airflow_points",

27 dataVars=["7sensor"],

28 )

29 ]

30 ),

31 pymortar.DataFrame(

32 name="setpoints",

33 aggregation=pymortar.MAX,

34 window="36m",

35 timeseries=[

36 pymortar. Timeseries(

37 view="airflow_points",

38 datavars=["7?setpoint”],
39 )

40 ]

41 ),

42 1,

43 time=pymortar.TimeParams(

44 start="2018-01-01700:00:002",

45 end="2019-81-01700:00:00Z",

46 )

47 )

48 response client.fetch(request)

49 # => <pymortar.result.Result: views:1 dataframes:2 timeseries:835 vals:14628365>
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Figure 16: Mortar architecture
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Figure 16 describes the architecture of the Mortar platform. Mortar integrates with HodDB
(https://github.com/gtfierro/hoddb), a compact database for Brick models, to provide storage of
Brick models and to serve queries against them. Mortar also integrates with BTrDB
(https://github.com/BTrDB/btrdb-server), a high-performance timeseries database, to provide
storage of collected telemetry: values of sensors, setpoints, meters and so on. The Brick models
in HodDB incorporate pointers to the timeseries data in BTrDB, so that the results of a Brick
query can be used to retrieve the relevant data from the other database.

The core of Mortar is a declarative API frontend—providing authentication, authorization and
error reporting—and a scalable query execution engine that evaluates client queries against the
backend HodDB and BTrDB databases.

The Mortar platform is implemented and deployed at https://mortardata.org/. We have also
published a code repository demonstrating how many features of the Mortar platform could be
provided on modern cloud platforms (https://github.com/gtfierro/mortar-parquet-support) using
the Apache Parquet data format to efficiently store data.
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Develop the testbed

A testbed for building data must support the storage and retrieval of historical timeseries data
and its metadata in order to enable the development and execution of applications over the data.
Metadata describes properties of each timeseries data source and places it in a larger context.
This may include the type or nature of the data source, or some representation of its physical or
logical location relative to the structure and composition of the building and its subsystems.

This set of requirements poses a set of challenges for an effective testbed. The first challenge is
how to handle the diverse family of data models and metadata representations that define
different perspectives on a building. The testbed should standardize on a single data model that
can capture the salient aspects of these other representations—this will ensure that metadata can
be queried and traversed in the same manner regardless of which metadata sources are available
for a particular building.

Figure 17: Brick data model
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The second challenge for an effective testbed is how to provide a unified query interface over the
timeseries and metadata data models, which can be quite different. Crucially, the query interface
should support the retrieval of timeseries data that matches metadata predicates. This requires
some linking between the two data models which may reside in different databases.

Because Brick is a graph-based data model, it is the most natural to query it with a graph query
language such as SPARQL, which returns to the user the set of nodes and edges in the graph that
match user-provided patterns (Figure 18). In contrast, timeseries databases are more naturally
queried by handing the database a list of data sources, a temporal extent, and optionally
aggregations or window functions. The Brick Point class describes sources of digital data in a
building; instances of the Point class represent a particular sensor, setpoint, command, alarm or
other data source. The names of the Point instances in a Brick model can therefore serve as
foreign keys into a timeseries database (Figure 17). This leads us to a potential design for a
unified query interface: accept queries against either data model (timeseries or graph) and
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convert the results into relational tables that can then be joined using the names of Point
instances.

Figure 18: Schematic of the graph query process
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Mortar consists of a timeseries database, a Brick database, and an API frontend which performs
the necessary federation of queries. These three services are managed using Kubernetes, a
container orchestration framework that facilitates the reactive scaling of the backend
computation in response to load in addition to continuous monitoring and crash recovery. Mortar
supports two timeseries databases: BTrDB and TimescaleDB. BTrDB, developed at Berkeley
and now developed at PingThings, provides best-in-class performance and compression for the
storage and retrieval of timeseries data and natively supports Kubernetes. However, it only
supports the use of UUIDs as timeseries identifiers, so for the BTrDB backend, Mortar annotates
Brick point instances with their corresponding uuids. TimescaleDB, built over the well-
established Postgres RDBMS, is an open-source timeseries database that provides good
performance and the ease-of-use benefits of SQL as a query language, in addition to the ability
of using Brick point names as foreign keys. Mortar uses HodDB for storage and querying of
Brick models; HodDB?? (https://github.com/gtfierro/hoddb) is an open-source RDF database and
SPARQL query processor that executes Brick queries 3-700x faster than existing open source
and commercial offerings, which often take seconds or even minutes to execute a single query on
a moderately-sized Brick model. Below, we describe the architecture of Mortar as it relates to the
use of HodDB and BTrDB.

23 Gabe Fierro and David E. Culler. 2018. Design and Analysis of a Query Processor for Brick. ACM Trans.
SensorNetw.1, 1, Article 1 (January 2018), 25 pages.
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In order for the Mortar?* platform to handle the current and projected scale of requests, we have
designed the Mortar query processor around a SEDA architecture. The SEDA architecture is
characterized by distinct process stages connected by explicit queues. Each SEDA stage has a
number of parallel workers who take jobs from the stage’s incoming queue, do some processing,
and insert the job into the stage’s outgoing queue. When a stage is overwhelmed — such as due to
a lack of compute or memory resources — its incoming queue fills up. This means that the prior
stage’s workers will be unable to place their finished jobs in the incoming queue for the next
stage, which influences the prior stage’s incoming queue, and so on (this is called backpressure).
A stage can react to backpressure in a few ways: it can add more workers to its stage to handle
more requests at a time, or it may choose to do nothing or even reduce the number of workers,
which can propagate backwards through each stage and reduce the load on the whole system. If
the system is unable to cope with the incoming request load by adjusting internal resources, it
can rate limit client requests.

The query processor consists of three stages: frontend processing, metadata processing and
timeseries processing. The client request (Figure 18) is processed over these three stages as
follows:

Frontend Processing Stage: The frontend stage receives requests from clients in the form of calls
to Mortar’s GRPC API, prepares requests for execution, and delivers results back to the client
using GRPC. The frontend authenticates each incoming request using the JWT (JSON Web
Token) included in the request; clients can generate valid JWTs using a GetAPIKeyAPI call.
After authentication, the frontend stage checks that the request is valid and well-formed. The
frontend stage then wraps the client’s request in a Context object which encapsulates all
resources allocated during query execution before attempting to place the request in the metadata
stage’s incoming queue. Requests to Mortar’s GetAP1KeyAPI call are answered from the
frontend stage alone. Requests to Mortar’s "Qualify’ API call flow through the frontend and
metadata stages. Requests to Mortar’s FetchAPI call flow through all three stages. Rather than
passing the full Fetch response between stages, the metadata and timeseries stages forward
incremental parts of the response that can be reassembled by the client into the full dataset.

Metadata Processing Stage: The metadata stage evaluates queries from incoming client requests
by executing their Brick query definitions (called Views) against the Brick database, which
contains the Brick models for all sites in the Mortar testbed. View definitions do not include the
binding between points and timeseries identifiers; instead, the metadata stage rewrites View
definitions to query for the timeseries identifiers for points that are used in a DataFrame. This
simplifies dataset definitions by making transparent the binding between an entity in the Brick
model and its corresponding timeseries. To support this query rewriting functionality, we
implemented an alternative query frontend to HodDB that accepts parameterized versions of
SPARQL queries.

Timeseries Processing Stage: The timeseries stage pulls data from BTrDB for each of the
timeseries identifiers derived from the evaluation of the metadata stage’s Views. The
TimeParams field in the client request defines the temporal extent of the data to be retrieved, and
the DataFrame definitions indicate which aggregation function to apply to each stream along

24 https://github.com/SoftwareDefinedBuildings/mortar
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with the desired resolution. Because a client can request tens or hundreds of megabytes of data,
the timeseries stage takes care to minimize the performance impact of large queries or slow
clients on the rest of the platform. To achieve this, the timeseries stage decomposes the requested
timeseries data into small batches that are buffered in memory and enqueued for delivery to the
client. The amount of buffered timeseries data is constant for all queries, so the amount of server
memory dedicated to serving a request is independent of the size of the requested dataset. The
timeseries stage only pulls data from BTrDB as needed, so if a client is slow to read incoming
data or terminates the connection, the ongoing query to BTrDB can be terminated and the
resources released without having read data unnecessarily.

Demonstrate the testbed

The Mortar testbed, along with a Brick application that reports all the mapped physical, logical,
and virtual assets of a building, proved useful as a screening tool. The team used these tools to
provide a shortlist of buildings that merit further investigation and target extra metering for an
ongoing California Energy Commission (CEC) project called Getting out of hot water: Reducing
gas consumption in existing large commercial buildings. This project requires the evaluation of
large buildings with spaces conditioned through heating systems with hot water reheat coils e.g.,
variable air volume (VAV) reheat boxes to reduce natural gas consumption. The evaluation
requires VAV discharge air temperature and air flow rate for the analysis. Thus, the team queried
all the sites in the Mortar dataset for the required data points and combined with external
metadata to produce the shortlist.

Furthermore, the team are currently using the “detect passing valves” application, described in
the next section, on the Mortar dataset to determine the frequency of passing valves in existing
buildings. The Mortar dataset contains over 1,000 VAV boxes with relevant data points. It is a
rich dataset that has not been publicly available before and will shed light on the issue of passing
valves.

Rogue Airflow Analysis

Another fault detection application developed on the Mortar platform focuses on identifying
“rogue” behaviors in the air flow within an HVAC system in a building, such as zones whose
indoor air temperatures are substantially different than the setpoint temperature. The Brick query
for this application filters all buildings whose equipment have both the points of type (or sub-
type) brick:Air_Flow_Setpoint and brick:Air_Flow_Sensor. This includes Air Handler Units
(AHUs) that have, for example, both supply air sensors and setpoints and return air sensors and
setpoints. VAVSs that also track the zone discharge air flow will also be included in this analysis.
Once the shortlist of buildings and equipment have been identified, the timeseries data is
retrieved and it undergoes a level of data processing and cleaning to prepare for the analysis.

This application identifies “rogue” behavior in an equipment when the air flow value measured
by its sensor does not meet the corresponding air flow setpoint. The tolerance and minimum
period of the out of bounds behavior are configurable, and a snippet of the output of this
application running on the Mortar platform (with 10 °F deviation from setpoint for at least two
consecutive hours) is show in Figure 19. It shows the start time of the incident, the duration, the
building it happened in, the equipment name and the average deviation in actual air flow from
the setpoint (in cfm).
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Figure 19: Output of Mortar for rogue zone query

start hours building equip deviation
2018-06-03 14:00:00+00:00 4.0 vm3a VAVRM3300H_LAB 18.707500
2018-06-04 22:30:00+00:00 3.5 vm3a VAVRM3300H_LAB 14.841429
2018-06-06 05:30:00+00:00 2.0 vm3a VAVRM3I300H_LAB 16.395000
2018-06-12 06:00:00+00:00 2.0 vm3a VAVRM3300H_LAB 18.395000

2018-06-12 10:00:00+00:00 3.0 vm3a WVAVRM3300H_LAB 19.020000

Automatic selection of analytics

Dr. Fierro developed an API call and implementation supporting the automatic selection of
analytics for a suite of Brick models. Specifically, the solution enables:

A) Given an analytics application, the solution automatically determines the set of Brick models
that support the application, and

B) Given a Brick model, the solution automatically determines the set of analytics applications
that will run

The solution depends on having access to a library of analytics implementations, each with a
“manifest” of the Brick queries defining the metadata the implementation requires to operate.
Such a library has been developed as part of the Mortar platform. The API call, named “qualify”,
takes as arguments a list of Brick queries and a list of Brick model names and returns a matrix
where cell (i,j) contains the number of rows returned when query i is executed on model j. By
providing the application manifest’s queries as one argument and the set of Brick models in a
database (such as Mortar) as the other argument, the non-zero columns of the matrix correspond
to Brick models that can run the application. This enables the feature (A) above.

The automatic selection of analytics is implemented by adjusting the above process such that the
call to “qualify” takes as an argument the Brick queries for all analytics implementations in the
library, with the second argument being a single Brick model. The non-zero rows of the matrix
correspond to queries that are supported by the model. The analytics which have only non-zero
rows are supported by the model; this list can be provided to the user.

Version control of Brick models

An important concern when using metadata to drive applications is how to manage and deal with
churn in the metadata. Here, we describe a simple version control solution to graph-based
metadata models such as those based on Brick.

Metadata churn has two primary sources:
- change in the environment / deployment, which is reflected in the contents of the model
- change in the definition of the Brick ontology
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With a new minor release of Brick every 6 months, and patch releases arriving even more
often?, it is important to distinguish between backwards-compatible and backwards-
incompatible changes. The version control mechanism described below focuses on backwards-
compatible changes; a discussion of the implications and challenges in dealing with backwards-
incompatible changes is provided at the end.

Recall that applications execute by querying a Brick model describing the context of data sources
in a particular building. To handle versioning, we must attach a pair of timestamps ti,tj to a Brick
model, indicating that the Brick model represents the content of a building in the range [ti,t;)
(inclusive lower-bound). A Brick model at ti,tj is immutable—that is, the content of the model
will not change. Changing the Brick model requires the creation of a new version. When
executing, applications must specify which version of the Brick model is required.

In most cases, this will be the most recent version.

It is the role of a Brick database and query processor to execute application inquiries against the
indicated version. This can be implemented as follows. A database D stores a collection of
(9,m,s,p,0,t) tuples. The graph g is the name of a Brick model, representing a single site. Updates
to a graph come from metadata sources. A metadata source m is a particular source of triples for
a particular graph over time. The content of the metadata source will change, but the identity
does not. Examples of metadata sources are the content of the Brick ontology, or an inferred
Brick model produced by some process such as Fierro et al, 2020%. s, p and o are the three
components of an RDF triple at a point at time t for the metadata source m.

This structure allows a database to derive the contents of the Brick model at any point in time.
To derive the Brick model for timestamp t and graph g, the database searches for the most recent
timestamp for each metadata source for that graph that matches or is before the query timestamp
t. The union of the triples for each recent metadata source constitute the Brick model at that
timestamp.

The advantage of this approach is that it allows both the ontology definition, which is expressed
as triples, and the building instance definition to evolve independently. Brick models can be
updated to the latest backwards-compatible version of Brick simply by inserting the new
ontology definition into the database at a newer timestamp but using the same metadata source
name. One crucial assumption being made is that the data sources described in the Brick model
do not change identity unnecessarily. Updating a Brick model, for example to add a recently
installed thermostat, should not invalidate historical data. For this reason, most of the Brick
model is likely to remain the same between versions. Data sources should only be assigned new
names when there are changes to the data source that affect its context or interpretation; this will
coincide with the creation of a new Brick Point entity to identify the data source.

Backwards-incompatible changes to the ontology present a challenge for automated version
control. In the context of a version history of a Brick model, backwards-incompatible changes in

%5 https://github.com/BrickSchema/Brick#versioning

% Fierro, G., Prakash, A. K., Mosiman, C., Pritoni, M., Raftery, P., Wetter, M., & Culler, D. E. (2020, November).
Shepherding Metadata Through the Building Lifecycle. In Proceedings of the 7th ACM International Conference on
Systems for Energy-Efficient Buildings, Cities, and Transportation (pp. 70-79).
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the ontology reflect a barrier across which automated tools or queries cannot cross without
knowing exactly how to interpret the different ontology version on the other side. For example,
early versions of the Brick ontology contained so-called "equipment-flavored points™ such as
"AHU Outside Air Temperature Sensor". Subsequent versions of Brick decided to make the
separation between equipment and point explicit. The "AHU Outside Air Temperature Sensor"
concept is best modeled as an AHU instance and an Outside Air Temperature Sensor instance
that are related to one other with the Brick hasPoint relationship.

How to handle these kinds of backwards-incompatible changes is being actively researched. The
proposed technique is called "segmented query generation™: it uses succinct rules to
automatically rewrite queries so that the correct semantics are preserved across versions of an
ontology.
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Task 4: Develop and Apply Analytics and Controls Applications

The research team first identified potential analytics and controls, develop at least two simple
algorithms, and demonstrate at least two more complex algorithms.

Identify potential analytics and controls

In the first year, the research team collaborated with researchers at NREL 27 and Center for the
Built Environment (CBE) partner firms to develop a list of 21 representative applications that
highlight the descriptive capabilities of Brick models. As part of this process, we identified
quantities and constants that applications make use of but that are not currently captured in the
Brick data model, for example zone floor area or equipment rated capacity. We investigated
existing standards and vocabularies such as bSDD (http://bsdd.buildingsmart.org/) that we can
build upon and incorporate into Brick. We have identified a mechanism for formalizing the
definitions of these quantities and constants in a manner that is consistent with the rest of Brick.
In addition, we are developing a plugin-based software architecture to support the retrieval,
storage and standardization of such external metadata. Table 8 lists a number of applications; we
have started the list with HVAC applications since they are the most complex and systems that
can most benefit by semantic interoperability technologies.

Table 8: Prioritized list of applications for Brick

Application Name High Level Functional Description
Detect Cooling Coil Cooling Coil Valve Passing/Leaking: If there is a considerable temperature difference
Valve Passing between mixed air temperature and supply air temperature while the cooling coil

valve is closed, the fault will be triggered. The purpose of this use case is to check if
there is a mechanical problem/leakage in the cooling coil valve.

Detect Coil Valve Generalized Coil Valve Passing (i.e. fluid flows when valve is commanded closed): If

Passing there is a considerable temperature difference between the next upstream and
downstream air sensors in the system while the valve has been closed for a given time
period. This could also include a test to evaluate what other components are in the
brick model between the upstream and downstream air temperature sensors.

Calculate Cooling Accessing power (kW) and cooling load (ton) data from a chilled water system (e.g.,

Plant Efficiency chiller power, pump power and cooling tower power), and utilize the data to estimate
and report system energy performance (kW/ton). The purpose of this use case is to
monitor the performance of the system and take corrective action when needed.

AHU Outside Air AHU Airside Economizer Assessment: Energy conscious control strategies should
Economizer utilize free or economized cooling when able. The purpose of this use case is to
Operation assess how well the economizer control strategy is working. Specifically, this test

will look at the outside air damper and cooling coil valve position. Economizer
dampers switch to the minimum ventilation position when outside air conditions are
not favorable for cooling and vice versa.

27 Semantic Interoperability R&D Project Kick-Off Workshop at NREL, December 12-13, 2019
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Airside Occupancy and Seasonal Scheduling: Depending on the season, time of day,
and day of the week (week / weekend / holiday), airside equipment shall use different
setpoints for heating and cooling. The purpose of this use case is to evaluate the
performance of seasonal and temporal setpoint control strategies, specifically using
occupied and unoccupied schedules. Usage of occupancy sensors and dynamically
generated occupancy schedules will also be evaluated to determine how energy
performance changes compared to season, time of day, and day of week control
strategies.

Chilled water supply setpoint optimization: Develop a model-based optimization that
will generate optimized chilled water supply setpoint by comparing the energy
consumption from the pump and chiller side. The purpose of this use case is to
evaluate the performance of chilled water supply setpoint reset strategy. Specifically,
this optimizer will evaluate the the energy consumption by the chillers and chilled
water pumps corresponding to a set of chilled water supply setpoints and pass the one
with the least total energy consumption.

Air Filters for AHU Preventive maintenance: Depending on the pressure drop across
the air filter, the filter should be maintained/replaced. A high pressure drop means
that your air handler has to work harder and consume more energy in order to
maintain proper air flow, and the filter should be replaced

VAV Box Commissioning: Perform all relevant functional performance tests for a
VAV box to support (and reduce the time/cost associated with) initial or retro

Automatically generate the equipment graphics for a VAV BOX

Assess long term ability to meet thermal comfort needs within the building. Identify
zones Where setpoints are frequently not met, and identify zones that have unusual
setpoint temperatures.

Identify how often a boiler operates below it's minimum turndown and is short
cycling. Boiler efficiency drops of very significantly under these conditions.

Hot water intentional reheat use. Estimate the amount of heating power used
intentionally by a reheat coil in a VAV box.

Identify fixed equipment setpoints as this likely indicates an opportunity for
improved energy performance at low cost.

Generalized trim and respond logic implementation to perform demand based reset of
a setpoint. See ASHRAE Guideline 36 section: 5.1.14.

Example setpoints controlled using trim and respond using feedback from a VAV
reheat box: 5.6.8 (includes duct static pressure, ahu supply air temp, hot water temp,
chilled water temp, pump differential pressure setpoint resets)

AHU Supply air temperature reset based on zone level requests and outside air
temperature conditions;

G36 section describing trim and respond: Cooling SAT request: 5.7.8.1.

See Fig 5.16.2.2 showing how SAT setpoint is constrained based on OAT.
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Identify incorrect high minimum airflow setpoints, as this wastes fan, reheat and
cooling energy consumption (but does not increase ventilation rates)

Identify exterior zones of a building.

Split signal damper control strategy. This reduces fan power by keeping dampers
more open than traditional logic.
See ASHRAE Guideline 36 Fig 5.16.2.3-2.

Use time averaged ventilation to achieve the desired minimum airflow rate from a
VAV box where the lower control limit is constrained by existing hardware and
instrumentation.

See ASHRAE Guideline 36 section 5.2.2.

Identify sensors reporting incorrect values - fixed values, values out of range, etc - to
be replaced.

Identify zones that are adjacent to each other, open spaces, and frequently operate in
conflicting heating/cooling modes. This often occurs in commercial building open
plan spaces due to conflicting zone thermostat temperature changes.

Discuss list of applications with stakeholders

We met with our Technical Advisory Group to present the Brick project, and to receive feedback

on the preliminary application list developed. We presented several applications and asked the
TAG to rank the priority of importance to them. The figure below shows the ranking.

App using multiple timeseries data sources

Automated fault detection and diagnosis (AFDD)

App using multiple meta-data sources

Figure 20: Priority of Brick application development

Brick application development priority

Controls

Monitoring

Dashboarding/visualization

Submetering/aggregation
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The top five Brick application category types as voted by TAG members:

. Application using multiple timeseries data sources
. Automated fault detection and diagnosis (AFDD)

Controls

. Monitoring

Application using multiple meta-data sources

Table 9 below shows a summary of suggested applications compared to the data available in the
Mortar database (over 100 building sites).

Table 9: Summary of apps' applicability and category.

8 g
S ©
s § n o L CED flg 0
> 82| e |5 |28
o 5| L c = 5
= 2% | < |8 | & |28
s E
= =
Potential applicability:
Suggested apps to develop Sites on current database Category
1. Assess thermal comfort 52
2. Detect passing valves in VAV 51
3. Saving potential of correct 51
ventilation minimum
4. Dynamic zone ACH 51
5. Calculate dynamic building 6
GHG emission
6. Control duct static pressure 20
7. Control boiler temperature 1

These seven are our prioritized list of applications to fulfill the top voted category types.

1.

Assess long-term ability to meet thermal comfort needs by zone in a building. The
analysis can be performed using existing temperatures and associated setpoints or based
on thermal comfort models. The output can be:
i. raw number of discomfort hours per zone or;
ii. apercentage of total occupied hours or;
iii. weighted by the number of hours at specific delta temperature to get a
“degree-hours” metric.
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iv. Long term thermal comfort metrics (such as those recently evaluated by
CBE researchers (Li et al, 2020%8).

2. Detect passing reheat valves in VAV. Compare temperatures upstream (discharge
temperature from AHU) and downstream (discharge temperature from VAV) of the
reheat coil.

3. Savings potential of using designed zone minimum ventilation requirements.
Perform a comparison between the implemented zones’ minimum ventilation
requirements and the designed zone ventilation requirements as found from architecture
drawings.

4. Dynamic monitoring of air changes per hour (ACH) in zones. Combine real-time
airflow measurements with architectural data to return ACH. Useful for analyzing
COVID-19 risks.

5. Calculation of a building’s actual greenhouse gas emissions (GHG). Sync CAISO
data, electricity meter, NOAA, and/or marginal emissions data to calculate actual GHG.

6. Supply air duct static pressure reset control using trim and respond logic. Guideline
36 Trim and Respond Logic

7. Boiler temperature reset control using trim and response logic. Hot water reset based
on zone level requests and outside air temperature conditions; ASHRAE RP 1711
/Guideline 36 Trim and Respond Logic. Adaptable depending on the time constant of the
system e.g., a hot water loop serving VAV or TABS systems will be different.

Develop two simple algorithms

The following describes two simple algorithms developed at the end of the first year: Comparing
sensor measurements with setpoints, and detecting passing valves.

Compare sensor measurements against setpoints?

This application compares sensor measurements against their respective setpoints. The
application retrieves sensor points where measurements 1) are above or below its setpoint, 2) are
in between both its minimum and maximum setpoint values, 3) exceeds either its minimum or
maximum setpoint value, or 4) exceeds a user-defined absolute threshold from its setpoint. The
retrieval criteria can also incorporate a minimum timeframe threshold in which to return the
sensor point e.g., sensor measurement exceeds setpoint for at least half an hour. The application
produces a CSV file with relevant information that includes site, equipment name, start and end
date and number of hours that sensor point meets the selected criteria, and average sensor
measurement and setpoint values. Table 10 below shows an example of the CSV output file for
supply air temperature sensors. The source code for this application is found at

28 i, Peixian, Thomas Parkinson, Stefano Schiavon, Thomas M. Froese, Richard de Dear, Adam Rysanek, and
Sheryl Staub-French. 2020. “Improved Long-Term Thermal Comfort Indices for Continuous Monitoring.” Energy
and Buildings 224 (October): 110270. doi:10.1016/j.enbuild.2020.110270.

29 Sun, Ruiji, Carlos Duarte Roa, Paul Raftery, and Gabe Fierro. 2022. “Enabling Portable and Reproducible Long-
Term Thermal Comfort Evaluation with Brick Schema and Mortar Testbed.” In 2022 ASHRAE Annual Conference.
Toronto, ON, Canada.
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https://github.com/SoftwareDefinedBuildings/mortar-
analytics/tree/compare sensors against setpoints/.

Table 10: Example of the output file that the application produces.

. . Hour Avg.  Avg. Exceed.

Site Equipment s Start End value sp Diff.
http://buildsys.org/ontologies/ 2018-05-07 2018-05-07

stor STOR#AHUOO 0.5 09:30:00+00:00 09:45:00+00:00 61.8 64.4 -2.7
http://buildsys.org/ontologies/ 2018-05-10 2018-05-10

stor STOR#AHUOO 0.75 08:45:00+00:00 09:15:00+00:00 61.7 64.7 -3.0
http://buildsys.org/ontologies/ 2018-05-19 2018-05-19

stor STOR#AHUOO 0.5 09:15:00+00:00 09:30:00+00:00 61.8 64.7 -2.9
http://buildsys.org/ontologies/ 2018-05-31 2018-05-31

stor STOR#AHUOO 0.5 10:15:00+00:00 10:30:00+00:00 61.5 63.8 -2.3
http://buildsys.org/ontologies/ 2018-05-31 2018-05-31

rech RECH#AHU_AC4 1 17:45:00+00:00 18:30:00+00:00 67.8 67.8 0.0
http://buildsys.org/ontologies/ 2018-05-31 2018-06-01

rech RECH#AHU_AC4 8.25 21:00:00+00:00 05:00:00+00:00 66.5 69.7 -3.2
http://buildsys.org/ontologies/ 2018-06-01 2018-06-01

rech RECH#AHU_AC4 0.5 05:30:00+00:00 05:45:00+00:00 63.0 61.5 1.5
http://buildsys.org/ontologies/ 2018-06-01 2018-06-01

rech RECH#AHU_AC4 0.5 17:00:00+00:00 17:15:00+00:00 68.0 51.7 16.2

Detect passing valves°

This application detects valves in HVAC equipment that do not close fully even when actuated
to a fully closed position, also known as “passing valves”. The application compares fluid
temperatures upstream and downstream from the coils that the valve controls and calculates the
expected long-term difference between the two fluid streams when the valve is currently closed,
and has been closed for some time. The app then analyzes the expected trends with the actual
data to determine if the valve is in good operating condition or malfunctioning e.g., passing
valve, sensor fault, loss of communication with building automation system, or forgotten
overrides. Figure 21 below shows an example where the application detected a good operating
valve and a malfunction valve in one site. The source code for this application is found at
https://github.com/SoftwareDefinedBuildings/mortar-analytics/tree/detect passing_valves/ .

Viewing Figure 21, the top plot shows the data where the application detected a correctly
operating valve and the bottom plot shows data where the application detected a possible
malfunctioning (passing) valve. The solid green horizontal line shows the average temperature
difference between the downstream and upstream fluids when valve is commanded closed, the

%0 Duarte Roa, Carlos, Paul Raftery, Rupam Singla, Marco Pritoni, and Therese Peffer. 2022. “Detecting Passing
Valves at Scale Across Different Buildings and Systems: A Brick Enabled and Mortar Tested Application.” In
Climate Solutions: Efficiency, Equity, and Decarbonization. Pacific Grove, CA: ACEEE. doi:10.20357/B7VP5H.
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dashed purple line shows the expected correct operating behavior trend of the valve (based on
the green points), the solid pink horizontal line shows the average temperature difference when
the application detected a possible passing valve (based on the red points). The ‘Bad ratio’ value
is a ratio of the number of bad operating point values to good operating point values.

In summary, we ran application in 20 buildings including two large commercial buildings in
which we were able to 'ground-truth’ the findings by field investigation of several of the
identified passing valves by the on-site facilities team members. We analyzed 1,335 VAV
terminal units where 5% returned a sensor fault and 14% returned a valve fault. We calculated an
average temperature rise of about 6 °F between the air upstream and downstream of the reheat
coils. The temperature rise is about three times higher when compared to the temperature
difference on a VAV terminal unit with no fault detected which is about 2 °F. We estimated an
8% heat loss of intentional reheat energy due to a passing valve. In the two large commercial
buildings, we reported six VAV terminal units with faults. Three VAV boxes were verified with
faults and one additional VAV terminal unit was found as faulty by the on-site facilities when
conducting the investigations. Two units were found to have no faults and last unit was not
checked. Figure 22 shows two verified faults found in the two large commercial buildings. The
faults we reported included valves in operator override, with loss of communication with
building automation system, and with its operation reversed e.g., valve opened when it should
have closed.
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Figure 21: Using Brick to enable the detection of malfunctioning valves
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Figure 22: The detect passing valve application detected valve faults that were verified in two large

commercial buildings.
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Open-source library of applications

We maintain an open-source public GitHub repository for Brick applications, found at
https://github.com/BrickSchema.

Here one can find packages (py-brickschema: Python package for working with Brick), services
(reconciliation-api for OpenRefine and other tools), and other connectors (brick-BACnet). This
is the repository for tools and applications, such as Brick versioning, graph inference, conversion
from Haystack, VBIS translation, web-based interaction, Brick model validation.

Many applications meant to run on buildings and tested first on the Mortar platform can be found
at the UC Berkeley research GitHub site: https://github.com/SoftwareDefinedBuildings/mortar-
analytics. These include an application to find simultaneous heating and cooling zones, possible
inefficient zones, “rogue” zones, detect passing valves, temperature reset, and so on.

We will continue adding to this repository over time.
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Demonstration of two more complex applications

The project developed two additional applications: hot water supply temperature reset (tested in
the David Brower Center) and supply air duct static pressure reset control (designed for Sutardja
Dai Hall). The goal of these applications is to show how developing a Brick model for a building
HVAC system enables implementation of Guideline 36 sequences. First introduced in 2018 by
ASHRAE, Guideline 36 (G36) contains standardized advanced control sequences to facilitate the
implementation of high-performance HVAC control. However, G36 sequences are currently
presented as English language specifications of controls and not the actual programming code
syntax uploaded to the building’s BAS. Another enabling mechanism is the
OpenBuildingControl project, which aims to digitize the design, specification, deployment and
verification of building control sequences such as G36. Researchers in the project developed the
Control Description Language (CDL), built on the equation-based modeling language called
Modelica®!, and used this to express control sequences for BAS in a vendor-independent format.
CDL has already been used to program G36 and other high-performance HVAC control
sequences and these CDL representations are currently available in the Modelica-Buildings
library.

These applications were both developed for buildings in Berkeley, CA, which enjoys year-round
moderate temperatures and is located in ASHRAE climate zone 3C.

Hot Water Supply Temperature Reset

The demonstration building is a LEED Platinum, four-story mixed-use building, the David
Brower Center, located in downtown Berkeley, California with about 39,000 ft? (3,600 m?) of
conditioned space. The building’s program consists of private and open-plan offices, conference
rooms, an auditorium, and a gallery. The HVAC system includes a thermally activated building
(TABS) radiant system for the primary heating and cooling in the office spaces. Two air-
handling units (AHU) supply 100% outdoor air to an underfloor air distribution (UFAD) system
and combined with natural ventilation through operable windows provide ventilation to the
building. The radiant system does not thermally condition the first floor. Instead, seven water-to-
air heat pumps provide heating and cooling, and an eighth heat pump is located in a second-floor
conference room. The heat source for the radiant system, heat pumps, and the two AHUs for the
ventilation system is provided through two gas condensing boilers each with an input capacity of
26 Btu/hr-ft? (82 W/m?). The boilers have a lead-lag operation and efficiency ranges between
85% and 95% depending on the operating mode and return water temperature when operating at
or above the minimum turndown capability of the boilers. This G36 field demonstration
facilitated with a Brick data model is focused on a hot water supply temperature setpoint
(HWST) reset on the building’s hot water plant illustrated in Figure 23.

31 modelica.org/modelicalanguage
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Figure 23: Schematic of the demonstration building’s hot water plant.
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Figure 24 below shows how Brick can be used to digitally represent a hot water plant.

Figure 24: Brick data model example for the hot water plant shown in Figure 22
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The existing HWST reset strategy is based on the outdoor air temperature (OAT). The HWST
was designed to be at 95 °F (35 °C) when OAT was at 40 °F (4.4 °C) and 75 °F (24 °C) when
OAT was at 65 °F (18 °C). However, the building manager changed it to a more conservative
operation (HWST=130 °F (54 °C) at OAT=55 °F (13 °C) and HWST=90 °F (32 °C) at OAT=77
°F (25 °C)) since the building manager believed the designed temperature setpoints were not
high enough to maintain occupant thermal comfort during cold days. On some occasions, the

Page 58 of 77



DE-EE0008681
Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

building manager would override the reset operation and maintain a constant 130 °F (54 °C)
HWST.

We changed the radiant system control strategy based on Raftery et al. (2017)% as part of an
earlier study (Bauman et al. 2018)33, which allowed the building manager to feel more confident
in reinstating an HWST reset strategy. This provided an opportunity to implement an HWST
reset strategy based on G36’s trim and respond control strategy, using Brick and CDL.

To integrate with the building’s BAS, we connected a miniature computer (PC) to the building’s
BAS network infrastructure, allowing us to read from and write to BACnet objects. We used the
open-source project BACpypes to provide the BACnet application and network layer to establish
communication for our PC to the BAS. We performed a BACnet network scan and point list
retrieval using open-source network discovery utilities such as Nmap. The BACnet point list
gave us the starting point to follow a five-step process to build a Brick data model of the
building. The five-step process is as follows: 1) collect siloed metadata for the building, 2)
organize it into more manageable formats, 3) transform metadata into a Brick model, 4) apply
inference and reasoning to the initial Brick model to discover implied information, and 5)
validate the Brick model to ensure we used Brick classes and relationships correctly. We also
embed BACnet object information within the Brick model and access information for an external
database collecting historical data from the building’s BAS.

We used the building’s Brick model to retrieve HVAC system design information and pertinent
BAChnet object information to obtain the HVAC’s current operating status. This operation status
is forwarded to the CDL G36 trim and respond control sequence so it can calculate a new
HWST. The new HWST is written back to the hot water plant, and once again, we use Brick to
retrieve the required HWST BACnhet object information so the boilers can use it. Figure 25
shows a schematic of the field demonstration implementation. The Brick model allows us to
retrieve the hot water plant’s end-users and their current operation, which is used by G36 trim
and respond to calculate a new HWST. The HWST is written back to the BAS and the process
repeats every 5 minutes. The dotted boxes denote where we query the Brick model in the
programming implementation.

32 Raftery, Paul, Carlos Duarte, Stefano Schiavon, and Fred Bauman. 2017. “A New Control Strategy for High
Thermal Mass Radiant Systems.” In Proceedings of Building Simulation 2017. San Francisco, CA: International
Building Performance Simulation Association. http://escholarship.org/uc/item/5tz4n92b.

33 Bauman, Fred, Paul Raftery, Stefano Schiavon, Caroline Karmann, Jovan Pantelic, Carlos Duarte, Jonathan
Woolley, et al. 2018. “Optimizing Radiant Systems for Energy Efficiency and Comfort.” EPC-14-009. Sacramento,
CA: California Energy Commission. https://escholarship.org/uc/item/6gx027rh.
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Figure 25: Schematic of the ASHRAE Guideline 36 (G36) hot water supply temperature setpoint (HWST)
reset strategy implementation in a Berkeley, California building facilitated with Brick.
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The Modelica-Buildings library contains the CDL representation of different standardized
control sequences including G36 sequences for hot water plant control. These sequences and any
model within the library can be exported as a Functional Mockup Unit (FMU), conforming to the
Functional Mockup Interface (FMI) standard. FMI was developed to allow model exchange and
co-simulation of models created in different simulation environments. The FMU is a packaged
file that contains details about the model parameters, variables, equations, and other relevant
information to run a simulation. We exported the CDL representation of the G36 HWST reset
control strategy as an FMU. The G36 HWST reset control requires signals to denote the current
status of the hot water plant, whether or not it is in the staging process, the status of the pumps,
the current HWST, and the number of requests for higher hot water supply temperature.

The trim and respond is a demand-based reset control strategy that can control a single variable
subject to multiple input sources. This control can be applied to reset setpoints such as pressure,
temperature, and other variables. The control logic trims, or reduces, the controlled setpoint at a
fixed rate until the downstream equipment generates requests for higher pressure, temperature, or
whatever the logic is applied. The control logic responds by increasing the setpoint when
sufficient requests are generated and the cycle is repeated.

We developed generalized programmatic queries to first search the building’s Brick model for
the hot water plant boilers and the hot water end-users. Then, we queried each end-user to
retrieve its flow control valve and pertinent BACnet object information. Once we retrieved
pertinent BACnet information for the hot water end-user, we used BACpypes®* to send messages
over BACnet to determine if the end-user is enabled and its water valve is open over 95%; this
formed the basis for a request needed for the trim and respond logic. The total sum of requests is
sent to the FMU package containing the CDL G36 reset control to calculate a new HWST. We

34 https://github.com/JoelBender/bacpypes
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set the total number of ignored requests to two, so it takes at least three requests for the HWST
to start increasing. The new HWST is written back to the BAS with BACpypes using BACnet
object information retrieved from the building’s Brick model. The process is repeated every five
minutes. We setup a Python 3.6 environment on our BAS connected PC with Python packages
pyfmi®, brickschema3, asyncio®’, and other supporting packages to load, initialize, and simulate
the FMU, read and query the Brick model, and setup periodic intervals to repeat the control
strategy. We started running the Brick enabled G36 HWST reset control on November 30, 2021
with 130 °F (54 °C) and 90 °F (32 °C) as the upper and lower setpoint limits, respectively. These
controls have been running through late July 2022.

Figure 26 shows the Brick enabled G36 HWST reset control implementation. The first few
weeks of the Brick enabled controls were during winter when the outdoor temperatures were
lower. Thus the number of calculated hotter water requests was above the ignored request
threshold. The HWST mostly operated at the upper temperature setpoint limit we defined, as
shown in Figure 26 (a). However, we started to see more variation in the HWST during the
shoulder season months when the outdoor temperatures began to increase, as shown in Figure 26
(b). During these months, the HWST varied the full range between the upper and lower
temperature limits we defined. In particular, the HWST increased during occupancy hours when
heat pumps’ heating setpoints came out of their nighttime setbacks.

35 https://pypi.org/project/PyFMI
% https://github.com/BrickSchema/py-brickschema
37 https://pypi.org/project/asyncio
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Figure 26: Example of Brick enabled ASHRAE Guideline 36 hot water supply temperature setpoint reset
strategy during the (a) winter season and (b) during shoulder season when outdoor temperatures are
milder.
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This Brick enabled G36 control implementation demonstrates that there are no hard-coded
parameters that prevent the implementation from being ported over to a new building. The only
requirements for the new building are to have a Brick data model and have similar type of
equipment to control. The Brick data model allows us to develop general programmatic queries.
If we were to represent them in simple language format, the ones we used in this field
demonstration would read as “Get me all the hot water end-users for the building’s hot water
plant” and “How many of these end-users are requesting hotter water?”. The generic queries
allow us to avoid using unique BAS point naming conventions as it is typically done. This field
demonstration of Brick enabled controls shows us a path forward where advanced control
strategies for building systems can one day be as easy as installing a new application on our
mobile phones. (Duarte Roa, paper in progress).

Thus, we used standardized sequences of operation (ASHRAE Guideline 36) to define the best
practice controls, an open-source schema (Brick) to represent the required metadata in a
structured format, a standardized communications protocol (BACnet) to communicate with the
controllers, and (proposed) standardized building controls language (CDL) to implement these
controls. These are all non-proprietary resources that are publicly available and can be used in a
scalable manner that is portable between buildings. That applies even though those buildings
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have different automation systems, point names, HVAC topologies, etc. To our knowledge, this
is the first time the *full stack’ of these different components has been implemented to perform
closed loop control in a real building. The controls continue to operate in the building as writing
this report.

Duct Static Pressure Reset Control

The second application developed was a supply air duct static pressure reset control and follows
a very similar implementation strategy as the first application.

Variable air volume (VAV) systems are one of the most common types of heating ventilation
and air conditioning (HVAC) systems for commercial buildings in North America. The air
handling unit (AHU) in a VAV system is typically single duct with an airside economizer, a
cooling coil, a supply fan driven by a variable frequency drive, optional heating coil, and either a
return or a relief fan. Each individual thermal zone in the building has a VAV terminal unit that
measures airflow and controls flow with a damper, and often also a reheat coil. There are many
controllable setpoints to manage in a VAV system, from heating and cooling temperature
setpoints, discharge temperature setpoints, and minimum airflow setpoints at the zone level, and
to minimum outside airflow, supply air temperature and duct static pressure setpoints at the air
handling unit (AHU) level.

In early implementations of VAV systems, building operators used constant values for duct static
pressure and SAT setpoints. These constant setpoint strategies were improved to become linear
resets that increase static pressure and decrease supply temperature with respect to increasing
outside air temperature. With the advent of Direct Digital Control with feedback from every zone
in the building, demand-based reset approaches are used where static pressure and SAT setpoints
vary based on the requirements of the most demanding (*‘critical’) zone, often using ‘trim and
respond’ logic as described in the last section. The duct static pressure should be just high
enough so that the most demanding VAV terminal unit in the building (the ‘critical’ unit) has
sufficient pressure to meet its current airflow setpoint. This control strategy is known as a duct
static pressure reset and is now part of Guideline 36.

Duct static pressure reset is typically achieved by ‘resetting’ the duct static pressure setpoint
upwards when a zone requests increased pressure (typically when a VAV damper is nearly wide
open and the airflow is still below the maximum airflow setpoint) and allowing the setpoint to
slowly decrease when there are no requests. This reduces static pressure (and fan power) to the
minimum needed to meet the current airflow requirements for all of the zones in the building and
can generate fan energy savings from 30-50% compared to fixed duct static pressure setpoints.
Typically, there is also a user-defined number of requests that will be ignored, particularly in
systems with many zones, as one faulty (‘rogue’) zone would otherwise drive the entire reset
strategy (Raftery 2018%9).

Sutardja Dai Hall is a seven-floor 141,000-square-foot building on the campus of UC Berkeley.
The building houses research labs, faculty offices, a nanofabrication lab, an auditorium, and a
café. The building runs one of two 600 ton chillers (absorption using steam and centrifugal using

3 Raftery, Paul, Shuyang Li, Baihong Jin, Min Ting, Gwelen Paliaga, and Hwakong Cheng. 2018. “Evaluation of a
Cost-Responsive Supply Air Temperature Reset Strategy in an Office Building.” Energy and Buildings 158
(Supplement C): 356-70. doi:10.1016/j.enbuild.2017.10.017.
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electricity), depending on the time of year; 135 Variable Air Volume (VAV) boxes with reheat
supply conditioned air to the office portion of the building. SDH has over 6000 sensing points
from the Siemens BAS as well as other additional sensors, such as temperature sensors on the
chilled water supply and discharge air temperature sensors at most of the 130 zones. Figure 27
shows a general schematic of the VAV system sensor and control points.

Figure 27: Multi-zone VAV system schematic
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We developed a data model in Brick based on this multi-zone VAV HVAC system, as seen in
Figure 28.

Figure 28: Brick data model of a multizone VAV system
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We worked with the facilities manager to get access to the system, developed the code and
debugged it. Similar to the previous trim-and-respond strategy, this application gets the air flow
rate demand for each VAV terminal unit and resets the AHU supply air duct static pressure
accordingly (Figure 29).

VAV Terminal Unit H HVAC Zone
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Figure 29: Duct Static pressure reset control application
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Additional Applications in progress

In addition to the two applications described above, several Ph.D. students at UC Berkeley that
we advise are taking advantage of the Brick data models that the two demonstration buildings
have with BACnet network information embedded to develop advanced control applications. The
objective of the first application is to automatically generate suitable thermal models for the
building to optimize building operations, forecasting building energy consumption, participate in
demand response events or detect faults. The Brick model provides relationships between sensor
data points and, as a result, eases the process of mapping data points to the model. The
application will use a bottom-up approach to generate a thermal resistor-capacitor (RC) network
model. The application will be tested on both the DBC and SDH buildings described above.

The second application in progress has the objective to create a controller in which HVAC
system carbon emissions are minimized using model predictive control and thermal storage (e.g.,
ice storage). The control logic developed would enable HVAC to charge the thermal storage
when grid emissions are low and discharge to reduce the building cooling load when emissions
are high. The controller will evaluate multiple variables such as HVAC system efficiency, grid
marginal carbon emissions, peak power load, and occupant comfort temperature range in
multiple U.S. grid regions to find the optimal HVAC control in regard to carbon emissions. The
application will be first tested through simulation and if successful plan to test in DBC since it
has a high thermal mass HVAC system.

The students developed abstracts on these two Brick applications and submitted to the 2023
IBPSA Building Simulation Conference.

In summary, we have demonstrated several applications and continue to develop applications
that take advantage of the Brick schema. We have demonstrated applications that compare the
sensor measurements against their setpoints, identify “rogue” behaviors in the air flow rate
within an HVAC system, and detect passing valves in HVAC systems. We have developed
applications to perform the boiler supply temperature setpoint reset control, assessment of
HVAC’s long-term ability to meet thermal comfort needs, and assessment the savings potential
of using the designed zone minimum ventilation version the measured zones’ minimum
ventilation air flow rate. These applications are all available through the following publicly
accessible GitHub repository: https://github.com/SoftwareDefinedBuildings/mortar-analytics.
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Brick and energy saving

One of the goals of the project was to demonstrate through simulations using building energy
models from the buildings in the Brick model at least 25% energy savings through the use of
advanced algorithms.

Previous research studies have shown the importance of standardizing the control sequences for
HVAC systems. For example, HVAC VAV system performance can vary as much as 67% when
starting from “poor” to “good” control implementations (Pang et al., 2017)%*. ASHRAE
Guideline 36 (G36) aims to reduce this discrepancy and provide standardized HVAC control
sequences to maximize energy efficiency and performance, provide control stability, and allow
for real-time fault detection and diagnostics. The Brick schema is well positioned to take this
effort to the next level by providing the common language to implement G36 sequences in
buildings’ energy management systems by retrieving and processing the necessary control points
and metadata. The combination of these two efforts have the capability of providing consistent
energy savings and performance across many buildings. To estimate the potential savings from
G36 sequences, Pritoni et. al. (2020)* developed a simulation-based energy savings estimator.
The researchers calculated over 39% in energy savings when evaluating the supply temperature
reset, static pressure reset, and zone air flow rate control with varying zone minimums in a five-
zone commercial building. Pritoni et. al. (2020)’s research and savings estimator demonstrate
that over 25% is achievable through advanced algorithms.

The control sequences used and simulated in Pritoni et. al. (2020)** were developed using
Control Description Language (CDL), on top of the Modelica-Buildings* library (OBC project)
and are available at this public repository: https://github.com/LBNL-
ETA/G36SavingsCalculator. As demonstrated in the boiler plant control application, we are now
able to implement CDL control sequences on a building with its Brick representation and access
to the control system. Additionally, as G36 sequences have already been developed in CDL as
part of the Modelica-Buildings library, these advanced algorithms can now be easily ported to
other Brick modeled buildings.

% pang, X., Piette, M. A., & Zhou, N. (2017). Characterizing variations in variable air volume system controls.
Energy and Buildings, 135, 166-175. https://doi.org/10.1016/j.enbuild.2016.11.031

%0 Pritoni, M., Prakash, A., Blum, D., Zhang, K., Tang, R., Granderson, J., Cheng, H., Engineering, T., &
Paliaga, G. (2020). Advanced control sequences and FDD technology. Just shiny objects, or ready for
scale? . Lawrence

41 Berkeley National Laboratory. https:/eta-
publications.lbl.gov/sites/default/files/advanced control sequences and fdd technology m pritoni O.pd
f

42 https://github.com/Ibl-srg/modelica-buildings/
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Task 5: Technology Transition Plan

The final task that evolved through the three-year project involve taking this technology to
Market, through the Industrial Consortium, outreach to stakeholders, presentations, papers, and a
workshop.

Industrial Consortium

The initial intention behind the Brick Industrial Consortium was that Johnson Controls was
leading this effort to bring a consortium of industry members together, including Microsoft,
construction industry members, and so on. This process started a few years ago and has been
delayed by negotiations around Intellectual Property (IP) issues. The conclusion was that it is
easier for industry to carefully define IP, but at universities this is a more complex process. The
solution was to ask university members to join as individuals instead of as institutions.

Feedback from industry partners

The initial thought was that we could interact with the consortium members at related events
such as ASHRAE Winter Meeting or Annual Conference in the summer. However, with
conferences becoming virtual due to the coronavirus, we created a 10-12 member Technical
Advisory Group (TAG) to solicit feedback on applications, use cases, and best ways of “getting
Brick out there.” The request included the following areas for input:

e The further development of the Brick schema itself,

o Ideas for applications that would highlight how that schema can be used (example list
here),

e Ways to demonstrate the benefits of those applications (e.g., by applying them to the
Mortar Dataset)

e Contributions of additional datasets (time-series data from automation systems, models of
buildings, etc.) that are either private (for our own use in meeting the project goals), or
public (and contributed to the next version of the_Mortar Dataset).

e Ways to encourage adoption and further development within the broader building
industry, and support for the related standard currently under development (ASHRAE
223P).

TAG members include representation from Mechanical-Electrical-Plumbing and Commissioning
firms (e.g., Taylor Engineering), Building Retrofits (e.g., Carbon Lighthouse), Controls
manufacturers (e.g., Johnson Controls, others from ASHRAE Guideline 36 committee), building
owners/managers (e.g., Joel Bender from Cornell), HVAC optimization services (e.g.,
Comfy/Siemens, KGS), and research organizations (e.g., DOE, NREL, academics).

The following people met in late August 2020:

¢ Amir Roth, Technology Manager (BEM), DOE

e Stephen Frank, Instrumentation & Controls Engineer, Planning, Management,
Engineering, and Construction (PMEC), NREL

e Ambuj Shatdal, Manager Platform Engineering, Johnson Controls Inc
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e Nick Gayeski, Partner/Co-founder, KGS Buildings (Clockworks)

e Dezhi Hong, Post-doc, UCSD

Hongning Wang, Assistant Professor CS, University of Virginia (Pl of The Building
Advisor)

Reece Kiriu, Senior Engineer, Taylor Engineering

Soazig Kaam, WeWork

Tyler Hoyt, Integrations Team Lead, Comfy

Joel Bender, Programmer/Analyst, Cornell University (ASHRAE 223P)

We presented the Brick project in the CBE Industry Advisory Board meeting in April 2021 and
received overall positive feedback for the need to standardize the description of building data for
use in building applications. CBE meeting attendees are enthusiastic to apply and extend Brick
and use the Mortar database for their projects. For instance, an HVAC manufacturer is interested
in extending Brick concepts so it can apply to their variable refrigerant volume equipment.
Another firm wants to leverage the available building data in Mortar for their ongoing project
while other firms want to establish a Brick/Mortar like databases to facilitate their current data
collection and storage needs they normally perform for commissioning or research studies.
However, there were also concerns. One of the prevailing concerns among the attendees is the
relationship and standing of Brick among other ontologies, schemas, and other ongoing efforts
for building metadata standardization e.g., Project Haystack, ASHRAE 223P, etc. They currently
perceive too many players in the semantic data model field and may not embrace a specific
semantic data model until they see the clear benefits of one model versus another or one comes
out on top. Another concern mentioned was in regards of who would take responsibility for
developing a Brick model for new construction e.g., control vendors, architects, or mechanical
engineers.

Technology to Market (T2M) Plan

The pathways to market to expand the use and application of Brick include through the Brick
Industry Consortium and aligning with DOE-NIST-ASHRAE efforts with the Semantic
Interoperability working group developing the 223P standard; barriers include the time/effort to
learn to create and develop the Brick model and utilize the query tools and applications to make
use of the Brick model.

We see several paths towards increased adoption of Brick, such as through:

e continued support of Brick and Mortar, through the User Forum
e the Brick Industrial Consortium
e participation in the development of the ASHRAE 223P standard.

The Brick Industrial Consortium provides a means for commercial and academic entities to
participate in the development of the Brick ontology. Participation can be as direct as
contributing documentation, extensions, fixing bugs and developing tools or it can be advisory in
the form of voting on future directions for Brick or approving releases of the standard. Industry
participation helps ensure that Brick addresses the metadata and data needs of the constituents.
Paid membership in the Consortium provides Brick with the resources necessary to advertise and
support the ontology, but also indicates to the industry that Brick is a worthy investment. Via the
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Brick Consortium’s working groups and monthly office hours, we have also learned of several
efforts to adopt Brick internally at a variety of companies. In these cases, Brick is replacing ad-
hoc or homegrown metadata schemas and providing a more comprehensive set of concepts with
which to support data-driven applications. Anecdotally, most of the Brick-enabled use cases are
characterized by cloud-based data analytics, data visualization and dashboard creation.

Several members of the project team are actively involved in the development of the ASHRAE
223P standard. As a result, we are well-positioned to ensure the future compatibility between the
two complementary standards. We envision Brick as an ontology layer on top of 223P that
provides abstractions designed specifically for data analytics and controls applications. In the
future, a Brick model could be automatically produced from a 223P model, enabling analytics
and controls applications without having to manually curate the metadata. The work in this
project on producing a Brick model from varying metadata sources could also be adapted to
support the creation of 223P models.

Workshop

Dr. Pieter Pauwels and Dr. Gabe Fierro presented a 90-minute interactive session at

the CLIMA 2022 conference (May 22-25, 2022) titled "An Introduction to Semantic Metadata
for Data-Driven Buildings". The session was well-attended, with upwards of 30 people in the
room. Dr. Pauwels gave an overview of semantic metadata and its relation to existing
technologies for digitizing buildings. Dr. Fierro then presented the Brick and Linked Building
Data (LBD) ontologies in the context of a real building model and demonstrated common queries
against semantic metadata models. Dr. Fierro then demonstrated a basic analysis of the
deviations from temperature setpoints in the building, using real building data. Finally, Dr. Fierro
and Dr. Pauwels took questions from the audience. Most of the questions concerned how
semantic metadata technologies could integrate with BIM, BEM and other digital
representations. Many of the attendees seemed enthusiastic about the potential for semantic
metadata in facilitating adoption of data-driven practices in buildings, and wanted to know more
about how they could adopt and deploy these technologies. Dr. Fierro had several follow-on
conversations with researchers and developers at the Czech Technical University in Prague who
are working on novel authoring interfaces for Brick models.

The session materials are available online at the following GitHub repository:
https://github.com/gtfierro/clima-2022

Session description: https://clima2022.org/programme/scientific/workshops-interactive-
sessions/?theme%5B%5D=Digitization

End of project goals

Over the course of the project (2019-2022), Brick released three updates (v1.1, v1.2, and v1.3);
Brick 1.0 was released in 2016. Brick 1.1 had an expanded set of classes, provided support for
converting from Haystack, and implemented a Python-based ontology compilation system that
made it easier for non-ontologists and non-computer scientists to contribute to Brick. Brick v1.2
dramatically expanded the number of concepts and classes covered by the ontology, making
Brick more useful for modeling chillers, electrical subsystems, nameplate characteristics, and
other static properties. Brick 1.3 added support for some heat pumps, more complete electrical
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subsystem modeling, basic safety and security equipment, and PV and battery systems. We have
also developed a Brick model validation framework to help verify that users are building models
correctly.

Mortar has released one update (v.1.5). Mortar has been released (https://mortardata.org/), with a
tutorial developed (https://tutorial. mortardata.org/). A more easily deployable version of Mortar
is being developed at https://github.com/gtfierro/mortar, with documentation available at
https://beta.mortardata.org/intro.html. The team found a stable, permanent, and performant home
for the Mortar testbed dataset so that it is accessible by the community and can be easily
maintained by Dr. Fierro as he moved to his new role at Colorado School of Mines in 2021.

The team has developed an alternate, cost-effective solution for the Mortar dataset that can be
hosted on major cloud providers or local infrastructure, with the tradeoff of only supporting
static datasets. The solution stores timeseries data using Apache Parquet, which is an efficient
columnar data format. The dataset is partitioned by building and by 1/0 point and the resulting
structure can be stored on an S3-compatible object store. A simple Python library uses the
metadata exposed by the Apache Parquet to scan and download timeseries data matching user
queries into DataFrames, CSV files or local Parquet archives. The documentation, client library
and supporting tooling for the Parquet-based Mortar dataset is available online at
https://github.com/gtfierro/mortar-parquet-support.

The Industry Consortium was finalized, has 6 industrial members, and was involved in the
release of Brick v1.3.

The project developed a partnership between RealEstateCore (REC)
(https://www.realestatecore.io/) and Brick
(https://github.com/RealEstateCore/REC4/tree/main/Ontology/SHACL/Brick) to clarify the
semantic relationships between Brick and REC concepts.

The ref-schema for interoperability between ontologies, other digital models
(https://github.com/gtfierro/ref-schema) has been incorporated into the current draft of the
ASHRAE 223P standard.

We maintain an open-source public GitHub repository for Brick applications, found at
https://github.com/BrickSchema.

Here one can find packages (py-brickschema: Python package for working with Brick), services
(reconciliation-api for OpenRefine and other tools), and other connectors (brick-BACnet). This
is the repository for tools and applications, such as Brick versioning, graph inference, conversion
from Haystack, VBIS translation, web-based interaction, Brick model validation.

Many applications meant to run on buildings and tested first on the Mortar platform can be found
at the UC Berkeley research GitHub site: https://github.com/SoftwareDefinedBuildings/mortar-
analytics. These include an application to find simultaneous heating and cooling zones, possible
inefficient zones, “rogue” zones, detect passing valves, temperature reset, and so on.
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d. Links to publicly available STI are provided

See publications on page 71.

e. Products developed (if applicable) are identified
Brick and Mortar have been described and are available at:
Brick: https://brickschema.org/

Mortar: https://mortardata.org/

f. Computer modeling info (if applicable) is identified
N/A
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Products Developed and Technology Transfer Activities
6. Identify products developed under the Award and technology transfer activities, such as:
Publications

Bennani, Imane Lahman, Anand Krishnan Prakash, Marina Zafiris, Lazlo Paul, Carlos Duarte
Roa, Paul Raftery, Marco Pritoni, and Gabe Fierro. 2021. Query relaxation for portable
brick-based applications. In Proceedings of the 8th ACM International Conference on
Systems for Energy-Efficient Buildings, Cities, and Transportation (BuildSys '21).
Association for Computing Machinery, New York, NY, USA, 150-

159. https://doi.org/10.1145/3486611.3486671

Duarte Roa C., Raftery P., Sun R., Paul L., Prakash A., Pritoni M., Fierro G., Peffer T. (2022).
Towards a Stronger Foundation: Digitizing Commercial Buildings with Brick to Enable
Portable Advanced Applications. ACEEE Summer Study on Energy Efficiency in
Buildings 2022. https://doi.org/10.20357/B7ZG6R

Duarte Roa C., Raftery P., Rupam S., Pritoni M., Peffer T. (2022). Detecting Passing Valves at
Scale Across Different Buildings and Systems: A Brick Enabled and Mortar Tested
Application. ACEEE Summer Study on Energy Efficiency in Buildings
2022. https://doi.org/10.20357/B7VP5H

Fierro, Gabe, Jason Koh, Yuvraj Agarwal, Rajesh K. Gupta, and David E. Culler. 2019. Beyond
a House of Sticks: Formalizing Metadata Tags with Brick. In The 6th ACM International
Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation
(BuildSys ’19), November 13-14, 2019, New York, NY, USA. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3360322.3360862

Fierro, Gabe, Sriharsha Guduguntla, David E. Culler. 2019. Dataset: An Open Dataset and
Collection Tool for BMS Point Labels. 2nd Workshop on Data Acquisition To Analysis
(DATA), New York, NY, USA, November 2019. [pdf]

Fierro, Gabe, Jason Koh, Shreyas Nagare, Xiaolin Zang, Yuvraj Agarwal, Rajesh K. Gupta, and
David E. Culler. Formalizing Tag-Based Metadata with the Brick Ontology. Frontiers in
Built Environment, Vol 6 (September 2020).
DOI: https://doi.org/10.1145/3360322.3360862

Fierro, Gabe, Anand Krishnan Prakash, Cory Mosiman, Marco Pritoni, Paul Raftery, Michael
Wetter, David E Culler. Shepherding Metadata Through the Building Lifecycle. In
Proceedings of the 7th ACM International Conference on Systems for Energy-Efficient
Buildings, Cities, and Transportation (BuildSys 2020). November 18, 2020, Virtual
Event. DOI: https://doi.org/10.1145/3408308.3427627

Fierro, Gabe, Anand Krishnan Prakash, Cory Mosiman, Marco Pritoni, Paul Raftery, Michael
Wetter, David E Culler. Demo Abstract: Interactive Metadata Integration with Brick. In
Proceedings of the 7th ACM International Conference on Systems for Energy-Efficient
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2022. Notes Paper: Enabling Building Application Development with Simulated Digital
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Machinery, Boston, USA
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(2022). Towards Digital and Performance-Based Supervisory HVAC Control
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Duarte, Carlos, Paul Raftery, Ruiji Sun, Therese Peffer. 2022. “Scalable Fault Detection Using
the BRICK Schema.” Presented at the CBE Industry Advisory Board Meeting. Berkeley,
CA. April.
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Chapter. Remote Presentation. October.
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Devaprasad, Gabe Fierro, Therese Peffer. 2021. “Digitizing Buildings with BRICK to
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Advisory Board Meeting. Berkeley, CA. October.

Fierro, Gabe. 2021. “Brick and Mortar: Semantic Metadata for Cyberphysical Telemetry and its
Context.” Presented at Google (virtual). October.

Fierro, Gabe. 2021. “Self-Adapting Data-Driven Software for Buildings.” Presented for the
Global Al Challenge Conference (virtual). October.

Fierro, Gabe. 2021. “Brick: Consistent Semantic Metadata for Data-Driven Buildings.”
Presented for IBPSA-USA Building Data Exchange Sub-Committee (virtual).

Fierro, Gabe, Jason Koh, Erik Paulson. 2021. “Catching Up with the Brick Schema for Smart
Buildings.” Presented as Memoori Webinar. January.

Fierro, Gabe, Karl Hammar, Joel Bender, Erik Paulson, Akshay Johar, Erik Wallin. 2022.
“Major harmonization effort between two smart building metadata standards.” Presented
as Memoori Webinar. August.

Fierro, Gabe, Karl Hammar. 2022. “Getting started using Brick and RealEstateCore: examples
and tools.” Presented at Brick-RECCon22. https://www.realestatecore.io/reccon22/.
November.

Fierro, Gabe. 2022 “A Solid Foundation: Harmonizing Brick and Haystack to Simplify the
Building Metadata Landscape.” Presented at HaystackConnect 2022. September.
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In addition, Dr. Fierro has posted multiple YouTube videos and tutorials about Brick and related
topics.

Using Brick and TimescaleDB for building data analytics:
https://www.youtube.com/watch?v=kZYNXo0iM8gk (852 views)

Converting between Brick and VVBIS: https://www.youtube.com/watch?v=zF1M7Z2APSY (75
views)

Dissertation Talk: Self-Adapting Software for Cyber-Physical Systems:
https://www.youtube.com/watch?v=Z50KXIJtvY's (202 views)

Tutorial for online SPARQL query execution: https://www.youtube.com/watch?v=zJTuizwSAKs
(41 views)

b. Web site or other Internet sites that reflect the results of this project;
Brick: https://brickschema.org/

Mortar: https://mortardata.org/

Brick developer documentation: https://docs.brickschema.org/

c. Networks or collaborations fostered;

Johnson Controls Inc: JCI was a project partner throughout the project and led the creation of the
Brick Industrial Consortium. Dr. Fierro (CO School of Mines and NREL) met with Erik Paulson
of JCI on a regular basis throughout the project

Industrial Consortium: While the process of creating the Consortium took longer than expected,
the Consortium now has 6 industrial members and was involved in the release of Brick v1.3 in
2022. Membership includes Johnson Controls, Siemens, Schneider Electric, Carrier, Mapped,
and Clockworks Analytics, in addition to multiple academic members.

Brick collaborates with:

e ASHRAE (especially the 223p BACnet Standard working group):

e Virtual Building Information System (VBIS, https://vbis.com.au/): In Aug 2020, Brick
and VBIS announced a Memorandum of Understanding (MOU) to collaborate and
integrate. VBIS has a comprehensive classification structure and asset specific metatag
for all assets that make up the built environment as well as a mechanism to allow linking
asset data that is stored in disparate locations to allow discovery and use of information.
The VBIS classification structure, which captures detailed asset properties not covered by
Brick, will be mapped to the asset classes in Brick. This will provide a comprehensive
data model definition that supports deploying analytics, energy efficiency measures,
automation as well as Asset Management and Facility Management activities such as
lifecycle planning, maintenance planning and performance benchmarking.
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e RealEstateCore (https://www.realestatecore.io/): Brick and REC are cooperating to

make it easier to create rich semantic models of smart buildings and real estate
portfolios.

As of this writing (2022) Brick is used by:

Bractlet (https://bractlet.com/)

Carrier (https://www.carrier.com/carrier/en/worldwide/)

Johnson Controls (https://www.carrier.com/carrier/en/worldwide/)
Onboard (https://www.onboarddata.io/)

Mapped (https://www.mapped.com/)

Schneider Electric (https://www.se.com/us/en/)

d. Technologies/Techniques;

The Brick data schema includes the ontologies, interfaces and tools, and a testbed (Mortar) of
building data described in Brick data models.

Brick: https://brickschema.org/

Mortar: https://mortardata.org/

Brick developer documentation: https://docs.brickschema.org/

e. Inventions/Patent Applications, licensing agreements

Brick is free and open-sourced under the BSD 3-Clause license; Brick is publicly available at
https://brickschema.org/resources. The source code for Brick, the website, and related tools
developed by the Brick team are available on GitHub.

f. Other products, such as data or databases, physical collections, audio or video, software or
netware, models, educational aid or curricula, instruments or equipment

Videos describing Brick:

e Using Brick and TimescaleDB for building data analytics:
https://www.youtube.com/watch?v=kZYNXoiM8gk (852 views)

e Converting between Brick and VBIS:
https://www.youtube.com/watch?v=zF1M7Z2APSY (75 views)

e Dissertation Talk: Self-Adapting Software for Cyber-Physical Systems:
https://www.youtube.com/watch?v=Z50KXI1JtvY's (202 views)

e Tutorial for online SPARQL query execution:
https://www.youtube.com/watch?v=zJTuizwSAKks (41 views)
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Software may be found at:
https://brickschema.org/resources

Brick: https://brickschema.org/

Mortar: https://mortardata.org/
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Brick developer documentation: https://docs.brickschema.org/
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