
DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 1 of 77

Final Technical Report

Award Number: DE-EE0008681

Recipient: Regents of the University of California (Berkeley)

California Institute for Energy and Environment)

Project Title: Skewering the silos: using Brick to enable portable analytics,

modeling and controls in buildings

Principal Investigator: Therese Peffer

Project team members: Gabe Fierro, Colorado School of Mines/NREL

Paul Raftery, Carlos Duarte Roa, Center for the Built Environment,

UC Berkeley

Marco Pritoni, Michael Wetter, Anand Prakash, Lazlo Paul, LBNL

Erik Paulson, Johnson Controls International

Report Submission Date: 30 Jan 2023

Reporting Period: 1 October 2019- 30 September 2022

Please reference this report as:

Fierro, Gabe, Carlos Duarte Roa, Paul Raftery, Anand Prakash, Marco Pritoni, Lazlo Paul,

Michael Wetter, Erik Paulson, and Therese Peffer. 2022. Skewering the silos: using Brick to

enable portable analytics, modeling and controls in buildings. Final Technical Report for

US Dept of Energy project EE0008681. DOE-CIEE-08681.

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 2 of 77

Table of Contents

Executive Summary .. 5

Goals and Objectives ... 9

Project Activities.. 11

Task 1: Expand Brick Schema .. 11

Demonstrate Brick models for >50 buildings.. 11

Expand Brick schema to represent 80% of large commercial buildings 12

Feedback on expanded Brick schema .. 14

Review and release the expanded schema ... 15

Task 2: Develop Tools and Translators... 18

Identify list of required interfaces with Brick ... 18

Outline integration pathway for at least four data models ... 19

Demonstration of three interfaces.. 33

Task 3: Develop an Open Source Analytics Testbed (Mortar) ... 39

General architecture of platform.. 39

Develop the testbed ... 41

Demonstrate the testbed... 44

Automatic selection of analytics.. 45

Version control of Brick models ... 45

Task 4: Develop and Apply Analytics and Controls Applications ... 48

Identify potential analytics and controls .. 48

Discuss list of applications with stakeholders ... 50

Develop two simple algorithms ... 52

Open-source library of applications .. 56

Demonstration of two more complex applications .. 57

Brick and energy saving .. 66

Task 5: Technology Transition Plan ... 67

Industrial Consortium .. 67

Feedback from industry partners ... 67

Technology to Market (T2M) Plan .. 68

Workshop... 69

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 3 of 77

End of project goals... 69

Products Developed and Technology Transfer Activities.................................. 72

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 4 of 77

Acknowledgement

This material is based upon work supported by the U.S. Department of Energy’s Office of

Energy Efficiency and Renewable Energy (EERE) under the Building Technologies Office

(BTO) Award Number DE-EE0008681 from Oct 2019 - Sept 2022.

The authors would like to thank all the researchers and institutions that have helped develop

Brick from its initial ideation at the BuildSys conference in 2014, to development of Brick v1.01

in 2016, and over the course of this project from 2019 to 2022. The initial institutions that

contributed to the creation of Brick include Carnegie Mellon University, IBM Research,

University of California Berkeley, University of California Los Angeles (UCLA), University of

California San Diego, University of Southern Denmark, and University of Virginia. Initial

support came from the National Science Foundation, US Department of Energy, Innovation

Foundation Denmark, Intel and Johnson Controls and others as mentioned on the Brick website

(https://brickschema.org/).
We are grateful for the partnership with Johnson Controls especially Dr. Younchoon Park, Dr.

Young M Lee, and Erik Paulson, and including match funding, over the course of this project.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or

responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned rights.

Reference herein to any specific commercial product, process, or service by trade name,

trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

recommendation, or favoring by the United States Government or any agency thereof. The views

and opinions of authors expressed herein do not necessarily state or reflect those of the United

States Government or any agency thereof.

1 See Bhattacharya et al, 2015 (https://doi.org/10.1145/2821650.2821669) and Balaji et al, 2016

(https://doi.org/10.1145/2993422.2993577)

https://doi.org/10.1145/2821650.2821669
https://doi.org/10.1145/2993422.2993577

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 5 of 77

Executive Summary

Nearly all large commercial buildings have heating, ventilation and air conditioning (HVAC)

systems, lighting systems, safety and other systems controlled by a computer—a dedicated server

with a building energy management system (BMS). However, these BMSs are proprietary with

each building’s assets (that is, fans, valves, pumps, and their setpoints) named and coded

uniquely by the BMS vendor or engineer; building analytics and control algorithms are written

specific to the assets and the building. Thus, any control updates or analytics to improve building

performance—especially critical to reduce greenhouse emissions or improve load flexibility—

are labor intensive and costly. In addition, the decreasing costs of sensors and IoT devices, as

well as the increased penetration of networked monitoring and control systems, had led to an

enormous amount of data available. Increased access to this operational data presents new

opportunities to develop and deploy novel data-driven use cases including fault detection and

diagnosis algorithms, intelligent controls, and grid interactivity. Such data-driven processes are

particularly important because they can use data to automatically diagnose and understand a

building, rather than relying upon expert-driven advice.

Although operational building data is now available, it is not accessible to software developers,

building scientists, and other stakeholders for two primary reasons. First, this data is largely

locked away in vendor-specific silos with proprietary interfaces and limited facilities for data

discovery and analysis. Second, there is no standard labeling or organizational scheme for the

data produced by buildings. Together, these characteristics pose significant challenges for the

development and configuration of intelligent, data-driven building processes. Each piece of

software must be manually configured (i.e., “ported”) to each building, a painstaking and error-

prone process.

To address these issues, the Brick schema was developed so the same analysis or control

algorithms can work on a variety of buildings if each is digitally represented in a Brick data

model. The motto is “write once, run anywhere”: we want to “reuse” the diagnostics, analytics,

and control algorithms (such as ASHRAE Guideline 36) in multiple buildings, not have to write

a unique proprietary algorithm for each building. In addition, we want to translate across

different data representations in the building lifecycle—from design to construction to operation

and maintenance (Figure 1).

The Brick schema is an open source, permissively licensed development for standardizing digital

representations of buildings and their data sources. Specifically, Brick is a graph-oriented

metadata ontology that defines a taxonomy of types for categorizing common assets, data

sources and other entities in buildings; it also defines a family of expressive properties that

describe the relationships between these entities. Together, the taxonomy and properties enable

the creation of machine-readable digital representations of buildings (a Brick model) that use a

consistent vocabulary. A consortium of universities and industry partners collaborated in the

development of Brick using field trials and testing in developing eight representative applications

over six buildings. Brick succeeded in these initial experiments because of the flexibility of the

underlying graph model and the extent of the vocabulary it defined.

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 6 of 77

Figure 1: Skewering the silos: the Brick schema allows translations across the data siloes in a building’s
lifecycle.

The goal of this project was to further the development of Brick to extend it beyond an academic

project with demonstrated success in a small field study, to a practical choice for industrial and

commercial stakeholders seeking to realize value from building data. To do this, we executed

four objectives: (1) expand the Brick schema including its modeling capabilities and vocabulary,

(2) develop tools for integrating Brick with existing digital technologies and representations in

buildings, (3) develop an open-source analytics platform to facilitate use of Brick in delivering

data value, and (4) demonstrate Brick-driven analytics and controls in real settings. Through

these objectives, we have established and begun to execute a technology transition plan that has

dramatically increased the impact and adoption of Brick in industrial, commercial, and academic

settings.

Brick Schema Expansion

Over the course of this project, the team has delivered five new releases of the Brick ontology:

1.1.0 (Jul 2020), 1.1.1 (Jan 2021), 1.2.0 (Feb 2021), 1.2.1 (Aug 2021), and 1.3.0 (Oct 2022).

Each of these releases expanded the set of building assets, data sources, properties and

subsystems that can be modeled using the Brick schema. The specific additions were informed

and implemented by a growing community of international contributors. Today, Brick defines

over 1200 classes (equipment, data sources, assets, building components), 44 entity properties

(datasheet and nameplate characteristics), and 33 relationships. This includes substantial efforts

to expand Brick’s capabilities to capture energy storage and generation systems, plug loads and

end-use devices, radiant systems, and initial support for heat pumps. We have also published

extensions to Brick which permit modeling of occupants and occupant data as well as

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 7 of 77

relationships between Brick entities and building information models, building control networks,

and archival data storage.

Brick Integrations

The original release of the Brick schema was distributed as a standalone solution whose effective

usage required software engineering as well as graph data model expertise. Over the course of

this project, we have developed five integrations between Brick and existing technologies and

standards that significantly simplify the process of bootstrapping a Brick model from for a real

building. These integrations also make Brick part of a larger ecosystem, ensuring it is a “safe

bet” for stakeholders: Brick complements existing technological investments rather than

competing with them.

We have developed Brick translators for multiple technologies that span the lifecycle of a

building and align with existing industry standards: BuildingSync (an energy auditing schema

based in part on the ASHRAE 211 standard), Modelica (language for simulation models),

Control Description Language (vendor-agnostic specifications of control sequences, being

incorporated into the ASHRAE 231P standard), Project Haystack (a prevailing tag-based

metadata solution), and BACnet (a standard network protocol formalized as the ASHRAE 135

standard). In addition, we have also developed alignments with emerging metadata efforts: the

RealEstateCore ontology (focusing on spatial building elements and property management) and

the VBIS asset management system. All of these integrations and alignments are released under

permissive open-source software licenses, and have assisted in the adoption of Brick by making

it easier for stakeholders to use Brick with their existing building technologies.

Open Source Analytics Platform

To demonstrate how Brick supports the execution of portable analytics applications, we created

and currently host an open analytics platform—Mortar—that provides access to hundreds of

millions of data points spanning over 50 buildings. Each of these buildings is modeled using

Brick; users and applications use the Brick model to discover and retrieve the available data. The

Mortar platform presents a fundamentally different approach to organizing and disseminating

building data. Existing building data is available largely through building management systems,

which organize data by annotating data streams with human readable but ultimately unstructured

labels. Contextual information which relates these data streams to the building and its

subsystems is typically not available in a machine readable form. By pulling this contextual

information out into a standard form, a Brick model, it becomes possible for applications to

discover and filter through data for many buildings at once without the user having to develop a

specialized understanding of each of those buildings and their data. This introduced the notion of

portable building applications: applications which can execute over many buildings with

minimal or zero reconfiguration.

To prove the impact of portable building applications, we have released an initial library of

portable building analytics, available online as open-source programs, which execute on the

Mortar analytics platform.

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 8 of 77

Demonstration of Brick-Driven Controls

Through this project, we have demonstrated one vision of the next generation of intelligent, data-

driven building analytics and controls. Standardized sequences of operation such as ASHRAE

Guideline 36 for high-performance HVAC systems can be difficult to deploy on real buildings

because of the heterogeneity of the building subsystems and their labels – the same issues that

plague deployment of data-driven analytics. We have demonstrated the use of Brick to capture

the required metadata about a building that allows a program to integrate a standardized building

control language (CDL) with a standard communication protocol (BACnet) to implement these

high-performance controls on buildings with minimal manual intervention. What is significant is

that the entire controls deployment was achieved with publicly available, non-proprietary

resources that can be executed over multiple buildings with

Thus, we used standardized sequences of operation (ASHRAE Guideline 36) to define the best

practice controls, an open-source schema (Brick) to represent the required metadata in a

structured format, a standardized communications protocol (BACnet) to communicate with the

controllers, and (proposed) standardized building controls language (CDL) to implement these

controls. These are all non-proprietary resources that are publicly available and can be used in a

scalable manner that is portable between buildings. That applies even though those buildings

have different automation systems, point names, HVAC topologies, etc. To our knowledge, this

is the first time the ’full stack’ of these different components has been implemented to perform

closed loop control in a real building. The controls continue to operate in the building as writing

this report.

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 9 of 77

Goals and Objectives

The goal of this project is to develop the nascent open-source common data schema, Brick, into a

demonstrated and tested tool that, through the implementation of advanced algorithms and

analysis, can enable the scaling of major energy savings, improved building performance, and

grid responsiveness across commercial buildings at low cost.

The objectives of the project are to:

1. Expand the Brick schema (the categories and names of building subsystems and

equipment, and relationships among them)

2. Develop tools and translators for adding information to and from Brick models

3. Develop an open-source building analytics platform,

4. Test open-source building analytics and controls (e.g. ASHRAE Guideline 362, Open

Building Controls (OBC)3) on several buildings, and

5. Develop a technology transition plan.

We have expanded the Brick schema: Over the course of the project, we have produced two

minor and three major releases of the Brick schema: 1.1.0 (Jul 2020), 1.1.1 (Jan 2021), 1.2.0

(Feb 2021), 1.2.1 (Aug 2021), and 1.3.0 (Oct 2022). Each of these releases incorporated further

extensions of the Brick ontology, as detailed in this report. In addition, we released an occupant-

oriented extension of the Brick ontology for modeling building occupants and occupant data.

We developed tools and translators: We have implemented and released translators (which

transform or infer Brick metadata from existing sources) for five protocols and data formats:

BACnet (standard communication protocol), Modelica/CDL (modeling and control languages),

IFC (building information model), Project Haystack (metadata tagging standard) and

BuildingSync (energy auditing schema). In addition, we have established semantic alignments

(obviating the need for translation) with the VBIS asset classification system and the

RealEstateCore ontology.

We developed an open-source building analytics platform, Mortar: Mortar has been released

under a permissive open-source license, and is currently being used to host more than 100

million data points spanning more than 50 real buildings. Each of these buildings is represented

by a Brick model, facilitating data discovery and consistent interpretation of data with respect to

the building. The platform implements an API for data discovery and retrieval over all buildings

in the platform, and has been used to develop several building analytics applications.

We developed and tested several buildings analytics and controls: using the Mortar platform

(which incorporates the Brick schema), we developed and tested 5 analytics and fault detection

applications that each ran on multiple buildings with minimum reconfiguration. We also

developed and tested two control applications—duct static pressure reset control and hot water

supply temperature reset control—that were executed on real buildings with the help of Brick

models of those buildings.

2 http://gpc36.ashraepcs.org/
3 http://obc.lbl.gov/

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 10 of 77

We developed a technology transition plan for Brick, including significant industry

engagement, release of open-source tools, outreach to stakeholders, and public presentations and

publications of the work achieved during this project. We have assisted in the creation of the

Brick Consortium, Inc., a 501(c)(6) organization intended to support the research and

development of the Brick ontology. The consortium currently consists of academic

representatives from UC Berkeley, Colorado School of Mines, and Carnegie Mellon University;

it also has industrial representation from Carrier, Clockworks Analytics, Johnson Controls Inc,

Mapped, Schneider Electric, and Siemens. In addition, we have held several webinars and

workshops, published 16 publications and 1 PhD thesis, and released many public materials that

educate and evangelize Brick.

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 11 of 77

Project Activities

Brick endeavors to standardize descriptions of components in buildings through a dictionary of

building terms, a set of relationships among these pieces, and a data model that integrates Brick

with other tools and data models. This open-source effort “skewers the silos” of independent data

models currently marking all points of the life of a building, from design to construction to

operation. A flexible but standard schema can enable “portability” of analytics, modeling, and

controls from one building to another.

This project brought together researchers in computer science, mechanical engineering, and

building science with expertise in building modeling and controls to further develop Brick, to

increase its usability, and increase its adoption.

The project was divided into three budget years with five tasks in each period. The following

describes each task’s progression over the three years.

Task 1: Expand Brick Schema

The goal of this task was to identify and select new metadata (descriptive annotations for data

sources) to be added to the Brick schema, expand the Brick schema extensions after defining the

most appropriate tools and applications, and then release the expanded schema in the public

realm. These new metadata were informed by our experiences with (a) building equipment,

sensors, and other data sources, and (b) the applications and other use cases which are potential

consumers of a Brick model. A Brick model is a digital representation of a building and its

composing assets (e.g., equipment, locations) and data sources.

Demonstrate Brick models for >50 buildings

The first milestone of this task (1.1.1) was to demonstrate Brick models for at least 50 buildings,

with each model “complete” to the extent that they enable at least two control and/or analytics

applications.

We developed Brick models capturing the structure of Heating Ventilation and Air Conditioning

(HVAC) systems, lighting systems, spatial composition, and building-level metering for 108

buildings in California. 92 of the buildings are large office buildings with Air Handling Unit

(AHU)-based HVAC systems, and the rest are smaller commercial buildings that are Roof Top

Unit (RTU)-based.

For AHU-based systems, the Brick models capture the flow of air through the equipment and

into the spaces (AHU to Variable Air Volume (VAV) box to HVAC Zone) as well as the points

of actuation and control associated with the equipment in those flows. To create these Brick

models, we scraped the point labels available in the building management system (BMS) and

authored a Python program to infer from those point labels the names and types of equipment

and in the building and the connections between them. We then associated the data sources

(points) exposed in the BMS with the inferred equipment.

For the RTU-based systems, the Brick models capture the associations between thermostats, the

packaged rooftop units, and the zones and rooms conditioned by the rooftop units. We authored a

Python program to extract this structure from exported Revit models (a type of Building

Information Model containing structural and mechanical information about a building). Because

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 12 of 77

buildings with RTU-based systems typically do not contain unified digital infrastructure such as

a BMS, we augmented the information available in the Revit model with manufacturer-specific

“scrapers” that extracted metadata about any networked lights, thermostats, plug load controllers

and other consumer-level devices installed in the building. This allowed us to augment the Brick

model with metadata beyond what was immediately available in the BIM.

These Brick models are complete enough to enable at least two applications: the detection of

“rogue zones” (zones whose airflow or temperature is lower than the setpoint for extended

periods) and stuck dampers.

Expand Brick schema to represent 80% of large commercial buildings

Through year 1, we identified the set of end-use applications which could benefit from access to

a standard digital representation of building data source (i.e., Brick), and a set of existing

building software tools which would either be potential sources or consumers of Brick metadata.

We surveyed the metadata required by these tools and applications and expanded the Brick

schema to include all necessary metadata definitions. To evaluate the coverage of the Brick

ontology over large commercial buildings in the US, the research team developed two

approaches: a top-down approach using a national survey and a bottom-up approach based on

BMS data from several representative buildings.

Top-down approach

The U.S. Energy Information Administration (EIA)'s Commercial Buildings Energy

Consumption Survey (CBECS) is the only nationally representative source of statistical

information on the nation’s commercial buildings, including their energy-related building

characteristics and energy usage data. The CBECS survey has been conducted on a sample of

6720 buildings representative of commercial buildings from the 50 States and the District of

Columbia.

To appraise the Brick schema ability in representing metadata information in commercial

buildings, we used the most recent available version of the U.S. Energy Information

Administration's Commercial Buildings Energy Consumption Survey (CBECS) Data variable

codebook (2012)4 (XLS) as a comprehensive benchmark for our analysis.

We evaluated the Brick schema (v1.2.α) coverage by mapping the CBECS variables to the Brick

ontology. Prior to the mapping, we selected relevant variables that lie within the scope of the

Brick schema. While the CBECS data survey includes building characteristics (such as building

structural characteristics, energy sources and uses), energy usage data and energy providers, the

Brick ontology aims at describing the multitude of subsystems in buildings (HVAC, lighting,

electrical, security, control systems), which are core to the development of smart analytics and

control applications.

We selected variables that fall within the following categories: Buildings Geographic Features

and Locations, Cooling/Heating Equipment Types and Controls, Lighting, Electricity Generation

and Storage Technologies, Occupancy Control and Others. It is important to note that Brick has

the ability to represent HVAC, Security, Safety Equipment and Locations concepts in much

4 https://www.eia.gov/consumption/commercial/data/2012/xls/2012microdata_codebook.xlsx

https://www.eia.gov/consumption/commercial/data/2012/xls/2012microdata_codebook.xlsx

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 13 of 77

more depth than CBECS. This is the case also for the actual relationships that describe

interactions among devices and building spaces.

In version v1.2.α, Brick only covered 55% of the selected CBECS variables, but had the capacity

to represent 98% of them. Relevant use cases have already been defined for 28% of those

unrepresented concepts and their additions will be covered in future versions of the Brick schema

(bringing coverage up to 83%). Most of these additions have been incorporated into the Brick

1.3.0 release, and more will emerge in minor 1.3.x releases.

On average, Brick was able to cover 71% of the selected CBECS concepts out of those

represented across the 6720 buildings sampled. We see the need for a more focused and

integrated assessment of the existing overlap between CBECS and Brick buildings data contexts

and use cases.

Bottom-up Approach

Based on BMS points from three representative buildings, we evaluated the expansion of the

Brick schema by comparing the coverage of Brick at the time this project began (v1.1) to version

1.2.α, which was current at the time of the analysis.

We evaluated the coverage of the Brick ontology using the building management system (BMS)

points from three buildings: San Mateo Office Building (SMC), Sacramento Municipal Utility

District Office Building (SMUD), and David Brower Center Office Building (DBC). We

compared the coverage of the previous schema version of Brick (1.1) to 1.2.α. We define

“coverage” as the percentage of unique types of BMS points that were wholly describable in the

given version of Brick. We only evaluated the BMS points where we could extract information

on the point to determine its intended measurement or purpose. This is especially true for DBC

where unidentifiable points were more prominent. The total number of points downloaded from

DBC’s BMS was 4,333 but were left with 1,218 points that were identifiable. Some example

point names that were unidentifiable include the following:

• NAE00806603BECA/Field Bus1.CW Pump 8.Analog Values.AV43

• NAE00806603BECA/Field Bus1.HW Pump 5.Analog Values.AV-38

• NAE00806603BECA/Field Bus1.Radiant Pump 3.Analog Values.AV-36

• NAE00806603BECA/Field Bus1.CW Pump 7.Binary Values.BV-21

SMC is a typical office building with variable air volume with reheat zone terminal units; both

SMUD and DBC have high thermal mass radiant heating and cooling systems for their primary

HVAC system. The results are summarized in Table 1 below. Since SMC uses a typical VAV

system, there was already a 100% coverage with Brick version 1.1. However, SMUD and DBC

contained systems, hydronic system points, and measurements not previously defined in Brick.

These buildings contained a radiant system with their specialized measurements and setpoints

(e.g., embedded temperature sensors and setpoints), underfloor distribution ventilation system,

heat pumps, and exhaust systems. The additional Brick classes added to version 1.2.α increased

the coverage by at least 10%.

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 14 of 77

Table 1: Summary of Brick ontology coverage on three different buildings using Brick version 1.1 and
1.2.α

Building No. Points | No. Entities Brick Version Coverage of all point Coverage of unique classes

SMC 506 | 15 1.1 100% 100%

1.2.α 100% 100%

SMUD 1581 | 138 1.1 84% 81%

1.2.α 99% 98%

DBC 1218 | 136 1.1 89% 88%

1.2.α 99% 99%

Based on system types and points described in ASHRAE Guideline 36 (public standard used in

industry), we evaluated whether 80% of the points/classes are covered in Brick v1.2.α. ASHRAE

Guideline 36, High-Performance Sequences of Operation for HVAC Systems, was created to

develop and maintain best-in-class standardized (air-side) HVAC control sequences. The

document presents these sequences in reference to a set of HVAC equipment configurations and

common Building Automation System “points”. The coverage of Brick is evaluated based on the

full set of systems and points mentioned in the Guideline 36 - 2018. The results of such analysis

are illustrated in Table 2.

Table 2: Summary of Brick ontology coverage based on ASHRAE guideline 36 concepts

Type Coverage in Brick

1.2.α

Points 86%

Equipment 81%

Feedback on expanded Brick schema

Another task in year 2 was to report on feedback from the Brick community. In 2021, the Brick

forum had 178 members, which grew to 296 members in 2022. New members regularly post

questions and answers to other questions. Technical users continue to engage on the Brick

GitHub issue tracker, requesting extensions to and clarifications of the Brick ontology. Examples

of Brick community engagement include expanding Brick to model district heating systems,

expanding the set of definitions for electrical metering, expanding the set of room and location

types supported by Brick, and a larger family of minor bug fixes and concept additions.

In order to better communicate with the Brick community, the Brick Roadmap page was

launched (http://roadmap.brickschema.org), which tracks the immediate and future development

plans for Brick.

http://roadmap.brickschema.org/

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 15 of 77

Dr. Fierro with Johnson Controls International, who has helped to organize an Industry

Consortium for Brick, organizes a set of bi-weekly Working Groups that bring community

members together with the Brick development team around four distinct efforts: ontology

development, conversion tools for Brick, curation of public reference models with timeseries

data, and the development of Brick applications.

Finally, we note that Brick compares favorably to other ontology and schema (Table 3).

Table 3: Summary of Brick compared to other schema

Review and release the expanded schema

In the final year of the project, we reported on several extensions to the Brick schema; all of

which can be found on GitHub in the Brick repository (https://github.com/BrickSchema/Brick)

unless indicated elsewhere.

Occupancy

One of the most recent set of extensions, the Occupancy modeling extensions may be found here:

https://github.com/gtfierro/brick-occupancy-extension. The extension introduces some classes

for describing properties of the building occupants.

https://github.com/BrickSchema/Brick
https://github.com/gtfierro/brick-occupancy-extension.

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 16 of 77

Figure 2: schematic drawing of occupancy modeled in the Brick schema (Figure from Brick Occupancy
Extension paper5)

The extension introduces several new classes of equipment:

• Ceiling Fan

• Personal Devices:

• Portable Fan

• Portable Heater

• Desktop Light

• Envelope Equipment:

• Door

• Window

• Plug Meter

The extension also incorporates plug meters as a new subclass of brick:Electrical_Meter. The

model directly supports modeling the relationships between occupants, the devices they interact

with, and the energy consumption of those devices.

Interoperability with other ontologies: REC, Project Haystack and ref-schema

As is described further in the Tools and Translators section below, we developed a Brick

extension to harmonize the Brick ontology with the RealEstateCore (REC) ontology. This

extension (https://github.com/RealEstateCore/REC4/tree/main/Ontology/SHACL/Brick) clarifies

the semantic relationships between Brick and REC concepts. It also lays the groundwork for

future changes to both BRICK and REC to make them more complementary. This extension

marks many months of collaboration with the core REC development team. More recently, the

5 https://www.sciencedirect.com/science/article/abs/pii/S0926580522001807

https://github.com/RealEstateCore/REC4/tree/main/Ontology/SHACL/Brick
https://www.sciencedirect.com/science/article/abs/pii/S0926580522001807

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 17 of 77

development teams for Brick and REC held multiple seminars67 showing how Brick and REC

can be used together in the same metadata model. This high level of interoperability was the

result of more than a year’s worth of development by the Brick and REC development teams.

REC 4, the most recent version of the REC ontology, incorporates Brick concepts directly in its

definition. Brick 1.3, the most recent version, likewise contains direct support for REC concepts.

We have developed interfaces between Brick and both Project Haystack tags and the ref-schema

(https://github.com/gtfierro/ref-schema) for interoperability between ontologies and other digital

models. The ref-schema has been incorporated into the current draft of the ASHRAE 223P

standard. The ref-schema includes support for relating parts of a linked data model (like a Brick,

REC or 223P model) to IFC models, BACnet networks and timeseries databases.

We are continuing to develop other extensions and have community involvement in several

areas, such as heat pumps and meters. The Brick v1.3.0 release notes are listed at

https://github.com/BrickSchema/Brick/releases/tag/v1.3.0 : this details the set of extensions and

changes to Brick. The Brick consortium approval process was utilized for the first time in order

for this release to take place.

6 https://memoori.com/will-a-unified-smart-building-metadata-standard-become-reality/
7 https://www.realestatecore.io/reccon22/

https://github.com/gtfierro/ref-schema
https://memoori.com/will-a-unified-smart-building-metadata-standard-become-reality/
https://www.realestatecore.io/reccon22/

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 18 of 77

Task 2: Develop Tools and Translators

The second major task that evolved through the three-year project was developing the tools and

translators between Brick and other data models.

Identify list of required interfaces with Brick

In order to consider a wide adoption of Brick, we identified general categories of end users who

would benefit from improved data schema translation across data, data models, and tools. Table

4 lists these potential end users, what goals each has, and what application each would use.

Table 4: General categories of Brick applications

User Application Goal Relationship to Brick Applicability

Source Data

Model:

Building

facilities

managers Operation

Improve building comfort

(reduce complaint), or

energy performance.

Get data out of existing

BAS/BMS into a

timeseries database for

ease in visualization,

analytics, and to aid in

performance

High priority

to help FM

control

buildings

better BACnet

Energy

services

providers Analytics

Improve building comfort

(reduce complaint), or

energy performance

(energy efficiency, reduce

demand charges, reduce

energy during peak

demand).

Get data out of existing

BAS/BMS in large

commercial (or from

networked

thermostats/whole

building data in small

buildings) in a format

that can be used for

third party/proprietary

tools analysis, FDD,

controls (EE, DR)

Lots of

existing

buildings--high

need to

improve EE,

implement DR,

and integrate

DER

BACnet

(using tools

such as “The

Building

Adaptor” for

large

commercial

buildings)

Energy

controls

engineers Controls

Develop controls

specifications (Guideline

36) to upgrade existing

buildings.

OBC and CDL,

ASHRAE 231p, Ctrl-

Flow

Upgrading

legacy building

controls

Open Building

Controls

(OBC)

Control

Description

Language

(CDL)

Energy

controls

engineers Controls

Test controls on existing

large commercial buildings

through models

Spawn of Energy Plus,

Modelica

Testing new

control

sequences BACnet

Energy

controls

engineers Design

Create Brick models from

IFC IFC translator

Relatively new

buildings, so

fewer in

number, but

perhaps

quicker to
IFC

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 19 of 77

make Brick

model.

Energy

controls

engineers Modeling

Create Brick models from

Modelica/Spawn of Energy

Plus/Energy Plus to be able

to design and test controls

Spawn of Energy Plus,

Modelica

Testing new

control

sequences BACnet

Project

Haystack users

Controls/

Analytics

Reuse analytics developed

using Haystack

Convert Haystack

schema to Brick schema

or Brick to Haystack

Value for

Project

Haystack users

Project

Haystack

Energy data

analyzers

(evaluation,

program

development,

verification,

benchmarking) Analytics Use BuildingSync

Translator to

BuildingSync

Value for

BuildingSync

users BuildingSync

Outline integration pathway for at least four data models

We identified four translations to focus on: BACnet to Brick, Modelica energy models, and

Control Description Language (CDL) control sequences to Brick, IFC to Brick, and Project

Haystack to Brick. We also considered BuildingSync to Brick. Figure 3 shows the various silos

of building data at various stages of the building lifecycle, from design, modelling, controls,

operation, and analytics.

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 20 of 77

Figure 3: Many different metadata standards and technologies are applied over the course of a
building’s lifecycle, but are relatively siloed and thus non-interoperable. We propose a method for
continuously mining a single, coherent semantic metadata from these various representations over
time.

BMS Point labels from a building management system are perhaps the most common source of

digitized building metadata, but also the most varied and least standardized. Point labels act as

identifiers for sensors, actuators, alarms, parameters and other “registers” in a SCADA or BMS

system; as a result, they may contain some semantic information such as the point’s location,

function and some related equipment. However, they are often unstructured, building-specific,

inconsistent, and reliant upon vendor-specific conventions for consistent interpretation. This

motivates the creation of tools and techniques which can extract structured and standardized

metadata—such as Brick—from these representations.

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 21 of 77

Although several research efforts exist to automate this process8 9, these techniques rely upon

heuristics and learned statistical techniques whose efficacy is hard to measure for a more general

population of buildings, whose labels may not be as regular. To this end, we have released a

dataset of building labels10 that seeks to make a broader diversity of building labels available for

researchers. We are also pursuing the creation of tools that are less automated but offer a

structured workflow for non-computer scientists to parse and convert their building label

metadata to Brick.

In collaboration with JCI and using data donated by UC Davis, we have been working on an

open-source tool which converts specially structured CSV files and spreadsheets to functioning

Brick models11. Rather than requiring users to be fluent in semantic web technology, these new

tools only ask that users can fill out a spreadsheet template. The tool integrates with the open-

source OpenRefine tool12, which presents users with a powerful web interface for cleaning and

parsing labels. After parsing labels in OpenRefine, users can export the data to a CSV file which

can then be converted into a Brick model. We have documented this workflow in a YouTube

video13. We have organized an informal working group of individuals from several “smart

building” startups, government bodies and other researchers to discuss and evaluate this tool and

other metadata conversion techniques.

We have used this technique to extract Brick models for more than 10 different buildings, all

with different point label structures, and are continuing to develop the tool.

The recently-released BuildingMOTIF tool14 from NREL also incorporates the CSV import

feature, inspired by the work in this project.

Industry Foundation Classes (IFC) is a standard format and data model for building

information modeling, designed for the exchange of data related to the design and construction

of a building. The IFC standard describes many common types of HVAC and lighting equipment

as well as sensors. However, because of the focus on the design and construction phases of the

lifecycle, IFC does not explicitly represent the context or configuration of these entities within

the structure of their respective subsystems (for example, is a particular fan a supply fan or an

exhaust fan?) This information can be inferred by expert inspection of an IFC model, but cannot

be easily determined in a programmatic manner.

8 Jason Koh, Bharathan Balaji, Dhiman Sengupta, Julian McAuley, Rajesh Gupta, and Yuvraj Agarwal. 2018.

Scrabble: Transferrable Semi-Automated Semantic Metadata Normalization using Intermediate Representation. In

The 5th ACM International Conference on Systems for Built Environments (BuildSys ’18), November 7–8, 2018,

Shenzen, China. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3276774.3276795
9 Bhattacharya, Arka A., et al. "Automated metadata construction to support portable building applications."

Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built

Environments. 2015.
10 Gabe Fierro, Sriharsha Guduguntla, and David E. Culler. 2019. Dataset: An Open Dataset and Collection Tool for

BMS Point Labels. In The 2nd Workshop on Data Acquisition To Analysis (DATA’19), November 10, 2019, New

York, NY, USA. ACM, New York, NY, USA, 3 pages. https://doi.org/ 10.1145/3359427.3361922
11 https://github.com/gtfierro/brick-builder
12 https://openrefine.org/
13 https://youtu.be/LKcXMvrxXzE
14 https://github.com/NREL/BuildingMOTIF/

https://doi.org/10.1145/3276774.3276795
https://github.com/gtfierro/brick-builder
https://openrefine.org/
https://youtu.be/LKcXMvrxXzE
https://github.com/NREL/BuildingMOTIF/

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 22 of 77

Green Building XML (gbXML) is an XML-based data exchange format for building

information modeling, similar to IFC. While it only represents simple building geometry

compared to IFC, it can represent a variety of HVAC and Lighting equipment and — importantly

— groups related equipment, rooms and zones together. This kind of contextual information

permits greater inference of Brick relationships than IFC. Both gbXML and IFC are common

export formats for BIM tools such as Autodesk Revit.

BuildingSync is an XML-based schema designed to capture energy audit data in line with

ASHRAE Standard 211. The standard requires the reporting of high-level operational parameters

of the building (floor area, occupancy classification, operating hours, etc.), primary system

information (heating, cooling, lighting, process loads, etc.), as well as historical energy

consumption, benchmarking information, and target performance objectives. This information is

then used by the energy auditor to provide the building owner with recommendations for

achieving energy reduction goals or mandates. Energy audits, such as those enabled by

BuildingSync, are often conducted at various points in a building’s lifecycle. For example, New

York City’s Local Law 87 requires an energy audit to be performed every 10 years for existing

buildings over 50,000 square feet. This strategy is seen as a key feature in many Building Energy

Performance Standards (BEPS) and other mandates issued by cities to reduce the energy

footprint of the existing building stock.

Modelica Buildings Library and Control Description Language (Modelica/CDL): Modelica

is a declarative, equation-based modeling language used to model engineered systems. In

Modelica, components are represented by modular models coupled to each other through

connectors to form systems. Connectors can represent input/output ports for control signals, or

physical ports such as for representing a flange of a valve through which fluid flows. The

Modelica Buildings Library contains component and system models for building and district

energy and control systems. The Control Description Language (CDL) is a subset of Modelica

used to express control sequences for building automation systems in a vendor-independent

format. CDL aims at enabling the digitization of the design, specification, deployment and

verification of building control sequences. CDL sequences can be integrated with building

models and the Modelica Buildings library already contains CDL representations of high-

performance HVAC control sequences (e.g., ASHRAE Guideline 36). Simulations of these

models can aid in comparing the performance of different control sequences, testing their correct

specification, and commissioning their correct implementation in buildings.

Project Haystack (Haystack) is a popular tag-based data model that describes equipment and

points (data sources) in buildings for use during the operational phase of a building. Haystack

does not formally define how well-known concepts should be described. As a result, tag usage is

inconsistent between Haystack models, which limits the interpretability of the resulting model

and the extent to which it can be integrated with other metadata sources. Recent work

ameliorates these issues through a method for automatically aligning Haystack tags with existing

formal definitions.

Brick is built over the extensible RDF graph-based data model, which can be easily extended to

include additional properties and concepts. The RDF data model organizes information into

triples: 3-tuples of a subject, predicate and object. The subject and object represent classes

(groups of entities with common properties) or entities (instances of classes); the predicate

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 23 of 77

represents a relationship between the subject and object or a property of the subject whose value

is the object.

The proposed approach to continuous metadata integration, represented in Figure 4, is as follows.

A metadata source is a digital representation of a building whose structure, syntax and

semantics are informed by some metadata standard or data model. The representation may

change over time, e.g., to add additional detail during commissioning or to reflect the impact of

repairs and retrofits. A driver is a software process that produces Brick metadata from an

underlying metadata source. For structured or standardized metadata sources such as

BuildingSync and IFC models, this may be accomplished through direct translation of the

source’s concepts and structures to Brick. For less structured and ad-hoc sources such as

Haystack models and BMS labels, a driver may infer Brick metadata through a statistical or

heuristic-based approach. The driver continually produces Brick metadata from the most recent

version or “snapshot” of the underlying metadata source, even as that source changes. The driver

places no requirements on how the Brick metadata is produced or inferred, but represents the

Brick metadata as a set of RDF triples. An integration server is a logically centralized process

that consumes Brick metadata from a collection of drivers and produces a unified Brick model

representing the union of the collected metadata. Because different metadata sources are

traditionally created at different times and by independent stakeholders, the unified metadata is

likely to contain mistakes, disagreements and inconsistencies. To address this issue, the

integration server incorporates a novel reconciliation algorithm (analogous to the “merge”

operation in Git) that attempts to resolve the differences between the metadata reported by the

drivers. The integration server maintains a Brick model which is accessible by applications and

other external services such as Mortar.

Figure 4: Overview of the proposed approach: drivers interface directly with existing metadata sources
stored in local file systems, or accessed via file shares or networked services. Drivers continuously
publish inferred Brick metadata to a central server, which produces a unified model.

Drivers are software processes that produce Brick metadata from an underlying metadata source.

Drivers report the Brick metadata to the integration server via a metadata synchronization

protocol, described below. The metadata synchronization protocol decouples the method of

inferring or producing Brick metadata from how that metadata becomes integrated into the

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 24 of 77

authoritative model. This allows the proposed system to incorporate new metadata sources and

novel methods of Brick metadata inference.

Figure 5 describes at a high level the operation of a driver and its interaction with the integration

server per the metadata synchronization protocol. The protocol operates over HTTP. The driver

POSTs a list of JSON messages to the integration server when the metadata source changes.

Each message contains the Brick metadata inferred for an entity (virtual, logical or physical

“thing”) along with the following fields:

• id: a name or other identifier for the entity, as given by the metadata source

• raw: identifies the encoding (e.g. JSON, XML) and content of the original metadata that

defined this entity. May contain additional metadata not expressed in Brick

• source: identifies the metadata source

• timestamp: denotes the time at which the metadata source was read, corresponding to a

consistent “version” of the underlying metadata

• triples: a list of RDF triples constituting the Brick metadata produced from the raw

record

Figure 5: Example record published by the BuildingSync driver, showing the original metadata (raw)
and the inferred Brick metadata (triples).

The server saves all received messages in a local database, indexed by the timestamp field. When

the server performs the reconciliation algorithm to produce a unified metadata model, it by

default only considers the messages corresponding to the most recent timestamp per driver. By

extension, the server can also produce a unified metadata model for any point in the Brick

model’s history, provided a driver was publishing metadata at that time. This allows applications

to access the history of changes in a building, but through the interface of a standardized, unified

representation rather than an ad-hoc collection of diverse metadata sources.

The triples field can contain arbitrary Brick metadata to be relayed to the server. Typically, this

involves type information (vav1 is a brick:VAV), system composition information (vav1 is

downstream of ahu1), telemetry association (vav1 has temperature setpoint temp_sp1) and

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 25 of 77

location information (tstat1 is in Room 410). The triples may also define extensions to the Brick

ontology, such as to describe additional properties of an unusual device or point.

Drivers / Metadata Source

We implement the following drivers for integrating several common building metadata standards

and data models into a Brick model. For each driver, we explain the structural and semantic

mapping between the metadata source and Brick. We only focus on a particular version of each

metadata source below. The architecture permits the development of separate drivers for

different versions of each metadata source.

BuildingSync: Buildings represented via the BuildingSync schema are captured in an XML

document; a single document may contain multiple buildings. Elements in a BuildingSync

document describe systems (e.g., the kinds of heating and cooling subsystems in an HVAC

system), properties of systems (e.g., expected energy consumption, cooling or heating capacity)

and properties of buildings (e.g., year of construction, floor area). The children of a given

element in the document describe both the properties of that element as well as relationships to

other elements. The driver uses the following approach to map BuildingSync elements to Brick

entities: First, the driver uses XPath expressions to find elements with certain attributes or

properties that match a Brick class definition. Then, this type is refined by searching for

additional properties that may further elucidate the type of the entity described by that element.

For example, the BuildingSync auc:Chiller element aligns with the Brick brick:Chiller entity

type. If the auc:Chiller element in the BuildingSync document contains a auc:ChillerType

property with the value “Absorption”, then the driver can infer the more specific Brick class of

brick:Absorption_Chiller.

The initial type mapping exercise identified 27 direct concept mappings, primarily for locations

and equipment types. BuildingSync captures limited information pertinent to point information

(in comparison to Haystack and CDL / Modelica), although certain limits and set points may be

captured.

Project Haystack: Popular Haystack implementations can export a Haystack model as a

collection of documents. Each document contains the tags and key-value pairs that describe each

Haystack entity; Haystack entities represent sites, points and pieces of equipment. As the

Haystack model is updated and maintained, the driver can request additional exports in order to

update the produced Brick metadata.

The structure of a Haystack model has a straightforward mapping to Brick: each Haystack entity

corresponds to one or more Brick entities, and the generic links between Haystack entities

(called refs in Haystack parlance) correspond roughly to Brick relationships. However, because

the semantics of a Haystack model are not well-defined, the precise types of Haystack entities

and relationships between them must be inferred. The Haystack driver adopts the inference

engine described in (Fierro et al, 2019) to produce a Brick model from an exported Haystack

model.

The driver operates as follows: the driver loads the most recent exported Haystack model into

memory and partitions it by the documents corresponding to each Haystack entity. For each

entity, the driver uses the inference engine from (Fierro et al, 2019) to produce a set of RDF

triples representing the Brick metadata for that entity. Each original Haystack document and the

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 26 of 77

inferred triples are packaged into the standard message schema, using the value of the id field

from the Haystack document as the name of the entity. The set of these messages is then

transmitted to the integration server.

Modelica/CDL: Modelica and CDL models consist of a set of connected objects; these can be

exported to a JSON document using the modelica-json tool. The JSON export contains detailed

information about building components, their connections and the control sequences. Control

sequences in CDL and Modelica models of the HVAC system can also embed Brick information

(and other semantic information) as annotations, which are also included in the JSON export

when they are made available in the source model. The driver operates as follows. From a JSON

export, the driver first extracts all the Brick semantic information from the annotations, if

present. The next is an inference step, where the translator uses the Modelica class of each

instantiated object and assigns a Brick type if such a mapping exists. This treats each Modelica

object as a Brick entity: for example, every instance of the Modelica class

Buildings.Fluid.Sensor.Temperature can be translated into a Brick:Temperature_Sensor entity.

Then, the driver traverses the connect statements in the Modelica model to extract the sequential

(brick:feeds) and compositional (brick:hasPart) relationships between objects and add these to

the corresponding Brick entities. connect statements in the Modelica model can also provide

spatial metadata such as rooms and thermal zones. Lastly, the driver uses the CDL representation

of control sequences to extract the inputs and the outputs of controllers in order to identify

brick:hasPoint relationships between equipment, actuators and measurement sensors. Although

there is a good deal of semantic metadata that can be obtained from Modelica/CDL models,

because the models target simulation, they also contain information that cannot be directly

represented in a Brick model. This includes properties such as heat transfer parameters for a

cooling coil.

Industry Foundation Classes. For IFC, the data format description includes the EXPRESS file

format and requires a special parser. Colleagues at BuildingSmart have an IfcOWL project with

EXPRESS to RDF converter2.15 We may also look at OpenStudio. The mapping consists of a

few steps: instantiate location and zone entities from IFC, instantiate points from IFC, and record

each IFC document.

After the release of IFC4, Dr. Fierro and JCI worked with the developers of BlenderBIM (an

open-source IFC editor and visualizer) to incorporate support for Brick in a release of the

BlenderBIM plugin16. This included support for (a) linking a Brick model to an IFC model (and

vice versa), and (b) automatically inferring Brick metadata for IFC entities (and vice versa).

Metadata Reconciliation

Because the set of metadata sources for a building are developed independently over time, they

may present incomplete or incompatible perspectives on the building, its subsystems and data

sources. We propose a reconciliation algorithm for merging the Brick metadata proposed by a set

15 https://technical.buildingsmart.org/standards/ifc/ifc-formats/ifcowl/

16 https://twitter.com/BlenderBIM/status/1461098241970384898

https://technical.buildingsmart.org/standards/ifc/ifc-formats/ifcowl/
https://twitter.com/BlenderBIM/status/1461098241970384898

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 27 of 77

of drivers into a single logically and semantically valid model. This unified model can be used to

configure portable applications. The algorithm is executed at the integration server.

First Stage: Record Linkage. The first stage of the algorithm performs two kinds of record

linkage on the associated names or labels of each entity. The record linkage step uses traditional

string matching techniques to produce clusters of entities based on the names of those entities.

The name of an entity can be derived from string-valued properties such as rdfs:label or the URI

of the entity if no string-valued properties are found. The goal of this step is to use the semantic

information sometimes encoded in entity labels as one heuristic for linking. Due to different

naming conventions between metadata sources, there can often be greater similarity scores

between entities from the same source than between entities of different sources. For this reason,

the algorithm assumes that all entities reported by a metadata source are distinct and only

clusters entities from different metadata sources.

The second record linkage step leverages semantic information from the proposed types of each

entity to do type-aware clustering. The algorithm identifies all entities that have a proposed type

that is a Brick class (entities with an rdf:type property with a value that is a class from the Brick

ontology) and associates with the entity all of the Brick classes which are equal to or are

superclasses of the given type. If two or more sources have the same number 𝑘 of entities of a

given type, the algorithm produces 𝑘 clusters containing one entity from each source that have

the highest pairwise similarity between their names. The clusters produced by this second step

are added to the set of clusters produced by the first step.

Second Stage: Graph Union. The second stage of the algorithm takes as input the clusters of

entities from the first stage and builds and validates the graphs formed by merging their

associated triples. The algorithm also adds statements to the Brick model to associate the

different identifiers for the same entity (this uses the owl:sameAs property).

Unlike many other metadata sources, Brick is built over formal logic. This allows continuous

validation of a Brick model as metadata is added to it, which helps the algorithm produce a

logically valid model through the reconciliation process. The logical validation is implemented

by a process called an OWL-RL reasoner; this process also generates logical consequences of the

statements in a Brick graph. The reasoner examines the graph 𝐺 for each cluster and produces a

set of exceptions. These exceptions indicate that either the entities in the cluster are not

equivalent, or the metadata associated with those entities is incorrect. Examples of exceptions

include:

• incompatible entity types, e.g., if a cluster contains entities of two types which are

disjoint

• incompatible relationships, e.g., if the values of an entity’s properties and relationships do

not match the definition of those properties and relationships

• semantic “sniff tests”: qualities of the Brick graph that are not logical violations but may

indicate deeper issues. The primary example of this is an entity’s types should all be

subclasses or superclasses of each other.

When exceptions occur, the algorithm can optionally re-cluster entities using more selective

thresholds, or, as in the implemented prototype, it can request human input on the failing cluster.

The algorithm then repeats the graph union step. These steps are iterated until no exceptions are

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 28 of 77

logged, after which all of the clusterproduced graphs are merged into a single graph. The

algorithm performs one last verification pass on this unified graph; if this passes, the unified

graph is returned as the authoritative metadata model.

Human-aided Disambiguation. When the algorithm logs exceptions for the entities in a given

“bad” cluster, the algorithm can ask for external input on how to proceed. First, the algorithm

asks if it should split the bad cluster into two or more smaller clusters; this can be performed

automatically by adjusting the clustering hyperparameters or manually by specifying the new

clusters explicitly. If reclustering occurs, then the algorithm begins another iteration of the graph

union phase above using the new clusters.

If reclustering does not occur, then the algorithm asks for manual resolution of the graph

contents before proceding to the next cluster. This typically involves choosing which Brick class

to assign to a group of entities, but may also require editing properties and relationships of

entities.

We illustrate the behavior of the algorithm with the following example. Consider two metadata

sources 𝑠ℎ𝑎𝑦𝑠𝑡𝑎𝑐𝑘 and 𝑠𝑏𝑠𝑦𝑛𝑐 which correspond to a Project Haystack and BuildingSync

representation of a building, respectively. The drivers for these sources produce the Brick

metadata listed in Figure 6. The algorithm begins by clustering the entities. The first string

matching phase places bldg:bsync-meter and bldg:ph-meter into the same cluster because their

labels are sufficiently similar (“main-meter” vs “Main Meter”). The labels bldg:bsync-ahu-1 and

bldg:ph-rtu-1 are not grouped because the labels are too dissimilar.

Figure 6: Example Brick metadata produced by BuildingSync and Project Haystack drivers. The
rdfs:label property denotes the original name or identifier of the entity in the metadata source.

The second type-aware phase examines the Brick-defined classes for the remaining entities.

Using the Brick ontology, the algorithm infers that because brick:Air_Handler_Unit is a

superclass of brick:Rooftop_Unit, each source has metadata for one air handler unit. Because

each source has the same number of instances of that type, the algorithm clusters those entities

by label similarity. This results in bldg:bsync-ahu-1 and bldg:ph-rtu-1 being placed in the same

cluster. The difference in specificity between the original sources is due to the fact that

BuildingSync does not differentiate between subclasses of air handler units, but Haystack does.

The algorithm proceeds by unifying the triples for the entities in each cluster and validates the

logical and semantic soundness of the resulting graph. In this simple example, the algorithm only

needs to verify that the types of each pair of entities are compatible. This is true:

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 29 of 77

brick:Air_Handler_Unit is a superclass of brick:Rooftop_Unit and brick:Power_Meter is a

superclass of brick:Building_Power_Meter. Finally, the two graphs are merged into a single

Brick model (Figure 7).

Figure 7: The inferred unified metadata model for the triples in Figure 5. Note that the more specific
type for each entity was chosen and that extra properties from the original source are carried through.

Evaluation

We evaluate the proposed approach by implementing a fully functional prototype and measuring

aspects of its execution on a set of real and artificial sites. As structured, digital representations

of buildings become more standardized and widely available, we envision this framework to

serve a vital role in integrating this information over time. The prototype is open-source and is

available online under a permissive license at https://github.com/gtfierro/shepherding-metadata.

Models and Sites

Table 5 lists the sites with more than one available metadata source that were used through the

evaluation. The Carytown site is drawn from the set of example Project Haystack sites. We

developed a BuildingSync model for the Carytown based on available metadata. The "DOE

Medium Office" is the reference building for a new construction, medium office in Chicago,

United States that has been described in the set of U.S. Department of Energy Commercial

Buildings Benchmark. We used the Modelica model that had been developed for a single floor

(four perimeter zones and one core zone) of this building as part of the Modelica Buildings

library and developed Project Haystack and BuildingSync representations for this building.

Table 5: Sites and Metadata sources for evaluation

In order to understand the behavior and performance of the drivers, we assembled a set of

publicly available models for each of the targeted metadata sources. In total, we measured 9

Haystack models, 18 BuildingSync models, and 16 gbXML models. These models are not for the

same set of buildings. Instead, the population of buildings for each metadata source offers an

empirical measurement of Brick metadata availability.

Driver Implementation

We developed three drivers for extracting Brick metadata from existing metadata sources. The

prototyped drivers are all implemented in Python 3 and are built over a simple framework that

provides:

• an API for interacting with the metadata synchronization protocol

https://github.com/gtfierro/shepherding-metadata

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 30 of 77

• an embedded web server for viewing and extracted records and inferred Brick metadata

from an executing driver

• tools for detecting and reacting to changes in metadata sources.

This set of features reduces the developer overhead of producing a driver by abstracting away

common elements of the protocol and implementation. The embedded web server presents a

simple read-only JSON API that permits a user or automated tool to debug the driver’s output

without the use of an external server. Although presented prototype is implemented in Python, its

implementation is short (∼100 LOC) and uses modules from the standard library, so there are

few technical barriers to implementing its functionality in other languages.

We now review the implementation of each of the three drivers to understand how well the

metadata synchronization protocol fulfills the inference needs of existing metadata sources.

Project Haystack Driver: The Haystack driver is built over the inference engine described in

(Fierro et al, 2019) and available as part of the opensource brickschema Python package. The

driver only required a few lines of code to read a JSON export of a Haystack model, feed this to

the inference engine, and extract the inferred Brick metadata. The division of a Haystack model

into a set of entities is natural: each Haystack document becomes one or more Brick entities,

with relationships between them. Due to the high degree of overlap in the modeling domain of

Haystack and Brick models, most of the Haystack metadata is translated into its Brick

equivalent. One exception is the timeseries information embedded in Haystack models (such as

the current value and timestamp of a point), which has no direct representation in Brick.

BuildingSync Driver: The BuildingSync driver operates by using XPath expressions to

conditionally extract parts of a BuildingSync XML document and translate the information to

Brick metadata. The driver accepts a list of BuildingSync-to-Brick mappings in tabular form,

making the driver easy to extend with additional mappings. However, the amount of Brick

metadata obtained from a BuildingSync model is limited compared to what can be inferred from

a Modelica or Project Haystack model. This is due to a difference in scope: BuildingSync

describes properties and performance characteristics of building systems, rather than the

individual components and relationships addressed by other metadata sources. As a result, a

BuildingSync model may be a better target for exporting data from a unified Brick model.

gbXML and IFC: Both gbXML and IFC perform data exchange during the design, construction

and commissioning phases of a building’s lifecycle. However, it was much more straightforward

to extract Brick metadata from gbXML models than IFC models; this is supported by the higher

degree of Brick metadata extracted from gbXML models as seen in Figure 8. (Figure 8 shows the

distribution of the number of Brick triples that each driver produced per entity across all of the

buildings). This is for two reasons. Firstly, although newer versions of IFC (e.g., IFC 4.1) can

provide more equipment and sensor information which is relevant to Brick, we only had access

to older models (targeting IFC 2x3) which do not have as broad a vocabulary. Secondly, the

flexibility and generic approach of the IFC data model results in a complex schema in which

related pieces of information are often separated by many intermediate objects. The relative

simplicity of gbXML resulted in a more complete metadata driver.

Modelica/CDL: The Modelica/CDL driver initially attempts to assign Brick types to objects in

the Modelica model based on its the Modelica class. Next, Brick relationships (brick:feeds,

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 31 of 77

brick:hasPart, brick:hasPoint) are extracted by traversing the different connect statements in the

model and from the inputs and outputs of CDL blocks. However, as with any programming

language, Modelica allows the developers to create custom components and models that do not

use the Buildings library templates and conventions. In such cases, the type mappings mentioned

earlier might fail and the driver has to rely on heuristics on the element names, comments and

Brick-specific annotations included in the models to extract information.

For instance, Modelica declarations are of the form “className instanceName comment;”.

Hence from the declaration Buildings. Fluid.Actuators.Dampers.Exponential damRet(...) "Return

damper"; the driver can extract the brick type (brick:Damper) from the Modelica class name, and

it can infer the location (i.e., the return section of the AHU), from the Ret string in the instance

name damRet or from the comment, allowing to refine the Brick type to brick:Return_Damper.

Although Modelica/CDL models can provide a significant amount of semantic metadata, there

are still gaps that have to be addressed (modeling fire equipment, thermostat equipment etc. in

Modelica, representing CDL control specifications in Brick etc.). We are working with the

developers of the Modelica Buildings library to continue the development of this driver to

address these gaps and to possibly encode the Brick mappings directly in the library. A key

update is the explicit inclusion of semantic information as annotations so that the Modelica/CDL

translator can extract more granular information (e.g.: Brick:Return_Air_Temperature_Sensor

instead of a simple Brick:Temperature_Sensor). The syntax of these annotations is undergoing

review as part of ASHRAE 231p committee. Once finalized, it can support providing more

information about the points and equipment present in the energy models and control sequences.

Figure 8: The distribution of the number of triples inferred per record for each driver.

To compare the behavior of each of the drivers, we executed each driver on a collection of

publicly available metadata sources and measured the number of records and triples each

produced. Recall that a record is a Brick entity represented in a metadata source, and that triples

each contain two entities and a relationship between them. Figure 9 shows the distribution of the

total number of triples obtained for each model.

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 32 of 77

Figure 9: The distribution of the total number of triples inferred each driver. Note the log-scale on the
X axis

Evaluation of Reconciliation Algorithm.

To develop an understanding of how the algorithm behaves, we collected sites with more than

one metadata source and executed the system end-to-end to produce a unified metadata model

for each site. The list of sites is contained in Table 6.

Table 6 contains the results of executing the reconciliation algorithm on the metadata from each

site. The Union column contains the proportion of triples in the unified model that were

contributed by each source; this includes redundant triples. The Unique column contains the

proportion of triples in the unified model that came only from that source. The Common column

contains the proportion of triples that came from all of the available metadata sources. Between

these quantities, we can understand the diversity of the metadata from each of these sources and

how complementary they are to one another.

Table 6: Results of executing the reconciliation algorithm on the metadata from each site.

Although there are only a few sites and models, we can observe some general behavior about the

metadata extracted from the available drivers. First, the metadata from Haystack and

BuildingSync drivers are mostly complementary and there is little overlap between them. This

aligns with the respective scopes of each metadata source: BuildingSync describes holistic

properties of systems that may not be covered by Project Haystack models (at least in a standard

way). Secondly, Modelica drivers provide more Brick metadata than Haystack drivers. This also

aligns with the detailed treatment of HVAC systems found in Modelica models compared with

the coarse-grained modeling found in Haystack.

For all sites, the metadata common to all drivers was very low. This is to some extent due to the

completeness of the drivers at time of writing, but is also limited different levels of detail and

different perspectives of a building that are communicated by different metadata sources. The

metadata from each driver was also completely unique. Even there is some overlap in the entities

described by each driver, no two drivers actually produced Brick metadata at the same level of

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 33 of 77

detail or level of completeness. For example, one sensor was identified as a brick:Flow_Sensor

by the Modelica driver and a brick:Return_Air_Flow_Sensor by the Haystack driver.

Demonstration of three interfaces

In the third year, we reported on the demonstration of at least two of these interfaces: Modelica-

Brick, BACnet-Brick, and IFC-Brick.

Demonstration of Modelica-Brick Translator

The Modelica-Brick translator takes as input a JSON export of a Modelica/CDL model (the

JSON export has been generated using the modelica-json tool). The translator treats each

instance of a Modelica model in the document as a Brick entity, and assigns a Brick class to

entities whose class is defined in the Modelica Buildings Library. To infer relationships between

these entities, the translator examines the ports for each Modelica instance; these are connected

by connect statements to other instances of Modelica models. From these statements, it can infer

the Brick relationships brick:feeds, brick:hasPart and brick:hasPoint.

We demonstrate the operation of the Modelica-Brick translator using the publicly available

Modelica instance of the DOE Medium Office. It is a reference building for a new construction,

medium office in a large U.S. city that has been described in the set of U.S. Department of

Energy Commercial Buildings Benchmark. We used the Modelica model that had been

developed for a single floor (four perimeter zones and one core zone) of this building as part of

the Modelica Buildings library. The translator we developed has been published at:

https://github.com/gtfierro/shepherding-metadata/.

We developed a web server that allows us to interact with the output of the translator. In this

example, we hosted the server at http://localhost:8081. Using this application, Figure 10 shows

the list of elements extracted from the Modelica model (using the endpoint

http://localhost:8081/ids). Now, Figure 11 shows in detail the relevant Brick triples for a

particular element, ‘heaCoi’, which is the heating coil of the air handling unit

(http://localhost:8081/id/heaCoi). Now the actual representation of the heaCoi in the model and

the graphical representation of the Brick triples are shown in Figure 12 and 13. More details

about the software, the methodology and the demonstration can be found in the papers published.

https://github.com/gtfierro/shepherding-metadata/

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 34 of 77

Figure 10: List of elements extracted from Modelica

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 35 of 77

Figure 11: The list of triples relevant to the heaCoi element in the Modelica model

Figure 12: A partial view of an air handler unit in the Modelica model, focusing on the heaCoi element

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 36 of 77

Figure 13: Corresponding Brick instance of the components shown in Figure 12

Demonstration of BACnet-Brick Interface

We have developed an extension to the open-source py-brickschema library17 which uses the

BAC0 library to discover BACnet networks, scan for BACnet objects, and produce a basic Brick

model which contains relevant metadata about each of the BACnet objects. Figure 14 contains an

example of what this basic Brick model may contain.

Figure 14: Snippet of a discovered BACnet network expressed as a Brick model

The produced Brick model uses the recently-developed ref_schema18 to capture the relationship

between instances of the Brick I/O Point class (including sensors, alarms, setpoints, etc) and the

BAcnet objects they represent. This initial model does not attempt to classify each of the

discovered BACnet objects, but does contain all of the relevant metadata for each BACnet

17 https://github.com/BrickSchema/py-brickschema/
18 https://github.com/gtfierro/ref-schema

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 37 of 77

object. This can be accessed by downstream tools to classify objects as Brick points or extract

other useful information such as system composition and topology.

Embedding the object identifier and device address inside the Brick model makes it possible for

different tools to use BACnet and Brick together. For example, a tool could automatically

determine which BACnet points to trend by querying a Brick model. Another tool could retrieve

the current value of a Brick point by accessing the “present-value” property on the linked

BACnet object when necessary.

To facilitate inferring the Brick types for each of the discovered points, we have created a web-

based tool for inferring Brick point types from the labels gathered from BMS systems. The tool

is available online and is open-source19. It implements the W3C Reconciliation API, which

works with other data cleaning tools like OpenRefine20. We have also produced a YouTube video

showing how OpenRefine works with our web tool to produce a Brick model21. We anticipate

that the output of the BACnet-Brick interface could work with other tools and techniques such as

The Building Adapter.

Demonstration of IFC-Brick Interface

We have also produced initial work on interfacing between the Industry Foundation Classes

(IFC) BIM standard and Brick. This consists of two components.

The first is a mapping between IFC concepts and Brick classes that facilitates determining the

corresponding “types” of an entity in both standards. This is reinforced by the development of

“foreign keys” between an IFC and Brick model using the “ref” schema --- any Brick entity can

point to its corresponding representation in an IFC model. The upshot is Brick does not have to

duplicate any of the semantic information which is best captured by an IFC model, such as

geometry. Instead, consumers of a Brick model can access an IFC model in a standard way to

retrieve the information they require.

The second component is an extension of the open-source BlenderBIM plugin22 for Blender

which enables the co-authoring of a Brick model while an IFC model is created. A simple drop-

down suggests the most appropriate Brick type for each IFC entity and will maintain the Brick

model for the user. The plugin also leverages IFC’s native “library” features to populate the

bidirectional link from entities in an IFC model to their corresponding representations in a Brick

model. In addition, the plugin leverages traversal algorithms over the IFC model to populate

some of the relationships between Brick entities.

Demonstration of Haystack-Brick translation

We have developed and demonstrated a translation from Project Haystack to Brick, and released it
in Brick 1.1. Table 7 describes the results from inferring Brick entities from five tagged Haystack
entities.

19 https://github.com/BrickSchema/reconciliation-api
20 https://openrefine.org/
21 https://www.youtube.com/watch?v=LKcXMvrxXzE
22 https://blenderbim.org/

https://blenderbim.org/

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 38 of 77

Table 7: Results from Haystack to Brick Translation

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 39 of 77

Task 3: Develop an Open Source Analytics Testbed (Mortar)

The third task of the project was to develop a testbed filled with data and Brick models from

many existing buildings in order to test analytic algorithms across these data.

General architecture of platform

We have designed and implemented an open-source analytics platform named Mortar, which

integrates expressive semantic metadata expressed in Brick with high-performance timeseries

storage and retrieval. Through the Mortar API, applications describe their data requirements

using queries against Brick models. Brick queries allow applications to describe the context of

the requested data rather than the names of specific data sources which. Thus, Brick queries can

be re-used across buildings without needing to be rewritten. This reduces the effort in running a

Mortar-based analytics application across multiple buildings.

Figure 15 below contains a sample interaction with the Mortar API from the Python

programming language. The program describes and retrieves a dataset containing a year of data

for air flow sensors and setpoints as well as their associated equipment (such as a VAV) and

HVAC zone.

Figure 15: Sample Mortar interaction

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 40 of 77

Figure 16: Mortar architecture

Figure 16 describes the architecture of the Mortar platform. Mortar integrates with HodDB

(https://github.com/gtfierro/hoddb), a compact database for Brick models, to provide storage of

Brick models and to serve queries against them. Mortar also integrates with BTrDB

(https://github.com/BTrDB/btrdb-server), a high-performance timeseries database, to provide

storage of collected telemetry: values of sensors, setpoints, meters and so on. The Brick models

in HodDB incorporate pointers to the timeseries data in BTrDB, so that the results of a Brick

query can be used to retrieve the relevant data from the other database.

The core of Mortar is a declarative API frontend—providing authentication, authorization and

error reporting—and a scalable query execution engine that evaluates client queries against the

backend HodDB and BTrDB databases.

The Mortar platform is implemented and deployed at https://mortardata.org/. We have also

published a code repository demonstrating how many features of the Mortar platform could be

provided on modern cloud platforms (https://github.com/gtfierro/mortar-parquet-support) using

the Apache Parquet data format to efficiently store data.

https://github.com/gtfierro/hoddb
https://github.com/BTrDB/btrdb-server
https://mortardata.org/
https://github.com/gtfierro/mortar-parquet-support

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 41 of 77

Develop the testbed

A testbed for building data must support the storage and retrieval of historical timeseries data

and its metadata in order to enable the development and execution of applications over the data.

Metadata describes properties of each timeseries data source and places it in a larger context.

This may include the type or nature of the data source, or some representation of its physical or

logical location relative to the structure and composition of the building and its subsystems.

This set of requirements poses a set of challenges for an effective testbed. The first challenge is

how to handle the diverse family of data models and metadata representations that define

different perspectives on a building. The testbed should standardize on a single data model that

can capture the salient aspects of these other representations—this will ensure that metadata can

be queried and traversed in the same manner regardless of which metadata sources are available

for a particular building.

Figure 17: Brick data model

The second challenge for an effective testbed is how to provide a unified query interface over the

timeseries and metadata data models, which can be quite different. Crucially, the query interface

should support the retrieval of timeseries data that matches metadata predicates. This requires

some linking between the two data models which may reside in different databases.

Because Brick is a graph-based data model, it is the most natural to query it with a graph query

language such as SPARQL, which returns to the user the set of nodes and edges in the graph that

match user-provided patterns (Figure 18). In contrast, timeseries databases are more naturally

queried by handing the database a list of data sources, a temporal extent, and optionally

aggregations or window functions. The Brick Point class describes sources of digital data in a

building; instances of the Point class represent a particular sensor, setpoint, command, alarm or

other data source. The names of the Point instances in a Brick model can therefore serve as

foreign keys into a timeseries database (Figure 17). This leads us to a potential design for a

unified query interface: accept queries against either data model (timeseries or graph) and

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 42 of 77

convert the results into relational tables that can then be joined using the names of Point

instances.

Figure 18: Schematic of the graph query process

Mortar consists of a timeseries database, a Brick database, and an API frontend which performs

the necessary federation of queries. These three services are managed using Kubernetes, a

container orchestration framework that facilitates the reactive scaling of the backend

computation in response to load in addition to continuous monitoring and crash recovery. Mortar

supports two timeseries databases: BTrDB and TimescaleDB. BTrDB, developed at Berkeley

and now developed at PingThings, provides best-in-class performance and compression for the

storage and retrieval of timeseries data and natively supports Kubernetes. However, it only

supports the use of UUIDs as timeseries identifiers, so for the BTrDB backend, Mortar annotates

Brick point instances with their corresponding uuids. TimescaleDB, built over the well-

established Postgres RDBMS, is an open-source timeseries database that provides good

performance and the ease-of-use benefits of SQL as a query language, in addition to the ability

of using Brick point names as foreign keys. Mortar uses HodDB for storage and querying of

Brick models; HodDB23 (https://github.com/gtfierro/hoddb) is an open-source RDF database and

SPARQL query processor that executes Brick queries 3-700x faster than existing open source

and commercial offerings, which often take seconds or even minutes to execute a single query on

a moderately-sized Brick model. Below, we describe the architecture of Mortar as it relates to the

use of HodDB and BTrDB.

23 Gabe Fierro and David E. Culler. 2018. Design and Analysis of a Query Processor for Brick.ACM Trans.

SensorNetw.1, 1, Article 1 (January 2018), 25 pages.

https://github.com/gtfierro/hoddb

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 43 of 77

In order for the Mortar24 platform to handle the current and projected scale of requests, we have

designed the Mortar query processor around a SEDA architecture. The SEDA architecture is

characterized by distinct process stages connected by explicit queues. Each SEDA stage has a

number of parallel workers who take jobs from the stage’s incoming queue, do some processing,

and insert the job into the stage’s outgoing queue. When a stage is overwhelmed – such as due to

a lack of compute or memory resources – its incoming queue fills up. This means that the prior

stage’s workers will be unable to place their finished jobs in the incoming queue for the next

stage, which influences the prior stage’s incoming queue, and so on (this is called backpressure).

A stage can react to backpressure in a few ways: it can add more workers to its stage to handle

more requests at a time, or it may choose to do nothing or even reduce the number of workers,

which can propagate backwards through each stage and reduce the load on the whole system. If

the system is unable to cope with the incoming request load by adjusting internal resources, it

can rate limit client requests.

The query processor consists of three stages: frontend processing, metadata processing and

timeseries processing. The client request (Figure 18) is processed over these three stages as

follows:

Frontend Processing Stage: The frontend stage receives requests from clients in the form of calls

to Mortar’s GRPC API, prepares requests for execution, and delivers results back to the client

using GRPC. The frontend authenticates each incoming request using the JWT (JSON Web

Token) included in the request; clients can generate valid JWTs using a GetAPIKeyAPI call.

After authentication, the frontend stage checks that the request is valid and well-formed. The

frontend stage then wraps the client’s request in a Context object which encapsulates all

resources allocated during query execution before attempting to place the request in the metadata

stage’s incoming queue. Requests to Mortar’s GetAPIKeyAPI call are answered from the

frontend stage alone. Requests to Mortar’s `Qualify` API call flow through the frontend and

metadata stages. Requests to Mortar’s FetchAPI call flow through all three stages. Rather than

passing the full Fetch response between stages, the metadata and timeseries stages forward

incremental parts of the response that can be reassembled by the client into the full dataset.

Metadata Processing Stage: The metadata stage evaluates queries from incoming client requests

by executing their Brick query definitions (called Views) against the Brick database, which

contains the Brick models for all sites in the Mortar testbed. View definitions do not include the

binding between points and timeseries identifiers; instead, the metadata stage rewrites View

definitions to query for the timeseries identifiers for points that are used in a DataFrame. This

simplifies dataset definitions by making transparent the binding between an entity in the Brick

model and its corresponding timeseries. To support this query rewriting functionality, we

implemented an alternative query frontend to HodDB that accepts parameterized versions of

SPARQL queries.

Timeseries Processing Stage: The timeseries stage pulls data from BTrDB for each of the

timeseries identifiers derived from the evaluation of the metadata stage’s Views. The

TimeParams field in the client request defines the temporal extent of the data to be retrieved, and

the DataFrame definitions indicate which aggregation function to apply to each stream along

24 https://github.com/SoftwareDefinedBuildings/mortar

https://github.com/SoftwareDefinedBuildings/mortar

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 44 of 77

with the desired resolution. Because a client can request tens or hundreds of megabytes of data,

the timeseries stage takes care to minimize the performance impact of large queries or slow

clients on the rest of the platform. To achieve this, the timeseries stage decomposes the requested

timeseries data into small batches that are buffered in memory and enqueued for delivery to the

client. The amount of buffered timeseries data is constant for all queries, so the amount of server

memory dedicated to serving a request is independent of the size of the requested dataset. The

timeseries stage only pulls data from BTrDB as needed, so if a client is slow to read incoming

data or terminates the connection, the ongoing query to BTrDB can be terminated and the

resources released without having read data unnecessarily.

Demonstrate the testbed

The Mortar testbed, along with a Brick application that reports all the mapped physical, logical,

and virtual assets of a building, proved useful as a screening tool. The team used these tools to

provide a shortlist of buildings that merit further investigation and target extra metering for an

ongoing California Energy Commission (CEC) project called Getting out of hot water: Reducing

gas consumption in existing large commercial buildings. This project requires the evaluation of

large buildings with spaces conditioned through heating systems with hot water reheat coils e.g.,

variable air volume (VAV) reheat boxes to reduce natural gas consumption. The evaluation

requires VAV discharge air temperature and air flow rate for the analysis. Thus, the team queried

all the sites in the Mortar dataset for the required data points and combined with external

metadata to produce the shortlist.

Furthermore, the team are currently using the “detect_passing_valves” application, described in

the next section, on the Mortar dataset to determine the frequency of passing valves in existing

buildings. The Mortar dataset contains over 1,000 VAV boxes with relevant data points. It is a

rich dataset that has not been publicly available before and will shed light on the issue of passing

valves.

Rogue Airflow Analysis

Another fault detection application developed on the Mortar platform focuses on identifying

“rogue” behaviors in the air flow within an HVAC system in a building, such as zones whose

indoor air temperatures are substantially different than the setpoint temperature. The Brick query

for this application filters all buildings whose equipment have both the points of type (or sub-

type) brick:Air_Flow_Setpoint and brick:Air_Flow_Sensor. This includes Air Handler Units

(AHUs) that have, for example, both supply air sensors and setpoints and return air sensors and

setpoints. VAVs that also track the zone discharge air flow will also be included in this analysis.

Once the shortlist of buildings and equipment have been identified, the timeseries data is

retrieved and it undergoes a level of data processing and cleaning to prepare for the analysis.

This application identifies “rogue” behavior in an equipment when the air flow value measured

by its sensor does not meet the corresponding air flow setpoint. The tolerance and minimum

period of the out of bounds behavior are configurable, and a snippet of the output of this

application running on the Mortar platform (with 10 °F deviation from setpoint for at least two

consecutive hours) is show in Figure 19. It shows the start time of the incident, the duration, the

building it happened in, the equipment name and the average deviation in actual air flow from

the setpoint (in cfm).

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 45 of 77

Figure 19: Output of Mortar for rogue zone query

Automatic selection of analytics

Dr. Fierro developed an API call and implementation supporting the automatic selection of

analytics for a suite of Brick models. Specifically, the solution enables:

A) Given an analytics application, the solution automatically determines the set of Brick models

that support the application, and

B) Given a Brick model, the solution automatically determines the set of analytics applications

that will run

The solution depends on having access to a library of analytics implementations, each with a

“manifest” of the Brick queries defining the metadata the implementation requires to operate.

Such a library has been developed as part of the Mortar platform. The API call, named “qualify”,

takes as arguments a list of Brick queries and a list of Brick model names and returns a matrix

where cell (i,j) contains the number of rows returned when query i is executed on model j. By

providing the application manifest’s queries as one argument and the set of Brick models in a

database (such as Mortar) as the other argument, the non-zero columns of the matrix correspond

to Brick models that can run the application. This enables the feature (A) above.

The automatic selection of analytics is implemented by adjusting the above process such that the

call to “qualify” takes as an argument the Brick queries for all analytics implementations in the

library, with the second argument being a single Brick model. The non-zero rows of the matrix

correspond to queries that are supported by the model. The analytics which have only non-zero

rows are supported by the model; this list can be provided to the user.

Version control of Brick models

An important concern when using metadata to drive applications is how to manage and deal with

churn in the metadata. Here, we describe a simple version control solution to graph-based

metadata models such as those based on Brick.

Metadata churn has two primary sources:

- change in the environment / deployment, which is reflected in the contents of the model

- change in the definition of the Brick ontology

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 46 of 77

With a new minor release of Brick every 6 months, and patch releases arriving even more

often25, it is important to distinguish between backwards-compatible and backwards-

incompatible changes. The version control mechanism described below focuses on backwards-

compatible changes; a discussion of the implications and challenges in dealing with backwards-

incompatible changes is provided at the end.

Recall that applications execute by querying a Brick model describing the context of data sources

in a particular building. To handle versioning, we must attach a pair of timestamps ti,tj to a Brick

model, indicating that the Brick model represents the content of a building in the range [ti,tj)

(inclusive lower-bound). A Brick model at ti,tj is immutable—that is, the content of the model

will not change. Changing the Brick model requires the creation of a new version. When

executing, applications must specify which version of the Brick model is required.

In most cases, this will be the most recent version.

It is the role of a Brick database and query processor to execute application inquiries against the

indicated version. This can be implemented as follows. A database D stores a collection of

(g,m,s,p,o,t) tuples. The graph g is the name of a Brick model, representing a single site. Updates

to a graph come from metadata sources. A metadata source m is a particular source of triples for

a particular graph over time. The content of the metadata source will change, but the identity

does not. Examples of metadata sources are the content of the Brick ontology, or an inferred

Brick model produced by some process such as Fierro et al, 202026. s, p and o are the three

components of an RDF triple at a point at time t for the metadata source m.

This structure allows a database to derive the contents of the Brick model at any point in time.

To derive the Brick model for timestamp t and graph g, the database searches for the most recent

timestamp for each metadata source for that graph that matches or is before the query timestamp

t. The union of the triples for each recent metadata source constitute the Brick model at that

timestamp.

The advantage of this approach is that it allows both the ontology definition, which is expressed

as triples, and the building instance definition to evolve independently. Brick models can be

updated to the latest backwards-compatible version of Brick simply by inserting the new

ontology definition into the database at a newer timestamp but using the same metadata source

name. One crucial assumption being made is that the data sources described in the Brick model

do not change identity unnecessarily. Updating a Brick model, for example to add a recently

installed thermostat, should not invalidate historical data. For this reason, most of the Brick

model is likely to remain the same between versions. Data sources should only be assigned new

names when there are changes to the data source that affect its context or interpretation; this will

coincide with the creation of a new Brick Point entity to identify the data source.

Backwards-incompatible changes to the ontology present a challenge for automated version

control. In the context of a version history of a Brick model, backwards-incompatible changes in

25 https://github.com/BrickSchema/Brick#versioning

26 Fierro, G., Prakash, A. K., Mosiman, C., Pritoni, M., Raftery, P., Wetter, M., & Culler, D. E. (2020, November).

Shepherding Metadata Through the Building Lifecycle. In Proceedings of the 7th ACM International Conference on

Systems for Energy-Efficient Buildings, Cities, and Transportation (pp. 70-79).

https://github.com/BrickSchema/Brick#versioning

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 47 of 77

the ontology reflect a barrier across which automated tools or queries cannot cross without

knowing exactly how to interpret the different ontology version on the other side. For example,

early versions of the Brick ontology contained so-called "equipment-flavored points" such as

"AHU Outside Air Temperature Sensor". Subsequent versions of Brick decided to make the

separation between equipment and point explicit. The "AHU Outside Air Temperature Sensor"

concept is best modeled as an AHU instance and an Outside Air Temperature Sensor instance

that are related to one other with the Brick hasPoint relationship.

How to handle these kinds of backwards-incompatible changes is being actively researched. The

proposed technique is called "segmented query generation": it uses succinct rules to

automatically rewrite queries so that the correct semantics are preserved across versions of an

ontology.

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 48 of 77

Task 4: Develop and Apply Analytics and Controls Applications

The research team first identified potential analytics and controls, develop at least two simple

algorithms, and demonstrate at least two more complex algorithms.

Identify potential analytics and controls

In the first year, the research team collaborated with researchers at NREL27 and Center for the

Built Environment (CBE) partner firms to develop a list of 21 representative applications that

highlight the descriptive capabilities of Brick models. As part of this process, we identified

quantities and constants that applications make use of but that are not currently captured in the

Brick data model, for example zone floor area or equipment rated capacity. We investigated

existing standards and vocabularies such as bSDD (http://bsdd.buildingsmart.org/) that we can

build upon and incorporate into Brick. We have identified a mechanism for formalizing the

definitions of these quantities and constants in a manner that is consistent with the rest of Brick.

In addition, we are developing a plugin-based software architecture to support the retrieval,

storage and standardization of such external metadata. Table 8 lists a number of applications; we

have started the list with HVAC applications since they are the most complex and systems that

can most benefit by semantic interoperability technologies.

Table 8: Prioritized list of applications for Brick

Application Name High Level Functional Description

Detect Cooling Coil

Valve Passing

Cooling Coil Valve Passing/Leaking: If there is a considerable temperature difference

between mixed air temperature and supply air temperature while the cooling coil

valve is closed, the fault will be triggered. The purpose of this use case is to check if

there is a mechanical problem/leakage in the cooling coil valve.

Detect Coil Valve

Passing

Generalized Coil Valve Passing (i.e. fluid flows when valve is commanded closed): If

there is a considerable temperature difference between the next upstream and

downstream air sensors in the system while the valve has been closed for a given time

period. This could also include a test to evaluate what other components are in the

brick model between the upstream and downstream air temperature sensors.

Calculate Cooling

Plant Efficiency

Accessing power (kW) and cooling load (ton) data from a chilled water system (e.g.,

chiller power, pump power and cooling tower power), and utilize the data to estimate

and report system energy performance (kW/ton). The purpose of this use case is to

monitor the performance of the system and take corrective action when needed.

AHU Outside Air

Economizer

Operation

AHU Airside Economizer Assessment: Energy conscious control strategies should

utilize free or economized cooling when able. The purpose of this use case is to

assess how well the economizer control strategy is working. Specifically, this test

will look at the outside air damper and cooling coil valve position. Economizer

dampers switch to the minimum ventilation position when outside air conditions are

not favorable for cooling and vice versa.

27 Semantic Interoperability R&D Project Kick-Off Workshop at NREL, December 12-13, 2019

http://bsdd.buildingsmart.org/

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 49 of 77

Improve HVAC

Sequence of

Operation:

Occupancy-Based

Equipment

Scheduling

Airside Occupancy and Seasonal Scheduling: Depending on the season, time of day,

and day of the week (week / weekend / holiday), airside equipment shall use different

setpoints for heating and cooling. The purpose of this use case is to evaluate the

performance of seasonal and temporal setpoint control strategies, specifically using

occupied and unoccupied schedules. Usage of occupancy sensors and dynamically

generated occupancy schedules will also be evaluated to determine how energy

performance changes compared to season, time of day, and day of week control

strategies.

Optimize Chilled

water supply setpoint

Chilled water supply setpoint optimization: Develop a model-based optimization that

will generate optimized chilled water supply setpoint by comparing the energy

consumption from the pump and chiller side. The purpose of this use case is to

evaluate the performance of chilled water supply setpoint reset strategy. Specifically,

this optimizer will evaluate the the energy consumption by the chillers and chilled

water pumps corresponding to a set of chilled water supply setpoints and pass the one

with the least total energy consumption.

Estimate Time to

Replace Air Filters

for AHU

Air Filters for AHU Preventive maintenance: Depending on the pressure drop across

the air filter, the filter should be maintained/replaced. A high pressure drop means

that your air handler has to work harder and consume more energy in order to

maintain proper air flow, and the filter should be replaced

VAV Box

Commissioning

VAV Box Commissioning: Perform all relevant functional performance tests for a

VAV box to support (and reduce the time/cost associated with) initial or retro

commissioning. Automatically

Generate BAS

Graphics for a VAV

box

Automatically generate the equipment graphics for a VAV BOX

Assess Long-Term

Ability to Meet

Thermal Comfort

Needs

Assess long term ability to meet thermal comfort needs within the building. Identify

zones where setpoints are frequently not met, and identify zones that have unusual

setpoint temperatures.

Detect Boiler Short

Cycling

Identify how often a boiler operates below it's minimum turndown and is short

cycling. Boiler efficiency drops of very significantly under these conditions.

Estimate Hot Water

Intentional Reheat

Use

Hot water intentional reheat use. Estimate the amount of heating power used

intentionally by a reheat coil in a VAV box.

Detect Fixed

Equipment Setpoint

Identify fixed equipment setpoints as this likely indicates an opportunity for

improved energy performance at low cost.

Improve HVAC

Sequence of

Operation: G36 Trim

and Respond Logic

Generalized trim and respond logic implementation to perform demand based reset of

a setpoint. See ASHRAE Guideline 36 section: 5.1.14.

Example setpoints controlled using trim and respond using feedback from a VAV

reheat box: 5.6.8 (includes duct static pressure, ahu supply air temp, hot water temp,

chilled water temp, pump differential pressure setpoint resets)

Improve HVAC

Sequence of

Operation: G36

Supply Air

Temperature Reset

AHU Supply air temperature reset based on zone level requests and outside air

temperature conditions;

G36 section describing trim and respond: Cooling SAT request: 5.7.8.1.

See Fig 5.16.2.2 showing how SAT setpoint is constrained based on OAT.

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 50 of 77

Assess VAV box

minimum airflow

Identify incorrect high minimum airflow setpoints, as this wastes fan, reheat and

cooling energy consumption (but does not increase ventilation rates)

Identify Exterior

Zones

Identify exterior zones of a building.

Improve HVAC

Sequence of

Operation: G36 Split

Signal Damper

Control Strategy

Split signal damper control strategy. This reduces fan power by keeping dampers

more open than traditional logic.

See ASHRAE Guideline 36 Fig 5.16.2.3-2.

Improve HVAC

Sequence of

Operation: G36

Time-Averaged

Ventilation

Use time averaged ventilation to achieve the desired minimum airflow rate from a

VAV box where the lower control limit is constrained by existing hardware and

instrumentation.

See ASHRAE Guideline 36 section 5.2.2.

Detect sensor faults Identify sensors reporting incorrect values - fixed values, values out of range, etc - to

be replaced.

Detect adjacent open

zone heating/cooling

mode conflicts

('fighting' zones)

Identify zones that are adjacent to each other, open spaces, and frequently operate in

conflicting heating/cooling modes. This often occurs in commercial building open

plan spaces due to conflicting zone thermostat temperature changes.

Discuss list of applications with stakeholders

We met with our Technical Advisory Group to present the Brick project, and to receive feedback

on the preliminary application list developed. We presented several applications and asked the

TAG to rank the priority of importance to them. The figure below shows the ranking.

Figure 20: Priority of Brick application development

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 51 of 77

The top five Brick application category types as voted by TAG members:

A. Application using multiple timeseries data sources

B. Automated fault detection and diagnosis (AFDD)

C. Controls

D. Monitoring

E. Application using multiple meta-data sources

Table 9 below shows a summary of suggested applications compared to the data available in the

Mortar database (over 100 building sites).

Table 9: Summary of apps' applicability and category.

A
p
p
 t

y
p
e

M
u
lt

ip
le

 t
im

es
er

ie
s

so
u
rc

es

A
F

D
D

C
o
n
tr

o
ls

M
o
n
it

o
ri

n
g

M
u
lt

ip
le

 m
et

a-
d

at
a

so
u
rc

es

Suggested apps to develop
Potential applicability:

Sites on current database
Category

1. Assess thermal comfort 52

2. Detect passing valves in VAV 51

3. Saving potential of correct

ventilation minimum
51

4. Dynamic zone ACH 51

5. Calculate dynamic building

GHG emission
46

6. Control duct static pressure 20

7. Control boiler temperature 1

These seven are our prioritized list of applications to fulfill the top voted category types.

1. Assess long-term ability to meet thermal comfort needs by zone in a building. The

analysis can be performed using existing temperatures and associated setpoints or based

on thermal comfort models. The output can be:

i. raw number of discomfort hours per zone or;

ii. a percentage of total occupied hours or;

iii. weighted by the number of hours at specific delta temperature to get a

“degree-hours” metric.

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 52 of 77

iv. Long term thermal comfort metrics (such as those recently evaluated by

CBE researchers (Li et al, 202028).

2. Detect passing reheat valves in VAV. Compare temperatures upstream (discharge

temperature from AHU) and downstream (discharge temperature from VAV) of the

reheat coil.

3. Savings potential of using designed zone minimum ventilation requirements.

Perform a comparison between the implemented zones’ minimum ventilation

requirements and the designed zone ventilation requirements as found from architecture

drawings.

4. Dynamic monitoring of air changes per hour (ACH) in zones. Combine real-time

airflow measurements with architectural data to return ACH. Useful for analyzing

COVID-19 risks.

5. Calculation of a building’s actual greenhouse gas emissions (GHG). Sync CAISO

data, electricity meter, NOAA, and/or marginal emissions data to calculate actual GHG.

6. Supply air duct static pressure reset control using trim and respond logic. Guideline

36 Trim and Respond Logic

7. Boiler temperature reset control using trim and response logic. Hot water reset based

on zone level requests and outside air temperature conditions; ASHRAE RP 1711

/Guideline 36 Trim and Respond Logic. Adaptable depending on the time constant of the

system e.g., a hot water loop serving VAV or TABS systems will be different.

Develop two simple algorithms

The following describes two simple algorithms developed at the end of the first year: Comparing

sensor measurements with setpoints, and detecting passing valves.

Compare sensor measurements against setpoints29

This application compares sensor measurements against their respective setpoints. The

application retrieves sensor points where measurements 1) are above or below its setpoint, 2) are

in between both its minimum and maximum setpoint values, 3) exceeds either its minimum or

maximum setpoint value, or 4) exceeds a user-defined absolute threshold from its setpoint. The

retrieval criteria can also incorporate a minimum timeframe threshold in which to return the

sensor point e.g., sensor measurement exceeds setpoint for at least half an hour. The application

produces a CSV file with relevant information that includes site, equipment name, start and end

date and number of hours that sensor point meets the selected criteria, and average sensor

measurement and setpoint values. Table 10 below shows an example of the CSV output file for

supply air temperature sensors. The source code for this application is found at

28 Li, Peixian, Thomas Parkinson, Stefano Schiavon, Thomas M. Froese, Richard de Dear, Adam Rysanek, and

Sheryl Staub-French. 2020. “Improved Long-Term Thermal Comfort Indices for Continuous Monitoring.” Energy

and Buildings 224 (October): 110270. doi:10.1016/j.enbuild.2020.110270.
29 Sun, Ruiji, Carlos Duarte Roa, Paul Raftery, and Gabe Fierro. 2022. “Enabling Portable and Reproducible Long-

Term Thermal Comfort Evaluation with Brick Schema and Mortar Testbed.” In 2022 ASHRAE Annual Conference.

Toronto, ON, Canada.

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 53 of 77

https://github.com/SoftwareDefinedBuildings/mortar-

analytics/tree/compare_sensors_against_setpoints/.

Table 10: Example of the output file that the application produces.

Site Equipment
Hour

s
Start End

Avg.

value

Avg.

SP

Exceed.

Diff.

stor
http://buildsys.org/ontologies/
STOR#AHU00 0.5

2018-05-07
09:30:00+00:00

2018-05-07
09:45:00+00:00 61.8 64.4 -2.7

stor
http://buildsys.org/ontologies/
STOR#AHU00 0.75

2018-05-10
08:45:00+00:00

2018-05-10
09:15:00+00:00 61.7 64.7 -3.0

stor
http://buildsys.org/ontologies/
STOR#AHU00 0.5

2018-05-19
09:15:00+00:00

2018-05-19
09:30:00+00:00 61.8 64.7 -2.9

stor
http://buildsys.org/ontologies/
STOR#AHU00 0.5

2018-05-31
10:15:00+00:00

2018-05-31
10:30:00+00:00 61.5 63.8 -2.3

rech

http://buildsys.org/ontologies/
RECH#AHU_AC4 1

2018-05-31
17:45:00+00:00

2018-05-31
18:30:00+00:00 67.8 67.8 0.0

rech

http://buildsys.org/ontologies/
RECH#AHU_AC4 8.25

2018-05-31
21:00:00+00:00

2018-06-01
05:00:00+00:00 66.5 69.7 -3.2

rech

http://buildsys.org/ontologies/
RECH#AHU_AC4 0.5

2018-06-01
05:30:00+00:00

2018-06-01
05:45:00+00:00 63.0 61.5 1.5

rech

http://buildsys.org/ontologies/
RECH#AHU_AC4 0.5

2018-06-01
17:00:00+00:00

2018-06-01
17:15:00+00:00 68.0 51.7 16.2

Detect passing valves30

This application detects valves in HVAC equipment that do not close fully even when actuated

to a fully closed position, also known as “passing valves”. The application compares fluid

temperatures upstream and downstream from the coils that the valve controls and calculates the

expected long-term difference between the two fluid streams when the valve is currently closed,

and has been closed for some time. The app then analyzes the expected trends with the actual

data to determine if the valve is in good operating condition or malfunctioning e.g., passing

valve, sensor fault, loss of communication with building automation system, or forgotten

overrides. Figure 21 below shows an example where the application detected a good operating

valve and a malfunction valve in one site. The source code for this application is found at

https://github.com/SoftwareDefinedBuildings/mortar-analytics/tree/detect_passing_valves/ .

Viewing Figure 21, the top plot shows the data where the application detected a correctly

operating valve and the bottom plot shows data where the application detected a possible

malfunctioning (passing) valve. The solid green horizontal line shows the average temperature

difference between the downstream and upstream fluids when valve is commanded closed, the

30 Duarte Roa, Carlos, Paul Raftery, Rupam Singla, Marco Pritoni, and Therese Peffer. 2022. “Detecting Passing

Valves at Scale Across Different Buildings and Systems: A Brick Enabled and Mortar Tested Application.” In

Climate Solutions: Efficiency, Equity, and Decarbonization. Pacific Grove, CA: ACEEE. doi:10.20357/B7VP5H.

https://github.com/SoftwareDefinedBuildings/mortar-analytics/tree/compare_sensors_against_setpoints/
https://github.com/SoftwareDefinedBuildings/mortar-analytics/tree/compare_sensors_against_setpoints/
https://github.com/SoftwareDefinedBuildings/mortar-analytics/tree/detect_passing_valves/detect_passing_valves

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 54 of 77

dashed purple line shows the expected correct operating behavior trend of the valve (based on

the green points), the solid pink horizontal line shows the average temperature difference when

the application detected a possible passing valve (based on the red points). The ‘Bad ratio’ value

is a ratio of the number of bad operating point values to good operating point values.

In summary, we ran application in 20 buildings including two large commercial buildings in

which we were able to 'ground-truth' the findings by field investigation of several of the

identified passing valves by the on-site facilities team members. We analyzed 1,335 VAV

terminal units where 5% returned a sensor fault and 14% returned a valve fault. We calculated an

average temperature rise of about 6 °F between the air upstream and downstream of the reheat

coils. The temperature rise is about three times higher when compared to the temperature

difference on a VAV terminal unit with no fault detected which is about 2 °F. We estimated an

8% heat loss of intentional reheat energy due to a passing valve. In the two large commercial

buildings, we reported six VAV terminal units with faults. Three VAV boxes were verified with

faults and one additional VAV terminal unit was found as faulty by the on-site facilities when

conducting the investigations. Two units were found to have no faults and last unit was not

checked. Figure 22 shows two verified faults found in the two large commercial buildings. The

faults we reported included valves in operator override, with loss of communication with

building automation system, and with its operation reversed e.g., valve opened when it should

have closed.

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 55 of 77

Figure 21: Using Brick to enable the detection of malfunctioning valves

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 56 of 77

Figure 22: The detect passing valve application detected valve faults that were verified in two large
commercial buildings.

Open-source library of applications

We maintain an open-source public GitHub repository for Brick applications, found at

https://github.com/BrickSchema.

Here one can find packages (py-brickschema: Python package for working with Brick), services

(reconciliation-api for OpenRefine and other tools), and other connectors (brick-BACnet). This

is the repository for tools and applications, such as Brick versioning, graph inference, conversion

from Haystack, VBIS translation, web-based interaction, Brick model validation.

Many applications meant to run on buildings and tested first on the Mortar platform can be found

at the UC Berkeley research GitHub site: https://github.com/SoftwareDefinedBuildings/mortar-

analytics. These include an application to find simultaneous heating and cooling zones, possible

inefficient zones, “rogue” zones, detect passing valves, temperature reset, and so on.

We will continue adding to this repository over time.

https://github.com/BrickSchema
https://github.com/SoftwareDefinedBuildings/mortar-analytics
https://github.com/SoftwareDefinedBuildings/mortar-analytics

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 57 of 77

Demonstration of two more complex applications

The project developed two additional applications: hot water supply temperature reset (tested in

the David Brower Center) and supply air duct static pressure reset control (designed for Sutardja

Dai Hall). The goal of these applications is to show how developing a Brick model for a building

HVAC system enables implementation of Guideline 36 sequences. First introduced in 2018 by

ASHRAE, Guideline 36 (G36) contains standardized advanced control sequences to facilitate the

implementation of high-performance HVAC control. However, G36 sequences are currently

presented as English language specifications of controls and not the actual programming code

syntax uploaded to the building’s BAS. Another enabling mechanism is the

OpenBuildingControl project, which aims to digitize the design, specification, deployment and

verification of building control sequences such as G36. Researchers in the project developed the

Control Description Language (CDL), built on the equation-based modeling language called

Modelica31, and used this to express control sequences for BAS in a vendor-independent format.

CDL has already been used to program G36 and other high-performance HVAC control

sequences and these CDL representations are currently available in the Modelica-Buildings

library.

These applications were both developed for buildings in Berkeley, CA, which enjoys year-round

moderate temperatures and is located in ASHRAE climate zone 3C.

Hot Water Supply Temperature Reset

The demonstration building is a LEED Platinum, four-story mixed-use building, the David

Brower Center, located in downtown Berkeley, California with about 39,000 ft2 (3,600 m2) of

conditioned space. The building’s program consists of private and open-plan offices, conference

rooms, an auditorium, and a gallery. The HVAC system includes a thermally activated building

(TABS) radiant system for the primary heating and cooling in the office spaces. Two air-

handling units (AHU) supply 100% outdoor air to an underfloor air distribution (UFAD) system

and combined with natural ventilation through operable windows provide ventilation to the

building. The radiant system does not thermally condition the first floor. Instead, seven water-to-

air heat pumps provide heating and cooling, and an eighth heat pump is located in a second-floor

conference room. The heat source for the radiant system, heat pumps, and the two AHUs for the

ventilation system is provided through two gas condensing boilers each with an input capacity of

26 Btu/hr-ft2 (82 W/m2). The boilers have a lead-lag operation and efficiency ranges between

85% and 95% depending on the operating mode and return water temperature when operating at

or above the minimum turndown capability of the boilers. This G36 field demonstration

facilitated with a Brick data model is focused on a hot water supply temperature setpoint

(HWST) reset on the building’s hot water plant illustrated in Figure 23.

31 modelica.org/modelicalanguage

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 58 of 77

Figure 23: Schematic of the demonstration building’s hot water plant.

Figure 24 below shows how Brick can be used to digitally represent a hot water plant.

Figure 24: Brick data model example for the hot water plant shown in Figure 22

The existing HWST reset strategy is based on the outdoor air temperature (OAT). The HWST

was designed to be at 95 °F (35 °C) when OAT was at 40 °F (4.4 °C) and 75 °F (24 °C) when

OAT was at 65 °F (18 °C). However, the building manager changed it to a more conservative

operation (HWST=130 °F (54 °C) at OAT=55 °F (13 °C) and HWST=90 °F (32 °C) at OAT=77

°F (25 °C)) since the building manager believed the designed temperature setpoints were not

high enough to maintain occupant thermal comfort during cold days. On some occasions, the

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 59 of 77

building manager would override the reset operation and maintain a constant 130 °F (54 °C)

HWST.

We changed the radiant system control strategy based on Raftery et al. (2017)32 as part of an

earlier study (Bauman et al. 2018)33, which allowed the building manager to feel more confident

in reinstating an HWST reset strategy. This provided an opportunity to implement an HWST

reset strategy based on G36’s trim and respond control strategy, using Brick and CDL.

To integrate with the building’s BAS, we connected a miniature computer (PC) to the building’s

BAS network infrastructure, allowing us to read from and write to BACnet objects. We used the

open-source project BACpypes to provide the BACnet application and network layer to establish

communication for our PC to the BAS. We performed a BACnet network scan and point list

retrieval using open-source network discovery utilities such as Nmap. The BACnet point list

gave us the starting point to follow a five-step process to build a Brick data model of the

building. The five-step process is as follows: 1) collect siloed metadata for the building, 2)

organize it into more manageable formats, 3) transform metadata into a Brick model, 4) apply

inference and reasoning to the initial Brick model to discover implied information, and 5)

validate the Brick model to ensure we used Brick classes and relationships correctly. We also

embed BACnet object information within the Brick model and access information for an external

database collecting historical data from the building’s BAS.

We used the building’s Brick model to retrieve HVAC system design information and pertinent

BACnet object information to obtain the HVAC’s current operating status. This operation status

is forwarded to the CDL G36 trim and respond control sequence so it can calculate a new

HWST. The new HWST is written back to the hot water plant, and once again, we use Brick to

retrieve the required HWST BACnet object information so the boilers can use it. Figure 25

shows a schematic of the field demonstration implementation. The Brick model allows us to

retrieve the hot water plant’s end-users and their current operation, which is used by G36 trim

and respond to calculate a new HWST. The HWST is written back to the BAS and the process

repeats every 5 minutes. The dotted boxes denote where we query the Brick model in the

programming implementation.

32 Raftery, Paul, Carlos Duarte, Stefano Schiavon, and Fred Bauman. 2017. “A New Control Strategy for High

Thermal Mass Radiant Systems.” In Proceedings of Building Simulation 2017. San Francisco, CA: International

Building Performance Simulation Association. http://escholarship.org/uc/item/5tz4n92b.
33 Bauman, Fred, Paul Raftery, Stefano Schiavon, Caroline Karmann, Jovan Pantelic, Carlos Duarte, Jonathan

Woolley, et al. 2018. “Optimizing Radiant Systems for Energy Efficiency and Comfort.” EPC-14-009. Sacramento,

CA: California Energy Commission. https://escholarship.org/uc/item/6qx027rh.

http://escholarship.org/uc/item/5tz4n92b

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 60 of 77

Figure 25: Schematic of the ASHRAE Guideline 36 (G36) hot water supply temperature setpoint (HWST)
reset strategy implementation in a Berkeley, California building facilitated with Brick.

The Modelica-Buildings library contains the CDL representation of different standardized

control sequences including G36 sequences for hot water plant control. These sequences and any

model within the library can be exported as a Functional Mockup Unit (FMU), conforming to the

Functional Mockup Interface (FMI) standard. FMI was developed to allow model exchange and

co-simulation of models created in different simulation environments. The FMU is a packaged

file that contains details about the model parameters, variables, equations, and other relevant

information to run a simulation. We exported the CDL representation of the G36 HWST reset

control strategy as an FMU. The G36 HWST reset control requires signals to denote the current

status of the hot water plant, whether or not it is in the staging process, the status of the pumps,

the current HWST, and the number of requests for higher hot water supply temperature.

The trim and respond is a demand-based reset control strategy that can control a single variable

subject to multiple input sources. This control can be applied to reset setpoints such as pressure,

temperature, and other variables. The control logic trims, or reduces, the controlled setpoint at a

fixed rate until the downstream equipment generates requests for higher pressure, temperature, or

whatever the logic is applied. The control logic responds by increasing the setpoint when

sufficient requests are generated and the cycle is repeated.

We developed generalized programmatic queries to first search the building’s Brick model for

the hot water plant boilers and the hot water end-users. Then, we queried each end-user to

retrieve its flow control valve and pertinent BACnet object information. Once we retrieved

pertinent BACnet information for the hot water end-user, we used BACpypes34 to send messages

over BACnet to determine if the end-user is enabled and its water valve is open over 95%; this

formed the basis for a request needed for the trim and respond logic. The total sum of requests is

sent to the FMU package containing the CDL G36 reset control to calculate a new HWST. We

34 https://github.com/JoelBender/bacpypes

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 61 of 77

set the total number of ignored requests to two, so it takes at least three requests for the HWST

to start increasing. The new HWST is written back to the BAS with BACpypes using BACnet

object information retrieved from the building’s Brick model. The process is repeated every five

minutes. We setup a Python 3.6 environment on our BAS connected PC with Python packages

pyfmi35, brickschema36, asyncio37, and other supporting packages to load, initialize, and simulate

the FMU, read and query the Brick model, and setup periodic intervals to repeat the control

strategy. We started running the Brick enabled G36 HWST reset control on November 30, 2021

with 130 °F (54 °C) and 90 °F (32 °C) as the upper and lower setpoint limits, respectively. These

controls have been running through late July 2022.

Figure 26 shows the Brick enabled G36 HWST reset control implementation. The first few

weeks of the Brick enabled controls were during winter when the outdoor temperatures were

lower. Thus the number of calculated hotter water requests was above the ignored request

threshold. The HWST mostly operated at the upper temperature setpoint limit we defined, as

shown in Figure 26 (a). However, we started to see more variation in the HWST during the

shoulder season months when the outdoor temperatures began to increase, as shown in Figure 26

(b). During these months, the HWST varied the full range between the upper and lower

temperature limits we defined. In particular, the HWST increased during occupancy hours when

heat pumps’ heating setpoints came out of their nighttime setbacks.

35 https://pypi.org/project/PyFMI
36 https://github.com/BrickSchema/py-brickschema
37 https://pypi.org/project/asyncio

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 62 of 77

Figure 26: Example of Brick enabled ASHRAE Guideline 36 hot water supply temperature setpoint reset
strategy during the (a) winter season and (b) during shoulder season when outdoor temperatures are
milder.

This Brick enabled G36 control implementation demonstrates that there are no hard-coded

parameters that prevent the implementation from being ported over to a new building. The only

requirements for the new building are to have a Brick data model and have similar type of

equipment to control. The Brick data model allows us to develop general programmatic queries.

If we were to represent them in simple language format, the ones we used in this field

demonstration would read as “Get me all the hot water end-users for the building’s hot water

plant” and “How many of these end-users are requesting hotter water?”. The generic queries

allow us to avoid using unique BAS point naming conventions as it is typically done. This field

demonstration of Brick enabled controls shows us a path forward where advanced control

strategies for building systems can one day be as easy as installing a new application on our

mobile phones. (Duarte Roa, paper in progress).

Thus, we used standardized sequences of operation (ASHRAE Guideline 36) to define the best

practice controls, an open-source schema (Brick) to represent the required metadata in a

structured format, a standardized communications protocol (BACnet) to communicate with the

controllers, and (proposed) standardized building controls language (CDL) to implement these

controls. These are all non-proprietary resources that are publicly available and can be used in a

scalable manner that is portable between buildings. That applies even though those buildings

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 63 of 77

have different automation systems, point names, HVAC topologies, etc. To our knowledge, this

is the first time the ’full stack’ of these different components has been implemented to perform

closed loop control in a real building. The controls continue to operate in the building as writing

this report.

Duct Static Pressure Reset Control

The second application developed was a supply air duct static pressure reset control and follows

a very similar implementation strategy as the first application.

Variable air volume (VAV) systems are one of the most common types of heating ventilation

and air conditioning (HVAC) systems for commercial buildings in North America. The air

handling unit (AHU) in a VAV system is typically single duct with an airside economizer, a

cooling coil, a supply fan driven by a variable frequency drive, optional heating coil, and either a

return or a relief fan. Each individual thermal zone in the building has a VAV terminal unit that

measures airflow and controls flow with a damper, and often also a reheat coil. There are many

controllable setpoints to manage in a VAV system, from heating and cooling temperature

setpoints, discharge temperature setpoints, and minimum airflow setpoints at the zone level, and

to minimum outside airflow, supply air temperature and duct static pressure setpoints at the air

handling unit (AHU) level.

In early implementations of VAV systems, building operators used constant values for duct static

pressure and SAT setpoints. These constant setpoint strategies were improved to become linear

resets that increase static pressure and decrease supply temperature with respect to increasing

outside air temperature. With the advent of Direct Digital Control with feedback from every zone

in the building, demand-based reset approaches are used where static pressure and SAT setpoints

vary based on the requirements of the most demanding (‘‘critical’) zone, often using ‘trim and

respond’ logic as described in the last section. The duct static pressure should be just high

enough so that the most demanding VAV terminal unit in the building (the ‘critical’ unit) has

sufficient pressure to meet its current airflow setpoint. This control strategy is known as a duct

static pressure reset and is now part of Guideline 36.

Duct static pressure reset is typically achieved by ‘resetting’ the duct static pressure setpoint

upwards when a zone requests increased pressure (typically when a VAV damper is nearly wide

open and the airflow is still below the maximum airflow setpoint) and allowing the setpoint to

slowly decrease when there are no requests. This reduces static pressure (and fan power) to the

minimum needed to meet the current airflow requirements for all of the zones in the building and

can generate fan energy savings from 30-50% compared to fixed duct static pressure setpoints.

Typically, there is also a user-defined number of requests that will be ignored, particularly in

systems with many zones, as one faulty (‘rogue’) zone would otherwise drive the entire reset

strategy (Raftery 201838).

Sutardja Dai Hall is a seven-floor 141,000-square-foot building on the campus of UC Berkeley.

The building houses research labs, faculty offices, a nanofabrication lab, an auditorium, and a

café. The building runs one of two 600 ton chillers (absorption using steam and centrifugal using

38 Raftery, Paul, Shuyang Li, Baihong Jin, Min Ting, Gwelen Paliaga, and Hwakong Cheng. 2018. “Evaluation of a

Cost-Responsive Supply Air Temperature Reset Strategy in an Office Building.” Energy and Buildings 158

(Supplement C): 356–70. doi:10.1016/j.enbuild.2017.10.017.

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 64 of 77

electricity), depending on the time of year; 135 Variable Air Volume (VAV) boxes with reheat

supply conditioned air to the office portion of the building. SDH has over 6000 sensing points

from the Siemens BAS as well as other additional sensors, such as temperature sensors on the

chilled water supply and discharge air temperature sensors at most of the 130 zones. Figure 27

shows a general schematic of the VAV system sensor and control points.

Figure 27: Multi-zone VAV system schematic

We developed a data model in Brick based on this multi-zone VAV HVAC system, as seen in

Figure 28.

Figure 28: Brick data model of a multizone VAV system

We worked with the facilities manager to get access to the system, developed the code and

debugged it. Similar to the previous trim-and-respond strategy, this application gets the air flow

rate demand for each VAV terminal unit and resets the AHU supply air duct static pressure

accordingly (Figure 29).

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 65 of 77

Figure 29: Duct Static pressure reset control application

Additional Applications in progress

In addition to the two applications described above, several Ph.D. students at UC Berkeley that

we advise are taking advantage of the Brick data models that the two demonstration buildings

have with BACnet network information embedded to develop advanced control applications. The

objective of the first application is to automatically generate suitable thermal models for the

building to optimize building operations, forecasting building energy consumption, participate in

demand response events or detect faults. The Brick model provides relationships between sensor

data points and, as a result, eases the process of mapping data points to the model. The

application will use a bottom-up approach to generate a thermal resistor-capacitor (RC) network

model. The application will be tested on both the DBC and SDH buildings described above.

The second application in progress has the objective to create a controller in which HVAC

system carbon emissions are minimized using model predictive control and thermal storage (e.g.,

ice storage). The control logic developed would enable HVAC to charge the thermal storage

when grid emissions are low and discharge to reduce the building cooling load when emissions

are high. The controller will evaluate multiple variables such as HVAC system efficiency, grid

marginal carbon emissions, peak power load, and occupant comfort temperature range in

multiple U.S. grid regions to find the optimal HVAC control in regard to carbon emissions. The

application will be first tested through simulation and if successful plan to test in DBC since it

has a high thermal mass HVAC system.

The students developed abstracts on these two Brick applications and submitted to the 2023

IBPSA Building Simulation Conference.

In summary, we have demonstrated several applications and continue to develop applications

that take advantage of the Brick schema. We have demonstrated applications that compare the

sensor measurements against their setpoints, identify “rogue” behaviors in the air flow rate

within an HVAC system, and detect passing valves in HVAC systems. We have developed

applications to perform the boiler supply temperature setpoint reset control, assessment of

HVAC’s long-term ability to meet thermal comfort needs, and assessment the savings potential

of using the designed zone minimum ventilation version the measured zones’ minimum

ventilation air flow rate. These applications are all available through the following publicly

accessible GitHub repository: https://github.com/SoftwareDefinedBuildings/mortar-analytics.

https://github.com/SoftwareDefinedBuildings/mortar-analytics

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 66 of 77

Brick and energy saving

One of the goals of the project was to demonstrate through simulations using building energy

models from the buildings in the Brick model at least 25% energy savings through the use of

advanced algorithms.

Previous research studies have shown the importance of standardizing the control sequences for

HVAC systems. For example, HVAC VAV system performance can vary as much as 67% when

starting from “poor” to “good” control implementations (Pang et al., 2017)39. ASHRAE

Guideline 36 (G36) aims to reduce this discrepancy and provide standardized HVAC control

sequences to maximize energy efficiency and performance, provide control stability, and allow

for real-time fault detection and diagnostics. The Brick schema is well positioned to take this

effort to the next level by providing the common language to implement G36 sequences in

buildings’ energy management systems by retrieving and processing the necessary control points

and metadata. The combination of these two efforts have the capability of providing consistent

energy savings and performance across many buildings. To estimate the potential savings from

G36 sequences, Pritoni et. al. (2020)40 developed a simulation-based energy savings estimator.

The researchers calculated over 39% in energy savings when evaluating the supply temperature

reset, static pressure reset, and zone air flow rate control with varying zone minimums in a five-

zone commercial building. Pritoni et. al. (2020)’s research and savings estimator demonstrate

that over 25% is achievable through advanced algorithms.

The control sequences used and simulated in Pritoni et. al. (2020)41 were developed using

Control Description Language (CDL), on top of the Modelica-Buildings42 library (OBC project)

and are available at this public repository: https://github.com/LBNL-

ETA/G36SavingsCalculator. As demonstrated in the boiler plant control application, we are now

able to implement CDL control sequences on a building with its Brick representation and access

to the control system. Additionally, as G36 sequences have already been developed in CDL as

part of the Modelica-Buildings library, these advanced algorithms can now be easily ported to

other Brick modeled buildings.

39 Pang, X., Piette, M. A., & Zhou, N. (2017). Characterizing variations in variable air volume system controls.

Energy and Buildings, 135, 166–175. https://doi.org/10.1016/j.enbuild.2016.11.031

40 Pritoni, M., Prakash, A., Blum, D., Zhang, K., Tang, R., Granderson, J., Cheng, H., Engineering, T., &

Paliaga, G. (2020). Advanced control sequences and FDD technology. Just shiny objects, or ready for

scale? . Lawrence

41 Berkeley National Laboratory. https://eta-

publications.lbl.gov/sites/default/files/advanced_control_sequences_and_fdd_technology_m_pritoni_0.pd

f
42 https://github.com/lbl-srg/modelica-buildings/

https://github.com/LBNL-ETA/G36SavingsCalculator
https://github.com/LBNL-ETA/G36SavingsCalculator
https://doi.org/10.1016/j.enbuild.2016.11.031
https://eta-publications.lbl.gov/sites/default/files/advanced_control_sequences_and_fdd_technology_m_pritoni_0.pdf
https://eta-publications.lbl.gov/sites/default/files/advanced_control_sequences_and_fdd_technology_m_pritoni_0.pdf
https://eta-publications.lbl.gov/sites/default/files/advanced_control_sequences_and_fdd_technology_m_pritoni_0.pdf

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 67 of 77

Task 5: Technology Transition Plan

The final task that evolved through the three-year project involve taking this technology to

Market, through the Industrial Consortium, outreach to stakeholders, presentations, papers, and a

workshop.

Industrial Consortium

The initial intention behind the Brick Industrial Consortium was that Johnson Controls was

leading this effort to bring a consortium of industry members together, including Microsoft,

construction industry members, and so on. This process started a few years ago and has been

delayed by negotiations around Intellectual Property (IP) issues. The conclusion was that it is

easier for industry to carefully define IP, but at universities this is a more complex process. The

solution was to ask university members to join as individuals instead of as institutions.

Feedback from industry partners

The initial thought was that we could interact with the consortium members at related events

such as ASHRAE Winter Meeting or Annual Conference in the summer. However, with

conferences becoming virtual due to the coronavirus, we created a 10-12 member Technical

Advisory Group (TAG) to solicit feedback on applications, use cases, and best ways of “getting

Brick out there.” The request included the following areas for input:

• The further development of the Brick schema itself,

• Ideas for applications that would highlight how that schema can be used (example list

here),

• Ways to demonstrate the benefits of those applications (e.g., by applying them to the

Mortar Dataset)

• Contributions of additional datasets (time-series data from automation systems, models of

buildings, etc.) that are either private (for our own use in meeting the project goals), or

public (and contributed to the next version of the Mortar Dataset).

• Ways to encourage adoption and further development within the broader building

industry, and support for the related standard currently under development (ASHRAE

223P).

TAG members include representation from Mechanical-Electrical-Plumbing and Commissioning

firms (e.g., Taylor Engineering), Building Retrofits (e.g., Carbon Lighthouse), Controls

manufacturers (e.g., Johnson Controls, others from ASHRAE Guideline 36 committee), building

owners/managers (e.g., Joel Bender from Cornell), HVAC optimization services (e.g.,

Comfy/Siemens, KGS), and research organizations (e.g., DOE, NREL, academics).

The following people met in late August 2020:

• Amir Roth, Technology Manager (BEM), DOE

• Stephen Frank, Instrumentation & Controls Engineer, Planning, Management,

Engineering, and Construction (PMEC), NREL

• Ambuj Shatdal, Manager Platform Engineering, Johnson Controls Inc

https://brickschema.org/
https://berkeley.box.com/s/0h74gp2cl147xrxijtupvba8huynr9be
https://mortardata.org/
https://mortardata.org/
https://mortardata.org/
https://www.ashrae.org/about/news/2018/ashrae-s-bacnet-committee-project-haystack-and-brick-schema-collaborating-to-provide-unified-data-semantic-modeling-solution
https://www.ashrae.org/about/news/2018/ashrae-s-bacnet-committee-project-haystack-and-brick-schema-collaborating-to-provide-unified-data-semantic-modeling-solution

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 68 of 77

• Nick Gayeski, Partner/Co-founder, KGS Buildings (Clockworks)

• Dezhi Hong, Post-doc, UCSD

• Hongning Wang, Assistant Professor CS, University of Virginia (PI of The Building

Advisor)

• Reece Kiriu, Senior Engineer, Taylor Engineering

• Soazig Kaam, WeWork

• Tyler Hoyt, Integrations Team Lead, Comfy

• Joel Bender, Programmer/Analyst, Cornell University (ASHRAE 223P)

We presented the Brick project in the CBE Industry Advisory Board meeting in April 2021 and

received overall positive feedback for the need to standardize the description of building data for

use in building applications. CBE meeting attendees are enthusiastic to apply and extend Brick

and use the Mortar database for their projects. For instance, an HVAC manufacturer is interested

in extending Brick concepts so it can apply to their variable refrigerant volume equipment.

Another firm wants to leverage the available building data in Mortar for their ongoing project

while other firms want to establish a Brick/Mortar like databases to facilitate their current data

collection and storage needs they normally perform for commissioning or research studies.

However, there were also concerns. One of the prevailing concerns among the attendees is the

relationship and standing of Brick among other ontologies, schemas, and other ongoing efforts

for building metadata standardization e.g., Project Haystack, ASHRAE 223P, etc. They currently

perceive too many players in the semantic data model field and may not embrace a specific

semantic data model until they see the clear benefits of one model versus another or one comes

out on top. Another concern mentioned was in regards of who would take responsibility for

developing a Brick model for new construction e.g., control vendors, architects, or mechanical

engineers.

Technology to Market (T2M) Plan

The pathways to market to expand the use and application of Brick include through the Brick

Industry Consortium and aligning with DOE-NIST-ASHRAE efforts with the Semantic

Interoperability working group developing the 223P standard; barriers include the time/effort to

learn to create and develop the Brick model and utilize the query tools and applications to make

use of the Brick model.

We see several paths towards increased adoption of Brick, such as through:

• continued support of Brick and Mortar, through the User Forum

• the Brick Industrial Consortium

• participation in the development of the ASHRAE 223P standard.

The Brick Industrial Consortium provides a means for commercial and academic entities to

participate in the development of the Brick ontology. Participation can be as direct as

contributing documentation, extensions, fixing bugs and developing tools or it can be advisory in

the form of voting on future directions for Brick or approving releases of the standard. Industry

participation helps ensure that Brick addresses the metadata and data needs of the constituents.

Paid membership in the Consortium provides Brick with the resources necessary to advertise and

support the ontology, but also indicates to the industry that Brick is a worthy investment. Via the

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 69 of 77

Brick Consortium’s working groups and monthly office hours, we have also learned of several

efforts to adopt Brick internally at a variety of companies. In these cases, Brick is replacing ad-

hoc or homegrown metadata schemas and providing a more comprehensive set of concepts with

which to support data-driven applications. Anecdotally, most of the Brick-enabled use cases are

characterized by cloud-based data analytics, data visualization and dashboard creation.

Several members of the project team are actively involved in the development of the ASHRAE

223P standard. As a result, we are well-positioned to ensure the future compatibility between the

two complementary standards. We envision Brick as an ontology layer on top of 223P that

provides abstractions designed specifically for data analytics and controls applications. In the

future, a Brick model could be automatically produced from a 223P model, enabling analytics

and controls applications without having to manually curate the metadata. The work in this

project on producing a Brick model from varying metadata sources could also be adapted to

support the creation of 223P models.

Workshop

Dr. Pieter Pauwels and Dr. Gabe Fierro presented a 90-minute interactive session at

the CLIMA 2022 conference (May 22-25, 2022) titled "An Introduction to Semantic Metadata

for Data-Driven Buildings". The session was well-attended, with upwards of 30 people in the

room. Dr. Pauwels gave an overview of semantic metadata and its relation to existing

technologies for digitizing buildings. Dr. Fierro then presented the Brick and Linked Building

Data (LBD) ontologies in the context of a real building model and demonstrated common queries

against semantic metadata models. Dr. Fierro then demonstrated a basic analysis of the

deviations from temperature setpoints in the building, using real building data. Finally, Dr. Fierro

and Dr. Pauwels took questions from the audience. Most of the questions concerned how

semantic metadata technologies could integrate with BIM, BEM and other digital

representations. Many of the attendees seemed enthusiastic about the potential for semantic

metadata in facilitating adoption of data-driven practices in buildings, and wanted to know more

about how they could adopt and deploy these technologies. Dr. Fierro had several follow-on

conversations with researchers and developers at the Czech Technical University in Prague who

are working on novel authoring interfaces for Brick models.

The session materials are available online at the following GitHub repository:

https://github.com/gtfierro/clima-2022

Session description: https://clima2022.org/programme/scientific/workshops-interactive-

sessions/?theme%5B%5D=Digitization

End of project goals

Over the course of the project (2019-2022), Brick released three updates (v1.1, v1.2, and v1.3);

Brick 1.0 was released in 2016. Brick 1.1 had an expanded set of classes, provided support for

converting from Haystack, and implemented a Python-based ontology compilation system that

made it easier for non-ontologists and non-computer scientists to contribute to Brick. Brick v1.2

dramatically expanded the number of concepts and classes covered by the ontology, making

Brick more useful for modeling chillers, electrical subsystems, nameplate characteristics, and

other static properties. Brick 1.3 added support for some heat pumps, more complete electrical

https://github.com/gtfierro/clima-2022
https://clima2022.org/programme/scientific/workshops-interactive-sessions/?theme%5B%5D=Digitization
https://clima2022.org/programme/scientific/workshops-interactive-sessions/?theme%5B%5D=Digitization

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 70 of 77

subsystem modeling, basic safety and security equipment, and PV and battery systems. We have

also developed a Brick model validation framework to help verify that users are building models

correctly.

Mortar has released one update (v.1.5). Mortar has been released (https://mortardata.org/), with a

tutorial developed (https://tutorial.mortardata.org/). A more easily deployable version of Mortar

is being developed at https://github.com/gtfierro/mortar, with documentation available at

https://beta.mortardata.org/intro.html. The team found a stable, permanent, and performant home

for the Mortar testbed dataset so that it is accessible by the community and can be easily

maintained by Dr. Fierro as he moved to his new role at Colorado School of Mines in 2021.

The team has developed an alternate, cost-effective solution for the Mortar dataset that can be

hosted on major cloud providers or local infrastructure, with the tradeoff of only supporting

static datasets. The solution stores timeseries data using Apache Parquet, which is an efficient

columnar data format. The dataset is partitioned by building and by I/O point and the resulting

structure can be stored on an S3-compatible object store. A simple Python library uses the

metadata exposed by the Apache Parquet to scan and download timeseries data matching user

queries into DataFrames, CSV files or local Parquet archives. The documentation, client library

and supporting tooling for the Parquet-based Mortar dataset is available online at

https://github.com/gtfierro/mortar-parquet-support.

The Industry Consortium was finalized, has 6 industrial members, and was involved in the

release of Brick v1.3.

The project developed a partnership between RealEstateCore (REC)

(https://www.realestatecore.io/) and Brick

(https://github.com/RealEstateCore/REC4/tree/main/Ontology/SHACL/Brick) to clarify the

semantic relationships between Brick and REC concepts.

The ref-schema for interoperability between ontologies, other digital models

(https://github.com/gtfierro/ref-schema) has been incorporated into the current draft of the

ASHRAE 223P standard.

We maintain an open-source public GitHub repository for Brick applications, found at

https://github.com/BrickSchema.

Here one can find packages (py-brickschema: Python package for working with Brick), services

(reconciliation-api for OpenRefine and other tools), and other connectors (brick-BACnet). This

is the repository for tools and applications, such as Brick versioning, graph inference, conversion

from Haystack, VBIS translation, web-based interaction, Brick model validation.

Many applications meant to run on buildings and tested first on the Mortar platform can be found

at the UC Berkeley research GitHub site: https://github.com/SoftwareDefinedBuildings/mortar-

analytics. These include an application to find simultaneous heating and cooling zones, possible

inefficient zones, “rogue” zones, detect passing valves, temperature reset, and so on.

https://mortardata.org/
https://tutorial.mortardata.org/
https://github.com/gtfierro/mortar
https://beta.mortardata.org/intro.html
https://github.com/gtfierro/mortar-parquet-support
https://www.realestatecore.io/
https://github.com/RealEstateCore/REC4/tree/main/Ontology/SHACL/Brick
https://github.com/gtfierro/ref-schema
https://github.com/BrickSchema
https://github.com/SoftwareDefinedBuildings/mortar-analytics
https://github.com/SoftwareDefinedBuildings/mortar-analytics

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 71 of 77

d. Links to publicly available STI are provided

See publications on page 71.

e. Products developed (if applicable) are identified

Brick and Mortar have been described and are available at:

Brick: https://brickschema.org/

Mortar: https://mortardata.org/

f. Computer modeling info (if applicable) is identified

N/A

https://brickschema.org/
https://mortardata.org/

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 72 of 77

Products Developed and Technology Transfer Activities

6. Identify products developed under the Award and technology transfer activities, such as:

Publications

Bennani, Imane Lahman, Anand Krishnan Prakash, Marina Zafiris, Lazlo Paul, Carlos Duarte

Roa, Paul Raftery, Marco Pritoni, and Gabe Fierro. 2021. Query relaxation for portable

brick-based applications. In Proceedings of the 8th ACM International Conference on

Systems for Energy-Efficient Buildings, Cities, and Transportation (BuildSys '21).

Association for Computing Machinery, New York, NY, USA, 150–

159. https://doi.org/10.1145/3486611.3486671

Duarte Roa C., Raftery P., Sun R., Paul L., Prakash A., Pritoni M., Fierro G., Peffer T. (2022).

Towards a Stronger Foundation: Digitizing Commercial Buildings with Brick to Enable

Portable Advanced Applications. ACEEE Summer Study on Energy Efficiency in

Buildings 2022. https://doi.org/10.20357/B7ZG6R

Duarte Roa C., Raftery P., Rupam S., Pritoni M., Peffer T. (2022). Detecting Passing Valves at

Scale Across Different Buildings and Systems: A Brick Enabled and Mortar Tested

Application. ACEEE Summer Study on Energy Efficiency in Buildings

2022. https://doi.org/10.20357/B7VP5H

Fierro, Gabe, Jason Koh, Yuvraj Agarwal, Rajesh K. Gupta, and David E. Culler. 2019. Beyond

a House of Sticks: Formalizing Metadata Tags with Brick. In The 6th ACM International

Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation

(BuildSys ’19), November 13–14, 2019, New York, NY, USA. ACM, New York, NY,

USA, 10 pages. https://doi.org/10.1145/3360322.3360862

Fierro, Gabe, Sriharsha Guduguntla, David E. Culler. 2019. Dataset: An Open Dataset and

Collection Tool for BMS Point Labels. 2nd Workshop on Data Acquisition To Analysis

(DATA), New York, NY, USA, November 2019. [pdf]

Fierro, Gabe, Jason Koh, Shreyas Nagare, Xiaolin Zang, Yuvraj Agarwal, Rajesh K. Gupta, and

David E. Culler. Formalizing Tag-Based Metadata with the Brick Ontology. Frontiers in

Built Environment, Vol 6 (September 2020).

DOI: https://doi.org/10.1145/3360322.3360862

Fierro, Gabe, Anand Krishnan Prakash, Cory Mosiman, Marco Pritoni, Paul Raftery, Michael

Wetter, David E Culler. Shepherding Metadata Through the Building Lifecycle. In

Proceedings of the 7th ACM International Conference on Systems for Energy-Efficient

Buildings, Cities, and Transportation (BuildSys 2020). November 18, 2020, Virtual

Event. DOI: https://doi.org/10.1145/3408308.3427627

Fierro, Gabe, Anand Krishnan Prakash, Cory Mosiman, Marco Pritoni, Paul Raftery, Michael

Wetter, David E Culler. Demo Abstract: Interactive Metadata Integration with Brick. In

Proceedings of the 7th ACM International Conference on Systems for Energy-Efficient

https://doi.org/10.1145/3486611.3486671
https://doi.org/10.20357/B7ZG6R
https://doi.org/10.20357/B7VP5H
https://doi.org/10.1145/3360322.3360862
https://people.eecs.berkeley.edu/~gtfierro/papers/BuildingMetadataDataset-DATA-2019-Fierro.pdf
https://doi.org/10.1145/3360322.3360862
https://doi.org/10.1145/3408308.3427627

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 73 of 77

Buildings, Cities, and Transportation (BuildSys 2020). November 18, 2020, Virtual

Event. DOI: https://doi.org/10.1145/3408308.3431125

Fierro, Gabriel T. 2021. Self-Adapting Software for Cyberphysical Systems. Dissertation,

University of California,

Berkeley. https://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-159.pdf.

Fierro, Gabe, Avijit Saha, Tobias Shapinsky, Matthew Steen, Hannah Eslinger.

2022. Application-Driven Creation of Building Metadata Models with Semantic

Sufficiency. In Proceedings of the 9th ACM International Conference on Systems for

Energy-Efficient Buildings, Cities, and Transportation (BuildSys '22). Association for

Computing Machinery, Boston, USA

Fierro, Gabe, Anand Prakash, David Blum, Joel Bender, Erik Paulson, Michael Wetter.

2022. Notes Paper: Enabling Building Application Development with Simulated Digital

Twins. In Proceedings of the 9th ACM International Conference on Systems for Energy-

Efficient Buildings, Cities, and Transportation (BuildSys '22). Association for Computing

Machinery, Boston, USA

Luo, Na, Gabe Fierro, Yapan Liu, Bing Dong, Tianzhen Hong. 2022. Extending the Brick

schema to represent metadata of occupants. Automation in Construction, Volume 139,

2022, 104307, ISSN 0926-5805, https://doi.org/10.1016/j.autcon.2022.104307.

Pauwels, P., & Fierro, G. (2022). A Reference Architecture for Data-Driven Smart Buildings

Using Brick and LBD Ontologies. CLIMA 2022

Conference. https://doi.org/10.34641/clima.2022.425

Pritoni, Marco, Drew Paine, Gabe Fierro, Cory Mosiman, Michael Poplawski, Avijit Saha, Joel

Bender and Jessica Granderson. Metadata Schemas and Ontologies for Building Energy

Applications: A Critical Review and Use Case Analysis Energies, Volume 14, April

2021.

Roth A., Wetter M., Benne K., Blum D., Chen Y., Fierro G., Pritoni M., Saha A., Vrabie D.,

(2022). Towards Digital and Performance-Based Supervisory HVAC Control

Delivery. ACEEE Summer Study on Energy Efficiency in Buildings

2022. https://doi.org/10.20357/B70G62

Sun, Ruiji, Carlos Duarte Roa, Paul Raftery, and Gabe Fierro. 2022. “Enabling Portable and

Reproducible Long-Term Thermal Comfort Evaluation with Brick Schema and Mortar

Testbed.” In 2022 ASHRAE Annual Conference. Toronto, ON, Canada.

Wetter, M., Hu J., Prakash A., Ehrlich P., Pritoni M, Fierro G., Grahovac M., Rivalin L., Robin

D. (2021). Modelica-json: Transforming energy models to digitize the control delivery

process. Building Simulation 2021 Conference. (conference in Aug 2021)

https://doi.org/10.1145/3408308.3431125
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-159.pdf.
https://doi.org/10.1016/j.autcon.2022.104307
https://doi.org/10.34641/clima.2022.425
https://doi.org/10.20357/B70G62

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 74 of 77

Presentations

Duarte, Carlos, Paul Raftery, Ruiji Sun, Lazlo Paul, Anand Prakash, Marco Pritoni, Gabe Fierro,

Therese Peffer. 2022. “Towards a Stronger Foundation: Digitizing Commercial Buildings

with Brick to Enable Portable Advanced Applications.” Presented at the 2022 ACEEE

Summer Study on Energy Efficiency in Buildings. Pacific Grove, CA. August.

Duarte, Carlos, Paul Raftery, Ruiji Sun, Therese Peffer. 2022. “Scalable Fault Detection Using

the BRICK Schema.” Presented at the CBE Industry Advisory Board Meeting. Berkeley,

CA. April.

Duarte, Carlos, Ruiji Sun, Paul Raftery, Anand Prakash, Michael Wetter, Karthikeya

Devaprasad, Gabe Fierro, Therese Peffer. 2021. “Digitizing Buildings with BRICK to

Enable Portable Analytics, Modeling, and Controls.” Presented at the ASHRAE Ireland

Chapter. Remote Presentation. October.

Duarte, Carlos, Ruiji Sun, Paul Raftery, Anand Prakash, Michael Wetter, Karthikeya

Devaprasad, Gabe Fierro, Therese Peffer. 2021. “Digitizing Buildings with BRICK to

Enable Portable Analytics, Modeling, and Controls.” Presented at the CBE Industry

Advisory Board Meeting. Berkeley, CA. October.

Fierro, Gabe. 2021. “Brick and Mortar: Semantic Metadata for Cyberphysical Telemetry and its

Context.” Presented at Google (virtual). October.

Fierro, Gabe. 2021. “Self-Adapting Data-Driven Software for Buildings.” Presented for the

Global AI Challenge Conference (virtual). October.

Fierro, Gabe. 2021. “Brick: Consistent Semantic Metadata for Data-Driven Buildings.”

Presented for IBPSA-USA Building Data Exchange Sub-Committee (virtual).

Fierro, Gabe, Jason Koh, Erik Paulson. 2021. “Catching Up with the Brick Schema for Smart

Buildings.” Presented as Memoori Webinar. January.

Fierro, Gabe, Karl Hammar, Joel Bender, Erik Paulson, Akshay Johar, Erik Wallin. 2022.

“Major harmonization effort between two smart building metadata standards.” Presented

as Memoori Webinar. August.

Fierro, Gabe, Karl Hammar. 2022. “Getting started using Brick and RealEstateCore: examples

and tools.” Presented at Brick-RECCon22. https://www.realestatecore.io/reccon22/.

November.

Fierro, Gabe. 2022 “A Solid Foundation: Harmonizing Brick and Haystack to Simplify the

Building Metadata Landscape.” Presented at HaystackConnect 2022. September.

https://www.realestatecore.io/reccon22/

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 75 of 77

In addition, Dr. Fierro has posted multiple YouTube videos and tutorials about Brick and related

topics.

Using Brick and TimescaleDB for building data analytics:

https://www.youtube.com/watch?v=kZYNXoiM8gk (852 views)

Converting between Brick and VBIS: https://www.youtube.com/watch?v=zF1M7Z2APSY (75

views)

Dissertation Talk: Self-Adapting Software for Cyber-Physical Systems:

https://www.youtube.com/watch?v=Z5OKXIJtvYs (202 views)

Tutorial for online SPARQL query execution: https://www.youtube.com/watch?v=zJTuizwSAks

(41 views)

b. Web site or other Internet sites that reflect the results of this project;

Brick: https://brickschema.org/

Mortar: https://mortardata.org/

Brick developer documentation: https://docs.brickschema.org/

c. Networks or collaborations fostered;

Johnson Controls Inc: JCI was a project partner throughout the project and led the creation of the

Brick Industrial Consortium. Dr. Fierro (CO School of Mines and NREL) met with Erik Paulson

of JCI on a regular basis throughout the project

Industrial Consortium: While the process of creating the Consortium took longer than expected,

the Consortium now has 6 industrial members and was involved in the release of Brick v1.3 in

2022. Membership includes Johnson Controls, Siemens, Schneider Electric, Carrier, Mapped,

and Clockworks Analytics, in addition to multiple academic members.

Brick collaborates with:

• ASHRAE (especially the 223p BACnet Standard working group):

• Virtual Building Information System (VBIS, https://vbis.com.au/): In Aug 2020, Brick

and VBIS announced a Memorandum of Understanding (MOU) to collaborate and

integrate. VBIS has a comprehensive classification structure and asset specific metatag

for all assets that make up the built environment as well as a mechanism to allow linking

asset data that is stored in disparate locations to allow discovery and use of information.

The VBIS classification structure, which captures detailed asset properties not covered by

Brick, will be mapped to the asset classes in Brick. This will provide a comprehensive

data model definition that supports deploying analytics, energy efficiency measures,

automation as well as Asset Management and Facility Management activities such as

lifecycle planning, maintenance planning and performance benchmarking.

https://www.youtube.com/watch?v=kZYNXoiM8gk
https://www.youtube.com/watch?v=zF1M7Z2APSY
https://www.youtube.com/watch?v=Z5OKXIJtvYs
https://www.youtube.com/watch?v=zJTuizwSAks
https://brickschema.org/
https://mortardata.org/
https://docs.brickschema.org/
https://vbis.com.au/

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 76 of 77

• RealEstateCore (https://www.realestatecore.io/): Brick and REC are cooperating to
make it easier to create rich semantic models of smart buildings and real estate

portfolios.

As of this writing (2022) Brick is used by:

• Bractlet (https://bractlet.com/)

• Carrier (https://www.carrier.com/carrier/en/worldwide/)

• Johnson Controls (https://www.carrier.com/carrier/en/worldwide/)

• Onboard (https://www.onboarddata.io/)

• Mapped (https://www.mapped.com/)

• Schneider Electric (https://www.se.com/us/en/)

d. Technologies/Techniques;

The Brick data schema includes the ontologies, interfaces and tools, and a testbed (Mortar) of

building data described in Brick data models.

Brick: https://brickschema.org/

Mortar: https://mortardata.org/

Brick developer documentation: https://docs.brickschema.org/

e. Inventions/Patent Applications, licensing agreements

Brick is free and open-sourced under the BSD 3-Clause license; Brick is publicly available at

https://brickschema.org/resources. The source code for Brick, the website, and related tools

developed by the Brick team are available on GitHub.

f. Other products, such as data or databases, physical collections, audio or video, software or

netware, models, educational aid or curricula, instruments or equipment

Videos describing Brick:

• Using Brick and TimescaleDB for building data analytics:

https://www.youtube.com/watch?v=kZYNXoiM8gk (852 views)

• Converting between Brick and VBIS:

https://www.youtube.com/watch?v=zF1M7Z2APSY (75 views)

• Dissertation Talk: Self-Adapting Software for Cyber-Physical Systems:

https://www.youtube.com/watch?v=Z5OKXIJtvYs (202 views)

• Tutorial for online SPARQL query execution:

https://www.youtube.com/watch?v=zJTuizwSAks (41 views)

https://www.realestatecore.io/
https://bractlet.com/
https://www.carrier.com/carrier/en/worldwide/
https://www.carrier.com/carrier/en/worldwide/
https://www.onboarddata.io/
https://www.mapped.com/
https://www.se.com/us/en/
https://brickschema.org/
https://mortardata.org/
https://docs.brickschema.org/
https://brickschema.org/resources
https://www.youtube.com/watch?v=kZYNXoiM8gk
https://www.youtube.com/watch?v=zF1M7Z2APSY
https://www.youtube.com/watch?v=Z5OKXIJtvYs
https://www.youtube.com/watch?v=zJTuizwSAks

DE-EE0008681

Skewering the silos: using Brick to enable portable analytics, modeling and controls in buildings

Regents of the University of California, Berkeley

Page 77 of 77

Software may be found at:

https://brickschema.org/resources

Brick: https://brickschema.org/

Mortar: https://mortardata.org/

Brick developer documentation: https://docs.brickschema.org/

https://brickschema.org/resources
https://brickschema.org/
https://mortardata.org/
https://docs.brickschema.org/

	Disclaimer
	Executive Summary
	Goals and Objectives
	Project Activities
	Task 1: Expand Brick Schema
	Demonstrate Brick models for >50 buildings
	Expand Brick schema to represent 80% of large commercial buildings
	Top-down approach
	Bottom-up Approach

	Feedback on expanded Brick schema
	Review and release the expanded schema
	Occupancy
	Interoperability with other ontologies: REC, Project Haystack and ref-schema

	Task 2: Develop Tools and Translators
	Identify list of required interfaces with Brick
	Outline integration pathway for at least four data models
	Drivers / Metadata Source
	Metadata Reconciliation
	Evaluation
	Models and Sites
	Driver Implementation

	Evaluation of Reconciliation Algorithm.

	Demonstration of three interfaces
	Demonstration of Modelica-Brick Translator
	Demonstration of BACnet-Brick Interface
	Demonstration of IFC-Brick Interface
	Demonstration of Haystack-Brick translation

	Task 3: Develop an Open Source Analytics Testbed (Mortar)
	General architecture of platform
	Develop the testbed
	Demonstrate the testbed
	Rogue Airflow Analysis

	Automatic selection of analytics
	Version control of Brick models

	Task 4: Develop and Apply Analytics and Controls Applications
	Identify potential analytics and controls
	Discuss list of applications with stakeholders
	Develop two simple algorithms
	Compare sensor measurements against setpoints
	Detect passing valves

	Open-source library of applications
	Demonstration of two more complex applications
	Hot Water Supply Temperature Reset
	Duct Static Pressure Reset Control
	Additional Applications in progress

	Brick and energy saving

	Task 5: Technology Transition Plan
	Industrial Consortium
	Feedback from industry partners
	Technology to Market (T2M) Plan
	Workshop

	End of project goals

	Products Developed and Technology Transfer Activities

