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Executive Summary 
 
Commonly, data centers are designed and operated on the assumption of stationarity of the climate. 
Historical weather data informs the basis of their design and operations. However, as a result of 
climate change, this assumption is not valid and poses a great risk for data centers. In the coming 
decades, Northern California’s drought and extreme heat risk is projected to increase significantly. 
This report provides a drought and extreme heat impacts assessment of data centers in this region. 
Expert solicitation of data center experts enabled a tailored approach to this report. We identify the 
climate variables and analytics relevant for assessing data center-specific impacts from extreme 
heat and drought and demonstrate how to access and understand future climate projections from 
climate models. We emphasize the importance of including future climate projections into data 
center design and planning. This report is an important first step towards building an effective 
extreme heat and drought adaptation strategy for data centers in Northern California. While our 
geographical focus in this report is Northern California, many findings in this report are broadly 
applicable.  
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1. Introduction 
 
Data centers are facilities that house computing machines and related hardware components that 
are used by businesses to assemble, process, store and disseminate large amounts of data. In 
addition to being crucial assets for an organization’s everyday operations, they are also vital to the 
functioning of modern society, supporting online services and applications we depend upon and 
much of our critical infrastructure, e.g., public safety, finance, healthcare, and transportation. 
Unexpected data center shutdowns would have widespread repercussions to society.  
 
The computing systems and related components that data centers house generate tremendous 
amount of heat. The temperature and humidity levels within the data centers need to be carefully 
controlled to ensure that the computing systems can perform reliably and efficiently. The American 
Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) published the 
Thermal Guidelines for Data Processing Environments in 20211. Their recommended standards 
for data center cooling advise servers room temperatures that ensure reliable operation and 
maximize efficiency and longevity of servers. ASHRAE publishes psychrometric charts that 
display the recommended temperature and humidity ranges for a data center. The current 
recommended temperature range for data center equipment is 18 to 27 degrees C (64.4 to 80.6 
degrees F), and ASHRAE also provide allowable ranges for four different classes of data center 
equipment: A1, A2, A3 and A4 that vary considerably. Most data center equipment falls into class 
A1 or A2.  
 
To maintain those desired conditions in a data center requires significant support infrastructure 
including power subsystems, uninterruptible power supplies (UPS), backup generators, ventilation 
and cooling equipment. Data centers are extremely energy-intensive, consuming ~ 2% of the total 
US electricity.2 Roughly 40% of the power that data centers consume goes toward cooling them. 
Data centers must be cooled through water cooling, air cooling, refrigerants, or combinations of 
these methods. The cooling method adopted depends on the data center size and location. Water 
cooling can be less energy intensive than air cooling, but their water footprint is dramatically 
higher. For example, Google has significantly reduced its carbon footprint by using water for 
cooling. However, they recently divulged their water-use data and it was found to be a staggering 
3.3 billion gallons in 2021 within the US alone.3 
 
Droughts and heatwaves, like many other climate-related hazards, are becoming more frequent 
and more severe as a result of climate change. Many parts of Northern California faced record-
breaking temperatures in 2022, and the Southwestern US megadrought that began in 2000 is the 
was the driest 22-year period for at 1200 years [Williams et. al., 2022]. Hot and dry conditions can 
have widespread impacts on built and planned data centers. For example, extreme heat can lead to 
increased energy use for cooling, overheating and failure of equipment, reduced efficiency, and 
shutdowns/outages due to heat-related power disruptions. Extreme heat can also damage the data 
center building infrastructure. For data centers that use water for cooling, water scarcity arising 
from prolonged drought could lead to decreases in cooling capacity, and operational disruptions. 

 
1 https://www.techstreet.com/ashrae/standards/thermal-guidelines-for-data-processing-environments-5th-ed?product_id=2212974 
2 https://www.energy.gov/eere/buildings/data-centers-and-servers 
3 https://www.watercalculator.org/news/news-briefs/google-data-center-water/ 
 

https://www.techstreet.com/ashrae/standards/thermal-guidelines-for-data-processing-environments-5th-ed?product_id=2212974
https://www.energy.gov/eere/buildings/data-centers-and-servers
https://www.watercalculator.org/news/news-briefs/google-data-center-water/
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Water-cooled data centers also are particularly vulnerable to high humidity, which can impede their 
ability to cool efficiently.  
 
Data centers are typically designed and built assuming that historical weather conditions are 
representative of expected future conditions. Ramifications of this incorrect assumption are 
already apparent. In the UK, the record-breaking temperatures last summer resulted in shutdowns 
of Google and Oracle data centers.4 Last year also saw Twitter’s data center taken offline by 
extreme heat in California.5 These impactful events will become increasingly common if data 
centers do not plan for climate change in their design and operations.  
 
Impacts to data centers from drought and extreme heat will be non-uniform and depend on factors 
unique to their specific location. Northern California (specifically Silicon Valley) is home to more 
than 160 data centers and is the third-largest data center market in the US. Planning tools that 
incorporate plausible and adequate future regional climate scenarios are needed to inform 
infrastructure decisions and enable prioritized hardening of data center assets against increased 
exposure to drought and extreme heat.  
 
This report provides an assessment of drought and extreme heat/humidity impacts to data centers 
in Northern California. We developed a geospatial system to enable quantitative analysis of heat 
and humidity to data centers in Northern California. We worked with various key stakeholders to 
identify and provide data center-specific variables and analytics. Since data centers often use 
nearby airports for their weather data, we select three airports within Northern California and 
present the results for these locations as case studies. Our assessment of drought impacts is mostly 
qualitative in nature owing to the complex non-localized nature of the impacts of drought.  
 
The report is structured as follows. In Section 2. we introduce the changing climate, climate 
models, and the climate data we use in this report. In Section 3. we describe the climate variables 
and analytics relevant to data centers. In Section 4. we provide the case study results. In Section 
5. we discuss a path forward. 
 
 
  

 
4 https://www.bbc.com/news/technology-62202125 
5 https://www.latimes.com/california/story/2022-09-12/twitters-data-center-knocked-out-by-extreme-heat-in-california 
 
 
 

https://www.bbc.com/news/technology-62202125
https://www.latimes.com/california/story/2022-09-12/twitters-data-center-knocked-out-by-extreme-heat-in-california
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2. Climate science 
 
2.1 Earth’s changing climate  
 
Throughout history the Earth’s climate has always changed, but over the last 200 years, since the 
beginning of the industrial revolution, the changes have been dramatic. Since 1880, the Earth has 
warmed 1.9° Fahrenheit. Recent global temperatures have increased at a rate unprecedented in at 
least the last 2000 years, and the latest decade was warmer than any multi-century period for 
125,000 years [Arias et. al., 2021]. The primary driver of climate change is human activity, mainly 
through burning of fossil fuels such as oil, coal, and gas. Fossil fuels release greenhouse gases 
(GHGs) into the atmosphere that cause the Earth to warm. The effects of climate change extend 
beyond increasing temperatures. Climate change also results in more extreme weather (e.g. 
increased frequency and severity of droughts, storms, and floods), melting sea ice and glaciers, 
rising sea levels, and much more.  
 
 
2.2 Climate models and emission scenarios 
 
A global climate model (GCM) is a computational model that simulates the climate system. They 
encode the physics and dynamics of the climate system via mathematical equations and are run on 
powerful supercomputers. Within the model, the Earth’s atmosphere, ocean, and land is divided 
into a 3D grid of thousands of cells, with the size of the grid defining the resolution of the GCM 
(see schematic in Figure 1.). Current GCMs are typically run at spatial scales of about 100km due 
to their vast computational expense. GCMs can be used to make predictions of different climate 
variables and phenomena, much like having a synthetic Earth. They are validated over the past and 
are found to have good agreement with observations.  
 

 

 
Figure 1. Schema/c of a GCM. Image source: NOAA 
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GCMs are a critical tool for assessing and understanding not only how the climate has changed in 
the past, but what changes we can expect in the future. Many GCMs have been developed by 
different modeling centers around the world. They each run the same experiments: over the past 
(from 1850 – present) and for the future (present – 2100) and publish their data and results. In the 
Fifth phase of this Coupled Model Intercomparison Project (CMIP5) over 30 GCMs participated.  
Since the main driver of climate change is human activities, the GCMs run several “concentration 
trajectories”, also known as “emission scenarios”, in order to capture the range of possible future 
pathways that will vary according to human activity. These are known as Representative 
Concentration Pathways (RCPs). Two main pathways are often considered: RCP 4.5, which is an 
intermediate scenario (GHG emissions peak in 2040 and then decline) and RCP 8.5, which is a 
worst-case scenario (GHG emissions continue to rise through the end of the century). The Fifth 
Assessment of the United Nations Intergovernmental Panel on Climate Change (IPCC) report used 
RCPs 4.5 and 8.5 [IPCC, 2014]. The sixth phase of CMIP and the IPCC report (finalized in March 
2023) [IPCC, 2022] added further refinement to the RCPs by using Shared Socioeconomic 
Pathways (SSPs), but those are not considered in this report.  
 
It is important to note the differences between weather/climate and weather forecasts/climate 
projections. Weather refers to short-term conditions of the atmosphere on the timescales of days 
or weeks, whereas climate refers to long-term changes. The timescale of climate projections used 
in this report is daily, however these projections can’t be used in the same way as weather forecasts. 
It isn’t possible to make a prediction for a given day in the future. However, what they can be used 
for is to help us understand what to expect in the future in a general sense. In climate, we speak 
of trends and averages on periods of 30 years or longer. For example, the temperature trends for 
California are increasing, though there is significant daily, seasonal, even yearly variability due to 
the chaotic nature of the climate system. Climate projections can also tell us on average how much 
more frequent and severe heatwaves will be for example.  
 
 
2.3 Climate impacts at a regional scale 
 
The typical outputs retrieved from GCM simulations are often too coarse (~ 100km) in spatial 
resolution and/or too biased relative to observations to directly and reliably inform site specific 
infrastructure decisions. In order to assess climate impacts at a finer scale, it is necessary to 
downscale and bias correct the outputs from the GCMs. Multiple methodologies exist to downscale 
and refine the projections from GCMs to geographic and time scales appropriate for informing 
infrastructure planning decisions. The two traditional approaches to downscaling have been 
categorized as being “statistical” or “dynamical”. Novel approaches include “hybrid”, which 
combines statistical and dynamical aspects, and those that incorporate machine learning. Each 
approach has its own pros and cons. The statistical approach is often built from empirical statistical 
relationships between the simulated large-scale synoptic weather condition and the observed local 
conditions. In this report, we leverage the LOCA (Localized Constructed Analogs) statistical 
downscaling method, developed by Scripps Institution of Oceanography [Pierce et. al., 2014]. It 
uses historical observations to increase the resolution of the outputs from the GCMs. The 
resolution of the LOCA downscaled data that we will use for this report is 6km. The LOCA data 
we use was generated to support climate impact studies for the California 4th climate change 
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assessment.6 LOCA was used to downscale all 32 GCMs that contributed to CMIP5, though some 
of the downscaled climate variables are only available for a subset of 10 GCMs that we were 
identified as adequately sampling changes in California’s climate across the 32 GCMs. Of those 
10, four GCMs were further selected that represent the range of projections from the 10 sub-
selected GCMs. Considering results from an ensemble of GCMs ensures that we are capturing the 
range of possible outcomes due to the different ways each model represents the climate system. 
Ensuring that the GCMs that are used in impact assessments are producing accurate results over 
the historical period for the spatial location of interest is important. The sub-selected GCMs that 
were downscaled with LOCA and used in this report are found to accurately simulate the important 
aspects of the climate of California. 
 
 
  

 
6 https://www.climateassessment.ca.gov/ 

https://www.climateassessment.ca.gov/
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3. Extreme heat and drought impacts to data centers 
 
3.1 Assessing relevant impacts 
 
Raw outputs from a GCM or from a subsequent downscaled method such as LOCA are often not 
in a form that is readily usable by an end-user. For example, having the temperature for a data 
center for every day until 2100 isn’t useful by itself, since climate data isn’t meaningful when 
looked at on a daily scale. Oftentimes we will want to perform some analysis on or synthesis of 
this data to obtain a more useful quantity for the end-user of the climate information. We’ll refer 
to these derived quantities as climate analytics. An example of a climate analytic that we’ll 
encounter in the coming chapter is the average number of days in a year where the maximum daily 
temperature (a climate variable) exceeds a particular threshold. The space of possible of climate 
variables and analytics is huge, so a vital part of conducting a useful climate impacts assessment 
is to identify the relevant climate variables and analytics for the sector of interest. Through 
stakeholder engagement with several data centers in Northern California, we were able to provide 
a tailored assessment of the impacts of extreme heat and drought on data centers.  
 
Not all data centers are equally at risk from extreme heat and drought. One key aspect that 
determines their vulnerability is the cooling methods they adopt. Air-cooled data centers are 
vulnerable to high dry-bulb temperatures. High temperatures can cause failure of the cooling 
systems if temperatures surpass the data center’s design limits. Water cooling is typically more 
cost-effective and efficient (since water has a higher thermal conductivity than air) and therefore 
is a popular method for data center cooling, especially for high-power density computing. There 
is a trade-off: using water for cooling can reduce the amount of power a data center uses and so is 
more energy efficient, but instead they heavily depend on water, which is problematic in water 
scarce regions. 
 
Many mid- to large-sized data centers use a chilled water system, which distributes cool water to 
the server room cooling units (see Figure 2.). Water is primarily consumed through evaporation 
from the cooling tower and through “blow-down”. Blow-down is when the cooling tower dumps 
water to eliminate the buildup of contaminants that occurs after several cycles. The amount of 
blow-down varies as a function of the water quality and treatment. A typical large-sized water-
cooled data center can consume up to 1-5 million gallons of water per day.7 This puts the data 
centers at high risk from water shortages that can arise during periods of drought. 
 

 
7 https://www.washingtonpost.com/climate-environment/2023/04/25/data-centers-drought-water-use/ 

https://www.washingtonpost.com/climate-environment/2023/04/25/data-centers-drought-water-use/
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Figure 2: Schema/c of a chilled water system. Image source: hAps://dc.mynetworkinsights.com/data-center-cooling-
infrastructure/ 

 
The evaporation from the cooling towers is how the data center is cooled in this system. Therefore, 
water-cooled data centers are also vulnerable to high humidity or wet-bulb temperatures. Standard 
air temperature that people most often refer to is known as the dry-bulb temperature. Wet-bulb 
temperature accounts for humidity in the air and is the temperature of adiabatic saturation. It can 
be measured using a thermometer with the bulb wrapped in a wet cloth. When the relative humidity 
of the air is 100%, the water on the cloth is unable to evaporate and the wet-bulb temperature is 
the same as the dry-bulb temperature. However, when the humidity is lower, water from the wet 
cloth can evaporate and therefore the wet-bulb temperature can be lower than the dry-bulb 
temperature. This is like the effect of sweating as a means to cool down. If wet-bulb temperatures 
are higher than was assumed in the design of the data center, the water in the cooling towers cannot 
evaporate efficiently and the data center loses its cooling capability. Another common water-
cooled method for data centers is Direct Evaporative Cooling (DEC), a method that cools outside 
air by using a wetted medium within an air handling unit. This method also is vulnerable to drought 
and wet-bulb temperature due to the same reasons above. Air-cooled data centers can also suffer 
as a result of high humidity since the air conditioning systems will have to work harder to remove 
the humidity from the outside air. 
 
Increased warm nights, or minimum temperatures, can put data centers at risk as it can mean that 
the data centers cannot get relief at night from high temperatures. For example, a string of 
consecutive extreme heat days and warm nights could result in the temperature of the water used 
for cooling to be too high provide adequate cooling. 
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3.2 Data center relevant impacts 
 
Extreme heat (maximum dry-bulb temperature) 
 
In the Bay Area, annual maximum temperatures are expected to increase significantly. Figure 3. 
shows the time series and time period summaries of the annual average maximum temperatures 
for observations, and the 10 sub-selected CMIP5 GCMs downscaled with LOCA.  
 
 

 
Figure 3: The /me series and /me period summaries of the annual average maximum temperatures for observa/ons, and the 10 
sub-selected CMIP5 GCMs downscaled with LOCA. The average across the 10 GCMs is shown for the RCP 4.5 and 8.5 scenarios 
and their ranges. Image source: hAps://www.energy.ca.gov/sites/default/files/2019-11/Reg_Report-SUM-CCCA4-2018-
005_SanFranciscoBayArea_ADA.pdf 

 
In Figure 4., we can see that the average hottest day of the is also expected to increase dramatically 
in the Bay Area region. The impacts of climate change on this region are already being felt, with 
record maximum temperatures in recent years.  
 

 
Figure 4: Average hoAest day of the year across for historical, RCP 4.5 and RCP 8.5 future scenarios for the 10 sub-selected 
CMIP5 GCMs downscaled with LOCA. Image source: hAps://www.energy.ca.gov/sites/default/files/2019-11/Reg_Report-SUM-
CCCA4-2018-005_SanFranciscoBayArea_ADA.pdf 

 
Similar trends are seen for other parts of Northern California. Details for these other regions can 
be found in the California climate change assessment regional reports.8 

 
8 https://www.climateassessment.ca.gov/regions/ 

https://www.climateassessment.ca.gov/regions/
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Extreme heat analytics that we consider in the following chapter are as follows: 
 

o Average number of extreme heat days per year above a user-defined threshold. 
o Average number of heatwaves (a user-defined number of consecutive days) above a user-

defined temperature. 
o Average number of days in longest stretch of extreme heat days above a user-defined 

threshold. 
 
 
Warm nights (minimum dry-bulb temperature) 
 
The minimum temperature (which typically occurs during the night) is also projected to increase. 
Figure 5. shows the annual average minimum temperature under the RCP 8.5 scenario. 
 

 
Figure 5: Time series of the annual average minimum temperature under the RCP 8.5 scenario for the 10 LOCA-downscaled GCMs 
for the Bay Area region, where the gray shading shows the projected range from all 32 GCMs. Image source: Cal-Adapt.org 

 
The trends for other regions in Northern California can be found on the Cal-Adapt platform. 
 
Like extreme heat, the analytics that we consider in the following chapter for warm nights are as 
follows: 
 

o Average number of warm nights per year above a user-defined threshold. 
o Average number of times the minimum temperature surpasses a threshold temperature for 

a user-defined number of consecutive days. 
o Average number of days in the longest stretch of consecutive warm nights above a user-

defined threshold. 
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Relative humidity and maximum wet-bulb temperature 
 
Relative humidity is the ratio of the water vapor in the air to how much water vapor the air could 
potentially contain at its current temperature, expressed as a percentage. As the atmosphere warms, 
it can hold much more moisture. It is a typical output from a GCM. Wet-bulb temperature on other 
hand is not an output from GCMs, but it can be estimated empirically from the relative humidity 
and the dry-bulb temperature. In the next chapter, following the approach in Alessi et. al. [2020], 
our maximum wet-bulb temperature projections are calculated using daily maximum temperature 
and daily minimum relative humidity with the following empirical equation [Stull, 2011]: 
 

 
 
We won’t consider it in this report, but the minimum wet-bulb temperature can be similarly 
calculated using the daily minimum dry-bulb temperature and daily maximum relative humidity. 
 
We will explore the same analytics in the following chapter as above for minimum relative 
humidity, maximum relative humidity, and maximum wet-bulb temperature. We will also consider 
analytics of combinations of these quantities.  
 
 
Drought  
 
Data centers that use water for cooling are vulnerable to drought. Drought is challenging to both 
define and quantify. Generally, there four different types of drought: 1) meteorological, 2) 
hydrological, 3) agricultural, and 4) socioeconomic. Meteorological drought is often defined as a 
deficiency of precipitation over an extended period of time. However, drought severity and 
duration increases due to rising temperatures causing enhanced evaporation, even if there is no 
change to the amounts of precipitation [Wehner et al. 2017]. Hydrological drought cascades from 
meteorological drought, when the lack of precipitation impacts the water storage and supply, such 
as in streams, reservoirs, and groundwater levels, typically after a prolonged meteorological 
drought. It is this type of drought that is most relevant for data centers. From this definition, we 
can see that a meteorological drought in one region can cause a hydrological drought in another if 
the former region supplies water to the latter. This makes it critical for a data center to monitor 
meteorological drought conditions over the regions that supply their water. For example, a 
meteorological drought in Utah and Colorado can diminish water supplies in Lake Mead and Lake 
Powell, both of which are key reservoirs for California water supply.  
 
The Southwestern US is expected to face significant drought risk in the coming decades [Cook et. 
al., 2015] Figure 6. shows the Palmer Drought Severity Index (PDSI; the most prominent 
meteorological drought index that is used widely for drought monitoring within the US), computed 
for 17 CMIP5 GCMs. All models are projecting unprecedented drought risk in the future for this 
region.  
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Figure 6: PDSI from observa/ons (tree-ring data) in brown. Dark blue is the mul/-GCM mean predic/on for the RCP 8.5 future 
scenario computed for 17 CMIP5 GCMs. The light blue shaded area is the mul/-GCM interquar/le range showing the range of 
projected values. Image source: Cook et. al. 2015. 

 
Sierra Nevada snowpack is a key water source that is increasingly at risk. In 2022, DWR reported 
that the snowpack was the fifth smallest on record since 1950, at a mere 35% of normal. Snow 
accumulated in the Sierra Nevada during the winter months is slowly released through the spring 
and summer months as snowmelt and then used as a primary water resource, supplying ~ 60% of 
Bay Area water.9 A recent study by Mote et al. [2018] found that average snowpack in the Western 
U.S. has declined 15-30% since 1915. A primary driver of the decline is the rising temperatures, a 
result of human induced climate change. This causes much of the winter precipitation to fall as 
rain and leads to earlier snowmelt, resulting in depleted water resources throughout the summer 
months [Fyfe et al., 2017, Kapnick and Hall, 2012, Pierce et al. 2008]. Furthermore, under the 
RCP 8.5 scenario, the average Sierra Nevada snowpack is projected to decline by nearly 83% by 
2075-2100 [Rhoades et al., 2018] 
 
By 2040, the Department of Water Resources estimates that California could lose 10% of its water 
supplies. Significant water shortages are to be expected in the Northern California region in the 
decades to come, putting data centers in this region at risk. Last year the California State Water 
Board adopted emergency water use regulations. To date, data centers have not been impacted by 
California’s water restrictions, but as water becomes a scarcer resource this may no longer be true 
in the future.  
 
Droughts can also lead to increased energy costs as a result of declined hydroelectric availability. 
In a typical year, 15% of California’s electricity comes from hydroelectric power. Due to extreme 
drought, that number has fell by 48% below the 10-year average (2011–2020) in recent years.10  
 
 

 
9 https://www.energy.ca.gov/sites/default/files/2019-11/Reg_Report-SUM-CCCA4-2018-005_SanFranciscoBayArea_ADA.pdf 
10 https://www.eia.gov/todayinenergy/detail.php?id=51839 

https://www.energy.ca.gov/sites/default/files/2019-11/Reg_Report-SUM-CCCA4-2018-005_SanFranciscoBayArea_ADA.pdf
https://www.eia.gov/todayinenergy/detail.php?id=51839
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4. Case studies 
 
In order to facilitate more interaction with the LOCA downscaled GCM data, we built a geospatial 
system. The system sends a json request to Cal-Adapt REST API requesting the data (e.g model, 
scenario, variable, time period.). See Figure 7. Our system in the backend will postprocess the data 
based on the filters and equations we provide. 
 

 
Figure 7: How our geospa/al system fetches data 

The system was developed with Bokeh11 and all of the data that we use is publicly available via 
the Cal-Adapt API. It is worth noting that some of the results that we can obtain with our system 
can also be obtained via Cal-Adapt’s platform. We go beyond the platform in some ways that 
make sense for data center-specific impacts. For example, we can look at combinations of 
variables such as extreme heat and humidity, and we have an interactive map with all the known 
data centers in Northern California. We’ll show some results for three locations as case studies. 
To avoid focusing on specific data centers, we’ll show the results for San Jose, Livermore, and 
Napa airports. 
 
 
4.1 San Jose airport 
 
First for San Jose, we’ll look at the maximum dry-bulb temperatures in Figure 8. We set it to the 
RCP 8.5 scenario and select all four GCMs. We set the threshold temperature to 100F and plot 
the number of days a year above 100F for each model. In the “Avg” row, we calculate the 
average number of days a year above 100F averaged across that time period and the four GCMs 
in this case. We can also look at one or a subset of the 4 GCMs if desired. The plot shows the 
average number of days above 100F through the end of the century, however in the “Avg” row, 
we adjusted the slider so that a 30-year time period was selected from 2025-2055. As previously 
mentioned, climate projection cannot tell us what temperatures to expect in a given year, but 
averages can be extremely insightful. 30 years is a reasonable estimate of the life-cycle of a data 
center. We can see that if we were to design our data center from historical observations alone, 
we would deduce that the average number of days above 100F for the historical period would be 
0 and the maximum dry-bulb temperature to ever have occurred was 108F. We see that in the 
future projections that the average number of days a year above 100F, even just for the next 30 
years, is three, and the maximum dry bulb temperature that is expected is 111F. These higher 
temperatures are of a concern not only since the data center infrastructure may not have been 
designed to withstand them, but in the case of water-cooled data centers higher temperatures will 

 
11 https://bokeh.org/ 

https://bokeh.org/
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also increase the amount of water required for cooling. This could be problematic in drought 
years when water is limited, further amplifying the impacts of extreme heat to the data center. 
 
 

 
Figure 8: Dry-bulb temperatures for San Jose Airport 

 
Looking at both extreme heat and maximum relative humidity together (i.e. occurring on the 
same day), with thresholds of 100F dry-bulb temperature and 80% relative humidity, we see that 
incidences of high heat and humid days is expected to increase. In Figure 9. we show the results 
for one GCM. 
 

 
Figure 9: Combined impact of maximum rela/ve humidity and dry-bulb temperature at San Jose Airport 
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4.2 Livermore airport 
 
For Livermore we’ll look at maximum wet-bulb temperatures above 78F in Figure 10. We see 
that within the next ~ 30 years the wet-bulb temperatures will exceed 78F, reaching maximums 
of 79F in that timeframe. One of the models is predicting there to be one year within the next ~ 
30 years that has 12 days above 78F.  
 

 
Figure 10: Maximum wet-bulb temperatures for Livermore Airport 

 
4.3 Napa airport 
 
For Napa airport we’ll look at heatwaves in Figure 11. We specify the threshold temperature to 
be 100F and the heatwave length, i.e. the number of consecutive days above that threshold 
temperature to be 5. There were very few events of this nature historically, but in the future they 
are increasing significantly in frequency. 
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Figure 11: Heatwaves for Napa Airport 

 
Looking a bit further out to mid-late century, in Figure 12. we can also see increases in the 
incidence of high dry-bulb and wet-bulb temperatures co-occurring.  
 
 

 
Figure 12: Maximum dry and wet bulb temperatures for Napa Airport 
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5. The path forward 
 
Data centers that use historical weather data such as Typical Meteorological Years (TMY) in 
their design and operations are putting themselves at risk from the impacts of climate change. 
Extreme heat and drought are expected to increase in severity, frequency, and duration in 
Northern California in the future, resulting in conditions that the data centers were potentially not 
designed and built to withstand. If action is not taken to incorporate future climate information 
into data center design and operations, outages, like those faced by Google and Oracle in the UK 
last year, will become much more common and widespread. Analyzing the climate variables and 
analytics described in this report is a necessary first step in developing a suitable resiliency 
strategy. Data centers owner and operators or other key stakeholders can use the LOCA 
downscaled data and Cal-Adapt platform to conduct analyses similar to those described in this 
report to determine their risk from extreme heat and humidity for locations in California. As well 
as ensuring that their data center can withstand the maximum temperatures and humidity 
expected in the future, they can also explore how many days on average per year a temperature is 
below a certain threshold. This can further assist with planning which cooling technologies to 
adopt. This analysis can also be used to help ensure that adequate redundancies and back-ups are 
considered. It is also vitally important for water-cooled data centers to stay informed of the 
region’s water situation and be proactive to mitigate potential risks. 
 
In California, there may be issues in the near future for data centers looking to obtain insurance 
that covers climate-related risk. For example, this year State Farm has ceased accepting 
applications for most types of new insurance policies in the state because of “rapidly growing 
catastrophe exposure.” 12 Allstate also recently stopped offering insurance to homeowners in 
California, and other states are also experiencing a similar trend.13 Therefore, taking a proactive 
approach to climate-related risks is prudent. 
 
Data centers are under growing pressure to improve their sustainability, particularly reducing their 
vast power and water consumption. Implementing sustainable measures in data centers also has 
the added benefit of reducing their vulnerability to climate-related risks. For example, they can 
implement water-efficient cooling technologies such as air-side economizers or closed-loop 
cooling systems that will reduce their water consumption. Using water-recycling systems or 
alternative cooling methods like liquid immersion cooling can further minimize water reliance. 
This has the benefit of meeting sustainability goals and makes data centers less susceptible to water 
scarcity during a drought. Hyperscalers are already moving towards innovative cooling 
technologies in an effort to curb their water usage. For example, by 2030 Amazon Web Services 
(AWS) and Facebook plan to be water-positive. 
 
A word on power. Due to threats of wildfire in extremely hot, dry, and windy conditions, California 
implements Public Safety Power Shutoffs (PSPS) that sees utilities turning off electricity if there 
is a threat to a portion of the electric system. Transitioning to renewable energy sources both 
reduces the carbon footprint of data center and has the benefit of reducing their reliance on the 

 
12 https://newsroom.statefarm.com/state-farm-general-insurance-company-california-new-business-update// 
13 https://www.usatoday.com/story/news/nation/2023/06/11/climate-change-effects-hit-us-homeowner-insurance/70288893007/ 
 

https://newsroom.statefarm.com/state-farm-general-insurance-company-california-new-business-update/
https://www.usatoday.com/story/news/nation/2023/06/11/climate-change-effects-hit-us-homeowner-insurance/70288893007/
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traditional power grid which is vulnerable to climate-related hazards, including extreme heat and 
drought.  
 
Computational fluid dynamic (CFD) simulations are a common tool typically employed by data 
centers to monitor and optimize the internal data center environment and ensure that the computer 
systems stay within optimal operational temperatures. They can be helpful when adding 
equipment, since the addition of the new equipment can be first modeled by the CFD simulation. 
CFD simulation can also be leveraged for external modeling as a tool to design optimal cooling 
systems.14 To date, as far as the author is aware, this has not been performed using future climate 
data. This could be a valuable approach to developing and implementing cooling systems that can 
withstand the climate of the future. 
  

 
14 https://www.futurefacilities.com/uploads/media/casestudy-kao.pdf 
 

https://www.futurefacilities.com/uploads/media/casestudy-kao.pdf
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