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Executive Summary

Commonly, data centers are designed and operated on the assumption of stationarity of the climate.
Historical weather data informs the basis of their design and operations. However, as a result of
climate change, this assumption is not valid and poses a great risk for data centers. In the coming
decades, Northern California’s drought and extreme heat risk is projected to increase significantly.
This report provides a drought and extreme heat impacts assessment of data centers in this region.
Expert solicitation of data center experts enabled a tailored approach to this report. We identify the
climate variables and analytics relevant for assessing data center-specific impacts from extreme
heat and drought and demonstrate how to access and understand future climate projections from
climate models. We emphasize the importance of including future climate projections into data
center design and planning. This report is an important first step towards building an effective
extreme heat and drought adaptation strategy for data centers in Northern California. While our
geographical focus in this report is Northern California, many findings in this report are broadly
applicable.
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1. Introduction

Data centers are facilities that house computing machines and related hardware components that
are used by businesses to assemble, process, store and disseminate large amounts of data. In
addition to being crucial assets for an organization’s everyday operations, they are also vital to the
functioning of modern society, supporting online services and applications we depend upon and
much of our critical infrastructure, e.g., public safety, finance, healthcare, and transportation.
Unexpected data center shutdowns would have widespread repercussions to society.

The computing systems and related components that data centers house generate tremendous
amount of heat. The temperature and humidity levels within the data centers need to be carefully
controlled to ensure that the computing systems can perform reliably and efficiently. The American
Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) published the
Thermal Guidelines for Data Processing Environments in 2021'. Their recommended standards
for data center cooling advise servers room temperatures that ensure reliable operation and
maximize efficiency and longevity of servers. ASHRAE publishes psychrometric charts that
display the recommended temperature and humidity ranges for a data center. The current
recommended temperature range for data center equipment is 18 to 27 degrees C (64.4 to 80.6
degrees F), and ASHRAE also provide allowable ranges for four different classes of data center
equipment: Al, A2, A3 and A4 that vary considerably. Most data center equipment falls into class
Al or A2.

To maintain those desired conditions in a data center requires significant support infrastructure
including power subsystems, uninterruptible power supplies (UPS), backup generators, ventilation
and cooling equipment. Data centers are extremely energy-intensive, consuming ~ 2% of the total
US electricity.> Roughly 40% of the power that data centers consume goes toward cooling them.
Data centers must be cooled through water cooling, air cooling, refrigerants, or combinations of
these methods. The cooling method adopted depends on the data center size and location. Water
cooling can be less energy intensive than air cooling, but their water footprint is dramatically
higher. For example, Google has significantly reduced its carbon footprint by using water for
cooling. However, they recently divulged their water-use data and it was found to be a staggering
3.3 billion gallons in 2021 within the US alone.?

Droughts and heatwaves, like many other climate-related hazards, are becoming more frequent
and more severe as a result of climate change. Many parts of Northern California faced record-
breaking temperatures in 2022, and the Southwestern US megadrought that began in 2000 is the
was the driest 22-year period for at 1200 years [Williams et. al., 2022]. Hot and dry conditions can
have widespread impacts on built and planned data centers. For example, extreme heat can lead to
increased energy use for cooling, overheating and failure of equipment, reduced efficiency, and
shutdowns/outages due to heat-related power disruptions. Extreme heat can also damage the data
center building infrastructure. For data centers that use water for cooling, water scarcity arising
from prolonged drought could lead to decreases in cooling capacity, and operational disruptions.

! https://www.techstreet.com/ashrae/standards/thermal-guidelines-for-data-processing-environments-5th-ed?product id=2212974
2 https://www.energy.gov/eere/buildings/data-centers-and-servers
3 https://www.watercalculator.org/news/news-briefs/google-data-center-water/
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Water-cooled data centers also are particularly vulnerable to high humidity, which can impede their
ability to cool efficiently.

Data centers are typically designed and built assuming that historical weather conditions are
representative of expected future conditions. Ramifications of this incorrect assumption are
already apparent. In the UK, the record-breaking temperatures last summer resulted in shutdowns
of Google and Oracle data centers.* Last year also saw Twitter’s data center taken offline by
extreme heat in California.> These impactful events will become increasingly common if data
centers do not plan for climate change in their design and operations.

Impacts to data centers from drought and extreme heat will be non-uniform and depend on factors
unique to their specific location. Northern California (specifically Silicon Valley) is home to more
than 160 data centers and is the third-largest data center market in the US. Planning tools that
incorporate plausible and adequate future regional climate scenarios are needed to inform
infrastructure decisions and enable prioritized hardening of data center assets against increased
exposure to drought and extreme heat.

This report provides an assessment of drought and extreme heat/humidity impacts to data centers
in Northern California. We developed a geospatial system to enable quantitative analysis of heat
and humidity to data centers in Northern California. We worked with various key stakeholders to
identify and provide data center-specific variables and analytics. Since data centers often use
nearby airports for their weather data, we select three airports within Northern California and
present the results for these locations as case studies. Our assessment of drought impacts is mostly
qualitative in nature owing to the complex non-localized nature of the impacts of drought.

The report is structured as follows. In Section 2. we introduce the changing climate, climate
models, and the climate data we use in this report. In Section 3. we describe the climate variables
and analytics relevant to data centers. In Section 4. we provide the case study results. In Section
5. we discuss a path forward.

“ https://www.bbc.com/news/technology-62202125
3 https://www.latimes.com/california/story/2022-09-12/twitters-data-center-knocked-out-by-extreme-heat-in-california
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2. Climate science

2.1 Earth’s changing climate

Throughout history the Earth’s climate has always changed, but over the last 200 years, since the
beginning of the industrial revolution, the changes have been dramatic. Since 1880, the Earth has
warmed 1.9° Fahrenheit. Recent global temperatures have increased at a rate unprecedented in at
least the last 2000 years, and the latest decade was warmer than any multi-century period for
125,000 years [Arias et. al., 2021]. The primary driver of climate change is human activity, mainly
through burning of fossil fuels such as oil, coal, and gas. Fossil fuels release greenhouse gases
(GHGs) into the atmosphere that cause the Earth to warm. The effects of climate change extend
beyond increasing temperatures. Climate change also results in more extreme weather (e.g.
increased frequency and severity of droughts, storms, and floods), melting sea ice and glaciers,
rising sea levels, and much more.

2.2 Climate models and emission scenarios

A global climate model (GCM) is a computational model that simulates the climate system. They
encode the physics and dynamics of the climate system via mathematical equations and are run on
powerful supercomputers. Within the model, the Earth’s atmosphere, ocean, and land is divided
into a 3D grid of thousands of cells, with the size of the grid defining the resolution of the GCM
(see schematic in Figure 1.). Current GCMs are typically run at spatial scales of about 100km due
to their vast computational expense. GCMs can be used to make predictions of different climate
variables and phenomena, much like having a synthetic Earth. They are validated over the past and
are found to have good agreement with observations.

Horizontal Grid
(Latitude-Longitude) |*

Vertical Grid )
(Height or Pressure) |

solar  terrestriall
radiation radiation
!

Figure 1. Schematic of a GCM. Image source: NOAA
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GCMs are a critical tool for assessing and understanding not only how the climate has changed in
the past, but what changes we can expect in the future. Many GCMs have been developed by
different modeling centers around the world. They each run the same experiments: over the past
(from 1850 — present) and for the future (present — 2100) and publish their data and results. In the
Fifth phase of this Coupled Model Intercomparison Project (CMIPS5) over 30 GCMs participated.
Since the main driver of climate change is human activities, the GCMs run several “concentration
trajectories”, also known as “emission scenarios”, in order to capture the range of possible future
pathways that will vary according to human activity. These are known as Representative
Concentration Pathways (RCPs). Two main pathways are often considered: RCP 4.5, which is an
intermediate scenario (GHG emissions peak in 2040 and then decline) and RCP 8.5, which is a
worst-case scenario (GHG emissions continue to rise through the end of the century). The Fifth
Assessment of the United Nations Intergovernmental Panel on Climate Change (IPCC) report used
RCPs 4.5 and 8.5 [IPCC, 2014]. The sixth phase of CMIP and the IPCC report (finalized in March
2023) [IPCC, 2022] added further refinement to the RCPs by using Shared Socioeconomic
Pathways (SSPs), but those are not considered in this report.

It is important to note the differences between weather/climate and weather forecasts/climate
projections. Weather refers to short-term conditions of the atmosphere on the timescales of days
or weeks, whereas climate refers to long-term changes. The timescale of climate projections used
in this report is daily, however these projections can’t be used in the same way as weather forecasts.
It isn’t possible to make a prediction for a given day in the future. However, what they can be used
for is to help us understand what to expect in the future in a general sense. In climate, we speak
of trends and averages on periods of 30 years or longer. For example, the temperature trends for
California are increasing, though there is significant daily, seasonal, even yearly variability due to
the chaotic nature of the climate system. Climate projections can also tell us on average how much
more frequent and severe heatwaves will be for example.

2.3 Climate impacts at a regional scale

The typical outputs retrieved from GCM simulations are often too coarse (~ 100km) in spatial
resolution and/or too biased relative to observations to directly and reliably inform site specific
infrastructure decisions. In order to assess climate impacts at a finer scale, it is necessary to
downscale and bias correct the outputs from the GCMs. Multiple methodologies exist to downscale
and refine the projections from GCMs to geographic and time scales appropriate for informing
infrastructure planning decisions. The two traditional approaches to downscaling have been
categorized as being “statistical” or “dynamical”. Novel approaches include “hybrid”, which
combines statistical and dynamical aspects, and those that incorporate machine learning. Each
approach has its own pros and cons. The statistical approach is often built from empirical statistical
relationships between the simulated large-scale synoptic weather condition and the observed local
conditions. In this report, we leverage the LOCA (Localized Constructed Analogs) statistical
downscaling method, developed by Scripps Institution of Oceanography [Pierce et. al., 2014]. It
uses historical observations to increase the resolution of the outputs from the GCMs. The
resolution of the LOCA downscaled data that we will use for this report is 6km. The LOCA data
we use was generated to support climate impact studies for the California 4" climate change
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assessment.® LOCA was used to downscale all 32 GCMs that contributed to CMIP5, though some
of the downscaled climate variables are only available for a subset of 10 GCMs that we were
identified as adequately sampling changes in California’s climate across the 32 GCMs. Of those
10, four GCMs were further selected that represent the range of projections from the 10 sub-
selected GCMs. Considering results from an ensemble of GCMs ensures that we are capturing the
range of possible outcomes due to the different ways each model represents the climate system.
Ensuring that the GCMs that are used in impact assessments are producing accurate results over
the historical period for the spatial location of interest is important. The sub-selected GCMs that
were downscaled with LOCA and used in this report are found to accurately simulate the important
aspects of the climate of California.

¢ https://www.climateassessment.ca.gov/
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3. Extreme heat and drought impacts to data centers

3.1 Assessing relevant impacts

Raw outputs from a GCM or from a subsequent downscaled method such as LOCA are often not
in a form that is readily usable by an end-user. For example, having the temperature for a data
center for every day until 2100 isn’t useful by itself, since climate data isn’t meaningful when
looked at on a daily scale. Oftentimes we will want to perform some analysis on or synthesis of
this data to obtain a more useful quantity for the end-user of the climate information. We’ll refer
to these derived quantities as climate analytics. An example of a climate analytic that we’ll
encounter in the coming chapter is the average number of days in a year where the maximum daily
temperature (a climate variable) exceeds a particular threshold. The space of possible of climate
variables and analytics is huge, so a vital part of conducting a useful climate impacts assessment
is to identify the relevant climate variables and analytics for the sector of interest. Through
stakeholder engagement with several data centers in Northern California, we were able to provide
a tailored assessment of the impacts of extreme heat and drought on data centers.

Not all data centers are equally at risk from extreme heat and drought. One key aspect that
determines their vulnerability is the cooling methods they adopt. Air-cooled data centers are
vulnerable to high dry-bulb temperatures. High temperatures can cause failure of the cooling
systems if temperatures surpass the data center’s design limits. Water cooling is typically more
cost-effective and efficient (since water has a higher thermal conductivity than air) and therefore
is a popular method for data center cooling, especially for high-power density computing. There
is a trade-off: using water for cooling can reduce the amount of power a data center uses and so is
more energy efficient, but instead they heavily depend on water, which is problematic in water
scarce regions.

Many mid- to large-sized data centers use a chilled water system, which distributes cool water to
the server room cooling units (see Figure 2.). Water is primarily consumed through evaporation
from the cooling tower and through “blow-down”. Blow-down is when the cooling tower dumps
water to eliminate the buildup of contaminants that occurs after several cycles. The amount of
blow-down varies as a function of the water quality and treatment. A typical large-sized water-
cooled data center can consume up to 1-5 million gallons of water per day.” This puts the data
centers at high risk from water shortages that can arise during periods of drought.

7 https://www.washingtonpost.com/climate-environment/2023/04/25/data-centers-drought-water-use/
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ez | Cooling Tower Waterside Economizer

Cold water
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Warm water
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Figure 2: Schematic of a chilled water system. Image source: https://dc.mynetworkinsights.com/data-center-cooling-
infrastructure/

The evaporation from the cooling towers is how the data center is cooled in this system. Therefore,
water-cooled data centers are also vulnerable to high humidity or wet-bulb temperatures. Standard
air temperature that people most often refer to is known as the dry-bulb temperature. Wet-bulb
temperature accounts for humidity in the air and is the temperature of adiabatic saturation. It can
be measured using a thermometer with the bulb wrapped in a wet cloth. When the relative humidity
of the air is 100%, the water on the cloth is unable to evaporate and the wet-bulb temperature is
the same as the dry-bulb temperature. However, when the humidity is lower, water from the wet
cloth can evaporate and therefore the wet-bulb temperature can be lower than the dry-bulb
temperature. This is like the effect of sweating as a means to cool down. If wet-bulb temperatures
are higher than was assumed in the design of the data center, the water in the cooling towers cannot
evaporate efficiently and the data center loses its cooling capability. Another common water-
cooled method for data centers is Direct Evaporative Cooling (DEC), a method that cools outside
air by using a wetted medium within an air handling unit. This method also is vulnerable to drought
and wet-bulb temperature due to the same reasons above. Air-cooled data centers can also suffer
as a result of high humidity since the air conditioning systems will have to work harder to remove
the humidity from the outside air.

Increased warm nights, or minimum temperatures, can put data centers at risk as it can mean that
the data centers cannot get relief at night from high temperatures. For example, a string of
consecutive extreme heat days and warm nights could result in the temperature of the water used
for cooling to be too high provide adequate cooling.

Lawrence Livermore National Laboratory 11
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3.2 Data center relevant impacts
Extreme heat (maximum dry-bulb temperature)
In the Bay Area, annual maximum temperatures are expected to increase significantly. Figure 3.

shows the time series and time period summaries of the annual average maximum temperatures
for observations, and the 10 sub-selected CMIP5 GCMs downscaled with LOCA.

a) Annual time series b) Time period summaries
o 82 { == Historical - observed o 82 { == Historical - observed AVG/MIN/MAX r
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B 784 — RCP8.5 average © 78 { = RCP8.5 AVG/MIN/MAX L
2 [ RCP4.5 range 8 @)
E, 76 A RCP8.5 range g 76 A
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[~ [
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Figure 3: The time series and time period summaries of the annual average maximum temperatures for observations, and the 10
sub-selected CMIP5 GCMs downscaled with LOCA. The average across the 10 GCMs is shown for the RCP 4.5 and 8.5 scenarios
and their ranges. Image source: https://www.energy.ca.gov/sites/default/files/2019-11/Reg_Report-SUM-CCCA4-2018-
005_SanFranciscoBayArea_ADA.pdf

In Figure 4., we can see that the average hottest day of the is also expected to increase dramatically
in the Bay Area region. The impacts of climate change on this region are already being felt, with
record maximum temperatures in recent years.

Historical 1976-2005 RCP4.5 2070-2100 RCP8.5 2070-2100
[ ] ] | —
84 88 92 96 100 104 108 112 116

Average hottest day of the year (°F)

Figure 4: Average hottest day of the year across for historical, RCP 4.5 and RCP 8.5 future scenarios for the 10 sub-selected
CMIP5 GCMs downscaled with LOCA. Image source: https://www.energy.ca.gov/sites/default/files/2019-11/Reg_Report-SUM-
CCCA4-2018-005_SanFranciscoBayArea_ADA.pdf

Similar trends are seen for other parts of Northern California. Details for these other regions can
be found in the California climate change assessment regional reports.®

8 https://www.climateassessment.ca.gov/regions/
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Extreme heat analytics that we consider in the following chapter are as follows:

o Average number of extreme heat days per year above a user-defined threshold.
o Average number of heatwaves (a user-defined number of consecutive days) above a user-
defined temperature.

o Average number of days in longest stretch of extreme heat days above a user-defined
threshold.

Warm nights (minimum dry-bulb temperature)

The minimum temperature (which typically occurs during the night) is also projected to increase.
Figure 5. shows the annual average minimum temperature under the RCP 8.5 scenario.

58

56 - Historical (1950-2005) Future (2006-2099)
ved histori M
54 s 2led historical d

Annual Average Minimum Temperature (°F)
w
o

1960 1980 2000 2020 2040 2060 2080 2100

Year

Figure 5: Time series of the annual average minimum temperature under the RCP 8.5 scenario for the 10 LOCA-downscaled GCMs
for the Bay Area region, where the gray shading shows the projected range from all 32 GCMs. Image source: Cal-Adapt.org

The trends for other regions in Northern California can be found on the Cal-Adapt platform.

Like extreme heat, the analytics that we consider in the following chapter for warm nights are as
follows:

o Average number of warm nights per year above a user-defined threshold.
o Average number of times the minimum temperature surpasses a threshold temperature for
a user-defined number of consecutive days.

o Average number of days in the longest stretch of consecutive warm nights above a user-
defined threshold.

Lawrence Livermore National Laboratory 13
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Relative humidity and maximum wet-bulb temperature

Relative humidity is the ratio of the water vapor in the air to how much water vapor the air could
potentially contain at its current temperature, expressed as a percentage. As the atmosphere warms,
it can hold much more moisture. It is a typical output from a GCM. Wet-bulb temperature on other
hand is not an output from GCMs, but it can be estimated empirically from the relative humidity
and the dry-bulb temperature. In the next chapter, following the approach in Alessi et. al. [2020],
our maximum wet-bulb temperature projections are calculated using daily maximum temperature
and daily minimum relative humidity with the following empirical equation [Stull, 2011]:

T, = Tatan[0.151977(RH% + 8.313659)'?] + atan(T + RH%) — atan(RH% — 1.676331)
+ 0.003 918 38(RH%)*? atan(0.023 101RH%) — 4.686035.

We won’t consider it in this report, but the minimum wet-bulb temperature can be similarly
calculated using the daily minimum dry-bulb temperature and daily maximum relative humidity.

We will explore the same analytics in the following chapter as above for minimum relative
humidity, maximum relative humidity, and maximum wet-bulb temperature. We will also consider
analytics of combinations of these quantities.

Drought

Data centers that use water for cooling are vulnerable to drought. Drought is challenging to both
define and quantify. Generally, there four different types of drought: 1) meteorological, 2)
hydrological, 3) agricultural, and 4) socioeconomic. Meteorological drought is often defined as a
deficiency of precipitation over an extended period of time. However, drought severity and
duration increases due to rising temperatures causing enhanced evaporation, even if there is no
change to the amounts of precipitation [Wehner et al. 2017]. Hydrological drought cascades from
meteorological drought, when the lack of precipitation impacts the water storage and supply, such
as in streams, reservoirs, and groundwater levels, typically after a prolonged meteorological
drought. It is this type of drought that is most relevant for data centers. From this definition, we
can see that a meteorological drought in one region can cause a hydrological drought in another if
the former region supplies water to the latter. This makes it critical for a data center to monitor
meteorological drought conditions over the regions that supply their water. For example, a
meteorological drought in Utah and Colorado can diminish water supplies in Lake Mead and Lake
Powell, both of which are key reservoirs for California water supply.

The Southwestern US is expected to face significant drought risk in the coming decades [Cook et.
al., 2015] Figure 6. shows the Palmer Drought Severity Index (PDSI; the most prominent
meteorological drought index that is used widely for drought monitoring within the US), computed
for 17 CMIP5 GCMs. All models are projecting unprecedented drought risk in the future for this
region.

Lawrence Livermore National Laboratory 14
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Adapted from Cook et. al. (2015
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Figure 6: PDSI from observations (tree-ring data) in brown. Dark blue is the multi-GCM mean prediction for the RCP 8.5 future
scenario computed for 17 CMIP5 GCMs. The light blue shaded area is the multi-GCM interquartile range showing the range of
projected values. Image source: Cook et. al. 2015.

Sierra Nevada snowpack is a key water source that is increasingly at risk. In 2022, DWR reported
that the snowpack was the fifth smallest on record since 1950, at a mere 35% of normal. Snow
accumulated in the Sierra Nevada during the winter months is slowly released through the spring
and summer months as snowmelt and then used as a primary water resource, supplying ~ 60% of
Bay Area water.” A recent study by Mote et al. [2018] found that average snowpack in the Western
U.S. has declined 15-30% since 1915. A primary driver of the decline is the rising temperatures, a
result of human induced climate change. This causes much of the winter precipitation to fall as
rain and leads to earlier snowmelt, resulting in depleted water resources throughout the summer
months [Fyfe et al., 2017, Kapnick and Hall, 2012, Pierce et al. 2008]. Furthermore, under the
RCP 8.5 scenario, the average Sierra Nevada snowpack is projected to decline by nearly 83% by
2075-2100 [Rhoades et al., 2018]

By 2040, the Department of Water Resources estimates that California could lose 10% of its water
supplies. Significant water shortages are to be expected in the Northern California region in the
decades to come, putting data centers in this region at risk. Last year the California State Water
Board adopted emergency water use regulations. To date, data centers have not been impacted by
California’s water restrictions, but as water becomes a scarcer resource this may no longer be true
in the future.

Droughts can also lead to increased energy costs as a result of declined hydroelectric availability.
In a typical year, 15% of California’s electricity comes from hydroelectric power. Due to extreme
drought, that number has fell by 48% below the 10-year average (2011-2020) in recent years. !'°

° https://www.energy.ca.gov/sites/default/files/2019-11/RegReport-SUM-CCCA4-2018-005 SanFranciscoBayArea ADA.pdf
10 https://www.eia.gov/todayinenergy/detail.php?id=51839

Lawrence Livermore National Laboratory 15


https://www.energy.ca.gov/sites/default/files/2019-11/Reg_Report-SUM-CCCA4-2018-005_SanFranciscoBayArea_ADA.pdf
https://www.eia.gov/todayinenergy/detail.php?id=51839

DROUGHT AND EXTREME HEAT IMPACTS TO DATA CENTERS IN NORTHERN CALIFORNIA

4. Case studies

In order to facilitate more interaction with the LOCA downscaled GCM data, we built a geospatial
system. The system sends a json request to Cal-Adapt REST API requesting the data (e.g model,
scenario, variable, time period.). See Figure 7. Our system in the backend will postprocess the data
based on the filters and equations we provide.

Request v.
Cal-Adapt REST API :
Response

Figure 7: How our geospatial system fetches data

The system was developed with Bokeh!! and all of the data that we use is publicly available via
the Cal-Adapt API. It is worth noting that some of the results that we can obtain with our system
can also be obtained via Cal-Adapt’s platform. We go beyond the platform in some ways that
make sense for data center-specific impacts. For example, we can look at combinations of
variables such as extreme heat and humidity, and we have an interactive map with all the known
data centers in Northern California. We’ll show some results for three locations as case studies.
To avoid focusing on specific data centers, we’ll show the results for San Jose, Livermore, and
Napa airports.

4.1 San Jose airport

First for San Jose, we’ll look at the maximum dry-bulb temperatures in Figure 8. We set it to the
RCP 8.5 scenario and select all four GCMs. We set the threshold temperature to 100F and plot
the number of days a year above 100F for each model. In the “Avg” row, we calculate the
average number of days a year above 100F averaged across that time period and the four GCMs
in this case. We can also look at one or a subset of the 4 GCMs if desired. The plot shows the
average number of days above 100F through the end of the century, however in the “Avg” row,
we adjusted the slider so that a 30-year time period was selected from 2025-2055. As previously
mentioned, climate projection cannot tell us what temperatures to expect in a given year, but
averages can be extremely insightful. 30 years is a reasonable estimate of the life-cycle of a data
center. We can see that if we were to design our data center from historical observations alone,
we would deduce that the average number of days above 100F for the historical period would be
0 and the maximum dry-bulb temperature to ever have occurred was 108F. We see that in the
future projections that the average number of days a year above 100F, even just for the next 30
years, is three, and the maximum dry bulb temperature that is expected is 111F. These higher
temperatures are of a concern not only since the data center infrastructure may not have been
designed to withstand them, but in the case of water-cooled data centers higher temperatures will

11

https://bokeh.org/
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also increase the amount of water required for cooling. This could be problematic in drought
years when water is limited, further amplifying the impacts of extreme heat to the data center.
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Figure 8: Dry-bulb temperatures for San Jose Airport
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Looking at both extreme heat and maximum relative humidity together (i.e. occurring on the

same day), with thresholds of 100F dry-bulb temperature and 80% relative humidity, we see that
incidences of high heat and humid days is expected to increase. In Figure 9. we show the results
for one GCM.
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Figure 9: Combined impact of maximum relative humidity and dry-bulb temperature at San Jose Airport
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4.2 Livermore airport
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For Livermore we’ll look at maximum wet-bulb temperatures above 78F in Figure 10. We see

that within the next ~ 30 years the wet-bulb temperatures will exceed 78F, reaching maximums
of 79F in that timeframe. One of the models is predicting there to be one year within the next ~
30 years that has 12 days above 78F.
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Figure 10: Maximum wet-bulb temperatures for Livermore Airport

4.3 Napa airport
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For Napa airport we’ll look at heatwaves in Figure 11. We specify the threshold temperature to
be 100F and the heatwave length, i.e. the number of consecutive days above that threshold
temperature to be 5. There were very few events of this nature historically, but in the future they
are increasing significantly in frequency.
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Location

Max. Dry Bulb Temp Min. Dry Bulb Temp Max. Relative Humidity Min. Relative Humidity Max. Wet Bulb Temp
Napa Airport v
a
1cp8S / { Frequency HeatWave Max Duration
1cpd5 Redding ‘ 1+ OBSERVED HISTORICAL MODEL HISTORICAL MODEL PROJECTIONS
Year Range: 1950-2013 YYear Range: 1950-2005 Year Range: 2025-2055
roeruull | Avg.0 Avg.0 Avg.0
‘ o Max. Dry-Bulb Temp 111 Max. Dry-Bulb Temp 111 Max. Dry-Bulb Temp 115
CNRM-CM5 B % \ ‘ Max. Wet-Bulb Temp -1 Max. Wet-Bulb Temp -1 Max. Wet-Bulb Temp -1
HadGEM2-ES m Chico He)no
MROCS | g hrid 1% 20 =0
D 5
- Ci
\ Sacramento L/ 3
)San(a Roﬁ; 3]
* / Oakiand  ©Stockton
S B e 2 |
A
\ Sagose California
' . . \ |
v Fresno I | AN
Salinas 3 0 .
Visalia Drag the middle and edges of the selection box to change the range above
36 ~
\ LA A A PNV
125 24 123 2 21 120 o 1960 1980 2000 2020
THRESHOLD MAX. TEMPERATURE (F): THRESHOLD MAX. RELATIVE HUMIDITY (%) THRESHOLD WET BULB:
100 80 78

Figure 11: Heatwaves for Napa Airport

Looking a bit further out to mid-late century, in Figure 12. we can also see increases in the
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Figure 12: Maximum dry and wet bulb temperatures for Napa Airport
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5. The path forward

Data centers that use historical weather data such as Typical Meteorological Years (TMY) in
their design and operations are putting themselves at risk from the impacts of climate change.
Extreme heat and drought are expected to increase in severity, frequency, and duration in
Northern California in the future, resulting in conditions that the data centers were potentially not
designed and built to withstand. If action is not taken to incorporate future climate information
into data center design and operations, outages, like those faced by Google and Oracle in the UK
last year, will become much more common and widespread. Analyzing the climate variables and
analytics described in this report is a necessary first step in developing a suitable resiliency
strategy. Data centers owner and operators or other key stakeholders can use the LOCA
downscaled data and Cal-Adapt platform to conduct analyses similar to those described in this
report to determine their risk from extreme heat and humidity for locations in California. As well
as ensuring that their data center can withstand the maximum temperatures and humidity
expected in the future, they can also explore how many days on average per year a temperature is
below a certain threshold. This can further assist with planning which cooling technologies to
adopt. This analysis can also be used to help ensure that adequate redundancies and back-ups are
considered. It is also vitally important for water-cooled data centers to stay informed of the
region’s water situation and be proactive to mitigate potential risks.

In California, there may be issues in the near future for data centers looking to obtain insurance
that covers climate-related risk. For example, this year State Farm has ceased accepting
applications for most types of new insurance policies in the state because of “rapidly growing
catastrophe exposure.” ! Allstate also recently stopped offering insurance to homeowners in
California, and other states are also experiencing a similar trend.!? Therefore, taking a proactive
approach to climate-related risks is prudent.

Data centers are under growing pressure to improve their sustainability, particularly reducing their
vast power and water consumption. Implementing sustainable measures in data centers also has
the added benefit of reducing their vulnerability to climate-related risks. For example, they can
implement water-efficient cooling technologies such as air-side economizers or closed-loop
cooling systems that will reduce their water consumption. Using water-recycling systems or
alternative cooling methods like liquid immersion cooling can further minimize water reliance.
This has the benefit of meeting sustainability goals and makes data centers less susceptible to water
scarcity during a drought. Hyperscalers are already moving towards innovative cooling
technologies in an effort to curb their water usage. For example, by 2030 Amazon Web Services
(AWS) and Facebook plan to be water-positive.

A word on power. Due to threats of wildfire in extremely hot, dry, and windy conditions, California
implements Public Safety Power Shutoffs (PSPS) that sees utilities turning off electricity if there
is a threat to a portion of the electric system. Transitioning to renewable energy sources both
reduces the carbon footprint of data center and has the benefit of reducing their reliance on the

12 https://newsroom.statefarm.com/state-farm-general-insurance-company-california-new-business-update//
13 https://www.usatoday.com/story/news/nation/2023/06/11/climate-change-effects-hit-us-homeowner-insurance/70288893007/
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traditional power grid which is vulnerable to climate-related hazards, including extreme heat and
drought.

Computational fluid dynamic (CFD) simulations are a common tool typically employed by data
centers to monitor and optimize the internal data center environment and ensure that the computer
systems stay within optimal operational temperatures. They can be helpful when adding
equipment, since the addition of the new equipment can be first modeled by the CFD simulation.
CFD simulation can also be leveraged for external modeling as a tool to design optimal cooling
systems.'* To date, as far as the author is aware, this has not been performed using future climate
data. This could be a valuable approach to developing and implementing cooling systems that can
withstand the climate of the future.

14 https://www.futurefacilities.com/uploads/media/casestudy-kao.pdf
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