

PNNL-35110

Model Specification of Droop-Controlled, Grid- Forming Inverters (REGFM_A1)

September 2023

Prepared for the U.S. Department of Energy
under Contract DE-AC05-76RL01830

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes **any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.** Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE
for the
UNITED STATES DEPARTMENT OF ENERGY
under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information,
P.O. Box 62, Oak Ridge, TN 37831-0062;
ph: (865) 576-8401
fax: (865) 576-5728
email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service
5301 Shawnee Rd., Alexandria, VA 22312
ph: (800) 553-NTIS (6847)
email: orders@ntis.gov <<https://www.ntis.gov/about>>
Online ordering: <http://www.ntis.gov>

Contributors

Name	Organization
Wei Du	Pacific Northwest National Laboratory
Robert H. Lasseter	University of Wisconsin-Madison
Christian Hardt	SMA Solar Technology AG
Song Wang	Portland General Electric
Songzhe Zhu	GridBright
Yuan Liu	Pacific Northwest National Laboratory
Quan Nguyen	Pacific Northwest National Laboratory
Jinho Kim	Pacific Northwest National Laboratory
Hongtao Ma	North American Electric Reliability Corporation
Pouyan Pourbeik	Power and Energy, Analysis, Consulting and Education (PEACE) PLLC
Deepak Ramasubramanian	Electric Power Research Institute
Juan Sanchez	General Electric
Jayapalan Senthil	Siemens PTI
James Weber	PowerWorld
Jeff Bloemink	PowerTech Labs
Doug Tucker	Western Electricity Coordinating Council
Sophie Xu	Pacific Gas and Electric
Zhenyu Huang	Pacific Northwest National Laboratory
Francis K. Tuffner	Pacific Northwest National Laboratory
Renke Huang	Pacific Northwest National Laboratory

Acknowledgement

This material is based upon work supported by PNNL's Laboratory Directed Research and Development (LDRD) program, and the Universal Interoperability for Grid-Forming Inverters (UNIFI) consortium. UNIFI consortium is supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under Solar Energy Technologies Office (SETO) Award Number 38637.

1.0 Objective

This document describes a positive-sequence model of droop-controlled, grid-forming (GFM) inverter-based resources (IBRs). It can be considered as an initial model for evaluating the impacts of GFM IBRs on the transients and dynamics of transmission systems.

2.0 Grid-Forming Inverter Concept

A grid-forming inverter behaves as a controllable voltage source behind a coupling reactance as shown in Fig. 1. The internal voltage magnitude E and angular frequency ω are controlled by the droop controller.

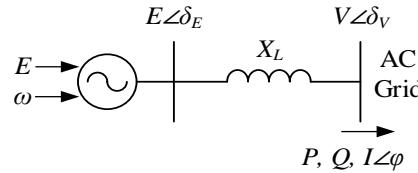


Fig. 1 Basic model of grid-forming inverter.

The coupling reactance, X_L , is important for the droop controller design. By properly sizing X_L , for example, between 0.05 and 0.15 pu on an inverter rating base, the inverter output active power, P , and reactive power, Q , can be approximately decoupled. As shown by (1) to (3), P is approximately linear with the phase angle difference δ_p , and Q is approximately linear with E . The well-developed droop control is based on this decoupling characteristic.

$$\delta_p = \delta_E - \delta_V \quad (1)$$

$$P = \frac{EV}{X_L} \sin \delta_p \approx \frac{EV}{X_L} \delta_p \quad (2)$$

$$Q = \frac{E^2 - EV \cos \delta_p}{X_L} \approx \frac{E(E-V)}{X_L} \quad (3)$$

3.0 Positive-Sequence Model of Droop-Controlled, Grid-Forming Inverters

This section introduces the positive-sequence model of droop-controlled, grid-forming inverters, including the inverter main circuit representation, the droop control, and the fault current limiting function.

3.1 Inverter Main Circuit Representation

The inverter main circuit is modeled as a voltage source behind the coupling reactance X_L , as shown in Fig. 2 (a). The grid-forming controller will adjust the internal voltage magnitude E and phase angle δ_E . When interfacing with the network solver, the voltage source will be converted to its Norton equivalent current source, as shown in Fig. 2 (b).

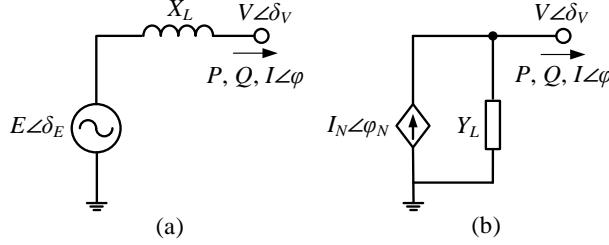


Fig. 2 Inverter equivalent circuits. (a) Inverter internal voltage source and the coupling reactance. (b) Norton equivalent current source.

3.2 Grid-Forming Droop Control Model

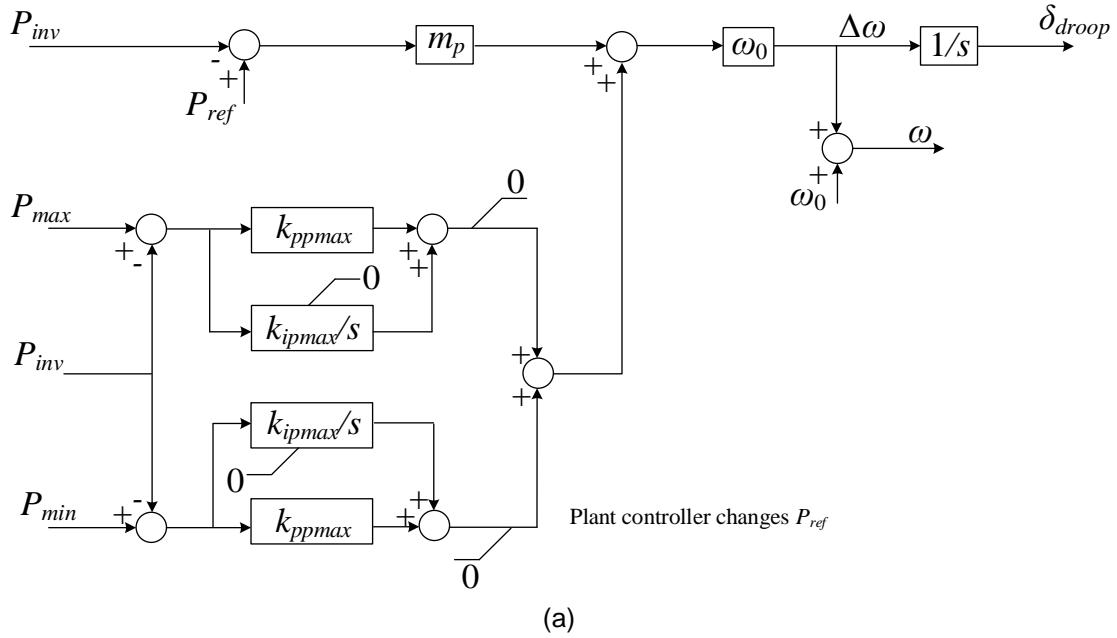

Fig. 3 (a) and (b) show the P - f droop control and Q - V droop control, which regulate the inverter internal voltage magnitude and phase angle during normal operations. Table 1 shows the inverter and controller parameters.

Table 1 Parameters of the Droop-Controlled, Grid-Forming Inverters on the Inverter Rating Base

Symbol	Description	Example Value	Normal Range
X_L	Inverter coupling reactance	0.15 pu	0.05 pu–0.25 pu
m_q	Q - V droop gain	0.05 pu	0 pu–0.20 pu
V_{ref}	Voltage set point	Initialized by power flow	NA
Q_{ref}	Reactive power set point	Initialized by power flow	NA
k_{pv}	Proportional gain of the voltage controller	0 pu	0 pu–0.01 pu
k_{iv}	Integral gain of the voltage controller	5.86 pu/s	3 pu/s–15 pu/s
E_{max}	Upper limit of the output of the voltage loop	1.15 pu	1 pu–1.25 pu
E_{min}	Lower limit of the output of the voltage loop	0 pu	0 pu
m_p	P - f droop gain	0.01 pu	0.005 pu–0.05 pu
P_{ref}	Power set point	Initialized by power flow	NA
P_{max}	Upper limit of the inverter active power output	0.9 pu	0.1 pu – 1 pu
P_{min}	Lower limit of the inverter active power output	0 pu	Should be negative when representing energy storage systems
k_{ppmax}	Proportional gain of the overload mitigation controller	0.01 pu	0.005 pu–0.05 pu
k_{ipmax}	Integral gain of the overload mitigation controller	0.1 pu/s	0.05 pu/s–0.2 pu/s
ω_0	Rated angular frequency	376.99 rad/s	NA
T_{Pf}	Time constant of the low-pass filter for P measurement	0.01 s	0.01 s–0.1 s
T_{Qf}	Time constant of the low-pass filter for Q measurement	0.01 s	0.01 s–0.1 s
T_{Vf}	Time constant of the low-pass filter for V measurement	0.01 s	0.01 s–0.1 s
Q_{max}	Upper limit of the inverter reactive power output	0.44 pu	0.44 pu–1 pu
Q_{min}	Lower limit of the inverter reactive power output	-0.44 pu	-0.44 pu– -1 pu
$VFlag$	Voltage control mode selection. The controller can either regulate the point of interconnection (POI) voltage V or the inverter internal voltage E	1	0 or 1
$QVFlag$	Decides whether Q_{ref} or V_{ref} should be used to interact with the plant controller	1	0 or 1
k_{pqmax}	Proportional gain of the Q_{max} and Q_{min} controller	$VFlag=1$ 3 pu $VFlag=0$ 0.1 pu	1 pu – 5 pu 0 pu – 0.5 pu
K_{iqmax}	Integral gain of the Q_{max} and Q_{min} controller	$VFlag=1$ 20 pu/s $VFlag=0$ 10 pu/s	3 pu/s – 30 pu/s 3 pu/s – 30 pu/s
I_{maxF}	Inverter maximum transient output current	2 pu	1.5 pu–3 pu

The P - f droop control ensures that the phase angles of multiple grid-forming inverters are synchronized during normal operations. When two grid-forming inverters operate in parallel under P - f droop control, any disturbance causes an increase in the output power of one inverter. This, causes its P - f droop control to reduce the angular frequency ω of the internal voltage so that the phase angle, δ_{droop} , is reduced, preventing the inverter from further increasing its output power. This negative-feedback control mechanism guarantees the synchronization when multiple grid-forming inverters work in parallel. In addition, the controller shown in Fig. 3 (a) also prevents the output power of the inverter from exceeding P_{max} or dropping below P_{min} . The P - f droop control also achieves load sharing between grid-forming inverters.

The Q - V droop control prevents large circulating reactive power between grid-forming inverters. As shown in Fig. 3 (b), the Q - V droop control can either directly regulate the inverter internal voltage E_{droop} , or regulate the point of interconnection (POI) voltage V by regulating E_{droop} through a proportional-integral controller. The VFlag will determine which control mode will be selected. The QVFlag decides whether Q_{ref} or V_{ref} should be used to interact with the plant controller. In addition, there is a Q_{max} and Q_{min} controller to prevent the inverter reactive power output from exceeding Q_{max} or dropping below Q_{min} .

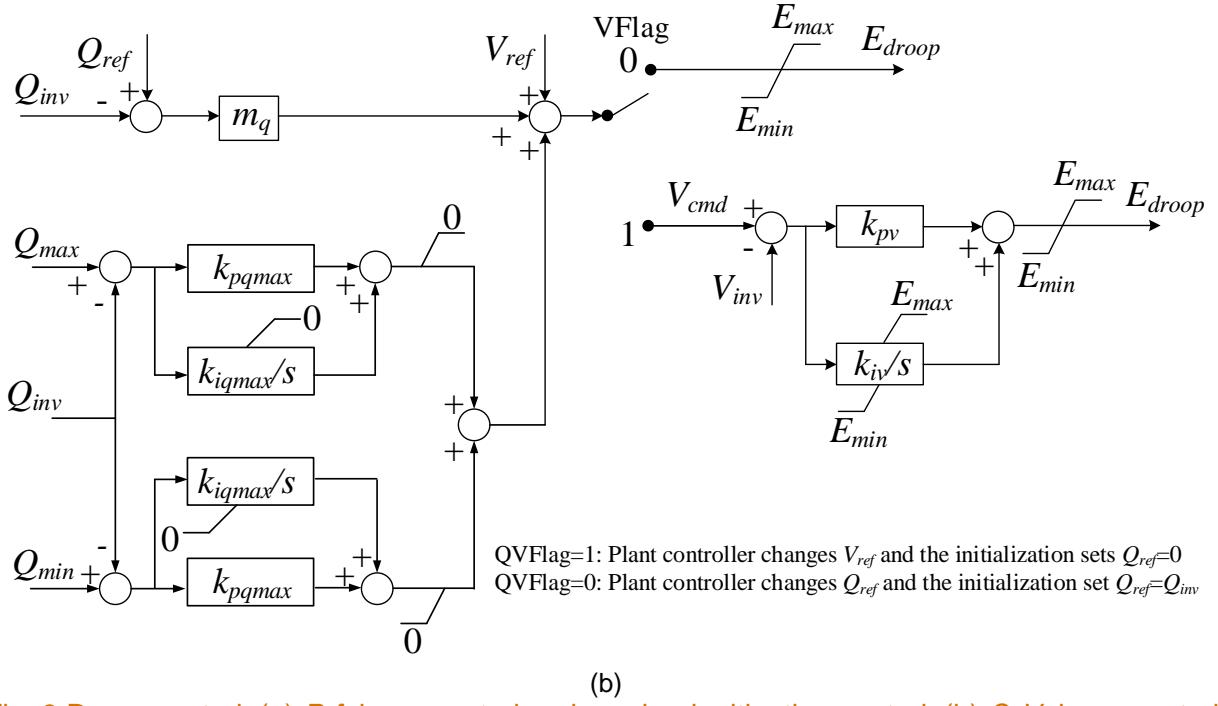


Fig. 3 Droop control. (a) *P-f* droop control and overload mitigation control. (b) *Q-V* droop control.

When interacting with the transmission network solver, the per unit values of P , Q , V on the system rating base returned by the network solver need to be converted to the per unit values on the inverter rating base and pass through a low-pass filter as shown by (4) to (6), where S_{base} is the base value of the system rating, M_{base} is the base value of the inverter rating, and P_{inv} , Q_{inv} , and V_{inv} are the per unit values of inverter output active power, reactive power, and voltage magnitude on the inverter rating base. The outputs of the controller, E_{droop} and δ_{droop} , are used to determine the inverter internal voltage $E\angle\delta_E$.

$$P_{inv} = \frac{1}{1+T_{Pf}s} P \frac{S_{base}}{M_{base}} \quad (4)$$

$$Q_{inv} = \frac{1}{1+T_{Qf}s} Q \frac{S_{base}}{M_{base}} \quad (5)$$

$$V_{inv} = \frac{1}{1+T_{Vf}s} V \quad (6)$$

3.3 Fault Current Limiting Function

During normal operations, the droop control will control the inverter voltage magnitude and phase angle. However, during short circuit faults, the fault current limiting function will be activated to limit the output current of the inverter. Fig. 4 shows the fault current limiting function. The inverter works in the droop control mode during normal operations and keeps monitoring its output current $I\angle\varphi$. The output current $I\angle\varphi$ is calculated using (7) in each simulation step. When the magnitude of the output current I is smaller than the inverter maximum transient current limit I_{maxF} , the inverter internal voltage is governed by the droop control so that $E\angle\delta_E = E_{droop}\angle\delta_{droop}$. However, once I exceeds I_{maxF} because of severe faults, the inverter internal voltage $E\angle\delta_E$ will be calculated based on the inverter terminal voltage $V\angle\delta_V$, the coupling reactance X_L , and the

new current phasor $I_{maxF}\angle\varphi$ as shown by Fig. 4. By doing so the magnitude of the inverter output current I will be limited at I_{maxF} during faults, but its phase angle φ will remain unchanged compared to the case without the fault current limiting function. Once the fault is cleared, the inverter output current will drop below I_{maxF} so that the operation mode will autonomously switch back to the droop control mode.

$$I\angle\varphi = \frac{E_{droop}\angle\delta_{droop} - V\angle\delta_V}{jX_L} \quad (7)$$

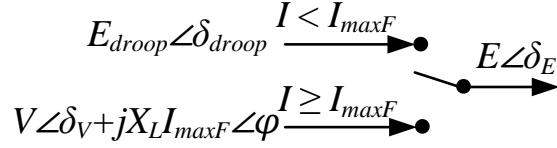


Fig. 4 Fault current limiting function.

4.0 Interface with the Transmission Network Solver

When interfacing with the transmission network solver, the inverter internal voltage source needs to be converted to its Norton equivalent circuit for the network solution, as shown in Fig. 2 (a) and (b). Equation (8) and (9) are used for the conversion.

$$I_N\angle\varphi_N = \frac{E\angle\delta_E}{jX_L} \quad (8)$$

$$Y_L = \frac{1}{X_L} \quad (9)$$

The flowchart in Fig. 5 shows the process of how the developed positive-sequence phasor model interacts with the transmission network solver.

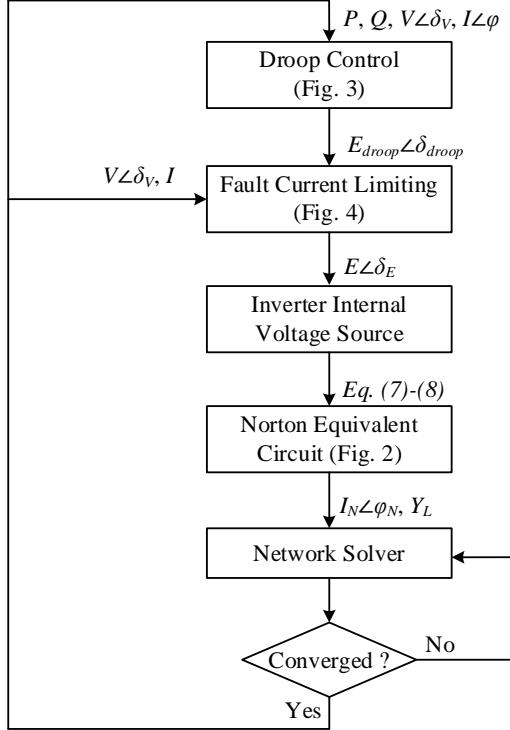


Fig. 5 Interaction between the grid-forming inverter model and the transmission network solver.

5.0 Applicability and Limitation of REGFM_A1 Model

The REGFM_A1 model includes a voltage source behind impedance representation, P - f and Q - V droop controls, active and reactive power limiting controls, and a transient fault current limiting function. Therefore, this model can be used to study events such as the frequency response, islanding and islanded operation, and typical faults with a normal clearing time, etc. The REGFM_A1 model does not include the steady state current limiting control and advanced voltage ride-through control that might have already been implemented by some original equipment manufacturers. The steady state current limiting control and advanced voltage ride-through control will be included in the future version of generic GFM IBR model.

References

- [1] Y. Lin *et al.*, "Research roadmap on grid-forming inverters," National Renewable Energy Lab.(NREL), Golden, CO (United States), 2020.
- [2] R. Lasseter, Z. Chen, and D. Pattabiraman, "Grid-Forming Inverters: A Critical Asset for the Power Grid," *IEEE Journal of Emerging and Selected Topics in Power Electronics*, pp. 1-1, 2019, doi: 10.1109/JESTPE.2019.2959271.
- [3] R. H. Lasseter *et al.*, "CERTS Microgrid Laboratory Test Bed," *IEEE Transactions on Power Delivery*, vol. 26, no. 1, pp. 325-332, 2011
- [4] M. C. Chandorkar, D. M. Divan, and R. Adapa, "Control of parallel connected inverters in stand-alone AC supply systems," in *Industry Applications Society Annual Meeting*, 1991.

- [5] B. J. Pierre et al., "Bulk Power System Dynamics with Varying Levels of Synchronous Generators and Grid-Forming Power Inverters," in the 46th IEEE Photovoltaic Specialists Conference, Chicago, Illinois, USA, 2019.
- [6] M. E. Elkhatib, W. Du, and R. H. Lasseter, "Evaluation of Inverter-based Grid Frequency Support using Frequency-Watt and Grid-Forming PV Inverters," in 2018 IEEE Power & Energy Society General Meeting (PESGM)
- [7] W. Du, Y. Liu, R. Huang, K. F. Tuffner, J. Xie, and Z. Huang, "Positive-Sequence Phasor Modeling of Droop-Controlled, Grid-Forming Inverters with Fault Current Limiting Function," IEEE PES Innovative Smart Grid Technologies (ISGT) North America (NA) Meeting, 2022.

Pacific Northwest National Laboratory

902 Battelle Boulevard
P.O. Box 999
Richland, WA 99354
1-888-375-PNNL (7665)

www.pnnl.gov