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I. INTRODUCTION

There is an increased interest in instrument-computing
ecosystems (ICEs) that support science workflows empowered
by AI-automated experiments and computations in diverse ar-
eas. In particular, electrochemistry ICEs are promising for ac-
celerating the design and discovery of electrochemical systems
for energy storage and conversion, by automating significant
parts of workflows that combine synthesis and characterization
experiments with computations. They require the integration of
flow controllers, solvent containers, pumps, fraction collectors,
and potentiostats, all connected to an electrochemical cell, as
illustrated in Fig. 1. These are specialized instruments with
custom software that is not originally designed for network
integration. We developed network and software solutions for
electrochemical workflows that adapt system and instrument
settings in real-time for multiple rounds of experiments. In
particular, we developed Python wrappers for Application
Programming Interfaces (APIs) of instrument commands and
Pyro client-server modules that enable them to be executed
from remote computers. The entire workflow is orchestrated
by a Jupyter notebook running on a remote computer.

We demonstrate this automated workflow by remotely op-
erating the instruments and collecting their measurements
to generate a voltammogram (I-V profile) of an electrolyte
solution in an electrochemical cell. These measurements are
made available at the remote computing system and used
for subsequent analysis. It is important to ensure that mea-
surements are collected under normal conditions throughout
the automated workflow that may run unattended for days to
weeks. In this paper, we focus on a novel, analytically validated
machine learning (ML) method for an electrochemistry ICE to
ensure that I-V measurements are consistent with the normal
experimental conditions, and to detect abnormal conditions,
such as disconnected electrodes or low cell content volume.
II. ELECTROCHEMISTRY ECOSYSTEM AND WORKFLOWS

The electrochemistry workstation incorporates a variety of
instruments for liquid and gas transfers, along with a flexible
electrochemical cell design to support testing, as illustrated in
Fig. 1. The cell is fed with gas (e.g., argon) from a gas tank via
a computer-controlled mass flow controller, and is connected
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Fig. 1: Electrochemistry workstation with potentiostat con-
nected to an electrochemical cell and multiple instruments.

to pumps that dispense and withdraw liquids (e.g., filling the
cell with solutions, washing the cell, or collecting fractions
of liquid). These instruments are directly connected to and
controlled by a single-board computer controller to pump gas
and solvent into the cell for conducting electrochemical tests
of interest. The testing process itself takes place within the
cell containing the electrolyte solution, which is initialized and
controlled by a separate potentiostat instrument. Specifically,
the potentiostat controls the electric potential (V) of a working
electrode with respect to a reference electrode, and measures
the current (I) flowing through the electrolyte solution; these
measurements are used for generating its I-V profile.

The Cyclic Voltammetry (CV) is an electrochemistry tech-
nique in which potential is repeatedly applied to a working
electrode immersed in an electrolyte solution, while simul-
taneously measuring the resulting current. Specifically, the
potential is swept between two values at a controlled rate,
which results in an I-V cycle as shown in Figs. 2a and 3a.
The I-V plot provides critical information about the electrolyte
in the cell. We exploit its geometric shape to develop a
ML method to ensure that measurements reflect a normal
experimental state, and detect abnormal conditions otherwise.
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(a) continuous I-V profile
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(b) discontinuous I-V profile

Fig. 2: I-V plot of measurements collected under normal and
disconnected experimental conditions.
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(a) I-V measurements (N)
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(b) GPR fit, feature vector (N)
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(c) I-V measurements (D)
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(d) GPR fit, feature vector (D)

Fig. 3: Normality testing of I-V measurements under normal (N) and disconnected (D) experimental conditions.

III. MACHINE LEARNING FOR NORMAL I-V
Our custom ML method detects the deviations from normal

I-V profiles due to conditions such as a disconnected electrode,
low cell liquid level, or other failures that produce “abnormal”
voltammograms. Examples of I-V measurements collected
using the CV technique are shown in Fig. 2a under a normal
condition, where they form a (nearly) continuous closed curve.
When the electrode to the cell disconnected, their profile has a
significantly different discontinuous shape as shown in Fig. 2b.
The ML method utilizes I-V measurements collected under
both normal and disconnected conditions as a training set.

A. Feature Design and Extraction: Classification

A feature vector is designed based on I-V measurements
by fitting a continuous I-V regression curve with V and
I as independent and dependent variables, respectively, and
extracting 10 regression points at chosen V-values. This feature
vector is a 10-d vector with I-values computed at fixed probe
points in V-space. The Gaussian Process Regression (GPR) of
data is used to obtain this feature vector of regression I-values
at chosen V values. The GPR fits to I-V measurements and fea-
ture vectors at probe voltages under normal and disconnected
conditions are shown in Fig. 3b and Fig. 3d, respectively.

The feature vectors extracted under normal and discon-
nected conditions are used to train an Ensemble of Trees
(EOT) classifier. The output is 1 if the I-V measurements are
consistent with normal measurements and 0 otherwise.

B. Analytical Validation: Generalization Equations

This ML method is analytically validated by deriving the
generalization equations for GPR regression estimation and
EOT classification, which have the same overall form [1]. In
both cases, the size of data set used for estimation is l; for
GPR regression it corresponds to the number of individual I-
V measurements used for feature vector estimation, and for
EOT it corresponds to total number of normal and abnormal
I-V profiles used for training. The generalization equation is
of the form

PlX,Y
[
I(f̂)− I(f∗) > ε

]
< δ (ε, ε̂, l) ,

where f̂ is the GPR or EOT estimator, and f∗ is its best
possible estimator that minimizes the expected error I(.). This
equation guarantees that the expected error of estimator f̂ is
within that of optimal with confidence probability δ(.) which
depends on l and the training error ε̂ of f̂ . The generalization
equations have been very useful in establishing the solvability

and assessing the performance of various ML methods [1].
Specifically, they guarantee this performance independent of
and without the knowledge of the underlying data and error
distributions. For GPR, the confidence function is

δGPR = 8
(

32max(A,C)
ε

)2NK

e−ε
2l/512,

where NK is the number of component Gaussian functions
and A and C are constraints that bound the estimators. The
confidence function of EOT classifier is given by

δEOT = 8g
(
1 + 256BNL

ε

)
e−ε

2l/2048,
where B is a bound and NL is the number of EOT leaves.

IV. EXPERIMENTAL SETUP AND RESULTS

The ICE implemented using API wrappers and Pyro mod-
ules automated the workflow for collecting I-V measurements,
which are available at the remote computer via one-drive file
system. The GPR method extracts the feature vector from
them, which is used as input to the pre-trained EOT classifier
that produces Boolean output. Experimental results are shown
in Fig. 3 for two typical cases. Under normal experimental
conditions (N) with all three electrodes in the cell connected
properly to the potentiostat, I-V measurements and their GPR
estimates form smooth curves, and the corresponding feature
vector spans the GPR estimate as shown in Figs. 3a and 3b;
the EOT classifier output is 1 indicating the normality of this
I-V profile. Then, the reference electrode is disconnected (D)
from the electrochemical cell and the I-V measurements are
shown in Fig. 3c, which result in a significantly different shape
and values as compared to normal conditions. Consequently,
the corresponding estimated feature is significantly different
as shown in Fig. 3d, and the classifier output is 0 indicating
an abnormal condition. This method is continuously used to
check the normality of I-V measurements as they are collected
and transferred to remote computer throughout the workflow.

V. CONCLUSIONS AND FUTURE WORK

Our solution for developing ICE and supporting autonomous
workflows is applicable to other science scenarios, including
electron microscopy [2]. Integration of additional instruments
and computing platforms, supporting more complex electro-
chemical workflows, and expanding ML method to additional
experimental conditions are planned for future.
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