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Abstract

Scientific applications rely on third-party libraries, which may have multiple implementations. While sharing an
application programming interface (API), many of these implementations do not have a shared application binary
interface (ABI) and require recompiling. Recompiling can be a long and complex process and sometimes not even an
option when the application is shipped binary only. ABI incompatibility strikes at the heart of portability, productivity,
and performance by (1) impeding application execution across different HPC and Cloud systems; (2) adding developer
hours rebuilding an application; and (3) not taking advantage of host-optimized libraries.

This tutorial teaches attendees a portable way to address ABI incompatibility in MPI using the Wi4MPI library.
Wi4MPI translates the ABI dynamically from the MPI library used to build the application to a different MPI library
available at run time. With Wi4MPI, HPC practitioners can break the portability barrier imposed by ABI incompatibil-
ity, potentially increase performance, and increase user productivity. The tutorial is broken down in three components:
(1) Understanding ABI compatibility in MPI; (2) Translating MPI libraries dynamically; and (3) Applying dynamic
translation to key use cases in HPC, including Containers.

If you use more than one MPI library or supercomputer, this tutorial is for you.
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1 Description

1.1 Overview and goals

ABI incompatibility between MPI implementations has long been a barrier to code portability in HPC. The widely-
accepted solution when wanting to use a different MPI, is to simply rebuild code with that MPI implementation.
However, this can be prohibitive in a variety of scenarios. For example: (1) Suppose a scientific application, consisting
of millions of lines of code and integrating tens of libraries, encountered a bug in an MPI library and needs to run with
a different MPI implementation; and (2) Suppose a container is deployed on a system with an application built with
one MPI, but the target system has an MPI that is not ABI-compatible with the container MPI. This tutorial covers
scenarios such as these and shows participants how they can use MPI dynamic translation to increase productivity
without fully rebuilding an application.

The goal of the tutorial is to teach attendees a portable way to address ABI incompatibility in MPI using the
Wi4MPI library. WidMPI translates the ABI dynamically from the MPI library used to build an application to a
different MPI library available at runtime. With this hot, plug and play capability for MPI, users can move their
applications freely from a given MPI library to another (without recompilation) within a system or across systems.

When coupled with containerization and other performance portability layers, Wi4MPI can help shield application
developers from proprietary network lock-in by allowing containers to bind-mount the host system MPI, and translate
the container MPI transparently. This allows developers the ability to leverage performance advantages of underlying
fabrics and accelerated transports without recompilation and the ensuing technical debt—With Wi4MPI, an MPI appli-
cation can be built at one HPC center and run at another, or even a Cloud provider, with no recompilation and minimal
performance overhead, even if the underlying network fabrics are completely different, e.g., from different vendors.

A successful tutorial will provide attendees with a clear understanding of ABI compatibility in MPI and the tools
to address it portably and without recompilation. In particular, attendees will learn:

1. How to approach ABI incompatibility in MPI using dynamic translation.
2. How to change MPI libraries at run time and without recompilation using Wi4MPI.

3. How to apply Wi4MPI to key areas in HPC, including Containers.

1.2 Target audience

The tutorial is geared toward MPI practitioners including application writers, developers, and system administrators.
Application writers and developers will learn how to use MPI dynamic translation to improve productivity, portability,
and testing without recompilation on HPC clusters. The range of applications provided in this tutorial would cover
most of these users’ common use cases. System administrators will learn how to successfuly deploy the Wi4MPI
library on HPC clusters and expose the library to users using popular package managers such as Spack.

1.3 Outline

Begin End Activity

9:00  9:45 Module 1: A general approach to ABI translation
9:45 11:00 Module 2: Changing MPIs dynamically with Wi4dMPI

11:00 11:30 Morning break
11:30  13:00 Module 3: Applying Wi4MPI to key use cases in HPC

This half-day tutorial consists of the following three modules. We would prefer the morning slot.

1. A general approach to ABI translation.

Attendees will learn about the problem of ABI incompatibility in MPI, the benefits of using multiple MPI
libraries without recompilation, how Wi4MPI addresses this problem, and Wi4MPI’s design architecture. At
the conclusion of this module, attendees will be familiar with key concepts in MPI ABI compatibility and the
Wi4dMPI library.



(a) Working with multiple MPI libraries: Challenging but necessary
(b) ABI incompatibility in MPI

(c) WidMPI: How it works

(d) Use cases: The power of dynamic translation

(e) Dynamic translation overhead

2. Changing MPI libraries dynamically with Wi4MPI.

Attendees will learn how to change MPI libraries at run time using Wi4MPI. We will demonstrate Wi4dMPI’s
two modes of operation, Interface and Preload, on simple benchmarks and mini-applications. Interface and
Preload modes give users the option of either compiling the application once with Wi4MPI and then running
with any other MPI library, or using existing application binaries to switch between MPI libraries at run time.
Time-permitting, we will also provide guidance on installing, using, and maintaining Wi4MPI in production. At
the conclusion of this module, attendees will know how to use Wi4MPI and adapt it to meet their needs.

(a) Changing MPI libraries dynamically and without recompilation
(b) Preload mode: Using Wi4MPI on existing binaries

(c) Interface mode: A stub library to rule them all

(d) Demonstration with benchmarks and mini-applications

(e) Wi4MPI in production

3. Applying Wi4MPI to key use cases in HPC.

Attendees will learn how to apply Wi4MPI to two out of three important use cases in HPC (depending on
audience interest): Choosing the best MPI for one’s application at run time; untangling specific MPI library
dependencies of distributed Python codes; and bridging ABI incompatibility between container-MPIs and opti-
mized host-MPIs portably to efficiently use containers at scale. At the conclusion of this module, attendees will
leverage Wi4MPI to address non-trivial and important use cases in HPC.

(a) Choosing the best MPI for my application
(b) Distributed Python: Untangling specific MPI library dependencies

(c) Containers: Bridging container MPI and host MPI portably to unleash containers performance at scale

1.4 Hands-on activities

We will use the Wi4MPI library to demonstrate a solution to ABI incompatibility in MPI. Wi4MPI is a robust library
and conducive to a successful hands-on tutorial: (1) Wi4MPI is built and tested on laptops and workstations as well as
production supercomputers at the French Alternative Energies and Atomic Energy Commission (CEA); (2) the testing
environment includes a variety of compilers, operating systems, environments such as modules, and MPI libraries;
(3) WidMPI, a collaboration between CEA and Lawrence Livermore National Laboratory (LLNL), is also tested and
deployed on several supercomputing systems at LLNL, which have a different computing environment than CEA’s.

Our plan for ISC23 is to use an Amazon AWS Parallel instance to create an HPC cluster with Wi4MPI, several
MPI implementations, and several container images. Participants will begin compiling and translating MPI on simple
applications and more complex codes. From there, we will move on to the Python use case and the containers use
case. This AWS setup is useful in a hybrid environment and avoids requiring tutorial participants to download large
virtual images or containers onto their own systems.

We devised several hands-on exercises for Modules 2 and 3 of the tutorial:

Module 2: Changing MPI libraries dynamically with Wi4MPI

1. Build a simple MPI program with MVAPICH2 and, using Wi4MPI, run it with Open MPI without recom-
pilation



2. Using Wi4MPI, compare the performance of selected OSU micro-benchmarks built with MVAPICH?2 and
ran under two different MPIs (Open MPI and MPICH)

3. Perform a similar experiment with SW4lite, an earthquake ground motion simulation code.

4. Build and install Wi4MPI (to teach attendees how to do this, but not necessary to complete the exercises
since there will be a Wi4MPI library already installed).

Module 3: Applying Wi4dMPI to key use cases in HPC

1. Best MPI for my binary: Bring your MPI application (or choose from a presenter-provided suite of MPI
codes) and run it under MVAPICH2, Open MPI, and MPICH without recompilation using Wi4MPI. Com-
pare performance.

2. Flexible distributed Python: Using Wi4MPI, run a distributed Python application with mpi4py under
MVAPICH2 and Open MPI without rebuilding mpi4py.

3. Lack of portability and lack of flexibility—no dynamic translation: Run a given Docker container matching
the container MPI to the host MPI.

4. Portability and ease-of-use: Using Wi4MPI, run a Docker container with MVAPICH2 on an optimized
host MPL.

Finally, several codes we plan on using in the tutorial have been run successfully on a wide variety of supercom-
puters with different processors, accelerators, networks, and MPI libraries. These experiments have been documented
in the IEEE Cluster 2021 proceedings [[1]].

1.5 Updates from previous presentations

While this would be the first edition of this tutorial, we have hosted and organized training sessions focused on Wi4MPI
at the CEA supercomputing center in collaboration with Eolen/AS+. In particular, we facilitated the 2018, 2019
and 2022 PRACE training courses: https://events.prace-ri.eu/event/740/, https://events.
prace—-ri.eu/event/890/,andhttps://events.prace-ri.eu/event/1404/. Inthese sessions, we
presented an overview of ABI incompatibility challenges, basic Wi4MPI usage on key application examples, and a
subset of the hands-on activities described in this proposal.

Unlike the PRACE training, the ISC23 tutorial has a broader focus on addressing ABI incompatibility in MPI and
presents key use cases in the fields of containers and Python-based frameworks. In addition, we will leverage some of
the previously developed hands-on exercises for this tutorial.

1.6 Number of attendees from previous tutorials

We had about 25 people attend each of the PRACE training sessions described above (75 people total).

1.7 URLs to sample slides and other material

https://github.com/cea-hpc/widmpi/tree/tutorials/doc/tutorials/i1sc2023


https://events.prace-ri.eu/event/740/
https://events.prace-ri.eu/event/890/
https://events.prace-ri.eu/event/890/
https://events.prace-ri.eu/event/1404/
https://github.com/cea-hpc/wi4mpi/tree/tutorials/doc/tutorials/isc2023

2 Logistics

2.1 Length
This is a half-day tutorial of 3.5 hours.

2.2 Content split

35% Beginner
Goals: Understand ABI incompatibility in MPI and leverage pragmatic dynamic translation to address this
problem.
Activities: Load Wi4MPI with modules and use it to translate MPI codes at run time using the Preload and
Interface modes.

65% Intermediate
Goals: Apply MPI dynamic translation to achieve portability, potentially increase performance, and leverage
optimized host MPIs from within a container and from distributed Python applications with specific MPI library
dependencies.
Activities: Using dynamic translation, compare performance between MPIs with benchmark applications and
SWdlite. Run container and distributed Python applications with and without Wi4MPI.

2.3 Requirements and prerequisites

Attendees will need a laptop equipped with Wi-Fi, a shell terminal, and the ssh program. Users will be provided
accounts to access Amazon AWS parallel instances required for demonstrations and hands-on exercises.

To successfully follow the tutorial, attendees should be familiar with compiling and running parallel codes on HPC
systems. They should also have basic knowledge of MPI allowing them to launch and run MPI programs.

2.4 Estimated number of attendees

ABI incompatibility in MPI and the Wi4MPI library are gaining momentum and were the subject of discussions in
several HPC conferences in 2022: the High Performance Container Workshop (HPCW) at ISC 2022, the Workshop
on Containers and New Orchestration Paradigms for Isolated Environments in HPC (CANOPIE) at SC 2022, and
EuroMPI 2022.

Therefore, we believe this tutorial will be of interest to ISC attendees and we expect between 50 and 80 attendees.
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