
CO
RR

EC
TE

D 

Solar Energy xxx (xxxx) 112195 

PR
OO

F 

Contents lists available at ScienceDirect 

Solar Energy 
journal homepage: www.elsevier.com/locate/solener 

Integration of a physics-based direct normal irradiance (DNI) model to
enhance the National Solar Radiation Database (NSRDB) 

, Manajit Sengupta a, Jaemo Yang a, Grant Buster b, Brandon Benton b, Aron Habte a, 

a Power Systems Engineering Center, National Renewable Energy Laboratory, Golden, CO 80401, United States 
b Strategic Energy Analysis Center, National Renewable Energy Laboratory, Golden, CO 80401, United States 
c Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, United States 

Keywords:
Solar radiation 

NSRDB 

The National Solar Radiation Database (NSRDB) is an extensively used dataset that furnishes satellite-retrieved
solar resource data across the United States and an expanding list of other countries. Although the NSRDB uses a
physical model to compute global horizontal irradiance (GHI), it currently employs an empirical approach based
on surface observations to estimate cloudy-sky direct normal irradiance (DNI). Recently, a new physics-based ap-
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Satellite data proach, known as the Fast All-sky Radiation Model for Solar applications with DNI (FARMS-DNI), was developed
to improve DNI forecasting. FARMS-DNI integrates direct and scattered solar radiances within the circumsolar
region, resulting in improved day-ahead forecasting of DNI by incorporating it into the Weather Research and
Forecasting model with Solar extensions (WRF-Solar). This study incorporates FARMS-DNI into the NSRDB algo-
rithm to produce high-spatiotemporal-resolution DNI data from satellite data. The accuracy of the NSRDB based
on FARMS-DNI is analyzed using surface observations from 19 sites situated within the National Oceanic and At-
mospheric Administration (NOAA) Surface Radiation Budget (SURFRAD) and Solar Radiation (SOLRAD) net-
works, the University of Oregon (UO) network, the U.S. Department of Energy (DOE) Atmospheric Radiation 
Measurement (ARM) network, and at the National Renewable Energy Laboratory (NREL). The results demon-
strate that FARMS-DNI reduces the significant overestimation of DNI in the conventional NSRDB at all surface
sites, particularly in cloud overcast conditions classified using both satellite retrievals and surface observations.
Consequently, this new model can effectively improve the overall accuracy of the NSRDB. The results also sug-
gest that further improvement of DNI estimates at individual time steps, however, requires advanced satellite 
techniques and precise identification of clouds and retrieval of cloud properties. 

1. Introduction tem Advisor Model (SAM) convert DNI and meteorological data into
thermal energy, simulating the flow through system components while 

Global horizontal irradiance (GHI) and direct normal irradiance considering diverse losses, and subsequently transform the thermal en-
(DNI) are the most commonly used quantities for quantifying the mag- ergy into net electrical power [2]. 
nitude of solar resource available at the earth’s surface [9,15,21]. GHI The development of large-scale solar resource data depends on a 
represents the total amount of solar radiation in the downwelling direc- combination of satellite observations and advanced modeling tech-
tion from the atmosphere, whereas DNI represents the amount of solar niques to compute GHI and DNI. Empirical models develop regression 
radiation along the sun’s direct path at a specific time [3,30]. Accurate functions that establish correlations between long-term satellite-based 
modeling and forecasting of GHI and DNI are crucial for estimating the observations and surface-based measurements of solar radiation. The 
energy production of a solar power plant and integrating it into the regression functions, in conjunction with satellite data, enable the esti-
electric grid. Compared to GHI, DNI is often more closely correlated mation of GHI and DNI across various locations and time periods [4,6, 
with the production from a concentrating solar power (CSP) system or a 14,20,28,29]. Physical models compute solar radiation by numerically 
photovoltaic (PV) tracking system. For example, the CSP models incor- solving the radiative transfer equation [5,18,24–26]. Satellite observa-
porated in the National Renewable Energy Laboratory’s (NREL’s) Sys- tions are used to retrieve meteorological properties such as cloud 
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Fig. 1. The locations of the surface sites in the evaluation of DNI. 

amount, cloud optical thickness, and cloud thermodynamic phase [11, beneficial in reducing the bias in DNI forecasting when incorporated
into the Weather Research and Forecasting model with Solar extensions
(WRF-Solar) [13,36]. In this study, FARMS-DNI is integrated into the 
algorithm used to create the National Renewable Energy Laboratory’s 
(NREL’s) National Solar Radiation Database (NSRDB) [21]. The long-
term DNI is calculated using FARMS-DNI and satellite data are vali-
dated using surface observations across the contiguous United States 

12,16,27,38,39]. The satellite retrievals are combined with additional 
meteorological information from other sources to deduce the effects of
absorption and scattering of solar radiation in the atmosphere [17,22]. 

Following the evaluation of satellite-based GHI and DNI data, it is
commonly observed that DNI, derived through both empirical models 
and physical models, exhibits a larger bias than GHI [8,40,41]. This is 
mainly due to the fact that the light scattering in the forward direction (CONUS). 
is more sensitive to aerosol or cloud properties than in other directions
[1,37]. As a result, minor uncertainties in the input data for a radiative 2. A brief review of FARMS-DNI 
transfer model can cause a significant bias in the computation of DNI 
while having only a limited impact on the GHI computation. FARMS is an efficient radiative transfer model computing broad-

The current state-of-the-art parametric DNI models suffer from im- band solar radiation on the earth’s surface [33]. Under clear-sky condi-
perfections that can result in nonignorable bias in DNI computation. tions, it employs a clear-sky radiative transfer model, such as REST2 
For instance, the Direct Insolation Simulation Code (DISC) [19] com- [7], to compute GHI and DNI. Under cloudy-sky conditions, the clear-
putes all-sky DNI using empirical relationships between surface obser- sky radiative transfer model is used to compute the transmittance and 
vations of GHI and DNI. As a result, independent biases in the empirical reflectance of solar radiation in the cloud-free atmosphere. The compu-
relationships and GHI computation can compound and lead to a larger tation is then combined with cloud transmittance and reflectance, para-
bias in DNI computation. Additionally, a specific GHI value can corre- meterized based on a pre-computation for the possible cloud properties, 
spond to numerous combinations of the meteorological properties, each to infer the cloudy-sky GHI. Note that the Beer-Bouguer-Lambert law 
associated with a distinct DNI value. The consistent one-to-one match significantly underestimates cloud transmittance for direct radiation 
between GHI and DNI for a specific airmass can result in obvious errors because it does not account for the scattered radiation in the circumso-
in the DNI computation. The well-known Beer-Bouguer-Lambert law lar region. To address this limitation, FARMS employs DISC to empiri-
has been used by numerical weather prediction (NWP) models to com- cally compute cloudy-sky DNI from the GHI computation in the previ-
pute direct solar radiation [18]. This algorithm ignores the scattered so- ous step. Because of the accurate and efficient computation of all-sky 
lar radiation within the circumsolar region and thus often leads to sig- solar radiation, FARMS has been utilized to create long-term solar radi-
nificant underestimation of DNI when used for solar forecasting [36]. ation data served by the NSRDB. It has also been integrated into WRF 
The biases in the current DNI models were explicitly quantified through and WRF-Solar to provide high-resolution forecasts of solar radiation in 
a comprehensive study utilizing 17 years of surface-based observations the NWP systems. 
conducted at the Atmospheric Radiation Measurement (ARM) Southern FARMS has been updated with FARMS-DNI in the computation of 
Great Plain (SGP) site [34]. The findings revealed that DISC exhibited a cloudy-sky DNI [34]. The model can be expressed by the following 

equation: significant overestimation of cloudy-sky DNI, with a bias of 153.85 %.
The Beer-Bouguer-Lambert law underestimated the cloudy-sky DNI by
74.98 % and 78.85 for clouds composed of water droplets and ice crys-
tals, respectively.

To address the limitations of the current DNI models, Xie et al. [34]
developed a physics-based model, the Fast All-sky Radiation Model for
Solar applications with DNI (FARMS-DNI), to efficiently infer all-sky so-
lar radiation in the circumsolar region. This model has proved to be 

(1) 

where is the extraterrestrial solar irradiance, is the transmit-
tance of the cloudy atmosphere in the infinite-narrow beam, is the 
transmittance related to the first-order scattered radiation in the cir-
cumsolar region, and is the transmittance related to the multiple re-
flection between cloud and land surface that falls into the circumsolar 

2 

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted manuscript. 
The published version of the article is available from the relevant publisher.



PR
OO

F

CO
RR

EC
TE

D 

Y. Xie et al. Solar Energy xxx (xxxx) 112195 

Fig. 2. Comparison of the cloudy-sky DNI between those computed by FARMS-DNI and surface observations. 

region. The computation of is in accordance with the Beer-Bouguer-
Lambert law using the clear-sky transmittance and the cloud optical 
thickness. can be derived through an integration of the solar radi-
ances in the differential solid angles within the circumsolar region.
is computed by the integration of the solar radiances reflected between
the cloud and the land surface and then observed in the circumsolar re-
gion.

To express in Eq.(1), solar radiances in differential solid angles
are inferred from a lookup table of cloud transmittances, calculated us-
ing the DIScrete Ordinates Radiative Transfer (DISORT) model [23] 
with various wavelengths, cloud properties and solar incident direc-
tions. For each solar zenith angle, solar radiances are computed in ap-
proximately 200 differential solid angles. These radiance values are in-
tegrated across the solar wavelengths and the circumsolar region to rep-
resent . This process is optimized through a parameterization of the
cloud transmittances for the possible cloud properties and solar inci-
dent directions [42]. Yang et al. [42] discovered that the cloud trans-
mittance can be accurately represented using the parameterization 
with a hyperbolic tangent function and determined coefficients. The 
DNI computed using FARMS-DNI with the parameterization closely 
matches the DNI computed using the precomputed cloud transmit-
tances, while requiring significantly less computing time and memory
usage. More details of FARMS-DNI are not reinstated in this context as
they can be readily referenced in earlier literatures [34,42]. 

Note that FARMS-DNI is a physics-based model for computing
cloudy-sky DNI, independent of regression or calibration based on sur-
face observation of DNI, though a few approximations are made during
the parameterization process. In contrast to DISC, which relies on a re-
gression function derived from surface observation, FARMS-DNI exclu-
sively utilizes physical properties of the atmosphere and land surface as
its input. Consequently, this model is not limited by local climate condi-
tions. When compared to the Beer-Bouguer-Lambert law, FARMS-DNI
closely aligns with pyrheliometer observations because it includes scat-
tered radiation within the circumsolar region.

FARMS-DNI coupled with the parameterization of cloud transmit-
tance has been successfully integrated into WRF-Solar [36]. Compared 
to the Beer-Bouguer-Lambert law adopted by the conventional WRF-
Solar, the forecasting of day-ahead DNI over 9-km grid boxes is signifi-
cantly improved by FARMS-DNI, as validated using 1-year surface-
based observations and satellite data. More specifically, the use of 
FARMS-DNI reduces the percentage error (PE) of the DNI forecasting 
over Table Mountain, Colorado from −28.62 % to –0.59 %. For CONUS, 
the average PE over satellite pixels is reduced from −54.39 % to 
−14.08 %. Given these results, it would be interesting to investigate
whether integrating FARMS-DNI into the NSRDB algorithm could pro-
vide benefits for the satellite-based resource assessment of DNI. 
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Fig. 3. The distribution of the cloudy-sky DNI observed at the land surface and those computed using FARMS-DNI and DISC. 

3. Integration of FARMS-DNI into the NSRDB 

The NSRDB is one of the most often used solar resource data sets for 
solar energy applications and other purposes [21]. With the users’ se-
lection of spatial and temporal coverages, solar radiation and with 
other meteorological products—such as surface temperature and wind 
speed—can be downloaded through NREL’s server, an application pro-
gramming interface (API) service, or the Amazon Web Services (AWS)
cloud services. In addition to GHI, DNI, and diffuse horizontal irradi-
ance (DHI), users can also access hyperspectral solar data for specific 
photovoltaic (PV) surfaces with various orientations [31,32,35]. For 
CONUS, the NSRDB employs data from the Geostationary Operational
Environmental Satellite (GOES), the Modern-Era Retrospective analysis
for Research and Applications, Version 2 (MERRA-2), and other ancil-
lary data to assess solar radiation at each 30-minute interval from 1998
to 2018, with a spatial resolution of 4 km. Since 2019, the NSRDB data
have been available at a higher temporal resolution of 5 min and an im-
proved spatial resolution of 2 km.

In this study, the NSRDB algorithm is enhanced with the integration
of FARMS-DNI, coupled with the new parameterization of cloud trans-
mittance. The clear-sky DNI is consistent with the conventional NSRDB,
where REST2 is used to compute both clear-sky GHI and DNI. For 
cloudy-sky conditions, a sequential computation by FARMS and DISC is
substituted by a concurrent procedure that utilizes satellite cloud prod-
ucts to infer cloud transmittance and reflectance for both direct and to-
tal downwelling solar radiation. The cloud transmittance and re-
flectance are then incorporated with FARMS, FARMS-DNI and the 
clear-sky computation to resolve the cloudy-sky GHI and DNI.

Following the algorithm, all-sky DNIs near 19 surface sites in the 
networks of the Surface Radiation Budget (SURFRAD), Solar Radiation
(SOLRAD), the University of Oregon (UO), the U.S. Department of En-
ergy ARM, and NREL are computed using the NSRDB input data for 

each 5-minute interval during 2019–2020. Fig. 1 displays the locations
of the surface sites considered in the study. The SURFRAD network con-
sists of 7 sites at Bondville, Illinois (BON); Desert Rock, Nevada (DRA);
Goodwin Creek, Mississippi (GWN); Fort Peck, Montana (FPK); the 
Pennsylvania State University (PSU); Sioux Falls, South Dakota (SXF); 
and Table Mountain, Colorado (TBL). The SOLRAD network includes 
sites in Albuquerque, New Mexico (ABQ); Bismarck, North Dakota 
(BIS); Hanford, California (HNX); Madison, Wisconsin (MSN); Salt Lake
City, Utah (SLC); Seattle, Washington (SEA); and Sterling, Virginia 
(STE). The UO network includes 3 sites: Ashland, Oregon (ASO); Eu-
gene, Oregon (EUG); and Silver Lake, Oregon (SIO). The ARM and 
NREL sites are located at the SGP and Solar Radiation Research Labora-
tory (SRRL), respectively. Following the NSRDB algorithm, the DNI in
the west and east of the red line (-113° longitude) in Fig. 1 is computed 
using GOES-17 and GOES-16 data, respectively. For comparison with 
FARMS-DNI, DNI is also computed using the conventional NSRDB algo-
rithm, where DISC is used to compute DNI from the GHI simulated by
FARMS. 

4. Validation 

To assess the accuracy of FARMS-DNI in the NSRDB processing, the
computed DNI based on the satellite data are validated using surface 
observations. To align with the time steps of the NSRDB, the 1-minute
resolution surface observations are first averaged over each 5-minute 
interval around the corresponding NSRDB timestamp. Building on prior
research efforts [10,40,41], data quality control is performed to elimi-
nate extreme conditions. Additionally, we incorporated certain varia-
tions in the criteria for DNI that are associated with limited solar energy
but present substantial uncertainties in percentage. The data quality
control involves excluding data when (1) the solar zenith angle is larger
than 80°; (2) the surface observed GHI is smaller than 50 W/m2; (3) the 
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Fig. 4. The bias of the cloudy-sky DNI computed by FARMS-DNI and DISC. 

surface observed DNI is smaller than 5 W/m2; or (4) the computed DNI 
is smaller than 5 W/m2. Cloudy-sky scenes are identified based on the
following criteria: (1) they are classified as cloudy-sky conditions by the
GOES cloud product; (2) the surface observed GHI is smaller than the 
clear-sky GHI computed using REST2; and (3) the surface observed DNI
is smaller than the clear-sky DNI computed using REST2. The criteria 
above ensure inclusion of cloudy-sky scenes by using a combination of
satellite data and surface observations. It is important to acknowledge
the potential for bias arising from the application of REST2 and the re-
lated input data [40]. For example, scenes containing extremely thin 
cirrus clouds can be inadvertently excluded when REST2 underesti-
mates the clear-sky GHI and DNI. This can lead to a reduction of the 
sample size for cloudy-sky conditions. However, criteria (2) and (3) sig-
nificantly reduce the bias in the cloud identification by the satellites 
and thus are implemented in this study.

Fig. 2 illustrates the cloudy-sky DNI computed using FARMS-DNI
for the period from 2019 to 2020 compared to the surface observations
from the 19 surface sites in the previously mentioned networks. The 
distribution of cloudy-sky DNI is skewed towards the lower-intensity
region due to the light scattering and absorption by clouds. The cloudy-
sky DNI greater than 400 W/m2 are usually associated with thin clouds
where the light scattering around the forward direction is more signifi-
cant than the other directions. The distribution of cloudy-sky DNIs is
mostly centered around the 1:1 line, indicating good overall agreement
between the computation by FARMS-DNI and the surface observations.
However, bias is noticeable in the individual computations. According
to the Beer-Bouguer-Lambert law, direct radiation in an infinite-narrow
beam is an exponential function of cloud optical thickness, suggesting
that the bias in satellite-based cloud products is usually significantly
amplified when they are used to compute DNI. Therefore, an accurate
cloud retrieval technique is as important as the radiative transfer model
in the DNI computation. 

Fig. 3 shows the distribution of the cloudy-sky DNI observed at the 
land surface, and as computed using FARMS-DNI and DISC. Notably, 
DISC substantially underestimates the concentration of DNI in the 
lower-intensity region while overestimating it in the higher-intensity 
region. The observation suggests that DISC tends to overestimate most
cloudy-sky DNI. This aligns with the findings of a prior study by Xie et
al. [34], where cloudy scenes were identified using surface-based total
sky imaging data at ARM SGP and NREL SRRL. The overestimation by 
DISC is probably caused by the regression functions that are deter-
mined for all-sky conditions. When this method is applied to GHI in 
cloud overcast conditions, it tends to assume a compounding of clear-
sky and cloudy-sky conditions and thus overestimates the cloudy-sky 
DNI. Compared to DISC, FARMS-DNI has a better agreement with the
surface observation of the cloudy-sky DNI. This is also shown in Fig. 4,
which displays the bias of the cloudy-sky DNI computed by FARMS-
DNI and DISC. A more comprehensive diagnose of bias by DISC and 
FARMS-DNI requires a meticulous analysis that takes into account spe-
cific cloud conditions. For example, FARMS-DNI is specifically de-
signed for cloud overcast conditions, which means it may exhibit more
significant bias when faced with limited cloud cover. Conversely, DISC
might present larger bias in cloudy-sky conditions because the regres-
sion function was determined in all-sky conditions. To further pinpoint
the underlying reasons for bias, it is imperative to rely on accurate 
cloud property data, encompassing parameters such as cloud optical 
thickness, cloud particle size, cloud thermodynamic phase, and cloud 
fraction. Ongoing research efforts are dedicated to advancing our un-
derstanding in this domain.

To quantitively assess the bias of FARMS-DNI and DISC, we consider
4 metrics: mean bias error (MBE), mean absolute error (MAE), percent-
age error (PE), and absolute percentage error (APE)— which are de-
fined as follows: 
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Fig. 5. (a-d) The error metrics of the cloudy-sky DNI and (e-h) those of the all-sky DNI computed by DISC and FARMS-DNI. 

(2a) 

(2b) 

(2c) 

(2d) 

where n is the number of the cloudy-sky scenarios, and the sub-
scripts “M” and “O” denote the model simulation and surface-based ob-
servation, respectively. Fig. 5a-5d shows the metrics of the cloudy-sky
DNI computed by DISC and FARMS-DNI. The MBE and PE indicate that
DISC overestimates cloudy-sky DNI at all the sites, which is attributed
to both the DISC model and the computation of cloudy-sky GHI. How-
ever, using FARMS-DNI can moderate this bias, particularly for sites 
with high occurrences of snow and bright surfaces such as TBL, SRRL,
DRA, and HNX. The overestimation of DNI is converted to a slight un-
derestimation in a few sites, leading to an even lower bias in the aver-
age over all 19 sites. In addition, the use of FARMS-DNI reduces the 
MAE and APE of the cloudy-sky DNI, as shown in Fig. 5b and 5d. Fig. 

5e-5 h presents the error metrics of the all-sky DNI, including clear-sky
and near-clear-sky conditions, which were excluded using the previ-
ously mentioned criteria. The cloudy-sky computation is performed by
DISC and FARMS-DNI, whereas the clear-sky DNI is given by REST2. 
The results show that FARMS-DNI outperforms DISC in terms of MBE 
and PE for the all-sky DNI. Moreover, the MAE and APE of DISC and 
FARMS-DNI are comparable over the 19 surface sites. Based on the im-
proved accuracy in both the cloudy-sky and all-sky conditions, as 
demonstrated in Fig. 5, integrating FARMS-DNI into the NSRDB algo-
rithm is expected to enhance the DNI data. 

5. Conclusions 

This study aims to improve satellite-based DNI data by integrating a
physical model, FARMS-DNI, into the NSRDB developing algorithm.
The FARMS-DNI model numerically computes cloudy-sky DNI by inte-
grating the infinite-narrow beam associated with the Beer-Bouguer-
Lambert law, the first-order scattered radiation in the circumsolar re-
gion, and the multiple scattering between cloud and land surface that 
falls into the circumsolar region. A parameterization of the cloud trans-
mittance for direct solar radiation is utilized to improve the computa-
tional efficiency of FARMS-DNI, based on our previous studies. 
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To evaluate the accuracy of the new model, cloudy-sky DNI was the determination of the global solar radiation from meteorological satellite data. Sol.
Energy 37, 31–39. computed using FARMS-DNI, along with a combination of GOES satel- Chandrasekhar, S., 1950. Radiative transfer. Oxford Univ. Press, Oxford. 

lite data, MERRA-2, and other ancillary data. The evaluation is con- Feng, L., Lin, A., Wang, L., Qin, W., Gong, W., 2018. Evaluation of sunshine-based models 
ducted using 2-year surface-based observations over 19 sites across for predicting diffuse solar radiation in China. Renew. Sustain. Energy Rev. 94, 

168–182. CONUS. The results show that DISC used in the conventional NSRDB se- Gueymard, C., 2008. REST2: High-performance solar radiation model for cloudless-sky verely overestimated DNI at all sites when the atmosphere is confi- irradiance, illuminance, and photosynthetically active radiation - Validation with a 
dently cloudy. This bias is significantly reduced by FARMS-DNI, which benchmark dataset. Sol. Energy 82 (3), 272–285. 

Gueymard, C., Ruiz-Arias, J., 2016. Extensive worldwide validation and climate is specifically designed for cloud overcast scenarios. FARMS-DNI also sensitivity analysis of direct irradiance predictions from 1-min global irradiance. Sol. evidently improve the all-sky DNI from the conventional NSRDB. Energy 128, 1–30. 
Therefore, integrating FARMS-DNI into the NSRDB algorithm is ex- Gurtuna, O., Prevot, A., 2011. An overview of solar resource assessment using

meteorological satellite data. Recent Advances in Space Technologies (RAST), 2011
5th International Conference on 10.1109/RAST.2011.5966825, 209 - 212. 

Habte, A., Sengupta, M., Lopez, A., 2017. Evaluation of the National Solar Radiation 
cloudy-sky scenarios even though it reduces the overall uncertainty in Database (NSRDB): 1998–2015 National Renewable Energy Laboratory, Golden, CO. 
the long-term averaged data. This comes likely from a joint effect of the Huang, G., Li, Z., Li, X., Liang, S., Yang, K., Wang, D., Zhang, Y., 2019. Estimating surface

solar irradiance from satellites: Past, present, and future perspectives. Remote Sens. model bias and the bias in the satellite-based cloud retrievals. Because Environ. 233, 111371. 
DNI is particularly sensitive to cloud optical thickness, it is crucial to Husi, L., Nagao, T., Nakajima, T., Riedi, J., Ishimoto, H., Baran, A., Shang, H., Sekiguchi, 
further improve cloud retrieval techniques and utilize them in future M., Kikuchi, M., 2018. Ice cloud properties from Himawari-8/AHI next-generation

geostationary satellite: Capability of the AHI to monitor the DC cloud generation DNI computations. Additionally, the performance of DISC and FARMS- process. IEEE Trans. Geosci. Remote Sens. 1–11. DNI in partially cloudy conditions requires further investigation, even Jimenez, P., Hacker, P., Dudhia, J., Haupt, S., Ruiz-Arias, J., Gueymard, C., Thompson, G., 
though FARMS-DNI shows better performance in all-sky and confi- Eidhammer, T., Deng, A., 2016. WRF-Solar: Description and clear-sky assessment of

an augmented NWP model for solar power prediction. Bull. Amer. Meteor. Soc. 97, dently cloudy conditions. Accurate cloud coverage data play an impor- 1249–1264. tant role in computing cloudy-sky DNI because FARMS-DNI is designed Justus, C., Paris, M., Tarpley, J., 1986. Satellite-measured insolation in the United States, 
for cloud overcast conditions. The use of precise cloud coverage data Mexico, and South America. Remote Sens. Environ. 20 (1), 57–83. 

pected to enhance the accuracy of the DNI data.
Note that FARMS-DNI still shows substantial bias in the individual 

from advanced satellite technique, such as the improved spatial resolu-
tion provided by GOES-16 and GOES-17, should aid in further improv-
ing DNI assessment. 
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