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ABSTRACT D* MTS after c*
With the advances of sensing technology, in-situ infrared thermal L Length of MTS segments
videos can be collected from Resistance Spot Welding (RSW) processes. d, MTS segments at time t (or the tth pixel
Each video records the formulation process of a weld nugget. The vector) in D*
nugget evolution creates a_“temporal effect_ 7 across ti_te frames, which wyj Weight connecting unit j to i in LSTM
can be leveraged for real-time, nondestructive evaluation (NDE) of the g; Differentiable function for activation in LSTM
weld quality. Currently, quality prediction with imaging data mainly : .. . o . .
focuses on optical feature extraction with Convolutional Neural yH(®) Activation of a noninput unit { at time ¢ in
Network (CNN) but does not make the most of such temporal effect. In LSTM . .
this study, pixels corresponding to critical locations on the weld nugget net;(t) Unit ".S current input in LSTM
surface are extracted from a video to form multivariate time series v;(t) Error signal of a nonoutput unit j
(MTS). Multivariate Adaptive Regression Splines (MARS) is used in & Memory cell at unit j in LSTM

MTS processing to remove noisy signals related to uninformative
frames. A Stacked Long Short-Term Memory (LSTM) model is
developed to learn from the processed MTS and then predicts weld
nugget size and thickness in real-time NDE. Results from a case study
on RSW of Boron steel demonstrates the improvement in prediction
accuracy and computational time with the proposed method, as
compared to CNN-based weld quality prediction.

Keywords: long short-term memory, resistance spot
welding, infrared thermal video, temporal effect, quality
prediction

NOMENCLATURE
Y; Vi, Yn Vector of pixels at the critical locations in a
frame (or subsequent frames of a video)

x Timestamps or index of frames

D MTS extracted from a video

y=FfKx) Fitted value of y with MARS

a, .., ay Vectors of coefficients in MARS

By, ...,By Basis functions in MARS

Ry, ..., Ry Subregions representing the partitions of D
Ci) - Cy Knots at the partitioning position of D

c Knot for the most abrupt change in D

1. INTRODUCTION

Resistance spot welding (RSW) is a popular technique for
joining lightweight materials in automotive industry. Metal
sheets are clamped together and placed between two water-
cooled electrodes, as shown in FIGURE 1(a), which will
concentrate electric currents and add pressure on the weld
position. The resistance of metal against electric currents will
generate heat and create a molten spot at the faying surface. The
electrodes will be lifted after certain holding time, leaving the
weld spot to solidify. Eventually, a nugget will be formulated at
the weld spot [1].

RSW is economical, efficient, and operationally simple [1],
which makes it favorable for joining lightweight steel and
aluminum alloys in large-scale production [2]. Nonetheless,
defects can be caused by unstable electric currents,
insufficient/extra holding time, and other industrial uncertainties.
FIGURE 1(b) shows the major defects in RSW, including
insufficient/no fusion, porosity, and cracks. They are mainly
reflected as abnormal nugget size and thickness. To ensure
desirable mechanical properties of the weld, nondestructive



Electric current

Metal

sheets Nugget

Electrode

1Ua4und 2143393

(a) Generic RSW process

Welding
machine Thickness
Electrode ! o

f Part defects

—-<

Stuck weld (insufficient

s fusion)

Excessive indentation

i
~ Cracks
(b) Part defects in RSW

FIGURE 1. (a) GENERIC RSW PROCESS AND (b) MAJOR PART DEFECTS [4].

evaluation (NDE) of nugget size and thickness, preferably done
in real time, is of keen interest in industry.

In recent years, practitioners began to leverage inline sensing
technology to capture in-situ data from RSW processes. Image
sensors, e.g., high-speed infrared (IR) camera, can be mounted
above or near the metal sheets and collect thermal video of the
nugget during the welding process. An in-situ thermal video
records the entire formulation of a nugget. The pixels represent
the IR radiation from the nugget surface. Each individual frame
(thermal image) reflects the nugget surface profile at a particular
timestamp (FIGURE 2(a)), and consecutive frames reveal the
evolution of nugget across time (FIGURE 2(b)). With a high
speed of image recording, the nugget information is well
preserved. In-situ thermal video therefore becomes a vital
information source for real-time NDE in RSW.
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FIGURE 2. (a) A SINGLE FRAME FROM AN IN-SITU THERMAL
VIDEO AND (b) CONSTIUTION OF A VIDEO.

When it comes to quality prediction with imaging data, the
prevalent methods are extracting optical features from images as
the evidence of quality and then mapping the extracted features
to quality metrics. Deep learning models designed for optical
feature learning, e.g., Convolutional Neural Network (CNN), are
widely adopted by these methods [3-6]. Despite the remarkable
prediction accuracy, this methodology has two major drawbacks.

First, working with high-dimensional data like image/video
increases the data processing burden, which elevates the data
handling cost and compromises the timeliness of NDE. Second,
training CNNs and related DL models is computationally costly
and time-consuming due to the image convolution [7]. An
intriguing question to be asked, therefore, is whether an
alternative method can be developed that alleviates the burden
from data processing and model training? This study answers
“YES” to this question.

Due to the reflection of nugget surface profile and nugget
evolution across time, an in-situ thermal video from RSW
contains both spatial and temporal characteristics in nugget
formulation. CNN-based methods explore spatial features of
nugget surface for quality prediction but do not fully leverage the
temporal changes. This study proposes an alternative quality
prediction method that explores the temporal effect in in-situ
thermal videos to predict nugget size and thickness in RSW.
FIGURE 3 demonstrates the flow of method. In each video,
pixels corresponding to the critical locations of weld nugget are
extracted from the frames to form multivariate time series
(MTS). Multivariate Adaptive Regression Splines (MARS) [8] is
used to detect salient changes in the MTS, which correspond to
the splitting points of informative frames containing stabilized
nugget and those uninformative frames at the initial stage of
nugget formulation. Uninformative signals are removed from the
MTS. A Stacked Long Short-Term Memory (LSTM) model is
trained with the filtered MTS, which enables real-time NDE of
nugget size and thickness.

The proposed method substitutes the temporal
characteristics for optical features from in-situ thermal videos as
the evidence of weld quality. By doing so, a thermal video, which
is a 3-dimensional tensor of pixels, is relaces by 2-dimensional
MTS, which requires much less data storage and processing time.
LSTM, as an advanced version of recurrent neural network
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FIGURE 3. FLOWCHART OF THE PROPOSED METHOD.

(RNN), learns from MTS instead of images. The training time is
substantially reduced due to lower input dimension and
avoidance of optical feature extraction. A case study on an RSW
application of Boron steel demonstrates that this method leads to
a significant decrease in computing time while maintains the
prediction accuracy in NDE at a favorable level, as compared
with CNN-based methods.

The rest of this paper is organized as follows. Section 2 will
review state-of-the-art for LSTM models and their use in
manufacturing. Section 3 will elaborate on technical details of
the proposed method. Section 4 will present a case study based
on the in-situ thermal videos from an RSW application of Boron
steel. Section 5 will conclude the paper and highlight future
directions.

2. LITERATURE REVIEW

This section reviews LSTM and the model variants and
discuss their current uses and potentials for NDE in
manufacturing.

2.1 LSTM Models
First introduced in Hochreiter and Schmidhuber [9], LSTM
was developed to handle the “vanishing gradient problem” in
model training of conventional RNNs. When using gradient-
based algorithms, e.g., stochastic gradient decent [10], to update
the weights in conventional RNNs proportionally to the partial
derivative of the error function per training iteration (epoch), the
gradient can be vanishing and prevent the weights from updating
[11]. LSTM incorporates memory cells and gate units in the
RNN architecture to enforce constant error flow through
constant error carousels within special units [9], therefore
avoiding the “vanishing gradient problem”. Due to this design,
LSTM has a significantly improved learning capability for tasks
that span a long period, e.g., thousands or even millions of
discrete time steps. It is demonstrated for better model training
performance and computational efficiency compared with
conventional RNNs [12].
The simplest LSTM model consists of one LSTM layer.
Recently, Deep LSTM, or Stacked LSTM [13, 14], has
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increasing presence in literature. Stacked LSTM models consist
of multiple LSTM layers, with each layer adding one level of
abstraction of the input at a different time scale [15]. Such model
architecture was initially motivated by the need of representing
flexible use of long range context in speech recognition [13, 14].
It turned out that the model depth could be a better compensation
to the LSTM model skill than the number of memory cells in a
given layer [13]. Consequently, Stacked LSTM became a most
popular model for learning from sequence data or time series. Its
applications have been extended to more subjects other than
speech recognition and natural language processing [16]. An
emerging field of use is manufacturing.

2.2 LSTM in Manufacturing

Many sensor data from manufacturing applications contain
temporal changes that can be learned effectively with LSTM. For
example, multi-sensory MTS of a functional component, e.g.,
lithium battery, bearing, reflect the degradation over time, which
can be learned by LSTM models to predict the remaining useful
life (RUL) [17-23]. With the aid of LSTM, data-driven RUL
prediction has become a popular alternative to the traditional
reliability analysis of manufacturing systems.

LSTM is also leveraged for tool condition monitoring and
quality prediction. The rationale for using LSTM here is the
temporal dependency of tool wear or quality downgrade. Multi-
sensory MTS is, again, the dominant data type in this subject.
Stacked LSTM [24-26], Bi-directional LSTM [27, 28], or
customized LSTM models (e.g., AdaBoost-LSTM [29], LSTM-
FFNN [30]) are developed to ensure a desirable prediction
accuracy. The deeper and more complex model structures
undoubtedly showed huge potentials for manufacturing quality
prediction.

Recently, with the wide adoption of image sensors, imaging
data are commonly acquired from manufacturing systems, e.g.,
in-situ thermal images from laser metal deposition [31]. These
data reflect both the spatial characteristics and temporal changes
of a part/product. A plausible thought is therefore applying
LSTM to such imaging data to explore the temporal effect for
quality prediction. The challenge, though, is that LSTM models
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intake sequence data or time series but not images. A specially
designed LSTM model architecture emerged, i.e., CNN-LSTM
[32, 33]. Optical feature extraction from the input images is done
with the initial several convolutional layers, whose output
becomes the input of the subsequent LSTM layers. LSTM layers
treats the extracted features as MTS, learn the inherent temporal
dependency, and eventually map them to quality metrics. This
model design provides a strategy for applying LSTM on imaging
data—an MTS extraction method can convert images to the input
type for LSTM.

Inspired by the potentials of LSTM in learning from spatial-
temporal images, this study attempts MTS extraction from in-
situ thermal videos and training Stacked LSTM for RSW weld
quality prediction. As an experimental study for building the
bridge between thermal video and LSTM, this work lies the
foundation for more advanced research along this direction.

2. METHOD

This section elaborates the method development. It first
describes the characteristics and special properties of the
motivating data type, in-situ thermal videos from RSW (Section
3.1). Then, it proceeds to MTS processing with MARS (Section
3.2), followed by model details of Stacked LSTM (Section 3.3).

3.1 In-Situ Thermal Videos from RSW

An inline data acquisition system was developed for a lab
application of RSW for Boron steel [34]. A high-speed IR camera
(100fps) was mounted above the metal sheets to be welded and
near the electrodes. The camera started recording when the RSW
process of one nugget began and continued until the nugget was
completed. There are separate datasets for two different
manufacturing modes: (i) RSW of 2 no-coat Boron steel sheets,
Imm thickness for each; (ii)) RSW of 3 Al-coated Boron steel
sheets, 1 mm thickness for the top and bottom sheets and 2mm
thickness for the middle one. A thermal video in (i) consists of
600~602 frames and one in (ii) consists of 500~504 frames. Each
frame (in either dataset) is a grayscale thermal image of size
61 x 81. Depending on the recording time, the pixel values in
the image may have different ranges. At the beginning of a video,
the nugget is not well formulated yet, so the pixel values in early
frames tend to be small, e.g., all below 20 (for a grayscale color
range of [0, 255], from light to dark); for frames captured after
the nugget has fully formulated and stabilized, the pixel values
are large and typically range in [20, 100]. The generic temporal
changes of a weld nugget, as reflected in these videos, is that the
nugget fully formulates at certain timestamp (frame) and then
remains stable thereafter.

Dataset (i) has 25 raw videos and dataset (ii) has 22. For each
video, there is a set of quality metrics obtained from offline,
destructive testing, i.e., [nugget thickness, minimum diameter,
maximum diameter]. TABLE 1 shows the quality metrics for
selected videos, where “Dmin” is minimal diameter and “Dmax”
is maximal diameter, both measured for the same nugget. Each
row in TABLE 1 is for a nugget, and equivalently, a video. All
the frames in a video have the same values of quality metrics.

TABLE 1. OFFLINE MEASUREMENTS FOR SELECTED VIDEOS
IN DATASET (i). THICKNESS AND DIAMETER ARE IN
MILLIMETER (mm).

Video Thickness (mm) Dmin (mm) Dmax (mm)
1 1.899 3.135 3.311
2 1.905 3.135 3.289
3 1.871 4.923 4.923
4 1.875 4.875 4.945
5 1.861 5.740 5.762

3.2 MTS Processing with MARS

With the observation of nugget geometry, as well as the
domain knowledge from destructive RSW testing [34], there are
several critical locations in a weld nugget that are worth
particular attention, e.g., nugget center and the boundary
locations contouring the nugget size shown in FIGURE 4(a).
The temporal evolution of these critical locations can largely
reflect the geometric changes of nugget during the formulation
process, which further reveals anomalies in nugget size and
thickness. With the consideration of data processing burden, it is
of interest to extract the pixel values for these critical locations
as the input data for data-driven quality prediction, instead of
using the entire video. The extracted pixels would form an MTS
of 5 attributes, which is demonstrated in FIGURE 4(b).
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the entire video
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FIGURE 4. MTS EXTRACTION: (a) CRITICAL LOCATIONS IN A
SINGLE FRAME, AND (b) MTS EXTRACTION FROM THE ENTIRE
VIDEO.

3.2.1 MTS extraction

The MTS extraction is as follows. Fix the coordinates, or
row and column index (r,c¢), of the five critical locations in an
image. For the data described in Section 3.1, they are (1) (30,
40), (2) (30, 20), (3) (30, 60), (4) (15, 40), and (5) (45, 40). Then,
extract the pixel values for these coordinates from each frame of
a video. The extracted values from a single frame is a vector of
five elements, i.e., y € R®. Combining all the extracted vectors
from a video, an MTS of 5 columns (D) is obtained, D =
[¥1,¥2, .., ¥n], each timestamp corresponds to one of the n
frames in a video. Such MTS extraction from fixed coordinates
works for the RSW data here because the nugget position in
subsequent frames of a video did not change due to the fixed
camera above the nugget. There was neither obvious recording
error that caused position shift of the nugget across frames.
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3.2.2 MTS processing

Now, before using the extracted MTS to train a data-driven
quality prediction model, preliminary processing is necessary to
remove signals corresponding to early frames. As seen in
FIGURE 2, early frames in a video do not contain a fully
formulated weld nugget because the electrodes have not been
lifted away from the metal sheets. In the visualization of
extracted MTS from a video in dataset (i), as shown in FIGURE
5(al-d1), abrupt shift of pixel values is observed at a particular
timestamp, which is because the electrodes are lifted, and a fully
formulated but not-yet-stable nugget appears in the focal area of
the camera. According to the domain knowledge, properties of a
fully formulated nugget are the evidence for weld quality. An
incomplete nugget is not quite informative to support the quality
prediction, so signals related to the early frames in a video should
be discarded.

Removing the uninformative signals from an extracted
MTS, in this situation, is equivalent to detecting the change-point
[35] in it. As revealed in FIGURE 5(al-d1), a single, abrupt
change-point split the early signals with the later ones associated
with a stabilized nugget. For such abrupt-change-detection
problem, MARS is a suitable method to use. Introduced in
Friedman [8], MARS was designed to handle the underlying

relationship in data sequence that involves interactions in at most
a few variables. It models the data, D, as following:

¥=F() = XN anBa () @)

where x = 1,2, ...,n is the timestamp or index of frames, ¥y is
the model-fitted value of y, a,, € R® is the vector of
coefficients, and B,, is the basis function that takes the general
form of an indicator, B, (x) = I{x € R,,}, with {R,,}}!being
subregions representing the partitions of D [8]. Multiple basis
functions can be (linearly) combined to form an underlying
relationship piecewise. Commonly, the basis is written as Hinge
functions in the form B,,,(x) = max(0,x — c¢,,), where c,,, isa
knot at the partitioning position of D. This basis function is
adopted here, leading to:

¥ =f(x) = Zh-1 ammax(0,x - ¢,) @

The identification of ¢, can be achieved by MARS
algorithm [8]. In model fitting, MARS algorithm uses stepwise
(forward/backward) variable selection to find knots of data
sequence. In an iteration of the algorithm, the model in Eq. (2) is
fitted to the data, which reveals the knots for the iteration, and
the squared error loss (SEL) is calculated. In subsequent
iterations, more knots can be added, or certain existing knots can
be pruned, to reduce the SEL. The algorithm continues until the
SEL does not change significantly across iterations, or the
allowed maximal number of knots is reached [8, 36].

The role of ¢,, can be related to change-points in data. The
use of Eq. (2) as a change-point model has made some success
[37]. In this study, the abrupt change in the MTS extracted from
a video can be treated as a sole knot and identified with MARS
algorithm. Signals after the abrupt change are preserved, which
are related to a fully formulated nugget. The partition point, or
identified knot, in MTS is marked by a solid vertical line in
FIGURE 5(al-d1). With only a single knot preserved as c*, the
MARS algorithm partitions the MTS right after the abrupt
change-point. To be prudent, all early signals up to c¢* are
removed, resulting in the processed MTS, D=
Ve 41, Ver 420 -0 Yul, iN FIGURE 5(a2-d2). The processed MTS
will be further truncated into MTS segments of a fixed length (L)
to become the input of Stacked LSTM. This will be elaborated
in subsection 3.3.2.

3.3 Quality Prediction with Stacked LSTM
This section specifies the technical details of LSTM and the
Stacked LSTM model used in quality prediction for RSW.

3.3.1LSTM

The distinguishing property of LSTM is the prevention of
“vanishing gradient”. The central feature to enable this is
constant error carousel (CEC). Denote the activation of a
noninput unit i at time t by y'(t) = g;(net;(t)), where g;
is a differentiable function, and net;(t) = }; wijyf(t —1) is

5 © 2022 by ASME



unit i’s current input with weight w;; connecting unit j to i.
The error signal of a nonoutput unit j is then

v(t) = gj (net;(£)) Tiwyyvit + 1) 3)

Consider asingle unit j with connection to itself. Its error signal
is therefore v;(t) = g; (netj(t)) v;(t + Dwj; . To enforce
constant error flow through j, it is required that

which implies
gj (netj(t)) = net;(t)/wj;, Vnet;(t) (5)

A further implication is that g; must be linear, and unit j’s
activation remains constant:

yit+1) =g, (net]’(t + 1)) =g; (Wjjyj(t)) =y/(t) (6)

which is fulfilled by using the identity function, g;(t) = t,Vt,
and setting w;; = 1. This design is the CEC in LSTM [9].

Instead of using naive CEC, LSTM incorporates gate units
to allow for constant error flow through special, self-connected
units. A multiplicative input gate unit is incorporated to protect
the memory stored in j from perturbation by irrelevant inputs;
a multiplicative output gate unit is added to protect other units
from perturbation by currently irrelevant memory stored in j.
The resulted unit is a memory cell [9], denoted by ¢;. FIGURE
6 demonstrates the memory cell topology. ¢; gets input from
nete, which is net;}.(t) =Y. ng,uy“(t — 1), a multiplicative
unit in; from the input gate (at the 2" “x” from left), and a
multiplicative unit out; from the output gate (at the 31d ex”
from left). Their activations are respectively:

youtj @) = goutj (netoutj(t)>

Input: MTS segments
L frames X 5 points
(rolling 1-frame ahead)

———

* Activation: “linear” for
LSTM, “RelU” for Dense

* Dropout rate: 0.25 for
LSTM and 0.5 for Dense

LSTM layer 2:

LSTM layer 1: 64 cells

128 cells

Sigmoid activation

function

Hyperbolic tangent
activation function

B Pointwise multiplication

LSTM layer 3:

Pointwise addition
Forget || Input Output
gate gate gate

FIGURE 6. MEMORY CELL TOPOLOGY IN LSTM, WITH FORGET
UNIT INCORPORATED.

YMI(E) = Giny (metin,©) ™

where netoutj(t) =Y. Woutj‘uy“(t —1) and netinj(t) =
Yu ij,uyu(t —1) [9]. In recent literature [38], a forget gate

can be added to the memory cell to allow memory reset (at the
1%t “x” from left), thus preventing the LSTM internal memory
from growing indefinitely and eventually break down. The cell
state, as the “memory” of the network, carries relevant
information throughout the processing of the sequence data.
Even information from earlier time steps can be passed to later
time steps, thus reducing the effects of “short-term memory”, or
equivalently the “vanishing gradient”. In model training,
information is added to or removed from the cell state via gates.
Popular computational tools for LSTM, e.g., “keras” library
written in Python [39], mostly incorporate a forget gate in the
generic LSTM layer.

3.3.2 Stacked LSTM for in-situ thermal videos

For the simplest model structure of LSTM, a single layer
consisting of multiple memory cells is used to map the input data
to output values, which are quality metrics in the context of data-
driven NDE. However, as mentioned in Section 2.1, adding
LSTM layers can better enhance the model skills than increasing
the number of memory cells in a single LSTM layer [13]. Deeper
model architecture, e.g., Stacked LSTM, has demonstrated its
good performance in use cases [24-26].

This work adopts Stacked LSTM to handle the processed
MTS D*. The input data for Stacked LSTM, and other LSTM
models, are sequence data for a time window of certain length,

Predicted Quality
Metrics

Nugget
thickness

Minimum
diameter

- | -

Maximum

LSTM layer 5: diameter

LSTM layer 4: 1 cell
16 cells

Dense layer:
3 elements

FIGURE 7. MODEL ARCHITECTURE OF THE STACKED LSTM USED IN THIS STUDY.
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or equivalently, MTS segments. It indicates that D* must be
further truncated into multiple segments of length L, i.e., d; =
Wecren Yierr - ¥Ye) t =1,2,...,|n/L]. Also, to preserve the
temporal order of signals, a window of length L should be
rolled forward to exhaust all the signals in D*. The step size of
rolling the window is typically set to a small number, e.g., 1,

which creates overlap between subsequent segments.

Unlike CNNSs, there are rarely benchmark architectures for
Stacked LSTM. The number of memory cells in each layer and
the number of LSTM layers are mainly tuned for the given
dataset. The model structure used here is illustrated in FIGURE
7. It consists of 5 LSTM layers, with the layers containing 128,
64, 32, 16, and 1 memory cell, from left to right. A batch-
normalization layer is appended after each LSTM layer to

performance are evaluated. Here, “performance” refers to the
convergence of model in training and the accuracy in prediction.
A performance comparison is done among two popular CNN
models, i.e., AlexNet [40] and VGG7 [41], and the proposed
Stacked LSTM. The computing efficiency is also compared.
These models are trained for both dataset (i) and (ii), separately.

Different lengths of segment, i.e., L € {5,10,15}, are used to

facilitate the training process, followed by a drop-out layer to

avoid overfitting. Finally, a dense layer maps the output from the
last drop-out layer to the quality metrics, i.e., [nugget thickness,

minimum diameter, maximum diameter].

4. CASE STUDY

generate the results for Stacked LSTM. The corresponding total
number of MTS segments, before any training/testing data split,
is given in TABLE 2. To have a fair comparison, the raw frames
used for training and testing all the models are identical, which
are the frames in a video after c¢*. All computation is done with
a Dell Inspiron 5593 PC, with Intel(R) Core(TM) i7-1065G7
CPU, clock speed 1.30GHz~1.50 GHz.

TABLE 2. TOTAL NUMBER OF MTS SEGMENTS. ROLLING
STEP SIZE IS 1.

Dataset L=5 L=10 L=15
(i) 8824 8712 8596
(i) 5596 5484 5376

This section demonstrates the proposed method on in-situ

thermal videos acquired from the RSW process of Boron steel,
as described in Section 3.1. Both training and prediction

4-fold Cross-Validation (CV) is adopted. The instances of a
dataset are randomly shuffled and assigned to four equally sized
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folds without replacement. In one run of implementation, one
fold is preserved as the testing data. For the rest three folds, 80%
MTS segments in them are used for model training and 20% for
training-phase model validation. For all the models, including
the benchmark CNNs, 50 epochs are completed to train the
model, without batching, using “ADAM?” optimizer [42]. Since
the quality metrics of interest, i.e., [thickness, Dmin, Dmax], are
numeric values, the model fitness in training and accuracy in
prediction can both be measured by mean squared error (MSE)
loss [43], which quantifies the discrepancy between model-fitted
values (or prediction) and the ground truth, and a smaller value
implies a better result.

4.1 Model Training

The training performance for dataset (i) and (ii) is
demonstrated in FIGURE 8 and 9, respectively. In each subplot,
the horizontal axis shows the index of training epoch, and the
vertical axis shows the MSE loss between the model-fitted
values and the true value of quality metrics. The (blue) curve
with dot markers represents training loss, and the (red) curve
with triangle markers represents training-phase validation loss.
Each column is associated with one model, and the 1st and 2nd
rows are for CV1 and CV3, respectively.

For both datasets, the tendency of MSE loss curves
regarding a specific model is similar. The proposed method,
Stacked LSTM, has converging training and validation loss for
all the L values (FIGURE 8(a-c) and FIGURE 9(a-c)). The
MSE loss after convergence is small, with (i) almost equals to 0
and (ii) approaches 0. Such well-converged MSE loss indicates
the effectiveness of model training — Stacked LSTM learned
sufficient information from the data to reduce the MSE loss over
training epoch, and the learning speed is decent, considering the
fast convergence within 50 epochs.

TABLE 3. AVERAGE COMPUTING TIME (IN SECOND) FOR
MODEL TRAINING AND TESTING WITH 4-FOLD CV.

Dataset Stacked LSTM CNNs
L=5 L=10 L =15 AlexNet VGG7
0] 238.25 325 393 15346.75 1329.5
(i) 132.25 182.25 259 10049.25 822.5

The training performance for benchmark CNNs are more
complicated. The two architectures adopted here are relatively
shallow, with VGG7 even shallower than AlexNet. The MSE
loss curves for AlexNet (FIGURE 8(d) and FIGURE 9(d))
converged to a fixed, nontrivial value and then stay there ever
since, implying that the training algorithm stuck to a value and
do not optimize properly. Though not very deep, AlexNet still
has considerate complexity (equivalently, too many parameters)
in model architecture, which is inappropriate for the RSW data.
The training performance of VGG7 (FIGURE 8(e) and
FIGURE 9(e)), on the other hand, is the best among five models.
The convergence speed is the fastest and the MSE loss upon

convergence is nearly 0. It indicates that VGG7 happens to have
an appropriate architecture for the given RSW data.
Nonetheless, whether the training performance of the
benchmark CNNs is good or not, they consume much longer
time for data processing and model training. TABLE 3 shows
the computing time (in second) for all the five models. The time
consumed by Stacked LSTM is generally way less than CNNSs.
This is critical for manufacturing practice. It is not worth the
effort to spend so much time training CNNs and finding the
suitable CNN architecture. Even with a shallow architecture like
VGG7, the model training can be rather time-consuming.
Stacked LSTM is a better option with its acceptable training
performance and the superior computing efficiency.

4.2 Quality Prediction

The prediction performance is also evaluated for Stacked
LSTM and benchmark CNNs. TABLE 4 shows the MSE loss
from prediction (model testing) for both dataset (i) and (ii). The
performance metrics, since 4-fold CV is adopted, are the
averaged value of minimum, mean, median, and maximum MSE
loss across CVs. Each cell shows the mean value of metric and
the standard deviation (std) in bracket.

TABLE 4. QUALITY PREDICTION PERFORMANCE: AVERAGE
(STANDARD DEVIATION) OF MSE LOSS ACROSS 4-FOLD CV.

Data MSE
set loss

Stacked LSTM CNNs

L=5 L=10 L=15 AlexNet VGG7

(i  Min 00006 00016 00006  7.8554  0.0000
(0.0002)  (0.0018)  (0.0004) ) )

Mean 03875 04090  0.6452  21.0404  0.0426
(0.0587)  (0.1084)  (0.2562)  (0.0474)  (0.0202)

Median 02623 02786  0.6817  23.1990  0.0230
(0.0319)  (0.0423)  (0.4067) ©) (0.0175)

Max 52534  7.5843 39532  32.3619  0.6078
(6.1644)  (9.3358)  (1.8785) ©) (0.1085)

(i)  Min 00023 00132 00221 84609  0.0006
(0.0001)  (0.0158)  (0.0115) ) (0.0003)

Mean  1.6407 20306 22591  33.7814  0.2394
(0.4186)  (0.3568)  (0.7992)  (0.5055)  (0.2220)

Median 08142 12296 14455 345470  0.0911
(0.1999)  (0.3498)  (0.2554)  (0.4327)  (0.0577)

Max  6.8040  9.0132 87249  67.0311  2.6778
(0.8234)  (1.6172)  (2.1158) (0) (2.6153)

Stacked LSTM models generally have small MSE loss, as
revealed by the low values of the metrics. For both datasets, L =
5 leads to the best result, but the discrepancy associated with
different L values is not salient. Dataset (i) has slightly lower
metric values, or equivalently better prediction performance,
than dataset (ii), but can be associated with larger std when L is
small.
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The prediction performance of benchmark CNNs are at the
extremes. AlexNet does a poor job in prediction — it tends to
predict the same results for all testing data, which is likely an
outcome of the trapped training performance. VGG7, again, does
the best job among the five models. It has extremely low values
for all the metrics, indicating a remarkable prediction accuracy.

4.3 Discussion

To summarize, Stacked LSTM has favorable performance
for both training and prediction. It consumes at least 3-time less
of the time for data processing and model training than
benchmark CNNs. Such superior computing efficiency and
relatively high prediction accuracy make it a better option in
practice when computational burden is a concern. CNNS, as a
contrast, generally require a long time to train. It is challenging
to find the suitable CNN architecture, especially when
experimenting with different architectures is so time-consuming.

For RSW applications, the proposed Stacked LSTM will
substantially facilitate real-time NDE. First, the low data
processing burden associated with Stacked LSTM will reduce
the potential cost of NDE. This is especially important in the
phase of model development (equivalently, model training),
because the requirement for computing capability is lower for
handling MTS data, as compared to videos. Second, the hurdle
of utilizing DL-based NDE may be mitigated by Stacked LSTM.
As revealed in Section 4, the raw training data contains only a
few videos, yet the mechanism of Stacked LSTM allows a
natural augmentation of the data (a few videos — thousands of
MTS segments). The prediction accuracy of Stacked LSTM
trained with such data, after only 50 epochs, has reached a high
level already. It implies the possibility of widening the adoption
of DL-based, real-time NDE in RSW and other welding
applications, especially when the training data is sparse.

5. CONCLUSION

In this study, a quality prediction method based on MARS
and Stacked LSTM was proposed for in-situ thermal videos from
RSW. By using Stacked LSTM to learn the temporal effect in
data as the evidence for quality prediction, the proposed method
has remarkably improved the computing efficiency of DL-based
NDE, at the expense of none or trivial decrease in prediction
accuracy. The data storage requirement is also lowered due to
the use of MTS instead of videos. This method can be readily
applied on spatial-temporal imaging data from other
manufacturing or engineering applications.

In future, this study can be extended along several
directions. First, the model parameters and architecture of the
LSTM model can be further tuned, preferably on larger datasets
of in-situ thermal videos, to improve the accuracy of quality
prediction. Second, the method can be customized for spatial-
temporal data with more complex structure, e.g., in-situ thermal
videos with multiple abrupt changes or unfixed object position
in image. Third, the current MTS extraction only considers a
handful of critical locations. It is of interest to have more
locations considered in an image, and meanwhile develop an

adaptive method to identify the critical locations in the object
based on the (training-stage) learning performance of DL
models.
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APPENDIX
Al. Acquisition of In-situ Videos

A high-speed camera (FLIR SC655) was positioned
stationary around 15-20cm away from the weld area with a
roughly 45 deg tilted angle. The camera captured the whole
welding process for about 3s including both heating and cooling
stages.

Triggering signal

WELDING
MACHINE

é);

-

Electric current

FIGURE Al. IN-SITU ACQUISITION OF VIDEOS FOR WELD
NUGGET.

A2. Acquisition of Measurements

Each weld was cross-sectioned to reveal the weld nugget for
measurement. Each tested weld is associated with three
measurements, i.e., “Thickness”, “Dmin”, and “Dmax” (all in
mm). “Thickness” is the measurement in the weld center using
micrometer. “Dmin” and “Dmax” are the minimum and
maximum diameter of the nugget measured nondestructively by
ultrasonic C-scan method. A weld nugget is not standard round
so the diameter varied slightly even for the same one, thus
“Dmin” and “Dmax”. Chen et al. [44] innovated the procedure
that was used here to acquire the measurement data.

This paper focuses on the “nugget size” (i.e., “Dmin” and
“Dmax”) and “thickness”, since they are the most important
weld attributes related to the physical appearance as well as
defects of welds. Defects can be lack-of-fusion, cracks, porosity,
etc. Among all weld attributes, nugget size and thickness are
closely related to the mechanical performance of the weld [45].
They are effective indicators of the weld quality. This study does
not relate all defects to nugget size and thickness but focus on
DL-based NDE of these weld attributes. By enabling real-time
NDE of nugget size and thickness with the proposed method, this
study strived to facilitate the efficiency improvement and cost
reduction in RSW quality control.

A3. Full Records of Measurements

TABLE Al. FULL MEASUREMENT RECORDS: “THICKNESS”,
“DMIN”, AND “DMAX” (ALL IN mm). CURRENT INTENSITY IS
THE EXPERIMENTAL PARAMETER, WHOSE LEVEL CHANGED
AMONG: “COLD”, “MIN”, “MID”, “MAX250”, “EXP".

Data (i) (ii)

Sample | Current intensity Thickness Dmin Dmax | Current intensity Thickness Dmin Dmax|
1 cold 1.899 3.1 3311 cold 3.99 23 23
2 cold 1.905 3.1 3.289 cold 3.939 21 24
3 cold 1.905 3.1 3.201 cold 3.997 21 23
4 cold 1.903 3.2 3.245 cold 4.008 26 26
5 cold 1.917 3.2 3422 cold 4.012 21 23
6 min 1.871 49 4923 min 3.837 56 59
7 min 1.875 49 4.945 min 3.904 57 59
8 min 1.869 49 4.879 min 3.855 59 6.1
9 min 1.871 49 4.923 min 3.87 6.1 6.2
10 min 1.863 49 4923 mid 3.794 66 6.7
11 mid 1.861 5.7 5.762 mid 3.845 6.5 6.6
12 mid 1.863 5.7 5.784 mid 3.815 6.6 6.9
13 mid 1.857 5.7 5.828 mid 3.879 6.7 6.9
14 mid 1.853 5.7 5.784 max250 3.817 74 7.6
15 mid 1.859 NA NA max251 3.81 72 7.4
16 max250 1.811 6.3 6.424 max252 3.804 73 76
17 max251 1.787 6.3 6.446 max253 3.814 72 76
18 max252 1.819 6.3 6.623 max254 3.817 71 7.2
19 max253 1.806 6.4 6.534 exp 3.545 88 94
20 max254 1.805 6.4 6.446 exp 3.556 9 9.6
21 exp 1.651 6.5 6.578 exp 3.546 89 938
22 exp 1.681 6.6 6.755 exp 3.531 99 095
23 exp 1.682 6.9 6.865
24 exp 1.686 6.8 6.843
25 exp 1.646 6.6 6.623

In the design of experiments, the parameter “current
intensity”, which controlled the intensity of weld currents, was
purposely varied to produce different weld nugget size and
thickness. “cold” represented the situation when the nugget size
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was below the requirement. “min”, “mid” and “max250” created
three situations when the nugget size varied but stayed within the
acceptable range. “exp” represented overly strong weld current
that produced material expulsion during welding.

Each weld investigated was associated with an in-situ
thermal video of the nugget formulation and a record of
measurements. Either the video or the measurement record was
saved to file that was named with experiment parameter and
sample ID. In data processing, the in-situ video and the
measurements were matched based on experiment parameter and
sample ID to ensure correct analysis. For the weld whose
measurement record was incomplete, i.e., with “NA” values, the
sample was removed from the analysis.
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