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ABSTRACT 
With the advances of sensing technology, in-situ infrared thermal 

videos can be collected from Resistance Spot Welding (RSW) processes. 

Each video records the formulation process of a weld nugget. The 

nugget evolution creates a “temporal effect” across the frames, which 

can be leveraged for real-time, nondestructive evaluation (NDE) of the 

weld quality. Currently, quality prediction with imaging data mainly 

focuses on optical feature extraction with Convolutional Neural 

Network (CNN) but does not make the most of such temporal effect. In 

this study, pixels corresponding to critical locations on the weld nugget 

surface are extracted from a video to form multivariate time series 

(MTS). Multivariate Adaptive Regression Splines (MARS) is used in 

MTS processing to remove noisy signals related to uninformative 

frames. A Stacked Long Short-Term Memory (LSTM) model is 

developed to learn from the processed MTS and then predicts weld 

nugget size and thickness in real-time NDE. Results from a case study 

on RSW of Boron steel demonstrates the improvement in prediction 

accuracy and computational time with the proposed method, as 

compared to CNN-based weld quality prediction.   

Keywords: long short-term memory, resistance spot 

welding, infrared thermal video, temporal effect, quality 

prediction 

NOMENCLATURE 
𝒚; 𝒚1, … , 𝒚𝑛 Vector of pixels at the critical locations in a 

frame (or subsequent frames of a video) 

𝑥 Timestamps or index of frames 

𝑫  MTS extracted from a video 

𝒚̂ = 𝑓(𝑥)       Fitted value of 𝒚 with MARS   

𝒂1, … , 𝒂𝑀  Vectors of coefficients in MARS 

𝐵1, … , 𝐵𝑀 Basis functions in MARS  

𝑅1, … , 𝑅𝑀  Subregions representing the partitions of 𝑫 

𝑐1, … , 𝑐𝑀 Knots at the partitioning position of 𝑫 

𝑐∗  Knot for the most abrupt change in 𝑫 

𝑫∗   MTS after 𝑐∗ 

𝐿  Length of MTS segments 

𝒅𝑡  MTS segments at time 𝑡 (or the 𝑡th pixel   

vector) in 𝑫∗ 

𝑤𝑖𝑗   Weight connecting unit 𝑗 to 𝑖 in LSTM  

𝑔𝑖   Differentiable function for activation in LSTM 

𝑦𝑖(𝑡) Activation of a noninput unit 𝑖 at time 𝑡 in 

LSTM  

𝑛𝑒𝑡𝑖(𝑡)  Unit 𝑖’s current input in LSTM 

𝑣𝑗(𝑡)  Error signal of a nonoutput unit 𝑗 

𝜉𝑗  Memory cell at unit 𝑗 in LSTM 

 

1. INTRODUCTION 

Resistance spot welding (RSW) is a popular technique for 

joining lightweight materials in automotive industry. Metal 

sheets are clamped together and placed between two water-

cooled electrodes, as shown in FIGURE 1(a), which will 

concentrate electric currents and add pressure on the weld 

position. The resistance of metal against electric currents will 

generate heat and create a molten spot at the faying surface. The 

electrodes will be lifted after certain holding time, leaving the 

weld spot to solidify. Eventually, a nugget will be formulated at 

the weld spot [1]. 

RSW is economical, efficient, and operationally simple [1], 

which makes it favorable for joining lightweight steel and 

aluminum alloys in large-scale production [2]. Nonetheless, 

defects can be caused by unstable electric currents, 

insufficient/extra holding time, and other industrial uncertainties. 

FIGURE 1(b) shows the major defects in RSW, including 

insufficient/no fusion, porosity, and cracks. They are mainly 

reflected as abnormal nugget size and thickness. To ensure 

desirable mechanical properties of the weld, nondestructive 
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evaluation (NDE) of nugget size and thickness, preferably done 

in real time, is of keen interest in industry. 

In recent years, practitioners began to leverage inline sensing 

technology to capture in-situ data from RSW processes. Image 

sensors, e.g., high-speed infrared (IR) camera, can be mounted 

above or near the metal sheets and collect thermal video of the 

nugget during the welding process. An in-situ thermal video 

records the entire formulation of a nugget. The pixels represent 

the IR radiation from the nugget surface. Each individual frame 

(thermal image) reflects the nugget surface profile at a particular 

timestamp (FIGURE 2(a)), and consecutive frames reveal the 

evolution of nugget across time (FIGURE 2(b)). With a high 

speed of image recording, the nugget information is well 

preserved. In-situ thermal video therefore becomes a vital 

information source for real-time NDE in RSW.  

When it comes to quality prediction with imaging data, the 

prevalent methods are extracting optical features from images as 

the evidence of quality and then mapping the extracted features 

to quality metrics. Deep learning models designed for optical 

feature learning, e.g., Convolutional Neural Network (CNN), are 

widely adopted by these methods [3-6]. Despite the remarkable 

prediction accuracy, this methodology has two major drawbacks. 

First, working with high-dimensional data like image/video 

increases the data processing burden, which elevates the data 

handling cost and compromises the timeliness of NDE. Second, 

training CNNs and related DL models is computationally costly 

and time-consuming due to the image convolution [7]. An 

intriguing question to be asked, therefore, is whether an 

alternative method can be developed that alleviates the burden 

from data processing and model training? This study answers 

“YES” to this question.  

Due to the reflection of nugget surface profile and nugget 

evolution across time, an in-situ thermal video from RSW 

contains both spatial and temporal characteristics in nugget 

formulation. CNN-based methods explore spatial features of 

nugget surface for quality prediction but do not fully leverage the 

temporal changes. This study proposes an alternative quality 

prediction method that explores the temporal effect in in-situ 

thermal videos to predict nugget size and thickness in RSW. 

FIGURE 3 demonstrates the flow of method. In each video, 

pixels corresponding to the critical locations of weld nugget are 

extracted from the frames to form multivariate time series 

(MTS). Multivariate Adaptive Regression Splines (MARS) [8] is 

used to detect salient changes in the MTS, which correspond to 

the splitting points of informative frames containing stabilized 

nugget and those uninformative frames at the initial stage of 

nugget formulation. Uninformative signals are removed from the 

MTS. A Stacked Long Short-Term Memory (LSTM) model is 

trained with the filtered MTS, which enables real-time NDE of 

nugget size and thickness.  

The proposed method substitutes the temporal 

characteristics for optical features from in-situ thermal videos as 

the evidence of weld quality. By doing so, a thermal video, which 

is a 3-dimensional tensor of pixels, is relaces by 2-dimensional 

MTS, which requires much less data storage and processing time. 

LSTM, as an advanced version of recurrent neural network 

 

FIGURE 2. (a) A SINGLE FRAME FROM AN IN-SITU THERMAL 

VIDEO AND (b) CONSTIUTION OF A VIDEO. 

 
FIGURE 1. (a) GENERIC RSW PROCESS AND (b) MAJOR PART DEFECTS [4]. 
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(RNN), learns from MTS instead of images. The training time is 

substantially reduced due to lower input dimension and 

avoidance of optical feature extraction. A case study on an RSW 

application of Boron steel demonstrates that this method leads to 

a significant decrease in computing time while maintains the 

prediction accuracy in NDE at a favorable level, as compared 

with CNN-based methods. 

The rest of this paper is organized as follows. Section 2 will 

review state-of-the-art for LSTM models and their use in 

manufacturing. Section 3 will elaborate on technical details of 

the proposed method. Section 4 will present a case study based 

on the in-situ thermal videos from an RSW application of Boron 

steel. Section 5 will conclude the paper and highlight future 

directions. 
 
2. LITERATURE REVIEW 

This section reviews LSTM and the model variants and 

discuss their current uses and potentials for NDE in 

manufacturing. 

 

2.1 LSTM Models 

First introduced in Hochreiter and Schmidhuber [9], LSTM 

was developed to handle the “vanishing gradient problem” in 

model training of conventional RNNs. When using gradient-

based algorithms, e.g., stochastic gradient decent [10], to update 

the weights in conventional RNNs proportionally to the partial 

derivative of the error function per training iteration (epoch), the 

gradient can be vanishing and prevent the weights from updating 

[11]. LSTM incorporates memory cells and gate units in the 

RNN architecture to enforce constant error flow through 

constant error carousels within special units [9], therefore 

avoiding the “vanishing gradient problem”. Due to this design, 

LSTM has a significantly improved learning capability for tasks 

that span a long period, e.g., thousands or even millions of 

discrete time steps. It is demonstrated for better model training 

performance and computational efficiency compared with 

conventional RNNs [12].  

The simplest LSTM model consists of one LSTM layer. 

Recently, Deep LSTM, or Stacked LSTM [13, 14], has 

increasing presence in literature. Stacked LSTM models consist 

of multiple LSTM layers, with each layer adding one level of 

abstraction of the input at a different time scale [15]. Such model 

architecture was initially motivated by the need of representing 

flexible use of long range context in speech recognition [13, 14]. 

It turned out that the model depth could be a better compensation 

to the LSTM model skill than the number of memory cells in a 

given layer [13]. Consequently, Stacked LSTM became a most 

popular model for learning from sequence data or time series. Its 

applications have been extended to more subjects other than 

speech recognition and natural language processing [16]. An 

emerging field of use is manufacturing. 

 
2.2 LSTM in Manufacturing 

Many sensor data from manufacturing applications contain 

temporal changes that can be learned effectively with LSTM. For 

example, multi-sensory MTS of a functional component, e.g., 

lithium battery, bearing, reflect the degradation over time, which 

can be learned by LSTM models to predict the remaining useful 

life (RUL) [17-23]. With the aid of LSTM, data-driven RUL 

prediction has become a popular alternative to the traditional 

reliability analysis of manufacturing systems. 

LSTM is also leveraged for tool condition monitoring and 

quality prediction. The rationale for using LSTM here is the 

temporal dependency of tool wear or quality downgrade. Multi-

sensory MTS is, again, the dominant data type in this subject. 

Stacked LSTM [24-26], Bi-directional LSTM [27, 28], or 

customized LSTM models (e.g., AdaBoost-LSTM [29], LSTM-

FFNN [30]) are developed to ensure a desirable prediction 

accuracy. The deeper and more complex model structures 

undoubtedly showed huge potentials for manufacturing quality 

prediction.    

Recently, with the wide adoption of image sensors, imaging 

data are commonly acquired from manufacturing systems, e.g., 

in-situ thermal images from laser metal deposition [31]. These 

data reflect both the spatial characteristics and temporal changes 

of a part/product. A plausible thought is therefore applying 

LSTM to such imaging data to explore the temporal effect for 

quality prediction. The challenge, though, is that LSTM models 

 

FIGURE 3. FLOWCHART OF THE PROPOSED METHOD. 

https://en.wikipedia.org/wiki/Partial_derivative
https://en.wikipedia.org/wiki/Partial_derivative
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intake sequence data or time series but not images. A specially 

designed LSTM model architecture emerged, i.e., CNN-LSTM 

[32, 33]. Optical feature extraction from the input images is done 

with the initial several convolutional layers, whose output 

becomes the input of the subsequent LSTM layers. LSTM layers 

treats the extracted features as MTS, learn the inherent temporal 

dependency, and eventually map them to quality metrics. This 

model design provides a strategy for applying LSTM on imaging 

data – an MTS extraction method can convert images to the input 

type for LSTM. 

Inspired by the potentials of LSTM in learning from spatial-

temporal images, this study attempts MTS extraction from in-

situ thermal videos and training Stacked LSTM for RSW weld 

quality prediction. As an experimental study for building the 

bridge between thermal video and LSTM, this work lies the 

foundation for more advanced research along this direction. 

 

2. METHOD 

This section elaborates the method development. It first 

describes the characteristics and special properties of the 

motivating data type, in-situ thermal videos from RSW (Section 

3.1). Then, it proceeds to MTS processing with MARS (Section 

3.2), followed by model details of Stacked LSTM (Section 3.3). 

 
3.1 In-Situ Thermal Videos from RSW 

An inline data acquisition system was developed for a lab 

application of RSW for Boron steel [34]. A high-speed IR camera 

(100fps) was mounted above the metal sheets to be welded and 

near the electrodes. The camera started recording when the RSW 

process of one nugget began and continued until the nugget was 

completed. There are separate datasets for two different 

manufacturing modes: (i) RSW of 2 no-coat Boron steel sheets, 

1mm thickness for each; (ii) RSW of 3 Al-coated Boron steel 

sheets, 1 mm thickness for the top and bottom sheets and 2mm 

thickness for the middle one. A thermal video in (i) consists of 

600~602 frames and one in (ii) consists of 500~504 frames. Each 

frame (in either dataset) is a grayscale thermal image of size 

61 × 81. Depending on the recording time, the pixel values in 

the image may have different ranges. At the beginning of a video, 

the nugget is not well formulated yet, so the pixel values in early 

frames tend to be small, e.g., all below 20 (for a grayscale color 

range of [0, 255], from light to dark); for frames captured after 

the nugget has fully formulated and stabilized, the pixel values 

are large and typically range in [20, 100]. The generic temporal 

changes of a weld nugget, as reflected in these videos, is that the 

nugget fully formulates at certain timestamp (frame) and then 

remains stable thereafter.  

Dataset (i) has 25 raw videos and dataset (ii) has 22. For each 

video, there is a set of quality metrics obtained from offline, 

destructive testing, i.e., [nugget thickness, minimum diameter, 

maximum diameter]. TABLE 1 shows the quality metrics for 

selected videos, where “Dmin” is minimal diameter and “Dmax” 

is maximal diameter, both measured for the same nugget. Each 

row in TABLE 1 is for a nugget, and equivalently, a video. All 

the frames in a video have the same values of quality metrics. 

TABLE 1. OFFLINE MEASUREMENTS FOR SELECTED VIDEOS 
IN DATASET (i). THICKNESS AND DIAMETER ARE IN 
MILLIMETER (mm). 

Video Thickness (mm) Dmin (mm) Dmax (mm) 

1 1.899 3.135 3.311 
2 1.905 3.135 3.289 
3 1.871 4.923 4.923 
4 1.875 4.875 4.945 
5 1.861 5.740 5.762 

 
3.2 MTS Processing with MARS 

With the observation of nugget geometry, as well as the 

domain knowledge from destructive RSW testing [34], there are 

several critical locations in a weld nugget that are worth 

particular attention, e.g., nugget center and the boundary 

locations contouring the nugget size shown in FIGURE 4(a). 

The temporal evolution of these critical locations can largely 

reflect the geometric changes of nugget during the formulation 

process, which further reveals anomalies in nugget size and 

thickness. With the consideration of data processing burden, it is 

of interest to extract the pixel values for these critical locations 

as the input data for data-driven quality prediction, instead of 

using the entire video. The extracted pixels would form an MTS 

of 5 attributes, which is demonstrated in FIGURE 4(b). 

3.2.1 MTS extraction 

The MTS extraction is as follows. Fix the coordinates, or 

row and column index (𝑟, 𝑐), of the five critical locations in an 

image. For the data described in Section 3.1, they are (1) (30, 

40), (2) (30, 20), (3) (30, 60), (4) (15, 40), and (5) (45, 40). Then, 

extract the pixel values for these coordinates from each frame of 

a video. The extracted values from a single frame is a vector of 

five elements, i.e., 𝒚 ∈ ℝ5. Combining all the extracted vectors 

from a video, an MTS of 5 columns ( 𝑫 ) is obtained, 𝑫 =
[𝒚1, 𝒚2, … , 𝒚𝑛] , each timestamp corresponds to one of the 𝑛 

frames in a video. Such MTS extraction from fixed coordinates 

works for the RSW data here because the nugget position in 

subsequent frames of a video did not change due to the fixed 

camera above the nugget. There was neither obvious recording 

error that caused position shift of the nugget across frames.  

 

FIGURE 4. MTS EXTRACTION: (a) CRITICAL LOCATIONS IN A 

SINGLE FRAME, AND (b) MTS EXTRACTION FROM THE ENTIRE 

VIDEO. 
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3.2.2 MTS processing 

Now, before using the extracted MTS to train a data-driven 

quality prediction model, preliminary processing is necessary to 

remove signals corresponding to early frames. As seen in 

FIGURE 2, early frames in a video do not contain a fully 

formulated weld nugget because the electrodes have not been 

lifted away from the metal sheets. In the visualization of 

extracted MTS from a video in dataset (i), as shown in FIGURE 

5(a1-d1), abrupt shift of pixel values is observed at a particular 

timestamp, which is because the electrodes are lifted, and a fully 

formulated but not-yet-stable nugget appears in the focal area of 

the camera. According to the domain knowledge, properties of a 

fully formulated nugget are the evidence for weld quality. An 

incomplete nugget is not quite informative to support the quality 

prediction, so signals related to the early frames in a video should 

be discarded. 

Removing the uninformative signals from an extracted 

MTS, in this situation, is equivalent to detecting the change-point 

[35] in it. As revealed in FIGURE 5(a1-d1), a single, abrupt 

change-point split the early signals with the later ones associated 

with a stabilized nugget. For such abrupt-change-detection 

problem, MARS is a suitable method to use. Introduced in 

Friedman [8], MARS was designed to handle the underlying 

relationship in data sequence that involves interactions in at most 

a few variables. It models the data, 𝑫, as following: 

 

𝒚̂ = 𝑓(𝑥) = ∑ 𝒂𝑚𝐵𝑚(𝑥)𝑀
𝑚=1                          (1)  

 

where 𝑥 = 1, 2, … , 𝑛 is the timestamp or index of frames, 𝒚̂ is 

the model-fitted value of 𝒚 , 𝒂𝑚 ∈ ℝ5  is the vector of 

coefficients, and 𝐵𝑚 is the basis function that takes the general 

form of an indicator, 𝐵𝑚(𝑥) = 𝕀{𝑥 ∈ 𝑅𝑚}, with {𝑅𝑚}1
𝑀 being 

subregions representing the partitions of 𝑫 [8]. Multiple basis 

functions can be (linearly) combined to form an underlying 

relationship piecewise. Commonly, the basis is written as Hinge 

functions in the form 𝐵𝑚(𝑥) = max(0, 𝑥 − 𝑐𝑚), where 𝑐𝑚 is a 

knot at the partitioning position of 𝑫 . This basis function is 

adopted here, leading to: 

 

𝒚̂ = 𝑓(𝑥) = ∑ 𝒂𝑚 max(0, 𝑥 − 𝑐𝑚)𝑀
𝑚=1                  (2) 

 

The identification of 𝑐𝑚  can be achieved by MARS 

algorithm [8]. In model fitting, MARS algorithm uses stepwise 

(forward/backward) variable selection to find knots of data 

sequence. In an iteration of the algorithm, the model in Eq. (2) is 

fitted to the data, which reveals the knots for the iteration, and 

the squared error loss (SEL) is calculated. In subsequent 

iterations, more knots can be added, or certain existing knots can 

be pruned, to reduce the SEL. The algorithm continues until the 

SEL does not change significantly across iterations, or the 

allowed maximal number of knots is reached [8, 36].  

The role of 𝑐𝑚 can be related to change-points in data. The 

use of Eq. (2) as a change-point model has made some success 

[37]. In this study, the abrupt change in the MTS extracted from 

a video can be treated as a sole knot and identified with MARS 

algorithm. Signals after the abrupt change are preserved, which 

are related to a fully formulated nugget. The partition point, or 

identified knot, in MTS is marked by a solid vertical line in 

FIGURE 5(a1-d1). With only a single knot preserved as 𝑐∗, the 

MARS algorithm partitions the MTS right after the abrupt 

change-point. To be prudent, all early signals up to 𝑐∗  are 

removed, resulting in the processed MTS, 𝑫∗ =
[𝒚𝑐∗+1, 𝒚𝑐∗+2, … , 𝒚𝑛], in FIGURE 5(a2-d2). The processed MTS 

will be further truncated into MTS segments of a fixed length (𝐿) 

to become the input of Stacked LSTM. This will be elaborated 

in subsection 3.3.2. 

 
3.3 Quality Prediction with Stacked LSTM 

This section specifies the technical details of LSTM and the 

Stacked LSTM model used in quality prediction for RSW. 

3.3.1 LSTM  

The distinguishing property of LSTM is the prevention of 

“vanishing gradient”. The central feature to enable this is 

constant error carousel (CEC). Denote the activation of a 

noninput unit 𝑖 at time 𝑡 by 𝑦𝑖(𝑡) = 𝑔𝑖(𝑛𝑒𝑡𝑖(𝑡)), where 𝑔𝑖 

is a differentiable function, and 𝑛𝑒𝑡𝑖(𝑡) = ∑ 𝑤𝑖𝑗𝑦𝑗(𝑡 − 1)𝑗  is 

 

 

FIGURE 5. CHANGE-POINTS IN MTS AND MTS TRUNCTED AT 

THE CHANGE-POINT. LEFT COLUMN: CHANGE-POINT ( 𝑐∗   

DETECTED BY MARS IN MTS. RIGHT COLUMN: MTS AFTER 

PROCESSING. (a) VIDEO 1, DATASET (i); (b) VIDEO 6, DATASET (i); 

(c) VIDEO 1, DATASET (ii); (d) VIDEO 6, DATASET (ii). EACH 

COLOR AND LINE STYLE REPRESENTS ONE CIRTICIAL 

LOCATION IN IMAGE. 
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unit 𝑖’s current input with weight 𝑤𝑖𝑗  connecting unit 𝑗 to 𝑖. 

The error signal of a nonoutput unit 𝑗 is then  

 

𝑣𝑗(𝑡) = 𝑔𝑗
′ (𝑛𝑒𝑡𝑗(𝑡)) ∑ 𝑤𝑖𝑗𝑣𝑖(𝑡 + 1)𝑖                   (3)  

 

Consider a single unit 𝑗 with connection to itself. Its error signal 

is therefore 𝑣𝑗(𝑡) = 𝑔𝑗
′ (𝑛𝑒𝑡𝑗(𝑡)) 𝑣𝑖(𝑡 + 1)𝑤𝑗𝑗 . To enforce 

constant error flow through 𝑗, it is required that 

 

𝑔𝑗
′ (𝑛𝑒𝑡𝑗(𝑡)) 𝑤𝑗𝑗 = 1                               (4) 

 

which implies  

 

𝑔𝑗 (𝑛𝑒𝑡𝑗(𝑡)) = 𝑛𝑒𝑡𝑗(𝑡) 𝑤𝑗𝑗⁄ , ∀𝑛𝑒𝑡𝑗(𝑡)                 (5) 

 

A further implication is that 𝑔𝑗  must be linear, and unit 𝑗’s 

activation remains constant: 

 

𝑦𝑗(𝑡 + 1) = 𝑔𝑗 (𝑛𝑒𝑡𝑗(𝑡 + 1)) = 𝑔𝑗 (𝑤𝑗𝑗𝑦𝑗(𝑡)) = 𝑦𝑗(𝑡)   (6) 

 

which is fulfilled by using the identity function, 𝑔𝑗(𝑡) = 𝑡, ∀𝑡, 

and setting 𝑤𝑗𝑗 = 1. This design is the CEC in LSTM [9]. 

Instead of using naïve CEC, LSTM incorporates gate units 

to allow for constant error flow through special, self-connected 

units. A multiplicative input gate unit is incorporated to protect 

the memory stored in 𝑗 from perturbation by irrelevant inputs; 

a multiplicative output gate unit is added to protect other units 

from perturbation by currently irrelevant memory stored in 𝑗. 

The resulted unit is a memory cell [9], denoted by 𝜉𝑗. FIGURE 

6 demonstrates the memory cell topology. 𝜉𝑗 gets input from 

𝑛𝑒𝑡𝜉𝑗
, which is 𝑛𝑒𝑡𝜉𝑗

(𝑡) = ∑ 𝑤𝜉𝑗,𝑢𝑦𝑢(𝑡 − 1)𝑢 , a multiplicative 

unit 𝑖𝑛𝑗  from the input gate (at the 2nd “x” from left), and a 

multiplicative unit 𝑜𝑢𝑡𝑗  from the output gate (at the 3rd “x” 

from left). Their activations are respectively: 

 

𝑦𝑜𝑢𝑡𝑗(𝑡) = 𝑔𝑜𝑢𝑡𝑗
(𝑛𝑒𝑡𝑜𝑢𝑡𝑗

(𝑡))  

𝑦𝑖𝑛𝑗(𝑡) = 𝑔𝑖𝑛𝑗
(𝑛𝑒𝑡𝑖𝑛𝑗

(𝑡))                           (7) 

 

where 𝑛𝑒𝑡𝑜𝑢𝑡𝑗
(𝑡) = ∑ 𝑤𝑜𝑢𝑡𝑗,𝑢𝑦𝑢(𝑡 − 1)𝑢  and 𝑛𝑒𝑡𝑖𝑛𝑗

(𝑡) =

∑ 𝑤𝑖𝑛𝑗,𝑢𝑦𝑢(𝑡 − 1)𝑢  [9]. In recent literature [38], a forget gate 

can be added to the memory cell to allow memory reset (at the 

1st “x” from left), thus preventing the LSTM internal memory 

from growing indefinitely and eventually break down. The cell 

state, as the “memory” of the network, carries relevant 

information throughout the processing of the sequence data. 

Even information from earlier time steps can be passed to later 

time steps, thus reducing the effects of “short-term memory”, or 

equivalently the “vanishing gradient”. In model training, 

information is added to or removed from the cell state via gates. 

Popular computational tools for LSTM, e.g., “keras” library 

written in Python [39], mostly incorporate a forget gate in the 

generic LSTM layer. 

3.3.2 Stacked LSTM for in-situ thermal videos 

For the simplest model structure of LSTM, a single layer 

consisting of multiple memory cells is used to map the input data 

to output values, which are quality metrics in the context of data-

driven NDE. However, as mentioned in Section 2.1, adding 

LSTM layers can better enhance the model skills than increasing 

the number of memory cells in a single LSTM layer [13]. Deeper 

model architecture, e.g., Stacked LSTM, has demonstrated its 

good performance in use cases [24-26].  

This work adopts Stacked LSTM to handle the processed 

MTS 𝑫∗. The input data for Stacked LSTM, and other LSTM 

models, are sequence data for a time window of certain length, 

 

FIGURE 6. MEMORY CELL TOPOLOGY IN LSTM, WITH FORGET 

UNIT INCORPORATED. 

 

FIGURE 7. MODEL ARCHITECTURE OF THE STACKED LSTM USED IN THIS STUDY. 
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or equivalently, MTS segments. It indicates that 𝑫∗  must be 

further truncated into multiple segments of length 𝐿, i.e., 𝒅𝑡 =
[𝒚𝑡−𝐿+1, 𝒚𝑡−𝐿 , … , 𝒚𝑡], 𝑡 = 1, 2, … , ⌊𝑛/𝐿⌋ . Also, to preserve the 

temporal order of signals, a window of length 𝐿  should be 

rolled forward to exhaust all the signals in 𝑫∗. The step size of 

rolling the window is typically set to a small number, e.g., 1, 

which creates overlap between subsequent segments.  

Unlike CNNs, there are rarely benchmark architectures for 

Stacked LSTM. The number of memory cells in each layer and 

the number of LSTM layers are mainly tuned for the given 

dataset. The model structure used here is illustrated in FIGURE 
7. It consists of 5 LSTM layers, with the layers containing 128, 

64, 32, 16, and 1 memory cell, from left to right. A batch-

normalization layer is appended after each LSTM layer to 

facilitate the training process, followed by a drop-out layer to 

avoid overfitting. Finally, a dense layer maps the output from the 

last drop-out layer to the quality metrics, i.e., [nugget thickness, 

minimum diameter, maximum diameter].  

 

4. CASE STUDY 
This section demonstrates the proposed method on in-situ 

thermal videos acquired from the RSW process of Boron steel, 

as described in Section 3.1. Both training and prediction 

performance are evaluated. Here, “performance” refers to the 

convergence of model in training and the accuracy in prediction. 

A performance comparison is done among two popular CNN 

models, i.e., AlexNet [40] and VGG7 [41], and the proposed 

Stacked LSTM. The computing efficiency is also compared. 

These models are trained for both dataset (i) and (ii), separately. 

Different lengths of segment, i.e., 𝐿 ∈ {5, 10, 15}, are used to 

generate the results for Stacked LSTM. The corresponding total 

number of MTS segments, before any training/testing data split, 

is given in TABLE 2. To have a fair comparison, the raw frames 

used for training and testing all the models are identical, which 

are the frames in a video after 𝑐∗. All computation is done with 

a Dell Inspiron 5593 PC, with Intel(R) Core(TM) i7-1065G7 

CPU, clock speed 1.30GHz~1.50 GHz. 

 
TABLE 2. TOTAL NUMBER OF MTS SEGMENTS. ROLLING 

STEP SIZE IS 1. 

Dataset 𝐿 = 5 𝐿 = 10 𝐿 = 15 

(i) 8824 8712 8596 
(ii) 5596 5484 5376 

 

4-fold Cross-Validation (CV) is adopted. The instances of a 

dataset are randomly shuffled and assigned to four equally sized 

 

FIGURE 8. TRAINING PERFORMANCE OF FIVE MODELS FOR DATASET (i). IN LEGEND, “TRAIN” FOR TRAINING LOSS, “VALID” 

FOR VALIDATION LOSS. 

 

FIGURE 9. TRAINING PERFORMANCE OF FIVE MODELS FOR DATASET (ii). IN LEGEND, “TRAIN” FOR TRAINING LOSS, “VALID” 

FOR VALIDATION LOSS. 
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folds without replacement. In one run of implementation, one 

fold is preserved as the testing data. For the rest three folds, 80% 

MTS segments in them are used for model training and 20% for 

training-phase model validation. For all the models, including 

the benchmark CNNs, 50 epochs are completed to train the 

model, without batching, using “ADAM” optimizer [42]. Since 

the quality metrics of interest, i.e., [thickness, Dmin, Dmax], are 

numeric values, the model fitness in training and accuracy in 

prediction can both be measured by mean squared error (MSE) 

loss [43], which quantifies the discrepancy between model-fitted 

values (or prediction) and the ground truth, and a smaller value 

implies a better result. 

4.1 Model Training 

The training performance for dataset (i) and (ii) is 

demonstrated in FIGURE 8 and 9, respectively. In each subplot, 

the horizontal axis shows the index of training epoch, and the 

vertical axis shows the MSE loss between the model-fitted 

values and the true value of quality metrics. The (blue) curve 

with dot markers represents training loss, and the (red) curve 

with triangle markers represents training-phase validation loss. 

Each column is associated with one model, and the 1st and 2nd 

rows are for CV1 and CV3, respectively.  

For both datasets, the tendency of MSE loss curves 

regarding a specific model is similar. The proposed method, 

Stacked LSTM, has converging training and validation loss for 

all the 𝑳 values (FIGURE 8(a-c) and FIGURE 9(a-c)). The 

MSE loss after convergence is small, with (i) almost equals to 0 

and (ii) approaches 0. Such well-converged MSE loss indicates 

the effectiveness of model training – Stacked LSTM learned 

sufficient information from the data to reduce the MSE loss over 

training epoch, and the learning speed is decent, considering the 

fast convergence within 50 epochs.  

 
TABLE 3. AVERAGE COMPUTING TIME (IN SECOND) FOR 

MODEL TRAINING AND TESTING WITH 4-FOLD CV. 

Dataset Stacked LSTM CNNs 

 𝐿 = 5 𝐿 = 10 𝐿 = 15 AlexNet VGG7 

(i) 238.25 325 393 15346.75 1329.5 
(ii) 132.25 182.25 259 10049.25 822.5 

 

The training performance for benchmark CNNs are more 

complicated. The two architectures adopted here are relatively 

shallow, with VGG7 even shallower than AlexNet. The MSE 

loss curves for AlexNet (FIGURE 8(d) and FIGURE 9(d)) 

converged to a fixed, nontrivial value and then stay there ever 

since, implying that the training algorithm stuck to a value and 

do not optimize properly. Though not very deep, AlexNet still 

has considerate complexity (equivalently, too many parameters) 

in model architecture, which is inappropriate for the RSW data. 

The training performance of VGG7 (FIGURE 8(e) and 

FIGURE 9(e)), on the other hand, is the best among five models. 

The convergence speed is the fastest and the MSE loss upon 

convergence is nearly 0. It indicates that VGG7 happens to have 

an appropriate architecture for the given RSW data. 

Nonetheless, whether the training performance of the 

benchmark CNNs is good or not, they consume much longer 

time for data processing and model training. TABLE 3 shows 

the computing time (in second) for all the five models. The time 

consumed by Stacked LSTM is generally way less than CNNs. 

This is critical for manufacturing practice. It is not worth the 

effort to spend so much time training CNNs and finding the 

suitable CNN architecture. Even with a shallow architecture like 

VGG7, the model training can be rather time-consuming. 

Stacked LSTM is a better option with its acceptable training 

performance and the superior computing efficiency. 

4.2 Quality Prediction 

The prediction performance is also evaluated for Stacked 

LSTM and benchmark CNNs. TABLE 4 shows the MSE loss 

from prediction (model testing) for both dataset (i) and (ii). The 

performance metrics, since 4-fold CV is adopted, are the 

averaged value of minimum, mean, median, and maximum MSE 

loss across CVs. Each cell shows the mean value of metric and 

the standard deviation (std) in bracket. 

 
TABLE 4. QUALITY PREDICTION PERFORMANCE: AVERAGE 

(STANDARD DEVIATION) OF MSE LOSS ACROSS 4-FOLD CV. 

Data

set 

MSE 

loss 

Stacked LSTM CNNs 

  𝐿 = 5 𝐿 = 10 𝐿 = 15 AlexNet VGG7 

(i) Min 0.0006 

(0.0002) 

0.0016 

(0.0018) 

0.0006 

(0.0004) 

7.8554 

(0) 

0.0000 

(0) 

 Mean 0.3875 

(0.0587) 

0.4090 

(0.1084) 

0.6452 

(0.2562) 

21.0404 

(0.0474) 

0.0426 

(0.0202) 

 Median 0.2623 

(0.0319) 

0.2786 

(0.0423) 

0.6817 

(0.4067) 

23.1990 

(0) 

0.0230 

(0.0175) 

 Max 5.2534 

(6.1644) 

7.5843 

(9.3358) 

3.9532 

(1.8785) 

32.3619 

(0) 

0.6078 

(0.1085) 

(ii) Min 0.0023 

(0.0001) 

0.0132 

(0.0158) 

0.0221 

(0.0115) 

8.4609 

(0) 

0.0006 

(0.0003) 

 Mean 1.6407 

(0.4186) 

2.0306 

(0.3568) 

2.2591 

(0.7992) 

33.7814 

(0.5055) 

0.2394 

(0.2220) 

 Median 0.8142 

(0.1999) 

1.2296 

(0.3498) 

1.4455 

(0.2554) 

34.5470 

(0.4327) 

0.0911 

(0.0577) 

 Max 6.8040 

(0.8234) 

9.0132 

(1.6172) 

8.7249 

(2.1158) 

67.0311 

(0) 

2.6778 

(2.6153) 

 

Stacked LSTM models generally have small MSE loss, as 

revealed by the low values of the metrics. For both datasets, 𝐿 =
5 leads to the best result, but the discrepancy associated with 

different 𝐿 values is not salient. Dataset (i) has slightly lower 

metric values, or equivalently better prediction performance, 

than dataset (ii), but can be associated with larger std when 𝐿 is 

small. 
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The prediction performance of benchmark CNNs are at the 

extremes. AlexNet does a poor job in prediction – it tends to 

predict the same results for all testing data, which is likely an 

outcome of the trapped training performance. VGG7, again, does 

the best job among the five models. It has extremely low values 

for all the metrics, indicating a remarkable prediction accuracy. 

 

4.3 Discussion 
To summarize, Stacked LSTM has favorable performance 

for both training and prediction. It consumes at least 3-time less 

of the time for data processing and model training than 

benchmark CNNs. Such superior computing efficiency and 

relatively high prediction accuracy make it a better option in 

practice when computational burden is a concern. CNNs, as a 

contrast, generally require a long time to train. It is challenging 

to find the suitable CNN architecture, especially when 

experimenting with different architectures is so time-consuming.  

For RSW applications, the proposed Stacked LSTM will 

substantially facilitate real-time NDE. First, the low data 

processing burden associated with Stacked LSTM will reduce 

the potential cost of NDE. This is especially important in the 

phase of model development (equivalently, model training), 

because the requirement for computing capability is lower for 

handling MTS data, as compared to videos. Second, the hurdle 

of utilizing DL-based NDE may be mitigated by Stacked LSTM. 

As revealed in Section 4, the raw training data contains only a 

few videos, yet the mechanism of Stacked LSTM allows a 

natural augmentation of the data (a few videos → thousands of 

MTS segments). The prediction accuracy of Stacked LSTM 

trained with such data, after only 50 epochs, has reached a high 

level already. It implies the possibility of widening the adoption 

of DL-based, real-time NDE in RSW and other welding 

applications, especially when the training data is sparse. 

 
5. CONCLUSION 

In this study, a quality prediction method based on MARS 

and Stacked LSTM was proposed for in-situ thermal videos from 

RSW. By using Stacked LSTM to learn the temporal effect in 

data as the evidence for quality prediction, the proposed method 

has remarkably improved the computing efficiency of DL-based 

NDE, at the expense of none or trivial decrease in prediction 

accuracy. The data storage requirement is also lowered due to 

the use of MTS instead of videos. This method can be readily 

applied on spatial-temporal imaging data from other 

manufacturing or engineering applications. 

In future, this study can be extended along several 

directions. First, the model parameters and architecture of the 

LSTM model can be further tuned, preferably on larger datasets 

of in-situ thermal videos, to improve the accuracy of quality 

prediction. Second, the method can be customized for spatial-

temporal data with more complex structure, e.g., in-situ thermal 

videos with multiple abrupt changes or unfixed object position 

in image. Third, the current MTS extraction only considers a 

handful of critical locations. It is of interest to have more 

locations considered in an image, and meanwhile develop an 

adaptive method to identify the critical locations in the object 

based on the (training-stage) learning performance of DL 

models. 
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APPENDIX 
A1. Acquisition of In-situ Videos 

A high-speed camera (FLIR SC655) was positioned 

stationary around 15-20cm away from the weld area with a 

roughly 45 deg tilted angle. The camera captured the whole 

welding process for about 3s including both heating and cooling 

stages.  

 

A2. Acquisition of Measurements 
Each weld was cross-sectioned to reveal the weld nugget for 

measurement. Each tested weld is associated with three 

measurements, i.e., “Thickness”, “Dmin”, and “Dmax” (all in 

mm). “Thickness” is the measurement in the weld center using 

micrometer. “Dmin” and “Dmax” are the minimum and 

maximum diameter of the nugget measured nondestructively by 

ultrasonic C-scan method. A weld nugget is not standard round 

so the diameter varied slightly even for the same one, thus 

“Dmin” and “Dmax”. Chen et al. [44] innovated the procedure 

that was used here to acquire the measurement data. 

This paper focuses on the “nugget size” (i.e., “Dmin” and 

“Dmax”) and “thickness”, since they are the most important 

weld attributes related to the physical appearance as well as 

defects of welds. Defects can be lack-of-fusion, cracks, porosity, 

etc. Among all weld attributes, nugget size and thickness are 

closely related to the mechanical performance of the weld [45]. 

They are effective indicators of the weld quality. This study does 

not relate all defects to nugget size and thickness but focus on 

DL-based NDE of these weld attributes. By enabling real-time 

NDE of nugget size and thickness with the proposed method, this 

study strived to facilitate the efficiency improvement and cost 

reduction in RSW quality control.  

 

A3. Full Records of Measurements 
TABLE A1. FULL MEASUREMENT RECORDS: “THICKNESS”, 

“DMIN”, AND “DMAX” (ALL IN mm). CURRENT INTENSITY IS 

THE EXPERIMENTAL PARAMETER, WHOSE LEVEL CHANGED 

AMONG: “COLD”, “MIN”, “MID”, “MAX250”, “EXP”. 

Data

Sample Current intensity Thickness Dmin Dmax Current intensity Thickness Dmin Dmax

1 cold 1.899 3.1 3.311 cold 3.99 2.3 2.3

2 cold 1.905 3.1 3.289 cold 3.939 2.1 2.4

3 cold 1.905 3.1 3.201 cold 3.997 2.1 2.3

4 cold 1.903 3.2 3.245 cold 4.008 2.6 2.6

5 cold 1.917 3.2 3.422 cold 4.012 2.1 2.3

6 min 1.871 4.9 4.923 min 3.837 5.6 5.9

7 min 1.875 4.9 4.945 min 3.904 5.7 5.9

8 min 1.869 4.9 4.879 min 3.855 5.9 6.1

9 min 1.871 4.9 4.923 min 3.87 6.1 6.2

10 min 1.863 4.9 4.923 mid 3.794 6.6 6.7

11 mid 1.861 5.7 5.762 mid 3.845 6.5 6.6

12 mid 1.863 5.7 5.784 mid 3.815 6.6 6.9

13 mid 1.857 5.7 5.828 mid 3.879 6.7 6.9

14 mid 1.853 5.7 5.784 max250 3.817 7.4 7.6

15 mid 1.859 NA NA max251 3.81 7.2 7.4

16 max250 1.811 6.3 6.424 max252 3.804 7.3 7.6

17 max251 1.787 6.3 6.446 max253 3.814 7.2 7.6

18 max252 1.819 6.3 6.623 max254 3.817 7.1 7.2

19 max253 1.806 6.4 6.534 exp 3.545 8.8 9.4

20 max254 1.805 6.4 6.446 exp 3.556 9 9.6

21 exp 1.651 6.5 6.578 exp 3.546 8.9 9.8

22 exp 1.681 6.6 6.755 exp 3.531 9.9 9.5

23 exp 1.682 6.9 6.865

24 exp 1.686 6.8 6.843

25 exp 1.646 6.6 6.623

（i） (ii)

 
 

In the design of experiments, the parameter “current 

intensity”, which controlled the intensity of weld currents, was 

purposely varied to produce different weld nugget size and 

thickness. “cold” represented the situation when the nugget size 

 
FIGURE A1. IN-SITU ACQUISITION OF VIDEOS FOR WELD 

NUGGET. 
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was below the requirement. “min”, “mid” and “max250” created 

three situations when the nugget size varied but stayed within the 

acceptable range. “exp” represented overly strong weld current 

that produced material expulsion during welding. 

Each weld investigated was associated with an in-situ 

thermal video of the nugget formulation and a record of 

measurements. Either the video or the measurement record was 

saved to file that was named with experiment parameter and 

sample ID. In data processing, the in-situ video and the 

measurements were matched based on experiment parameter and 

sample ID to ensure correct analysis. For the weld whose 

measurement record was incomplete, i.e., with “NA” values, the 

sample was removed from the analysis.  

 


