
The Kokkos OpenMPTarget Backend:
Implementation and Lessons Learned

Rahulkumar Gayatri1, Johannes Doerfert2, Jan Ciesko3, Stephen L. Olivier3,
Christian R. Trott3, and Damien Lebrun-Grandie4

1 Lawrence Berkeley National Laboratory, Berkeley, CA, USA rgayatri@lbl.gov
2 Lawrence Livermore National Laboratory, Livermore, CA, USA

jdoerfert@llnl.gov
3 Sandia National Laboratories, Albuquerque, NM, USA

{jciesko, slolivi, crtrott}@sandia.gov
4 Oak Ridge National Laboratory, Oak Ridge, TN, USA

lebrungrandt@ornl.gov

Abstract. As the supercomputing landscape diversifies, solutions such
as Kokkos to write vendor agnostic applications and libraries have risen
in popularity. Kokkos provides a programming model designed for per-
formance portability, which allows developers to write a single source
implementation that can run efficiently on various architectures. At its
heart, Kokkos maps parallel algorithms to architecture and vendor spe-
cific backends written in lower level programming models such as CUDA
and HIP. Another approach to writing vendor agnostic parallel code is
using OpenMP’s directives based approach, which lets developers anno-
tate code to express parallelism. It is implemented at the compiler level
and is supported by all major high performance computing vendors, as
well as the primary Open Source toolchains GNU and LLVM. Since its
inception, Kokkos has used OpenMP to parallelize on CPU architectures.
In this paper, we explore leveraging OpenMP for a GPU backend and
discuss the challenges we encountered when mapping the Kokkos APIs
and semantics to OpenMP target constructs. As an exemplar workload
we chose a simple conjugate gradient solver for sparse matrices. We find
that performance on NVIDIA and AMD GPUs varies widely based on
details of the implementation strategy and the chosen compiler. Further-
more, the performance of the OpenMP implementations decreases with
increasing complexity of the investigated algorithms.

Keywords: Kokkos · OpenMP · GPUs · parallel programming · perfor-
mance portability.

1 Introduction

As the high performance computing community enters the exascale computing
era, the largest supercomputers are dominated by GPU accelerated system de-
signs. For almost a decade, these platforms, including the latest NERSC system,
Perlmutter, exclusively deployed GPUs from NVIDIA. This single vendor trend

2 Rahul G. et al.

is changing with the first deployed exascale machines. The recently launched
Frontier system at Oak Ridge National Laboratory and the upcoming El Capi-
tan platform at Lawrence Livermore National Laboratory are based on a system
design using AMD GPUs, while Argonne National Laboratory’s Aurora super-
computer will use Intel GPUs.

A challenge arising from this architecture diversity is that each vendor has
their own preferred programming model. NVIDIA provides CUDA, first intro-
duced in 2007. AMD developed the HIP programming model, which is closely
modelled after CUDA. Data Parallel C++ (DPC++), an extension of Khronos’
SYCL, is Intel’s preferred choice for implementing code on their GPUs. Writing
applications and libraries directly in each vendor’s preferred programming model
thus requires the implementation of four versions, assuming one would want to
support multicore CPU execution as well.

To eliminate this unmanageable software development and maintenance over-
head, vendor independent higher-level frameworks such as Kokkos [1] and RA-
JA/Chai/Umpire [2] were developed. These frameworks promise performance
portability by providing a common interface for expressing parallelism and data
management, which is then mapped to the vendor specific programming models.

There are also efforts to make the vendor specific models portable across ar-
chitectures. SYCL itself is designed as a hardware agnostic programming model,
and Intel’s DPC++ compiler has the ability to target NVIDIA GPUs and to a
lesser degree AMD GPUs. AMD’s HIP model can be mapped to CUDA by cou-
pling AMD’s toolchain to NVIDIA’s. Community research efforts in LLVM are
also working to compile CUDA to other architectures [3]. However, in practice
there are very few projects relying on these portability efforts of the vendor mod-
els, due to concerns over full support on all architectures. In particular, support
contracts which are part of the large supercomputing procurements generally
only cover the vendor’s own toolchain. The portability frameworks do not have
the same issue, since they leverage the native toolchains on each architecture.

OpenMP is the one vendor independent node-level programming model stan-
dard which all the vendors support to varying degrees, and which is generally
part of the contractual requirements in the large supercomputing procurements.
Furthermore, it is not only supported by vendor specific compilers, but also by
the two primary open source toolchains, LLVM and GCC. OpenMP uses a direc-
tive based approach, which allows developers to annotate existing code to express
parallelism. This approach has been used to good effect on CPU based systems
for two decades. Since version 4.0, OpenMP has also supported directives for
accelerators such as GPUs, and those directives have evolved significantly with
subsequent versions. However, the available subset of the specification, the qual-
ity of implementation of those subsets, and even the interpretation of intended
behavior of some features are different in each toolchain, causing challenges when
using OpenMP for performance portability.

In this paper we explore these challenges using the effort of porting Kokkos to
use OpenMP as a hardware independent backend implementation. That effort
was conceived as a means to provide for Kokkos a second toolchain path on

The Kokkos OpenMPTarget Backend: Implementation and Lessons Learned 3

each platform, in addition to the vendor specific programming models. Having
multiple toolchains, and specifically compilers, available on each system allows
for redundancy and more overall robustness of the software stack. It also prepares
Kokkos for a situation where a new hardware vendor may not develop a unique
programming model, leveraging the OpenMP specification instead.

In this paper we will use the conjugate gradient solver (CG-Solve) described
in [1] as an exemplar to discuss various concepts in Kokkos, how they are mapped
to OpenMP, and the challenges which arise. The results shown in this paper show
the performance achieved by the CG-Solve example and its individual kernels
on NVIDIA A100 GPUs available on Perlmutter and AMD MI250x available
on Crusher (testbed for Frontier). We use the latest clang compiler from the
main branch of llvm (date) and vendor specific compilers for each of the GPUs,
i.e., NVHPC/22.7 on A100 and amdclang available with rocm/5.4.3 on MI250x.
We will refer to these as LLVM, NVHPC and ROCM respectively. This effort
is not an attempt to find the very best implementation of CG-Solve, nor to im-
prove upon the existing math algorithms. Specifically we are not exploring the
use of different sparse matrix storage formats or various possible parallelization
schemes for the algorithms. This paper is primarily concerned with the question
of how Kokkos usage of OpenMP compares to native OpenMP implementations
and how the OpenMP offload implementation compares to the use of native
CUDA and HIP backends in Kokkos, given a specific algorithm and paralleliza-
tion strategy.

2 CG-Solve

The congujate gradient solver (CG-Solve) is a simple iterative linear solver, which
use three primary linear algebra functions: a vector addition (axpby), an inner
product (dot) and a sparse matrix vector multiply (spmv). In each iteration the
axpby is called four times, the dot twice and the spmv once. Listing 1.1 shows the
pseudo code for the solver. The three operations exhibit three common patterns
found in data parallel programming: simple data parallel loops, reductions, and
nested loops. The overall algorithm is largely bandwidth limited. However the
pure vector operations are often latency sensitive on GPU systems, since at
typically observed vector lengths of 100,000 to 1,000,000 entries per device the
vector operations can execute in under 20us there. Furthermore, axpby, dot and
spmv are not just important for CG-Solve, but are also the fundamental building
blocks in most other linear solvers.

Listing 1.1: CGSolve

for (int64_t k = 1; k <= max_iter && normr > tolerance; ++k) {
if (k == 1) {

axpby(p, one , r, zero , r); // AXPBY
} else {

oldrtrans = rtrans;
rtrans = dot(r, r); // DOT
double beta = rtrans / oldrtrans;
axpby(p, one , r, beta , p); // AXPBY

}
normr = std::sqrt(rtrans);

4 Rahul G. et al.

double alpha = 0;
double p_ap_dot = 0;
spmv(Ap , A, p); // SPMV
p_ap_dot = dot(Ap, p); // DOT
if (p_ap_dot < brkdown_tol) {

if (p_ap_dot < 0) {
std::cerr << "miniFE :: cg_solve␣ERROR ,␣numerical␣breakdown!"

<< std::endl;
return num_iters;

} else
brkdown_tol = 0.1 * p_ap_dot;

}
alpha = rtrans / p_ap_dot;
axpby(x, one , x, alpha , p); // AXPBY
axpby(r, one , r, -alpha , Ap); // AXPBY
num_iters = k;

}

For the rest of the paper, we will discuss the Kokkos implementation of
axpby, dot and spmv, how they can be mapped to OpenMP, and the challenges
encountered.

2.1 AXPBY

The vector addition is a simple data parallel loop, with no dependencies be-
tween iterations. It is straightforward to express in most programming models,
including Kokkos.

Listing 1.2: Kokkos Vector Addition (axpby)

void axpby (double a, Kokkos ::View <double*> x,
double b, Kokkos ::View <double*> y) {

Kokkos :: parallel_for("AXPBY", x.extent (0), KOKKOS_LAMBDA(const int i) {
y(i) = a*x(i) + b*y(i);

});
}

A Kokkos View expresses a possibly multi-dimensional array. This function
only uses its simplest version representing a plain one-dimensional contiguous
vector. The Kokkos parallel_for execution pattern expresses a parallelizable
loop. It takes as arguments a label (for debugging and profiling purposes), an
iteration range, and the loop body expressed through a C++ lambda. Kokkos
is a descriptive programming model, which does not guarantee any specific im-
plementation strategy on architectures. Its parallel loops do not imply order nor
concurrency, and thus can be mapped to thread, vector or pipeline parallelism.

An equivalent OpenMP implementation of axpby for GPUs (assuming man-
ual data management) is given in Listing 1.3.

Listing 1.3: OpenMP Vector Addition (axpby)

void axpby (int N, double a, double* x,
double b, double* y) {

#pragma omp target teams distribute parallel for simd nowait is_device_ptr(
x,y)

for(int i=0; i< N; i++) {
y[i] = a*x[i] + b*y[i];

}
}

The Kokkos OpenMPTarget Backend: Implementation and Lessons Learned 5

In its implementation of parallel_for, Kokkos uses a partial specialization
approach, where the lambda is handed to a backend specific implementation of
the parallel loop. Simplified, this strategy looks like the code in Listing 1.4.

Listing 1.4: parallel_for OpenMPTarget backend

template <Functor >
struct ParallelFor <Functor , OpenMPTarget > {

int N; Functor f;
void execute () {

#pragma omp target teams distribute parallel for simd nowait
for(int i=0; i< N; i++) { f(i); }

}
};

template <class Functor >
void parallel_for(string label , int N, Functor f) {

ParallelFor <Functor , OpenMPTarget > closure{N,f};
closure.execute ();

}

Note that the only fundamental difference between the direct OpenMP im-
plementation and the Kokkos backend implementation is the expression of the
loop body via a C++ lambda. However, we have observed that the OpenMP
compilers are very sensitive to the use of seemingly unrelated C++ patterns.
Specifically, significant performance difference can be observed when writing al-
gorithms in two different – but from the C++ perspective equivalent – ways.
One such instance is the use of C++ lambdas. To illustrate that difference, we
measured performance also for versions of the algorithms written directly in
OpenMP, but using lambdas, as shown in Listing 1.5.

Listing 1.5: OpenMP Vector Addition as C++ lambda(axpby)

void axpby (int N, double a, double* x,
double b, double* y) {

auto f = [=](i) {y[i] = a*x[i] + b*y[i];};
#pragma omp target teams distribute parallel for simd nowait firstprivate(f

)
for(int i=0; i< N; i++) {

f(i);
}

}

A similar issue occurs with use of OpenMP target regions inside class member
functions. When the axpby is implemented as a class member function, where
N is a class data member, performance drops even more than with the use of
lambdas, compared to creating a local copy of N inside the member function.

Figure 1 shows the performance of the different versions of axpby discussed
above. For this kernel, we see that the direct OpenMP code when compiled
with the vendor compilers can achieve almost the same performance as Kokkos
with the native CUDA/HIP backends. At larger vector lengths, the Kokkos
OpenMPTarget backend approaches the raw OpenMP performance, and most
of the difference can be explained by the previously noted issues around the use
of Lambdas. However, nvc++ does not exhibit the lambda specific performance
penalty, and the Kokkos OpenMPTarget backend in each case achieves the same
performance as the lambda OpenMP implementation. Comparing the relative

6 Rahul G. et al.

Array-length

G
B

/s

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

1 million 5 million 10 million

KK-CUDA

KK-OMP

OMP-lambda

OMP-raw

OMP-class

AXPBY on A100 with llvm/17

Array-length

G
B

/s

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

1 million 5 million 10 million

KK-CUDA

KK-OMP

OMP-lambda

OMP-raw

OMP-class

AXPBY on A100 with nvhpc/22.7

Array-length

G
B

/s

0.00E+00

2.50E+02

5.00E+02

7.50E+02

1.00E+03

1.25E+03

1 million 5 million 10 million

KK-HIP

KK-OMP

OMP-lambda

OMP-raw

OMP-class

AXPBY on MI250x with llvm/17

Array-length

G
B

/s

0.00E+00

2.50E+02

5.00E+02

7.50E+02

1.00E+03

1.25E+03

1 million 5 million 10 million

KK-HIP

KK-OpenMP

OMP-lambda

OMP-raw

OMP-class

AXPBY on MI250x with rocm/5.4.3

Fig. 1: AXPBY on NVIDIA A100 with llvm and nvhpc compilers and on AMD
MI250x with llvm and amdclang compilers.

performance of the different implementations on the two different architectures,
they appear to be a function of the compiler rather than the hardware.

2.2 DOT

The dot product kernel performs a single range reduction on a given data type.
In Kokkos this is expressed with the the parallel_reduce pattern as shown in
Listing 1.6.

Listing 1.6: Kokkos Reduction (dot)

double dot(Kokkos ::View <double*> x, Kokkos ::View <double*> y) {
double result = 0.;
Kokkos :: parallel_reduce("DOT", x.extent (0), KOKKOS_LAMBDA(const int i,

double &lsum) {
lsum += x(i) * y(i);

}, result);
return result;

}

The equivalent direct OpenMP code is shown in Listing 1.7.

Listing 1.7: OpenMP Reduction (dot)

void dot (int N, double* x, double* y) {
double result = 0.;
#pragma omp target teams distribute parallel for simd reduction (+: result)

is_device_ptr(x,y)
for(int i=0; i< N; i++) {

result += x[i] * y[i];
}
return result;

}

Figure 2 shows the bandwidth achieved by the dot kernel.
Only ROCM achieves the same performance as the native backends of Kokkos,

and only in the absence of lambdas which otherwise reduce performance by 4-8x
depending on the vector length. Here LLVM and NVHPC are not sensitive to the
use of Lambdas. Still, with OpenMP, they only achieve between 30% and 70%

The Kokkos OpenMPTarget Backend: Implementation and Lessons Learned 7

Array-length

G
B

/s

0.00E+00

2.50E+02

5.00E+02

7.50E+02

1.00E+03

1.25E+03

1 million 5 million 10 million

KK-CUDA

KK-OMP

OMP-lambda

OMP-raw

DOT on A100 with llvm/17

Array-length

G
B

/s

0.00E+00

2.50E+02

5.00E+02

7.50E+02

1.00E+03

1.25E+03

1 million 5 million 10 million

KK-CUDA

KK-OMP

OMP-lambda

OMP-raw

DOT on A100 with nvhpc/22.7

Array-length

G
B

/s

0.00E+00

2.50E+02

5.00E+02

7.50E+02

1.00E+03

1.25E+03

1 million 5 million 10 million

KK-HIP

KK-OMP

OMP-lambda

OMP-raw

DOT on MI250x with llvm/17

Array-length

G
B

/s

0.00E+00

2.50E+02

5.00E+02

7.50E+02

1.00E+03

1.25E+03

1 million 5 million 10 million

KK-HIP

KK-OMP

OMP-lambda

OMP-raw

DOT on MI250x with rocm/5.4.3

Fig. 2: DOT on NVIDIA A100 with llvm and nvhpc compilers and on AMD
MI250x with llvm and amdclang compilers.

of the performance of the native backends. Unlike the axpby results, NVHPC
only reaches about 50% of the CUDA backend performance. A 2022 paper doc-
umenting the current design of the LLVM OpenMP runtime [4] remarks that
recent improvements of that runtime have not included any work on better im-
plementations of GPU reductions, but our understanding is that some vendors
are working on this topic.

2.3 SPMV

The third algorithm needed for CG-Solve is a sparse-matrix vector multiply.
Sparse matrices can be represented in different ways, here we employ the com-
monly used compressed sparse row (CSR) representation, which uses an array
storing the non-zero values of the matrix, an array with the associated column
indicies, and a vector storing the row offsets into the value and column index
arrays.

At its simplest the spmv can then be implemented as loop over rows, with a
nested reduction to compute the dot product of each row. Listing 1.8 provides
a simple implementation of the spmv algorithm.

Listing 1.8: SPMV-Algorithm

for(row = 0; row < num_rows; row++) { // Loop over all rows
row_start = row_offsets[row];
row_end = row_offsets[row +1];
// Reduction over non -zeros in each row
for(idx = row_start; idx <row_end; idx++)

y(row) += m_values[idx] * x[m_cold_idx[idx]];
}

This kernel is more complex than either axpby or dot since for good per-
formance on GPUs nested parallelism must be exposed. The nested parallelism
helps expose more concurrency in the algorithm, and gains in importance with
increasing number of non-zeros per row. Due to the nature of the loops, where
the inner loop’s trip count depends on the outer loop’s iteration index, they can
not be easily collapsed. Furthermore, the kernel exhibits a mix of streaming and

8 Rahul G. et al.

irregular data access. The matrix data is accessed continuously, while accesses
of the x vector are irregular.

In practice Kokkos implements a somewhat more complex version using three
levels of parallelism. Often the number of non-zeros per row, and thus the inner
loop length, is fairly small. In that case we want to use only vector parallelism to
perform the reduction, but still want to group adjacent rows in threads sharing
a common cache, to exploit data access locality of the vector x.

Both Kokkos and the OpenMP specification support three levels of paral-
lelism using the concept of team of threads, threads and vector parallelism. In
Kokkos this is achieved using special execution policies with the execution pat-
terns, namely TeamPolicy, TeamThreadRange, and ThreadVectorRange. OpenMP
expresses the same conceptual ideas with the teams distribute, parallel

for, and simd constructs.
However, the LLVM compiler, as many vendor compilers, including NVHPC

and ROCM, treat simd as a hint, and do not map it to hardware parallelism.
All threads in a GPU CUDA block or HIP group are instead activated together
as part of the parallel for construct. This restriction, for now, limits the
performance for any Kokkos application that uses the 3rd parallel level explicitly.
That said, explicit control over the placement, including a dedicated three level
mapping, is currently under development as part of LLVM.

Listing 1.9 shows the implementation of SPMV using hierarchical execu-
tion patterns in Kokkos. The Kokkos::TeamPolicy is used to specify the num-
ber of teams, team size and the number of vector lanes used per thread. For
this algorithm the team size and the vector length are optimization parameters,
which need to be tuned for each hardware platform. When using the CUDA
or HIP backend, each team is mapped to a block, with the thread ids in each
team mapped to threadIdx.y and vector lanes mapped to threadIdx.x. Vector
lengths are limited by the warp or wavefront size respectively.

In the spmv algorithm, each team gets assigned a number of rows, which are
then iterated over in parallel by the threads of the team. The nested reduction
is performed by the vector lanes associated with each thread.

Listing 1.9: Kokkos Hierarchical Parallelism (SPMV)

Kokkos :: parallel_for(
"SPMV",
Kokkos ::TeamPolicy <>(num_teams , team_size , vector_size),
KOKKOS_LAMBDA(const Kokkos ::TeamPolicy <>:: member_type &team) {

const int64_t first_row = team.league_rank () * rows_per_team;
const int64_t last_row = first_row + rows_per_team < nrows

? first_row + rows_per_team
: nrows;

// iterate over rows owned by this team
Kokkos :: parallel_for(

Kokkos :: TeamThreadRange(team , first_row , last_row),
[&](const int64_t row) {

const int64_t row_start = A.row_ptr(row);
const int64_t row_length =

A.row_ptr(row + 1) - row_start;

double y_row;
// reduction over non -zeroes in the row
Kokkos :: parallel_reduce(

Kokkos :: ThreadVectorRange(team , row_length),

The Kokkos OpenMPTarget Backend: Implementation and Lessons Learned 9

[=](const int64_t i, double &sum) {
sum += A.values(i + row_start) *

x(A.col_idx(i + row_start));
},
y_row);

y(row) = y_row;
});

});

A direct mapping of the Kokkos semantics to OpenMP leads to an imple-
mentation as shown in Listing 1.10

Listing 1.10: OpenMP Hierarchical Parallelism - b(SPMV)

int num_teams = (nrows + rows_per_team - 1)/rows_per_team;
#pragma omp target teams distribute is_device_ptr(x,y,A_row_ptr ,A_values ,

A_col_idx)
for(int team = 0; team < num_teams; ++i)
#pragma omp parallel
{

const int64_t first_row = omp_get_team_num () * rows_per_team;
const int64_t last_row = first_row + rows_per_team < nrows ? first_row +

rows_per_team : nrows;
#pragma omp for
for(int row = first_row; row < last_row; ++row)
{

const int64_t row_start = A_row_ptr[row];
const int64_t row_length = A_row_ptr[row + 1] - row_start;

double y_row;
#pragma omp simd reduction (+: y_row)
for(int i = 0; i < vector_size; ++i)
{

y_row += A_values[i + row_start] * x[A_col_idx[i + row_start]];
}
y[row] = y_row;

}
}

In Kokkos, the loop body of the outer loop is executed by all threads within
the team. This is achieved in OpenMP by opening a parallel scope inside the
outer loop. Now every thread computes redundantly first row and last row

- avoiding an otherwise necessary broadcast upon entering the nested parallel
loop. The nested reduction is marked as intended to be vectorized with the simd
directive.

As stated above, none of the compilers used for this work actually parallelize
that simd loop. In order to identify how much of a performance reductions is
caused by that lack of parallelization we also ran the native CUDA/HIP Kokkos
backend code with a vector-size of one.

When implementing the Kokkos backend for OpenMPTarget, we encoun-
tered a number of additional issues which affect features of Kokkos’ hierarchical
parallelism not necessary for spmv. For example, Kokkos allows reductions on
the team-thread level. In OpenMP, one is not allowed to simply add a reduction
clause on a local variable to the parallel for construct as shown in Listing 1.10,
because reduction variables need to be declared at the target level. However, in
typical code, it is not always possible to identify such reduction variables at the
Kernel dispatch point, since the nested reduction may occur in other functions.

To work around this limitation the Kokkos OpenMPTarget backend pro-
actively allocates a memory buffer on the device memory and annotates it with

10 Rahul G. et al.

the reduction clause. Nested reductions then use that memory buffer as reduc-
tion variables. However, this workaround also necessitates adding a num threads

clause to the teams distribute construct to ensure that enough buffer space
was allocated. Unfortunately adding that clause reduces the performance on
some compilers, even in the cases - such as spmv - where it wasn’t strictly needed.
We measured the impact of adding the num threads clause for spmv separately.

Furthermore, on NVIDIA and AMD GPUs an implementation strategy of
Kokkos’ hierarachical parallelism without the distribute construct turned out
to be more performant. This strategy requires the loop over worksets to be a
nested loop inside the target region as shown in Listing 1.11. Currently this is
the default implementation strategy for the Kokkos OpenMPTarget backend on
NVIDIA and AMD GPUs, while on Intel GPUs the implementation is similar
to Listing 1.10.

Listing 1.11: OpenMP Hierarchical Parallelism - a(SPMV)

#pragma omp target teams num_teams(leage_size) thread_limit(team_size)
is_device_ptr(x,y,A_row_ptr ,A_values ,A_col_idx)

#pragma omp parallel
{

const int blockIdx = omp_get_team_num ();
const int gridDim = omp_get_num_teams ();

for (int league_id = blockIdx; league_id < num_teams; league_id +=
gridDim) {

#pragma omp for
for(int row = first_row; row < last_row; ++row)
{

// similar to above
}

}
}

Figure 3 shows the performance of the spvm on NVIDIA A100 and AMD
MI250x GPUs. As with the previous algorithms, KK-CUDA/KK-HIP perfor-
mance is significantly greater than any of the OpenMP variants. How, much how-
ever depends on the compiler, hardware and the specific variant of the OpenMP
code. The experiment highlights the sensitivity of the OpenMP performance to
specific implementation choices, with different ones resulting in better perfor-
mance on different hardware and compiler combinations.

For example, not using the num teams clause improves the performance on
A100 when using the LLVM compiler, but reduces the performance dramatically
with NVHPC. While with the LLVM compiler, implementation KK-OMP-A,
based on Listing 1.11, generally performs better than KK-OMP-B, based on
Listing 1.10, it performs exceptionally bad when using the ROCM compiler.
The Kokkos OpenMPTarget backend - without the use of the num teams clause
- performs as well as the raw OpenMP implementation when using the LLVM
compiler, but runs significantly slower when using the ROCM compiler.

In practice these variations make it difficult to maintain an OpenMP code
with consistent performance across different platforms.

The Kokkos OpenMPTarget Backend: Implementation and Lessons Learned 11

Array-length

G
B

/s

0

500

1000

1500

1 million 5 million 10 million

KK-CUDA 3 levels

KK-CUDA 2 levels

KK-OMP-a

KK-OpenMPT-w/o num_teams

KK-OMP-b-w/o

OMP

SPMV on A100 with llvm/17

Array-length

G
B

/s

0

500

1000

1500

1 million 5 million 10 million

KK-CUDA 3 levels

KK-CUDA 2 levels

KK-OMP-a

KK-OMP-a-w/o

KK-OMP-b-w/o

OMP

SPMV on A100 with nvhpc/22.7

Array-length

G
B

/s

0

250

500

750

1000

1250

1 million 5 million 10 million

KK-HIP 3 levels

KK-HIP 2 levels

KK-OMP-a

KK-OMP-a-w/o

KK-OMP-b-w/o

OMP

SPMV on MI250x with llvm/17

Array-length

G
B

/s

0

250

500

750

1000

1250

1 million 5 million 10 million

KK-HIP 3 levels

KK-HIP 2 levels

KK-OMP-a

KK-OMP-a-w/o

KK-OMP-b-w/o

OMP

SPMV on MI250x with rocm/.4.3

Fig. 3: SPMV on NVIDIA A100 with llvm and nvhpc compilers and on AMD
MI250x with llvm and amdclang compilers .

3 Beyond the basics

Besides the already discussed issues with mapping Kokkos to OpenMP there
are a number of other challenges we discuss briefly in this section. These chal-
lenges did not impact the CG-Solve example, but are of great concern when
implementing more complex applications.

3.1 Scratch memory

Kokkos’ hierarchical parallelism provides the ability to allocate team and thread
private scratch pads, which act as fast user-managed cache. These scratch pads
can be mapped to CUDA and HIP shared memory, and generally are useful for
cooperative work within a thread-team. In principal the OpenMP specification
has the concept of allocators which conceivably would be able to address part
of the problem. However, currently this is not implemented by the compilers.
Furthermore, in order to leverage aforementioned CUDA and HIP shared mem-
ory, the allocation size needs to be specified upon entry into a target region -
something the OpenMP specification does not provide a mechanism for.

3.2 Concurrency

Another concept in Kokkos which is difficult to reliably implement is the idea of
hardware concurrency. For example when users require private worksets for each
active thread in an algorithm, they need to have the ability to acquire a unique
workset, and also to size the number of worksets appropriately before launching
a kernel. Kokkos’ execution space concurrency provides that latter size. This is
used in conjunction with Kokkos’ UniqueToken, a locking mechanism allowing
a caller to acquire a unique index.

OpenMP has directives such as omp_get_max_threads which can be used
to address these issues. Currently the backend uses a mix of hardware knowl-
edge, OpenMP directives on architecture;compiler combinations where they are
supported to make an educated guess.

12 Rahul G. et al.

Since the OpenMPTarget backend allocates memory based on the assump-
tions on the number of active teams, there is a need to have a tight control on
the number of teams generated. This is achieved using the num_teams clause.
However the use of this clause restricts the ability of compilers to optimize on
the occupancy of a GPU. The hack to avoid this by using omp_set_num_teams

and assigning a huge value to it was unsuccessful as most of the compilers did
not respect this routine.

We hope to converge onto a single cohesive portable solution on this issue in
collaboration with various compiler teams that share similar interests as us.

3.3 Custom Reductions

Kokkos allows users to provide custom reduction operators, similar to how the
C++ standard provides a capability to specify reducers in algorithms such as
std::reduce and std::transform reduce. While OpenMP has a mechanism
to implement such custom reductions, which is based on free functions taking the
value arguments. In Kokkos and C++ the reduction operator can be a stateful
object. This is not possible in OpenMP. As a consequence the Kokkos OpenMP-
Target backend only supports the use of pre-defined reduction operators, but
not user provided ones.

4 Conclusion

In this paper we described the aspects of mapping the Kokkos Performance
Portability model to OpenMP for GPUs. Using a simple linear solver we ex-
plore the state of the Kokkos OpenMPTarget backend on NVIDIA and AMD
GPUs with multiple compilers. We find that the OpenMPTarget backend pro-
vides significantly less performance than the architecture specific CUDA and
HIP backends, due to a mix of compiler implementation issues and limitations
in the standard. On average the OpenMP variants (inlcuding Kokkos OpenMP-
Target backend and raw OpenMP code) provide 57% of the CUDA and HIP
backend, but at its worst it is about 30x slower than the HIP backend. An im-
portant observation is that the performance of the OpenMP implementation is
very sensitive to particular construct choices, but that the effect of these choices
depends on both hardware and compiler. This makes it difficult to write and
maintain code which performs consistently across different platforms. Extending
OpenMP testing and verification suites to include performance testing across
different hardware and compilers could help improve this situation, identify re-
gressions in implementations and help develop best practices.

5 Acknowledgements

Sandia National Laboratories is a multimission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia, LLC., a wholly owned sub-
sidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-NA-0003525.

The Kokkos OpenMPTarget Backend: Implementation and Lessons Learned 13

This research used resources of the Oak Ridge Leadership Computing Facility at
the Oak Ridge National Laboratory, which is supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

This research was supported by the Exascale Computing Project (17-SC-20-SC), a

collaborative effort of the U.S. Department of Energy Office of Science and the National

Nuclear Security Administration.

14 Rahul G. et al.

References

1. C. R. Trott, D. Lebrun-Grandie, D. Arndt, J. Ciesko, V. Dang, N. Ellingwood,
R. Gayatri, E. Harvey, D. S. Hollman, D. Ibanez et al., “Kokkos 3: Programming
model extensions for the exascale era,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 33, no. 4, pp. 805–817, 2021.

2. D. A. Beckingsale, J. Burmark, R. Hornung, H. Jones, W. Killian, A. J. Kunen,
O. Pearce, P. Robinson, B. S. Ryujin, and T. R. Scogland, “RAJA: Portable per-
formance for large-scale scientific applications,” in 2019 IEEE/ACM International
Workshop on Performance, Portability and Productivity in HPC (P3HPC). IEEE,
2019, pp. 71–81.

3. J. Doerfert, M. Jasper, J. Huber, K. Abdelaal, G. Georgakoudis, T. Scogland,
and K. Parasyris, “Breaking the vendor lock: Performance portable programming
through OpenMP as target independent runtime layer,” in Proceedings of the Inter-
national Conference on Parallel Architectures and Compilation Techniques, PACT
2022, Chicago, Illinois, October 8-12, 2022, A. Klöckner and J. Moreira, Eds. ACM,
2022, pp. 494–504. [Online]. Available: https://doi.org/10.1145/3559009.3569687

4. J. Doerfert, A. Patel, J. Huber, S. Tian, J. M. M. Diaz, B. Chapman, and G. Geor-
gakoudis, “Co-designing an openmp gpu runtime and optimizations for near-zero
overhead execution,” in 2022 IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS), 2022, pp. 504–514.

