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Abstract
The lattice Boltzmann method is a highly scalable Navier-
Stokes solver that has been applied to flow problems in a
wide array of domains. However, the method is bandwidth-
bound on modern GPU accelerators and has a large memory
footprint. In this paper, we present new 2D and 3D GPU im-
plementations of two different regularized lattice Boltzmann
methods, which are not only able to achieve an accelera-
tion of ∼1.4× w.r.t. reference lattice Boltzmann implemen-
tations but also reduce the memory requirements by up to
35% and 47% in 2D and 3D simulations respectively. These
new approaches are evaluated on NVIDIA and AMD GPU
architectures.
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1 Introduction
Over the past decade, graphics processing unit (GPU) ac-
celerators have become a standard platform for researchers
conducting computational fluid dynamics (CFD) simulations
with the lattice Boltzmann method (LBM). The inherently
data-parallel nature of the lattice Boltzmann algorithm has
led to strong performance on GPUs and the factors related
to this performance have been well-studied. In this paper,
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we evaluate whether a recently developed alternative LBM
algorithm that takes advantage of GPU shared memory and
regularization can outperform the standard LBM algorithm
[3]. For this comparison, we extend this new algorithm to 3D
and to recursive regularization for the first time and evaluate
performance on NVIDIA and AMD GPUs.
Advanced strategies for an efficient implementation of

computationally intensive lattice Boltzmann methods on
GPUs have long been a focus of research. The potential for
GPUs to improve the performance of LBM motivated very
early porting efforts [21]. Since then, methods have been de-
veloped to make efficient use of global memory capacity [15],
overlapping communication and computation [9], exploit
asynchronous communication [11], identify optimal data
access patterns [4, 14], mesh refinement [17–19], solid-fluid
interaction, among many others.
One line of research for GPU-focused lattice Boltzmann

algorithms has focused on exploiting shared memory. Shared
memory allows for communication between threads within
the same thread block. Early LBM implementations made
significant use of shared memory to ensure data stayed in the
cache between reads from and writes to global memory [13,
15]. However, the practice fell out of fashion as increases in
GPU cache sizes and more efficient LBM algorithms were
able to minimize problematic cache evictions. Subsequently,
a number of implementations were successful in obtaining
near-peak performance with respect to this bound [16].
This work extends the recently published work [3], a 2D

implementation of the moment representation of the regu-
larized lattice Boltzmann method used GPU shared mem-
ory to store data during mappings between LBM’s moment
and distribution representations. By ensuring this data re-
mained in the cache and could be communicated between
threads within a block, this implementation was able to store
the simulation state in global memory using a lossless com-
pressed moment representation. By significantly reducing
the amount of data being written to and from global mem-
ory, this proof-of-concept 2D implementation was able to
outperform a standard LBM implementation on an NVIDIA
GPU. Other recent studies [2, 12] have focused on applica-
tions of the moment representation to simulations of soft
matter and turbulent flows. The contributions of this study
that significantly expand on previous studies are as follows:
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1. The implementation of a new regularized approach
based on recursive regulations instead of projective
regularization for lattice Boltzmann method.

2. The implementation of both approaches (recursive and
projective regularization) for 2D and 3D lattice Boltz-
mann simulations using NVIDIA and AMD GPUs.

3. A detailed performance analysis on two different GPU
architectures.

The rest of the paper is organized as follows: Section 2
presents the formulation of the lattice Boltzmann methods
and the GPU algorithms are described in Section 3. Perfor-
mance analysis is carried out in Section 4 for 2D and 3D LBM
lattices on NVIDIA and AMD GPUs. Finally, the conclusions
and future directions are summarized in Section 5.

2 Lattice Boltzmann method
The LBM is an explicit Navier-Stokes solver for weakly com-
pressible flows with lattice-symmetry characteristics which
respect the conservation of the macroscopic moments [10].
LBMdoes this bymodeling the fluid as a distribution function
of microscopic particles. These dual microscopic and macro-
scopic aspects are key features of the mesoscopic method
and have significant implications for LBM regularization
schemes.

2.1 Standard lattice Boltzmann method
The standard lattice Boltzmann method focuses on the evo-
lution of the particle distribution function 𝑓 on a fixed Carte-
sian lattice with a set of 𝑄 discrete velocities c𝑖 . The first
three moments of the distribution 𝑓 correspond to density
𝜌 , momentum 𝜌u, and a second order tensor Π related to
momentum flux. These moments are evaluated using the dis-
crete velocities c𝑖 or, equivalently, the Hermite polynomials
H

𝜌 =

𝑄∑︁
𝑖=1
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𝑄∑︁
𝑖=1

H (0) 𝑓𝑖 (1)
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𝑄∑︁
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From the first two (hydrodynamic) moments, the Maxwell-
Boltzmann equilibrium distribution 𝑓 𝑒𝑞 can be approximated
as

𝑓
𝑒𝑞

𝑖
= 𝜔𝑖𝜌

(
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𝑐2𝑠
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, (4)

for lattice weights 𝜔𝑖 and lattice speed of sound 𝑐2𝑠 [10]. The
corresponding non-equilibrium distribution 𝑓 𝑛𝑒𝑞 is trivially
computed as 𝑓 𝑛𝑒𝑞 = 𝑓 − 𝑓 𝑒𝑞 .
The evolution of particle distribution 𝑓 is formulated in

terms of these equilibrium and non-equilibrium terms by the

lattice Boltzmann equation

𝑓𝑖 (x + c𝑖 , 𝑡 + 1) = 𝑓
𝑒𝑞

𝑖
(x, 𝑡) +

(
1 − 1

𝜏

)
𝑓
𝑛𝑒𝑞

𝑖
(x, 𝑡), (5)

for relaxation time 𝜏 , lattice site x, and timestep 𝑡 . The lat-
tice Boltzmann equation is best understood as the combina-
tion of two steps: collision and streaming. In collision, local
inter-particle interaction leads to a relaxation toward the
equilibrium distribution, which is computed as

𝑓 ∗𝑖 (x, 𝑡) = 𝑓
𝑒𝑞

𝑖
(x, 𝑡) +

(
1 − 1

𝜏

)
𝑓
𝑛𝑒𝑞

𝑖
(x, 𝑡), (6)

for post-collision distribution 𝑓 ∗. During streaming, con-
versely, post-collision distribution components advance on
along the lattice according to their discrete velocities:

𝑓𝑖 (x + c𝑖 , 𝑡 + 1) = 𝑓 ∗𝑖 (x, 𝑡) (7)

2.2 Projective regularization
The fundamental idea of projective regularization in LBM is
to reduce the number of degrees of freedom by performing
the collision operation in the space of the Hermite polyno-
mials [5]. In a second-order approximation of the athermal
Navier-Stokes equations, this space corresponds to the set
of the first three sets of moments M = {𝜌, 𝜌u,Π}. For a
𝐷 dimensional simulation with 𝑄 distribution components,
these moments account for a total of𝑀 = 1 + 𝐷 + (𝐷 ) (𝐷+1)

2
degrees of freedom in this moment space.

In projective regularization, the BGK algorithm ismodified
by projecting the non-equilibrium distribution 𝑓 𝑛𝑒𝑞 into mo-
ment space. As hydrodynamic moments are conserved, this
results only in the non-equilibrium second order moment
Π𝑛𝑒𝑞

Π
𝑛𝑒𝑞

𝛼𝛽
=

𝑄∑︁
𝑖=1

H (2)
𝛼𝛽

𝑓
𝑛𝑒𝑞

𝑖
. (8)

This second order moment is mapped back to distribution
space and replaces 𝑓 𝑛𝑒𝑞

𝑖
in equation 6, resulting in the fol-

lowing projective regularization collision operation,

𝑓 ∗𝑖 = 𝑓
𝑒𝑞

𝑖
+
(
1 − 1

𝜏

) 𝜔𝑖

2𝑐4𝑠
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𝛼𝛽
Π
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We observe that the projective regularization collision
operation can be equivalently formulated in moment space,

Π∗
𝛼𝛽

= Π
𝑒𝑞

𝛼𝛽
+
(
1 − 1

𝜏

)
Π
𝑛𝑒𝑞

𝛼𝛽
, (10)

for equilibrium second order moment Π𝑒𝑞

𝛼𝛽
= 𝜌𝑢𝛼𝑢𝛽 . The

post-collision distribution 𝑓 ∗𝑖 is then recovered by the equa-
tion:

𝑓 ∗𝑖 = 𝜔𝑖

(
H (0)𝜌 + 1

𝑐2𝑠
H (1)

𝛼 𝜌𝑢𝛼 + 1
2𝑐4𝑠

H (2)
𝛼𝛽

Π∗
𝛼𝛽

)
. (11)

In this latter formulation, equations 8, 10, and 11 replace
the collision kernel in equation 6, mapping back to distri-
bution space in order to perform the subsequent streaming
operation. We observe that projective regularization adds a
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modest amount of additional floating point operations but
does not substantially alter the computational profile.

2.3 Recursive regularization
Recursive regularization builds on its projective counter-
part by approximating higher-order moments from the first
three moments M = {𝜌, 𝜌u,Π}. By recursively deriving
non-equilibrium components of the higher-order moments
in this way, a complete Hermite polynomial basis with 𝑄

moments is obtained in the moment space [8]. The resulting
algorithm differs from projective regularization in several
important respects, improving numerical stability but adding
computational complexity [7].

Like projective regularization, recursive regularization be-
gins with computing Π

𝑛𝑒𝑞

𝛼𝛽
using equation 8. Subsequently,

the non-equilibrium components of the third and fourth
order moments a(3) and a(4) are derived from a set of re-
cursion relations, respectively. As these relations and their
derivation are too lengthy to recapitulate here, the reader is
referred to [8]. For the purpose of this study, it is sufficient
to note that a𝑛𝑒𝑞(3) is a function of 𝜌 , u, and Π𝑛𝑒𝑞 , while a𝑛𝑒𝑞(4) is
a function of the aforementioned moments and a𝑛𝑒𝑞(3) . When
combined with the equilibrium moments a𝑒𝑞(3) = 𝜌uuu and
a𝑒𝑞(4) = 𝜌uuuu, the third and fourth order moments a(3) and
a(4) are fully approximated.
Analogous to the moment space formulation of projec-

tive regularization, collision is performed for non-conserved
moments, for Π using equation 10 and for the higher order
moments with the following operations:

a∗(3) = a𝑒𝑞(3) +
(
1 − 1

𝜏

)
a𝑛𝑒𝑞(3) (12)

a∗(4) = a𝑒𝑞(4) +
(
1 − 1

𝜏

)
a𝑛𝑒𝑞(4) . (13)

Subsequently, the post-collision distribution 𝑓 ∗𝑖 is obtained
by extending equation 11 to higher order moments:

𝑓 ∗𝑖 = 𝜔𝑖

(
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𝑐2𝑠
H (1)
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𝛼𝛽
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𝛼𝛽
+

1
2𝑐6𝑠
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𝛼𝛽𝛾
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H (4)
𝛼𝛽𝛾𝛿

𝑎∗(4)𝛼𝛽𝛾𝛿

)
. (14)

We observe that, in contrast to projective regularization,
the computational complexity of recursive regularization is
somewhat higher, owing to the derivation of equlibrium and
non-equilibrium components of the higher order moments.

3 GPU implementation of LBM
3.1 Implementation of the 2 lattice distribution

representation
LBM is amenable to fine granularity (one thread per lattice
node) being the computation of every lattice point is indepen-
dent with respect to the others. In the standard distribution

Algorithm 1 Standard distribution representation LBM in
3D
1: for 𝑖𝑛𝑑 = 1 → 𝑁𝑥 · 𝑁𝑦 · 𝑁𝑧 do
2: 𝑙𝑎𝑡𝑡𝑖𝑐𝑒_𝑠𝑝𝑒𝑒𝑑𝑠 = 19 𝑜𝑟 27
3: Streaming
4: for 𝑖 = 1 → 𝑙𝑎𝑡𝑡𝑖𝑐𝑒_𝑠𝑝𝑒𝑒𝑑𝑠 do
5: 𝑥𝑠𝑡𝑟𝑒𝑎𝑚 = 𝑥 − 𝑐𝑥 [𝑖]
6: 𝑦𝑠𝑡𝑟𝑒𝑎𝑚 = 𝑦 − 𝑐𝑦 [𝑖]
7: 𝑧𝑠𝑡𝑟𝑒𝑎𝑚 = 𝑧 − 𝑐𝑧 [𝑖]
8: 𝑖𝑛𝑑𝑠𝑡𝑟𝑒𝑎𝑚 = 𝑧𝑠𝑡𝑟𝑒𝑎𝑚 ·𝑁𝑥 ·𝑁𝑦 +𝑦𝑠𝑡𝑟𝑒𝑎𝑚 ·𝑁𝑥 + 𝑥𝑠𝑡𝑟𝑒𝑎𝑚
9: 𝑓 [𝑖] = 𝑓1 [𝑖] [𝑖𝑛𝑑𝑠𝑡𝑟𝑒𝑎𝑚]
10: end for
11: for 𝑖 = 1 → 𝑙𝑎𝑡𝑡𝑖𝑐𝑒_𝑠𝑝𝑒𝑒𝑑𝑠 do
12: 𝜌+ = 𝑓 [𝑖]
13: 𝑢𝑥+ = 𝑐𝑥 [𝑖] · 𝑓 [𝑖]
14: 𝑢𝑦+ = 𝑐𝑦 [𝑖] · 𝑓 [𝑖]
15: 𝑢𝑧+ = 𝑐𝑧 [𝑖] · 𝑓 [𝑖]
16: end for
17: 𝑢𝑥 = 𝑢𝑥/𝜌
18: 𝑢𝑦 = 𝑢𝑦/𝜌
19: 𝑢𝑧 = 𝑢𝑧/𝜌
20: Collision
21: for 𝑖 = 1 → 𝑙𝑎𝑡𝑡𝑖𝑐𝑒_𝑠𝑝𝑒𝑒𝑑𝑠 do
22: 𝑐𝑢 = 𝑐𝑥 [𝑖] · 𝑢𝑥 + 𝑐𝑦 [𝑖] · 𝑢𝑦 + 𝑐𝑧 [𝑖] · 𝑢𝑧
23: 𝑡𝑚𝑝 = (𝑢𝑥 )2 + (𝑢𝑦)2 + (𝑢𝑧)2
24: 𝑓𝑒𝑞 = 𝜔 [𝑖] · 𝜌 · (1 + 3 · 𝑐𝑢 + 𝑐𝑢2 − 1.5 · 𝑡𝑚𝑝)
25: 𝑓2 [𝑖] [𝑖𝑛𝑑] = 𝑓 [𝑖] · (1 − 1

𝜏 ) + 𝑓𝑒𝑞 · 1𝜏
26: end for
27: end for

representation, we need two different lattices (𝑓1 and 𝑓2 in
Algorithm 1) to compute the streaming stage in parallel.

Depending on the ordering of the LBM steps (collision and
streaming), two different strategies arise – ‘push’ and ‘pull’ –
which have important consequences in terms of performance
[16]. In the push configuration, collision is performed before
streaming, while the pull configuration performs these in
the opposite order. Introduced by [22], the pull configuration
is considered the fastest GPU implementation of the stan-
dard distribution representation of LBM [16]. As presented
in Algorithm 1, the pull approach minimizes the pressure on
memory versus the push configuration, as the macroscopic
level can be completely computed on top regions of the mem-
ory hierarchy. For the pull configuration, we use a 1D grid
of 1D block of threads, in which each GPU thread performs
a complete LBM update on a single lattice node.
Memory management is of vital importance in GPU im-

plementations of LBM, given the high latency of the GPU
memory. To achieve a high memory bandwidth, it is neces-
sary that the memory accesses are carried out in a coalesced
pattern, with consecutive threads accessing adjacent mem-
ory locations. To achieve this, we use the structure of array
(SoA) addressing scheme for the LBM distribution array,
which has proven to be very efficient in multicore and GPU
architectures [16].
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Algorithm 2 Moment representation of LBM in 3D
1: Define 𝑐𝑜𝑙𝑆𝑖𝑧𝑒𝑥
2: Define 𝑐𝑜𝑙𝑆𝑖𝑧𝑒𝑦
3: Let 𝑛𝑢𝑚𝐶𝑜𝑙𝑠 = (𝑁𝑥 · 𝑁𝑦)/(𝑐𝑜𝑙𝑆𝑖𝑧𝑒𝑥 · 𝑐𝑜𝑙𝑆𝑖𝑧𝑒𝑦)
4: Let 𝑛𝑢𝑚𝐿𝑎𝑦𝑒𝑟𝑠 = 𝑁𝑧

5: #𝑀𝑜𝑚𝑒𝑛𝑡𝑠 = 10
6: 𝑙𝑎𝑡𝑡𝑖𝑐𝑒_𝑠𝑝𝑒𝑒𝑑𝑠 = 19 𝑜𝑟 27
7: Global memory array
8: 𝑀𝑜𝑚𝑒𝑛𝑡𝐺𝑃𝑈 [𝑁𝑥 · 𝑁𝑦 · #𝑀𝑜𝑚𝑒𝑛𝑡]
9: Shared memory array
10: 𝐹𝑠ℎ𝑎𝑟𝑒𝑑 [𝑙𝑎𝑡𝑡𝑖𝑐𝑒_𝑠𝑝𝑒𝑒𝑑𝑠]
11: Local memory array
12: 𝑀𝑜𝑚𝑒𝑛𝑡𝑙𝑜𝑐𝑎𝑙 [#𝑀𝑜𝑚𝑒𝑛𝑡]
13: for 𝑐𝑜𝑙𝑢𝑚𝑛 = 1 → 𝑛𝑢𝑚𝐶𝑜𝑙𝑠 do
14: for 𝑙𝑎𝑦𝑒𝑟 = 1 → 𝑛𝑢𝑚𝐿𝑎𝑦𝑒𝑟𝑠 do
15: Read moments from global memory (Fig. 1)
16: 𝜌 = 𝑀𝑜𝑚𝑒𝑛𝑡𝐺𝑃𝑈 [𝑖𝑛𝑑𝐺𝑃𝑈 (𝑐𝑜𝑙𝑢𝑚𝑛, 𝑙𝑎𝑦𝑒𝑟, ..., 0)]
17: 𝑢𝑥 = 𝑀𝑜𝑚𝑒𝑛𝑡𝐺𝑃𝑈 [𝑖𝑛𝑑𝐺𝑃𝑈 (𝑐𝑜𝑙𝑢𝑚𝑛, 𝑙𝑎𝑦𝑒𝑟, ..., 1)]
18: 𝑢𝑦 = 𝑀𝑜𝑚𝑒𝑛𝑡𝐺𝑃𝑈 [𝑖𝑛𝑑𝐺𝑃𝑈 (𝑐𝑜𝑙𝑢𝑚𝑛, 𝑙𝑎𝑦𝑒𝑟, ..., 2)]
19: 𝑢𝑧 = 𝑀𝑜𝑚𝑒𝑛𝑡𝐺𝑃𝑈 [𝑖𝑛𝑑𝐺𝑃𝑈 (𝑐𝑜𝑙𝑢𝑚𝑛, 𝑙𝑎𝑦𝑒𝑟, ..., 3)]
20: for𝑚 = 4 → #𝑀𝑜𝑚𝑒𝑛𝑡𝑠 do
21: 𝑖𝑛𝑑 = 𝑖𝑛𝑑𝐺𝑃𝑈 (𝑐𝑜𝑙, 𝑙𝑎𝑦𝑒𝑟, ...,𝑚)
22: 𝑀𝑜𝑚𝑒𝑛𝑡𝑙𝑜𝑐𝑎𝑙 [𝑚] = 𝑀𝑜𝑚𝑒𝑛𝑡𝐺𝑃𝑈 [𝑖𝑛𝑑]
23: end for
24: Perform collision (Eq.10)
25: for𝑚 = 4 → #𝑀𝑜𝑚𝑒𝑛𝑡𝑠 do
26: 𝑡𝑚𝑝 = (1 − 1

𝜏 ) 𝑀𝑜𝑚𝑒𝑛𝑡𝑙𝑜𝑐𝑎𝑙 [𝑚]
27: 𝑀𝑜𝑚𝑒𝑛𝑡𝑙𝑜𝑐𝑎𝑙 [𝑚] = 𝑀𝑜𝑚𝑒𝑛𝑡𝑙𝑜𝑐𝑎𝑙 [𝑚] + 𝑡𝑚𝑝

28: end for
29: Map moments to f (Eq.11)
30: for 𝑙 = 1 → 𝑙𝑎𝑡𝑡𝑖𝑐𝑒_𝑠𝑝𝑒𝑒𝑑𝑠 do
31: 𝑖𝑛𝑑 = 𝑠ℎ𝑎𝑟𝑒𝑑_𝑖𝑛𝑑 (𝑙, 𝑐𝑜𝑙, 𝑙𝑎𝑦𝑒𝑟, ...)
32: 𝐹𝑠ℎ𝑎𝑟𝑒𝑑 [𝑖𝑛𝑑] = 𝑆𝑡𝑟𝑒𝑎𝑚(𝑙, 𝑀𝑜𝑚𝑒𝑛𝑡𝑙𝑜𝑐𝑎𝑙 , 𝜌,𝑢𝑥 , ...)
33: end for
34: Synchronization
35: Map 𝑓 to moments in GPU memory (𝐸𝑞.8)
36: for𝑚 = 1 → #𝑀𝑜𝑚𝑒𝑛𝑡𝑠 do
37: for 𝑙 = 1 → 𝑙𝑎𝑡𝑡𝑖𝑐𝑒_𝑠𝑝𝑒𝑒𝑑𝑠 do
38: 𝑖𝑛𝑑 = 𝑠ℎ𝑎𝑟𝑒𝑑_𝑖𝑛𝑑 (𝑙, ...)
39: 𝑀𝑜𝑚𝑒𝑛𝑡𝑙𝑜𝑐𝑎𝑙 [𝑚]+ = 𝑀𝑜𝑚𝑒𝑛𝑡 (𝐹𝑠ℎ𝑎𝑟𝑒𝑑 [𝑖𝑛𝑑])
40: end for
41: end for
42: Write back moments to Global GPU memory
43: for𝑚 = 1 → #𝑀𝑜𝑚𝑒𝑛𝑡𝑠 do
44: 𝑖𝑛𝑑 = 𝐺𝑃𝑈 _𝑖𝑛𝑑 (𝑐𝑜𝑙𝑢𝑚𝑛, 𝑙𝑎𝑦𝑒𝑟, ...,𝑚)
45: 𝑀𝑜𝑚𝑒𝑛𝑡𝐺𝑃𝑈 [𝑖𝑛𝑑] = 𝑀𝑜𝑚𝑒𝑛𝑡𝑙𝑜𝑐𝑎𝑙 [𝑚]
46: end for
47: end for
48: end for

3.2 Implementation of the 1 lattice moment
representation

While the projective and recursive regularization schemes in
sections 2.2 and 2.3 can be implemented in the distribution
representation from the previous section, their simulation

states being completely represented by the first three mo-
ments M enables a more efficient approach based on mo-
ments. The fundamental idea of the moment representation
(MR) implementation is to only read and write to and from
global memory at the moment space [20]. However, to retain
LBM’s property of exact streaming, the streaming operation
must be performed in the distribution space, necessitating
mapping between distribution and moment spaces before
and after streaming. This basic form has several significant
implications for implementation design, both in terms of the
algorithm itself and how the lattice sites are associated with
thread blocks on the GPU.

The major steps of the MR implementation for projective
regularization are illustrated in Algorithm 2 with the push
configuration of collision first and streaming second. In con-
trast, the GPU implementation of MR differs significantly
from both the CPU version and from the standard LBM im-
plementation discussed in Section 3.1. The most important
differences between the implementation of the distribution
and moment representations fall into (1) thread distribution,
(2) memory access pattern, and (3) shared memory usage.

Shared memory
Moment array

2D

3D

Figure 1. Blocks of threads distributions of the lattice nodes
for the moment-based representation of the LBM. During a
timestep, moments from a given layer (red layer) are read
from memory, collision is performed and the post-collision
distribution are streamed to the corresponding locations in
shared memory, and the moments corresponding to two
layers earlier are computed and written back (green layer).

Unlike the thread distribution used in the standard rep-
resentation, the fluid domain is decomposed into columns,
as illustrated in 2D and 3D in figure 1, and each column
is associated with a specific block of threads. Each column
is composed of a number of tiles, each one or more lattice
points high. The number of threads in the thread block is
equal to the number of lattice points in a tile, along with a
one lattice point wide halo in the non-axial dimensions of
the column. This halo is necessary to allow distribution com-
ponents to stream into the column from adjacent columns.
In 2D, for a tile with dimensions 𝑥𝑡 ×𝑦𝑡 in a column parallel
to the 𝑦-axis, the number of threads in the thread block is
(𝑥𝑡 + 2) × 𝑦𝑡 . Similarly, in 3D, for a tile with dimensions
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𝑥𝑡 ×𝑦𝑡 × 𝑧𝑡 in a column parallel to the 𝑧-axis, the number of
threads in the thread block is (𝑥𝑡 + 2) × (𝑦𝑡 + 2) × 𝑧𝑡 .
Each block within the column is updated via a sliding

window algorithm that uses circular array time shifting. The
purpose of this approach is to maximize data reuse and to
avoid race conditions while columns are updated simultane-
ously. At each iteration, the thread block starts by reading
from global memory the moments M from all 𝑁 lattice
points in the bottom tile and its halo. For each lattice point,
collision is performed in moment space using equation 10,
and the post-collision moments are mapped to distribution
space using equation 11. To perform streaming, the post-
collision distribution components are written to an array
in shared memory, into array indices associated with the
lattice site to which the distribution component is streaming.
We note that streaming is performed only for distribution
components whose streaming destination is within the col-
umn – those streaming into other columns are handled by
the halos of those other columns. Moreover, to account for
distribution components that stream up or down, out of
the tile but within the column, the shared memory distri-
bution array must include two additional layers beyond the
size of the tile. Consequently, the shared memory size is
𝑥𝑡 × (𝑦𝑡 + 2) ×𝑄 double precision values for a 2D fluid do-
main and 𝑥𝑡 × 𝑦𝑡 × (𝑧𝑡 + 2) ×𝑄 for a 3D fluid domain. This
process is repeated for subsequent tiles, moving from the
bottom to the top of the fluid domain.
After a given tile has streamed into shared memory and

synchronization has been performed, all distribution com-
ponents have streamed into the shared memory locations
associated with the tile directly below it. Once this has oc-
curred, the moments M on this tile are recomputed using
equations 1 – 3 and written back to global memory. To avoid
a race condition with reads being performed by adjacent
columns, circular array shifting is employed, as illustrated
on the right side of figure 1 [1].

We observe that there are several implementation details
to keep in mind. First, optimal performance is achieved with
two or more thread blocks per SM, so the targeted tile size
and shared memory usage per column must be adjusted to
account for this. Second, for 3D fluid domains, tiles that are
more than one lattice point high – and, consequently, have a
3D block of threads - consistently underperform those that
are a single lattice point high, due to poorer memory access
patterns.

4 Performance Evaluation
To understand the performance gain of the LBM moment
representation (MR) on GPUs, we evaluated the performance
reached against a reference implementation of the standard
distribution representation (ST). Versions of the moment
representation approach using the projective and recursive

GPU Arch. NVIDIA V100 AMD MI100
Frequency 1,455 MHz 1,502 MHz

CUDA/HIP Cores 5,120 7,680
SM/CU counts 80 120
Shared Mem. up to 96 KB per SM 64KB per CU

L1 up to 96 KB per SM 16 KB per CU
L2 (unified) 6,144 KB 8,192 KB
Memory HBM2 16 GB HBM2 32 GB
Bandwidth 900 GB/s 1228.86 GB/s
Compiler nvcc v11.0.221 hipcc 4.2

Table 1. Summary of the main features of the NVIDIA V100
and AMD MI100 GPUs

regularization collision kernels are denoted MR-P and MR-R,
respectively.
All three approaches – ST, MR-P, and MR-R – are imple-

mented in CUDA and HIP proxy applications. They simulate
flow in a rectangular 2D or 3D channel, using bounceback
boundary conditions at the channel walls and finite differ-
ence boundary conditions at the inlet and outlet [6]. Two
common single-speed LBM lattices are considered: D2Q9
and D3Q19.

4.1 Performance modeling
We measure the performance on two relatively comparable
GPU architectures, the NVIDIA V100 GPU and the AMD
MI100. Metrics for both devices are listed in Table 1. Perfor-
mance of the methods is measured usingMFLUPS, a standard
metric for LBM throughput which stands for the number
of million lattice updates per second. These measurements
are compared with predictions from a theoretical roofline
model. Additionally, we use measurements from GPU profil-
ers to confirm the theoretical roofline analysis. Precise per-
formance measurements were obtained using the NVIDIA
profilers, nvvp and nsight, for the V100 and the AMD profiler
rocprof for the MI100.
The roofline performance model is used to estimate the

ideal performance in MFLUPS for each propagation pattern.
As LBMmethods are typically bandwidth bound, the roofline
performance model simplifies to a function of the device
global memory bandwidth 𝐵𝐵𝑊 and the number of bytes per
fluid lattice update 𝐵/𝐹 of the lattice Boltzmann propagation
pattern:

𝑀𝐹𝐿𝑈𝑃𝑆𝑚𝑎𝑥 =
𝐵𝐵𝑊

106 × 𝐵/𝐹 . (15)

The number of bytes per fluid lattice update 𝐵/𝐹 for each
method and lattice are shown in Table 2. We observe that,
because the differences between the projective MR-P and
recursive MR-R methods are limited to in-cache behavior,
their 𝐵/𝐹 requirements are identical and, for brevity, are
collectively represented as MR. For example, the required
memory by the ST models to simulate 15 million fluid points
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Pattern Bytes/FLUP (B/F) D2Q9 D3Q19
ST 2Q*double 144 304
MR 2M*double 96 160

Table 2. Bytes per fluid lattice update for each propagation
pattern and lattice.

GPU NVIDIA (Volta) V100 AMD MI100
Model D2Q9 D3Q19 D2Q9 D3Q19
ST 6,250 2,960 8,533 4,042
MR 9,375 5,625 12,800 7,680

Table 3. Estimated optimal𝑀𝐹𝐿𝑈𝑃𝑆 from roofline perfor-
mance model for each propagation pattern for NVIDIA V100
GPU and AMDMI100 GPU using direct addressing and equa-
tion 15.

is about 2GB for D2Q9 simulations and 4.2GB for D3Q19
simulations, against the 1.3GB and 2.23GB required by the
MR models for the same kind of simulations, reducing the
memory requirements in about a 35% and 47% respectively.
By combining the device bandwidths from Table 1 and

the bytes per fluid lattice update from Table 2, we can use
equation 15 to produce the roofline performance estimates
in Table 4.

4.2 Performance analysis on 2D simulations
Figure 2 graphically illustrates the performance for the ST,
MR-P, and MR-R GPU implementations over a range of prob-
lem sizes and in comparison with the roofline predictions.
The average performance of the ST approach using the

NVIDIA V100 is about 5,300 MFLUPS, which is approxi-
mately 85% of the theoretical peak estimated from the roofline
model. Using the AMD MI100, the ST approach is able to
reach a performance of up to 6,200 MFLUPS. Although this
is about a 15% higher performance when compared with
performance on the V100, this represents 72% of the ST
roofline. Conversely, for the MR-P projection pattern, we
achieve significantly higher performance than for ST: about
7,000 MFLUPS and 8,600 MFLUPS on the V100 and MI100,
respectively. However, the percentage of theoretical peak
performance attained by the MR-P is somewhat lower, with
approximately 75% for the V100 and 67% for the MI100.
Versus MR-P, the recursive MR-R propagation pattern

does add computational complexity in terms of extra float-
ing point operations and temporary variables. The arith-
metic intensity of MR-R is almost 60% higher than MR-P
for the NVIDIA V100. However, the impact on performance
on MFLUPS for the D2Q9 lattice is not significant. Indeed,
we observe that the MR-R scheme is only marginally slower
than MR-P on the V100 and the two schemes have virtually
identical performance on the MI100.

GPU NVIDIA (Volta) V100
Bandwidth 900GB/s
Model D2Q9 D3Q19
ST 790 GB/s 765 GB/s
MR 664 GB/s 650 GB/s
GPU AMD MI100

Bandwidth 1,228.86 GB/s
Model D2Q9 D3Q19
ST 665 GB/s 655 GB/s
MR 614 GB/s 664 GB/s

Table 4. Estimated optimal𝑀𝐹𝐿𝑈𝑃𝑆 from roofline perfor-
mance model for each propagation pattern for NVIDIA V100
GPU and AMDMI100 GPU using direct addressing and equa-
tion 15.

To better understand the performance of the ST and MR
schemes with respect to the roofline, it is necessary to con-
sider bandwidth utilization. We have measured the band-
width reached by each of the implementations evaluated in
this study. On the V100, the reference ST propagation pat-
tern reaches about 790 GB/s, close to the 90% of the peak.
The percentage of peak was considerably lower for the MR
propagation patterns, achieving only 664 GB/s, for about
73% of the peak bandwidth on the V100. On the MI100, we
see similar behavior: the ST method still outperforms the
MR method, with a bandwidth of 665 GB/s versus 614 GB/s.
However, the difference in the percentages of peak on the
MI100 is somewhat wider – about 74% for ST and only 50%
for MR – and both percentages are significantly worse than
was achieved on the V100.

On both GPUs, we observe similar conclusions, the lower
bandwidth reported by theMR approach is mainly because of
higher complexity in the implementation, including a more
complex memory pattern, shared memory usage, halos, and
restrictions on thread block size. Although the ST implemen-
tation obtains a higher bandwidth (about 17% and 24% higher
on V100 and MI100, respectively), the MR implementation
is able to achieve an overall better performance in MFLUPS
(about 32% and 38% better performance on V100 and MI100,
respectively). This improvement is due to the lower number
of memory accesses with MR, about 30% fewer for the V100
and 23% fewer for the MI100.

4.3 Performance analysis on 3D simulations
For the 3D performance analysis, we focus on the popular
D3Q19 lattice. Figure 3 shows the performance of the ST, MR-
P, and MR-R propagation patterns with respect to roofline
predictions over a range of problem sizes.
Using the ST propagation pattern with D3Q19, we ob-

serve similar performance on the NVIDIA and AMD GPUs,
almost 2,600 MFLUPS for the V100 and about 2,800 on the
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Figure 2. Performance analysis on D2Q9 LBM simulations for NVIDIA V100 (left) and AMD MI100 (right).
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Figure 3. Performance analysis on D3Q19 LBM simulations for NVIDIA V100 (left) and AMD MI100 (right).

MI100. However, while this result is approximately 88% of
the roofline prediction for the V100, it is only 69% of the
predicted performance for the MI100. The MR-P propagation
pattern is able to achieve outperform ST on both devices,
recording sustained performance of 3,800 MFLUPS on the
V100 and 3,200 on the MI100. However, the MR-P results
are substantially lower than their rooflines, at only than 68%
and 42% of expected performance on the V100 and MI100,
respectively. These numbers are consistent with bandwidth,
as MR-P propagation pattern reaches 650 GB/s (70% of peak
bandwidth) on the V100 and about 664 GB/s (54% of peak
bandwidth) on the MI100. Unlike the 2D results for all prop-
agation patterns and the ST results for D3Q19, the V100
significantly outperforms the MI100 in terms of MFLUPS
for the MR-P propagation pattern with D3Q19, despite the
device’s lower bandwidth.

In contrast to D2Q9, the performance differences between
the MR-P and MR-R propagation patterns are quite clear
with the D3Q19 lattice. Compared with the MR-P baseline,

MFLUPS drop by about 800 for the V100 and 700 for the
MI100.

5 Conclusions and future work
In this paper, we demonstrated the ability of the GPU imple-
mentation based on a moment representation propagation
pattern to reduce the execution time of LBM calculations.
These speedups are the result of leveraging regularization, al-
ready being used in lattice Boltzmann simulations to improve
stability, to losslessly compress simulation data, and to re-
duce data motion to and from global memory. The projection-
based moment representation MR-P achieves speedups of
up to 1.32× and 1.38× for the D2Q9 lattice on the NVIDIA
V100 and MI100 GPUs, respectively, as well as speedups of
1.46× and 1.14× for the D3Q19 lattice.

Overall, we found a very compelling case for using the
moment representation propagation pattern on the NVIDIA
V100 GPU. Results for the AMD MI100 are more mixed:
while very strong performance was obtained with D2Q9, the
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moment representation only modestly outperformed D3Q19
versus the distribution representation.

There are several directions for future work with the mo-
ment representation. First, further research with the moment
representation should focus on lattices with a large num-
ber of components, such as the single-speed D3Q27, and
multi-speed lattices such as D3Q39, because their increased
runtime is often cited as a reason for not using them. Sec-
ond, emerging GPU architectures feature significantly larger
cache sizes, which may facilitate more efficient versions of
the moment representation on these devices.
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