
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Frontier: Exploring Exascale
The System Architecture of the First Exascale Supercomputer

Anonymous Author(s)

ABSTRACT
As the US Department of Energy (DOE) computing facilities began
deploying petascale systems in 2008, DOE was already setting its
sights on exascale. In that year, DARPA published a report on the
feasibility of reaching exascale. The report authors identified several
key challenges in the pursuit of exascale including power, memory,
concurrency, and resiliency. That report informed the DOE’s com-
puting strategy for reaching exascale. With the deployment of Oak
Ridge National Laboratory’s Frontier supercomputer, we have offi-
cially entered the exascale era. In this paper, we discuss Frontier’s
architecture, how it addresses those challenges, and describe some
early application results from Oak Ridge Leadership Computing
Facility’s Center of Excellence and the Exascale Computing Project.
ACM Reference Format:
Anonymous Author(s). 2023. Frontier: Exploring Exascale: The System
Architecture of the First Exascale Supercomputer. In Proceedings of The In-
ternational Conference for High Performance Computing, Networking, Storage,
and Analysis (SC23). ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
In this paper, we provide a system architecture overview of the
Frontier exascale supercomputer deployed as part of the Oak Ridge
Leadership Computing Facility (OLCF) within Oak Ridge National
Laboratory’s National Center for Computational Science. While
doing so, we reflect on the prescient exascale report published by
DARPA in 2008. [37] In that report, the authors outlined the critical
challenges to reaching exascale when the TOP500 was expecting its
first petascale systems. They foresaw many of the challenges that
we have experienced in fielding this machine.While even their most
optimistic straw-man projections did not show a path to success,
we will show that Frontier meets the spirit of their expectations as
a usable exascale system.

For the rest of the paper, we review the four prime challenges
outlined in the 2008 report; we then describe Frontier’s architecture
including compute hardware, interconnect, storage, and software;
we evaluate micro-benchmarks for the various hardware types as
well as real applications; and lastly we address how Frontier meets
or fails to meet the expectations of the 2008 report’s authors.

2 THE CHALLENGES OF EXASCALE
In 2007 with the imminent arrival of the world’s first petascale
systems, DARPA commissioned a working group to study the fea-
sibility of deploying an exascale system in the 2015 time frame.

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.
SC23, November 12–17, 2023, Denver, CO, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

The working group met nine times between May and November
before drafting their report in 2008. The resulting 230+ page report,
“ExaScale Computing Study: Technology Challenges in Achieving
Exascale Systems” [37] outlined the technological trends at the time
and identified critical challenges that would need to be addressed
in order to build and deploy an exascale system. While the working
group’s report discussed many issues, they focused on these four
fundamental challenges (in descending order of difficulty):

• Energy and Power
• Memory and Storage
• Concurrency and Locality
• Resiliency

First, they defined what they thought an exascale system would
be. They argued that it was more than an exaflop of FP64 perfor-
mance. They made allowances for up to twice the floor space and
twice the power of the first petascale systems (i.e., up to 20 MW/EF).
The threshold of 20 MW also was important so that a facility would
not pay more for power over the life of the system than it paid for
the system.1 In many cases, they argued that system resources such
as memory capacity and bandwidth, storage capacity and band-
width, etc. should be 1,000X more than the two petascale systems
deployed in 2008.2 They noted that they did not consider cost when
setting these targets. As we will describe later, technology costs did
not decline by 1,000x and limited the growth of many resources.

2.1 The Energy and Power Challenge
The group reviewed the technology trends for silicon process nodes;
datamovementwithin processors, between processors, and through-
out the system; as well as storing data in memory and persistent
storage. They considered various straw man designs such as heavy
nodes (also called fat nodes as used in OLCF’s Frontier and Summit
systems) versus light nodes (also called thin nodes as used in IBM
BlueGene systems). They also performed an aggressive, bottom-up
exercise of starting with Floating Point Units (FPUs) and then work-
ing up to full processors, nodes, and then the full system. None of
these straw man designs could approach the 20 MW/EF target with
these design points projecting between 68–155 MW/EF.

2.2 The Memory and Storage Challenge
The group then outlined the inability of current technology trends
to provide enoughmemory capacity and bandwidth let alone within
a reasonable power budget. They similarly detailed the lack of
trends to provide enough storage capacity, bandwidth, and I/O
operations per second.

1At that time, one definition of a supercomputer was whatever one could buy for 100
million US$. Given an expected service life of five years, the cost is 20 million US$
per year. DOE typically uses a rule-of-thumb that 1 MW of power costs 1 million US$,
hence the 20 MW target.
2LANL’s Roadrunner reported in June and OLCF’s Jaguar reported in November.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

SC23, November 12–17, 2023, Denver, CO, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

2.3 The Concurrency and Locality Challenge
The group acknowledged the end of Dennard Scaling (i.e., the stag-
nation of clock frequencies since the early 2000s) leaving increased
parallelism via core-count growth as the only way to increase per-
formance. With clock frequencies stuck around 1 GHz, they pro-
jected that core counts would grow to 1 billion for the full system.
The group described different applications’ levels of spatial and
temporal locality. Most of the studied applications had low or no
spatial locality and temporal locality varied from low to high. Lower
locality increased the overhead due to communication.

2.4 The Resiliency Challenge
Lastly, the group highlighted the explosive growth in component
counts and complexity, the need to use advanced technology, the
desire to use lower voltages, and potentially new types of failures
due to smaller and smaller process geometries.

3 FRONTIER’S ARCHITECTURE
In this section, we describe the node design, the interconnect, the
I/O subsystem, and the software environment.

3.1 Node Design
HPE’s official designation for a Frontier node is Cray EX 235a, but
we still use the development name, Bard Peak. The Bard Peak design
continues the heterogeneous CPU+GPU (heavy/fat) node designs
found in OLCF’s Titan and Summit systems. While Titan had a ratio
of 1:1 CPU to GPU and Summit has a ratio of 1:3, the Frontier’s Bard
Peak node has a ratio of 1:4, sort of. We describe both processors
below and explain the “sort of” comment as well.

3.1.1 AMD’s EPYC™ 7A53 “Trento” CPU. AMD’s EPYC line of pro-
cessors has highlighted AMD’s chiplet and packaging technologies.
Designed specifically for Frontier, the EPYC 7A53 CPU, code-named
Trento, uses the same Zen3 cores asMilan. It has 64 cores distributed
across eight Core Complex Dies (CCD) [2] and is similar to the Mi-
lan 7713/7713P. The difference is in the central I/O Die (IOD). AMD
created a custom IOD that replaced the PCIe connections with
InfinityFabric™ connections described below.

Each Trento has eight 64 GiB DIMMs of DDR4-3200 memory
with a peak bandwidth of 205 GiB/s. EPYC CPUs support NUMA-
Per-Socket (NPS) of one, two, or four NUMAs. [2] When run in
NPS-1, all memory allocations are striped over all eight DIMMswith
the benefits including more bandwidth available to a single process
but at the cost of lower aggregate bandwidth and slightly higher
latency. In NPS-4, allocations are striped over the two DIMMs in
the same quadrant. The local access provides slightly lower latency
and slightly higher aggregate bandwidth when processes in each
NUMA access memory concurrently. Frontier uses NPS-4.

3.1.2 AMD’s Instinct™ MI250X GPU. AMD’s Instinct MI200 GPU
is AMD’s fourth generation in the Instinct line of CDNA™ GP-
GPUs. AMDhas three versions includingMI210,MI250, andMI250X.
Bard Peak uses the MI250X. The MI250X uses the OCP Accelerator
Module (OAM) package that requires water cooling. The MI250X is
composed of two chiplets, called Graphics Compute Dies (GCD).
The GCDs are why we used the “sort of” comment above. Each
GCD presents itself to the operating system as a GPU. Because of

this, the user sees eight GPUs when they query the node. The result
is that each of the Trento CCDs is paired with a GCD.

The primary distinction between the MI250 and the MI250X
that is used in Frontier is the connection to the host. While the
MI250 uses traditional PCIe connections, Frontier’s MI250X uses
InfinityFabric instead to connect to the Trento CPU.

Compared to its MI100 predecessor, each MI250X GCD dou-
bled the 64-bit floating point (FP64) performance. Support for fast
hardware-based FP64 atomic operations was also added. Each GCD
has four HBM stacks like the MI100, but the data rate is increased
to an aggregate peak of 1.635 TB/s. When compared to the peak
bandwidth of the CPU, the node’s aggregate peak GPU HBM band-
width of 13.08 TB/s is 64 times greater. This ratio is higher (worse)
than the ratio of 50X on Titan and 16X on Summit. With a ratio
this high, we expect most users will keep their data in the HBM
and avoid moving it back and forth to the CPU as much as possible.

3.1.3 AMD’s InfinityFabric™. AMD’s InfinityFabric3 is a coherent,
bi-directional, memory-semantic interconnect used to connect pro-
cessors. Designed for CPU-to-CPU connectivity, AMD extended
it for GPU-to-GPU connectivity starting with the MI50 GPUs. For
the Bard Peak node design, AMD enhanced xGMI to connect the
Trento CPU to the eight MI250X GCDs using the xGMI 2.0 protocol
with a theoretical peak of 36+36 GB/s per CPU-to-GCD connection.

The node also uses groups of 1, 2, and 4 xGMI 3.0 links run-
ning at 50+50 GB/s to anisotropically connect the eight GCDs in a
twisted ladder topology as shown in Figure 1. First, the two GCDs
within each MI250X OAM package have four north/south links be-
tween them for a theoretical peak of 200+200 GB/s. The north/south
connections between OAM packages have two xGMI links for a
theoretical 100+100 GB/s. All east/west links are single links run-
ning at 50+50 GB/s. In the image, the diagonal links are shown in
different colors for easier visualization.

3.1.4 HPE’s Slingshot NIC. One of the chief innovations of the
Bard Peak design is how the node connects to the Slingshot fabric.
Traditionally, the Network Interface Cards (NIC) have been attached
directly to the CPU or in some newer designs to a PCIe switch that
is connected to the CPU and the GPUs. Because the data will mostly
reside in the GCD’s HBM as mentioned above, each of the four NICs
is attached to one of the MI250X OAM packages.

Each Slingshot NIC, code-named Cassini, is a 200 Gb/s Ethernet
NIC that can operate using a HPE-proprietary HPC Ethernet mode
that reduces latency and provides OS-bypass. [46]

3.2 Slingshot Interconnect
Connecting Frontier’s nodes is the Slingshot interconnect. Slingshot
is a superset of Ethernet that includes proprietary HPE extensions
to reduce average latency, reduce tail latency, improve bandwidth,
and improve message rates. [32] Frontier has a three-hop dragonfly
[35] topology comprised of 80 groups: 1 management, 5 I/O, and
74 compute. The management and I/O groups consist of 16 fully-
connected, top-of-rack switches each, while the compute groups
each include 32 fully-connected, water-cooled blade switches.

3InfinityFabric refers both to chiplet-to-chipet connections within a socket and to
socket-to-socket connections. AMD calls the chiplet connections Global Memory Inter-
connect or GMI. AMD calls the socket-to-socket connections xGMI (external GMI). [2]

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Frontier: Exploring Exascale SC23, November 12–17, 2023, Denver, CO, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 1: Connectivity within the Bard Peak node. The
CPU<->GPU links are omitted for clarity.

Connections between groups are typically counted as bundles,
with each bundle consisting of a QSFP-DD active optical cable with
two 200Gb/s links. Connections between Frontier compute groups
use a bundle size of two, which provisions 7.3 TB/s of global con-
nectivity per group compared to 12.8 TB/s of injection bandwidth.
This is sometimes referred to as the network taper. Frontier’s ratio
of global-to-injection bandwidth is 57%. This reduces the effective
global bandwidth available to the nodes. The total global bandwidth
between the compute groups is 270+270 TB/s. There is one bundle
from each compute group to each storage group and the manage-
ment group. There are five bundles between storage groups. The
storage groups also have three bundles to the management group.

The dragonfly topology is a direct network, which means all
switches have some endpoints to them in contrast to an indirect
network such as a Clos or fat-tree that has some switches that
only have connections to other switches. Direct networks, such as
dragonfly, slimfly, and hyper-x, use non-minimal routing to take
advantage of additional paths through the fabric to achieve higher
bandwidth compared to only using minimal paths. As we will show
later, the impact is that the global bandwidth is reduced yet again.

3.3 Storage Subsystem
Frontier’s I/O subsystem is an evolution of the CORAL-1 designs [70]
and consists of two main subcomponents: node-local storage and a
center-wide parallel file system (PFS).

Like Summit, each Frontier node features node-local storage.
Each Frontier node has two NVMe M.2 drives configured in RAID-0
(striping, no redundancy) to increase bandwidth and I/O Operations
Per Second (IOPS). The NVMe mount provides ∼3.5 TB of capacity
as well as 8 GB/s for reads, 4 GB/s for writes, and up to 2.2 million
IOPS, per Frontier node. The node-local storage is user-managed
and is primarily for caching writes from modeling/simulation jobs

I/O Subsystem Specifications

Tier Capacity Read BW Write BW
PB TB/s TB/s

Node-Local 32.9 PB 75.3 TB/s 37.6 TB/s
Orion Metadata 10.0 PB 0.8 TB/s 0.4 TB/s
Orion Performance 11.5 PB 10.0 TB/s 10.0 TB/s
Orion Capacity 679.0 PB 5.5 TB/s 4.6 TB/s

Table 1: I/O Subsystem capacity and theoretical read/write
bandwidths.

and caching reads for machine learning jobs. OLCF is developing
software for both of these use cases.

Unlike Summit’s GPFS file system, Frontier uses Lustre for its
center-wide PFS, named Orion. Orion comprises 225 Scalable Stor-
age Units (SSU), each of which has two controllers, two Cassini
NICs per controller, (24) 3.2 TB NVMe drives, and (212) 18 TB hard
drives. Within an SSU, the NVMe drives and hard disks are config-
ured into two distinct sets of ZFS DRAID-2 groups for redundancy
and performance. These two distinct sets are then aggregated at
the PFS layer across all SSUs as an NVMe-based flash performance
tier and a hard disk-based performance tier, under the same single
POSIX namespace. Also, as part of the Orion namespace, the Lus-
tre metadata servers host NVMe flash devices to enable improved
metadata and small I/O performance.

While both HPE and OLCF are developing software that would
allow writes to go to the performance tier and then auto-migrate
to the capacity tier, neither is deemed production ready at the time
of this writing. Instead, OLCF has configured Orion with Lustre’s
Progressive File Layout (i.e., a self-extending layout) that lands the
first 256 KB of data of each file in the flash-based metadata servers
using Lustre’s Data-on-Metadata (DoM) feature. The range greater
than 256 KB up to 8 MB lands in the performance tier. All remaining
data lands in the capacity tier. The intent for using this PFL layout
is to cache really small files in the metadata servers such that the
contents are returned when the file is opened without having to
then contact an object server. The data stored in the performance
tier will hopefully include the file’s index data if it has any. The I/O
subsystem’s specifications are listed in Table 1.

3.4 Software Ecosystem
3.4.1 Operating System. The operating system environment for
Frontier is HPE Cray OS, a specialized version of SUSE Enterprise
Linux. While this would appear to continue the established domi-
nance of Linux-based systems in the Top500, it must be noted that
node-level OS architectures are becoming much less significant on
systems where the vast majority of performance capabilities are
delivered via GPUs and other accelerators. This stands in contrast
to early predictions made during the lead-up to exascale which
assumed that billions of threads running on massive numbers of
general-purpose computing elements would require specialized and
lightweight operating systems to meet the scaling challenges posed
by projected exascale node architectures [6].

On Frontier, in terms of total node-level compute capacity, Linux
directly manages only a small portion of the system (CPUs) while
the majority of compute is staged to GPU cores, which are man-
aged by their own system software residing in device firmware.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

SC23, November 12–17, 2023, Denver, CO, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Therefore, while Linux does still manage performance-critical sec-
tions running on the CPUs, the majority of the computation is
managed by a specialized, lightweight OS executing directly on the
GPU itself. In this way, Frontier’s system software resembles more
of a multi-kernel architecture [24, 56, 72] than one with a single
monolithic OS, validating the substance of the initial exascale OS/R
projections if not their exact implementation.

3.4.2 System Management. Frontier is powered by HPE’s Perfor-
mance Cluster Manager (HPCM), a traditional system management
tool that is flexible and straightforward to use. OLCF developed
tools to pre-define hardware in the HPCM database prior to delivery,
simplifying the process to install the system in phases. HPCM in-
cludes a daemon that periodically queries the chassis management
modules for hardware changes, so hardware additions or mainte-
nance activities are noticed and reflected in the HPCM database
without human intervention.

One admin node and (21) leader nodes provide shared utility
storage based on Gluster (for logging, node images, etc.), console
and syslog management, and reliable, scalable boot. Leader-node
failure is transparently handled by HPCM’s CTDB implementation
– another leader node takes over the virtual IP of the failed node and
assumes responsibility for all of its clients. Access to the center-wide
NFS home and software areas is provided by (12) dedicated nodes
that run Data Virtualization Services (DVS) to cache and forward
I/O requests. Two dedicated nodes run the Slurm controller and
database daemons, and a single dedicated node runs the Slingshot
Fabric Manager software.

Slurm serves as the system-level scheduler. Compute nodes are
scheduled exclusively to a single job at a time, which simplifies
security requirements and node cleanup procedures. At boot and
between every job, Slurm runs a checknode script that verifies the
health of every compute node. Slurm can also manage application
launch steps, or separate workflow software can manage individual
processes. Slurm integrates with the Slingshot software to allocate
a unique Virtual Network Identifier (VNI) per jobstep to support
isolation between applications. Additionally, Slurm is topologically
aware, so it will optimize job placement for ideal network perfor-
mance. For small jobs able to fit within a single rack/group, Slurm
will pack allocations tightly to minimize global hops. For larger jobs,
Slurm will attempt to spread a job evenly across as many Slingshot
groups as possible to maximize the number of global connections
(and thus global bandwidth) available to minimal routing.

HPE Slingshot switches boot without any configuration applied,
and it is up to the Slingshot Fabric Manager to send port configura-
tion and routing instructions to each Slingshot switch. The fabric
manager periodically sweeps all the switches in the fabric to search
for failures or changes to the topology and sends updated routing
tables to all affected network switches.

3.4.3 Programming Environment. The programming environment
on Frontier is anchored by two vendor-provided software stacks,
HPE’s Cray Programming Environment (CPE) [31] and AMD’s
Radeon Open Ecosystem (ROCm) [4], together with additional soft-
ware installed andmanaged byOLCF staff originating from a variety
of sources, including the Exascale Computing Project (ECP). [14]
Both stacks are full-featured, including compilers, performance,
and correctness tools, and a variety of numerical, machine learning,

and other libraries. They support C, C++, and Fortran programming
languages, as well as OpenMP [54] and AMD’s Heterogeneous In-
terface for Portability (HIP) [5]. HIP is an open-source, work-a-like
to NVIDIA’s Compute Unified Device Architecture (CUDA) envi-
ronment [48]. The compilers generally support most features of
OpenMP 5.0 [7], 5.1 [8], and 5.2 [9] at present, with the implemen-
tation of the remainder in progress. The C and C++ compilers in
both stacks are based on the open-source LLVM compiler suite [43].
Cray’s Fortran compiler is not LLVM-based but does provide com-
parable support for OpenMP to their C/C++ compilers. ROCm’s
Fortran compiler is based on what is now referred to as “classic”
Flang [42] and lags in the implementation of OpenMP features.

Both programming environments provide a suite of libraries that
have been tuned for the hardware architectures (both CPU and
GPU in the case of CPE; primarily GPU for ROCm). These libraries
support low-level numerical operations, such as BLAS, LAPACK,
FFT, and sparse linear algebra; as well as low-level primitives for
communication, concurrency, and mixed-precision matrix multipli-
cation. The ROCm stack includes two versions of many libraries.
The “hip”-branded libraries are thin compatibility layers offering
interfaces similar to the corresponding NVIDIA “cu” libraries that
call vendor-optimized backend device libraries (e.g., AMD “roc*”
and NVIDIA “cu*”).

For debugging, ROCm includes ROCgdb, a source-level debugger
based on gdb, while CPE adds gdb4hpc (a parallel-capable version
of gdb), stack trace analysis tool (STAT), and abnormal termination
processing (ATP). For performance, the ROCm stack includes the
rocProfiler and rocTracer libraries, which underpin the ports of
most performance tools to the Frontier platform. The primary user-
facing tool provided by the ROCm stack is rocprof. In CPE, the
primary user-facing tool is the Performance Analysis Tool (PAT),
while Reveal is a parallelization assistant.

As mentioned above, the OLCF supplements the two vendor
stacks with additional tools. For performance, the open-source
HPCToolkit [1, 59], Tuning and Analysis Utilities (TAU) [62, 68],
and Score-P [36, 71] tools are available, as well as the VAMPIR
trace visualizer [27]. Linaro Forge [41] (until recently, Arm Forge),
which includes theMAP performance tool andDDT debugger is also
available on the system. In the compiler area, OLCF deploys gcc [19],
which they have been working with Siemens Digital Industries to
support OpenMP offload (5.0 is nearly feature complete with 5.1 is
in progress). Through a collaboration with the Argonne Leadership
Computing Facility (ALCF) and Codeplay, a pilot port of the open-
source Intel DPC++ SYCL compiler [33] is also available on the
system. SYCL is one of the primary programmingmodels for ALCF’s
Aurora supercomputer.

The programming environment strategy for Frontier is, in many
respects, the straightforward evolution of that provided on Titan,
OLCF’s first production GPU-accelerated system. For Titan (and
also Summit), CUDA was the low-level programming tool for GPU
offload. To encourage the development of a higher-level, more
portable programming approach, OLCF worked with its vendor
partners and others in the community to launch OpenACC [53] as a
directive-based solution for GPU offload. In this time frame, thewell-
established OpenMP community, also a directive-based approach,
was also beginning to address the GPU offload programming chal-
lenge, though it was not available as a production tool during Titan’s

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Frontier: Exploring Exascale SC23, November 12–17, 2023, Denver, CO, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

lifetime. Titan’s successor, Summit, also used NVIDIA GPUs and
offers CUDA, OpenACC, and OpenMP for GPU offload program-
ming. With Frontier’s AMD GPUs, the low-level programming tool
has transitioned to HIP, which is very similar to CUDA in approach
and capability. OpenMP has become the leading standards-based
offload approach for Frontier, overtaking OpenACC in terms of
application uptake. This may in part be a response to the fact that
there is no commitment to support OpenACC from either of the
Frontier vendors. Cray Fortran supports OpenACC 2.0 [49], which
dates from 2013; the current version is 3.2 [52]. The gcc compiler
suite is the main vehicle for teams requiring OpenACC on Frontier;
it currently supports version 2.6 [50] of the standard (released in
2017), with 2.7 [51] support planned. Additionally, while OpenMP
started supporting GPU offload later than OpenACC, it was still in
time for many, already familiar with OpenMP for CPU threading,
to adopt it for GPU offload as well.

4 INITIAL EVALUATION
4.1 Node-Level Performance
We present traditional micro-benchmarks for the CPUs, GPUs, and
the links between them.

4.1.1 AMD EPYC™ 7A53 “Trento” CPU. With over 99% of the
FLOPs in Frontier coming from the GPUs, the primary metric for
Frontier’s CPUs are their ability to move data to and from memory.
Trento is able to achieve up to 180 GB/s using non-temporal loads
and stores in NPS-4 mode. When operating in NPS-1, that rate
drops to ∼125 GB/s. Table 2 shows our STREAM benchmark results
with temporal and non-temporal stores for an array size of ∼7.6
GB, which illustrates how caching can negatively affect bandwidth
when data are not expected to fit into cache.

Function Temporal (MB/s) Non-Temporal (MB/s)

Copy 176780.4 179130.5
Scale 107262.2 172396.2
Add 125567.1 178356.8
Triad 120702.1 178277.0

Table 2: CPU STREAM bandwidth results using temporal
and non-temporal stores.

4.1.2 AMD Instinct™ MI250X GPU. As mentioned, AMD’s Instinct
MI250X GPU consists of two GCDs, where each GCD has a peak
FP64 performance of 23.95 TFLOP/s and 64 GB of HBM which the
GCD can access at 1.635 GB/s (double numbers for the full MI250X).

In Figure 2, we show our FP64, FP32, and FP16 performance
achieved using the CoralGemm benchmark. [3] CoralGemm uses
the hipBLAS library, which can use a combination of vector- and
matrix-core instructions based on internal heuristics (this cannot
currently be toggled on/off). In the figure, we see the FP32 and FP64
results exceed the peak performance of the GCD, reaching values
of 24.1 and 33.8 TFLOP/s, respectively. This is likely due to the use
of matrix-core instructions, which we verified were being used at
all precisions using AMD’s 𝑟𝑜𝑐𝑝𝑟𝑜 𝑓 . The FP16 results reached 111.2
TF/s for the matrix sizes we tested.

Figure 2: Comparison of peak FP64, FP32, and FP16 perfor-
mance with achieved values of a single MI250X GCD.

Figure 3: Aggregate CPU-to-GPU bandwidth for 8MPI ranks
concurrently targeting their own GCD.

Table 3 shows our results from the STREAM GPU benchmark for
an 8 GB array size, showing that we achieve between 79% and 84%
of peak HBM bandwidth depending on the test being performed.

STREAM Function Bandwidth (MB/s)

Copy 1336574.8
Mul 1338272.2
Add 1288240.3
Triad 1285239.7
Dot 1374240.6

Table 3: GPU STREAM bandwidth results.

4.2 Interconnect Performance
4.2.1 Intra-Node. The intra-node bandwidth between processors
on the Bard Peak nodes is enabled by AMD’s InfinityFabric. When
we measure bandwidth from a single CPU core to the GCD and
vice versa, we see it reach 25.5 GB/s, ∼71% of the peak xGMI 2.0
bandwidth. The more likely scenario is that eight processes will
contend for memory access and Figure 3 shows the total CPU-to-
GCD bandwidth from eight MPI ranks reaches about 180 GB/s,
matching the Trento’s STREAM performance.

Figure 4 shows the achieved GCD-to-GCD bandwidths for 1-,
2- and 4-xGMI link GCD pairs. These results show that System
Data Memory Access (SDMA) transfers are capped at ∼50% GB/s
regardless of the number of xGMI links between the GCDs, while

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

SC23, November 12–17, 2023, Denver, CO, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 4: Achieved GCD-to-GCD bandwidth between GCD
pairs on a Bard Peak node. Top: Results when using CU ker-
nel transfers. Bottom: Results when using SDMA transfers.

the GPU Compute Unit (CU) kernel transfers can reach 37.5 GB/s,
74.9 GB/s, and 145.5 GB/s for GCD pairs with 1-, 2-, and 4-xGMI
links, respectively.

4.2.2 Inter-Node. When designing a system for a fixed budget,
the integrator has to optimize the system to provide the highest
application speedups by balancing competing resource needs. One
of the trade-offs that HPE made was changing the topology from a
Clos (i.e., non-blocking fat-tree) in Summit to a dragonfly in Frontier.
A dragonfly has ∼50% less ports and cables compared to a Clos and
is similar to a 2:1 over-subscribed fat-tree.

In Figure 5, we compare the network bandwidth of Slingshot 11
in Frontier with InfiniBand EDR in Summit. Slingshot provides 200
Gbps (25 GB/s) per endpoint; EDR provides 100 Gbps (12.5 GB/s)
per endpoint. In these measurements, we use mpiGraph [45] to
show the receive-side bandwidth for each transferring pair plotted
in a histogram. In the histogram for Summit, a non-blocking fat
tree, we see a tight distribution of measurements of ∼8.5 GB/s per
NIC out of the theoretical max of 12.5 GB/s. Nearly all of Summit’s
traffic achieves this level of performance. On Frontier, we measure
a much wider distribution of bandwidths ranging from 3 GB/s to
17.5 GB/s out of a theoretical max of 25 GB/s. This distribution can
be explained by the full connectivity within a dragonfly group, the
57% global-to-local ratio between groups, and the impact of non-
minimal global routing. Each Frontier compute dragonfly group
includes 128 nodes with 512 endpoints (i.e., 1/74th or ∼1.4% of the
total) and is the very small grouping in the figure around 17.5
GB/s. This very small distribution achieves a similar percentage of
peak as Summit’s tight distribution. The lowest performance of ∼3

0 5000 10000 15000 20000
Bandwidth GB/s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Fr
on

tie
r M

ea
su

re
m

en
t C

ou
nt

1e8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Su
m

m
it

M
ea

su
re

m
en

t C
ou

nt

1e7

Frontier Summit

Figure 5: mpiGraph Per NIC Measurements

GB/s occurs when all traffic is using the global links (i.e., no intra-
group traffic) that divides the available 270.1 TB/s global bandwidth
between all 37,632 endpoints and then non-minimal routing divides
that in half due to non-minimal traffic competing for the same links.
The rest of the histogram accounts for various ratios of intra- versus
inter-group traffic. This figure highlights the impact of topology
on usable bandwidth when running full-system jobs. For all-to-all
communication, for example, we see ∼30-32 GB/s/node (∼7.5-8.0
GB/s/NIC) when running 8 PPN with 128 KiB messages.

A major technology feature of the Slingshot network is state-
of-the-art hardware congestion control. This plays an important
role in production supercomputers that are often running dozens
or more jobs at a given time. Congestion control reduces the impact
of adversarial communication patterns on neighboring jobs. To
understand the impact of congestion control in Frontier we use
GPCNeT [12], a network benchmark, that induces adversarial traf-
fic while victim nodes take performance measurements. We ran
GPCNeT on 9,400 nodes with 7,520 congestor nodes performing
various communication patterns (i.e., all-to-all, one- and two-sided
incast, one- and two-sided broadcasts) and 1,880 victim nodes. The
measurements shown in Table 4 were run using 8 PPN, the expected
use-case for most applications. The isolated and congested tests
show identical performance (i.e., a impact factor of 1.0x), which is
ideal. When we ran with 32 PPN, the results, on the other hand,
show some degradation in both the average and 99% of 1.2-1.6x and
1.8-7.6x, respectively, although both are much better than Summit’s
EDR InfiniBand results [73]. The Isolated Network Tests results in
Table 4 also provide the average and tail latency for point-to-point
and allreduce.

4.3 Storage Evaluation
4.3.1 Node-Local Storage. With exclusive access per node, the
node-local storage is consistent in performance and scales with
the number of nodes in the job. Compared to the contracted peak
performance per node of 8 GB/s for reads, 4 GB/s for writes, and 1.6
million IOPS, we measured 7.1 GB/s for sequential reads, 4.2 GB/s
for sequential writes, and 1.58 million 4k IOPS for random-read
I/O workloads using the industry standard fio benchmark. For
a job using all of Frontier’s nodes, it should expect an aggregate,

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Frontier: Exploring Exascale SC23, November 12–17, 2023, Denver, CO, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Isolated Network Tests - 8 PPN

Name Average 99% Units

RR Two-sided Lat (8 B) 2.6 4.8 usec
RR Two-sided BW+Sync (131072 B) 3497.2 2514.4 MiB/s/rank

Multiple Allreduce (8 B) 51.5 54.1 usec
Network Tests running with Congestion - 8 PPN

Name Average 99% Units

RR Two-sided Lat (8 B) 2.6 4.7 usec
RR Two-sided BW+Sync (131072 B) 3472.2 2487.0 MiB/s/rank

Multiple Allreduce (8 B) 51.6 54.3 usec
Table 4: GPCNeT running on 9,400 nodes with 8 processes
per node (8 PPN). With 8 PPN, the result is ideal (congested
is no worse than isolated).

node-local performance of 66.8 TB/s for reads, 39.5 TB/s for writes,
and ∼14.9 billion IOPS.

4.3.2 Lustre Parallel File System. Orion easily meets the needs for
Frontier’s applications. Based on historical Titan and Summit usage
data, 90% of applications write 15% or less of the GPU memory per
hour. Compared to the contracted streaming performance of 10.0
TB/s for reads and writes, we measured up to 11.7 TB/s for reads
and up to 9.4 TB/s for writes if the application has small files that
fit within the Flash tier. Large files will see 4.9 TB/s and 4.3 TB/s
for reads and writes, respectively. With 4,704 TiB of HBM memory,
Orion should be able to ingest ∼700 TiB (∼776 TB) in ∼180 seconds.
At this rate, most apps will spend less than 5% of walltime per hour
doing I/O.

4.4 Initial CAAR, INCITE, and ECP
Application Results

As discussed below, DOE chose to focus on the speedup of real
applications relative to previous peta-scale machines (Titan, Se-
quoia, Cori, Mira, Theta, or Summit) in order to test the perfor-
mance of exascale systems. Here we provide initial computational
results originating from OLCF CAAR (Center for Accelerated Ap-
plication Readiness), INCITE (Innovative and Novel Computational
Impact on Theory and Experiment), and ECP (Exascale Computing
Project) codes that cover a wide range of science domains. These do-
mains span topics that include genomics, materials science, plasma
physics, astrophysics, computational fluid dynamics, particle ac-
celerators, cosmology, molecular dynamics, nuclear fission reactor
design, and fusion plasmas. The KPP (Key Performance Parameter)
goals for the various codes were set at a 4x performance increase
for the CAAR codes relative to Summit and a 50x increase for the
ECP codes relative to the ∼20 PF machines listed above.

4.4.1 Initial CAAR and INCITE Application Successes.

CoMet. The CoMet (Combinatorial Metrics) application [34]
computes similarity metrics between vectors stored in very large
datasets. It has been used to solve clustering problems in areas
such as genomics, climate, bioenergy, and pandemics [40]. Under
the OLCF CAAR project, CoMet was optimized to achieve high
performance on the AMD GPU architecture by making effective

CAAR and INCITE Application Results

Application Baseline Target Achieved

CoMet Summit 4.0x 5.2x
LSMS Summit 4.0x 7.5x

PIConGPU Summit 4.0x 4.7x
Cholla Summit 4.0x 20.0x
GESTS Summit 4.0x 5.9x

AthenaPK Summit 4.0x 4.6x
Table 5: CAAR and INCITE applications that have exceeded
their KPP of 4.0x over Summit.

use of mixed-precision matrix multiplies. The primary algorithm
targeted for CAAR was the 3-way Custom Correlation Coefficient
(CCC) method. On Frontier, the measured number of element com-
parisons per second (a measure of science output) for CoMet was
419.9 quadrillion comparisons/second on 9,074 compute nodes, a
factor of 5.16X faster than the Summit baseline of 81.2 quadrillion
comparisons per second. The compute rate for this run reached
6.71 Exaflops mixed-precision on Frontier.

LSMS. LSMS (Locally Self-consistent Multiple Scattering) is a
code for calculating the electronic structure in materials and con-
densed matter systems from first principles. The quantum mechan-
ical behavior of the electrons in LSMS is treated using Kohn-Sham
density functional theory and the resulting effective one-particle
equations are solved in real space using multiple scattering theory
to calculate the Green’s function of the electrons in the system.
These calculations are dominated by dense linear algebra on double
complex numbers. LSMS can achieve linear scaling of the computa-
tional effort with the number of atoms in the system compared to
the usual cubic scaling of conventional density functional theory
electronic structure codes. This optimal scalability allows for the
modeling of much larger systems than were accessible previously. A
figure of merit that captures both the potential for weak and strong
scaling of the code as well as the underlying computational com-
plexity of the LSMS algorithm was developed. The Summit GPU
code utilizes CUDA and cuSolver for its computational kernels.
These kernels were ported to AMD GPUs by translating the kernels
to their HIP and rocSolver equivalents. For the matrix inversion
kernel for the 𝑙𝑚𝑎𝑥 = 7 test case this resulted in a per GPU speedup
averaging approximately 7.5x compared to Summit’s V100 GPUs
when including additional kernels ported and optimized during the
CAAR project. For a 1,048,576 atom simulation LSMS achieves a
FOM of 1.027e16 on 8,192 Frontier nodes, while on 4,500 Summit
nodes the same simulation reached a FOM of 4.513e14 for the base-
line pre-CAAR code and 3.106e15 for the code base including the
CAAR developments.

PIConGPU. PIConGPU (Particle-In-Cell on GPUs) uses a particle-
in-cell model to simulate time-dependent electron motion in laser-
driven plasmas. At each time-step, macroparticles representing
electrons interact with a local electromagnetic field, and then the
field within each cell is updated following Maxwell’s equations [10].
PIConGPU’s figure of merit therefore measures the number of par-
ticle and cell updates completed per second, weighted by 90% and
10%, respectively. A full-scale Summit run of PIConGPU completed

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

SC23, November 12–17, 2023, Denver, CO, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

in late 2019 showed 14.7e12 updates per second, with about 92%
of PIConGPU’s run-time spent executing GPU kernels. Porting to
AMD hardware was enabled by Alpaka – a performance porta-
bility framework which quickly adopts emerging new hardware
accelerators. When running on Frontier at nearly full scale (9,216
Frontier nodes in July, 2022), PIConGPU achieved 90% weak scaling
efficiency and 65.7e12 updates per second, a factor of 4.5x higher
than full-scale Summit. This overall speedup can be traced to a 25%
speedup in the single MI250x GCD vs. V100 comparison, multiplied
by the greater number of GPUs available on Frontier.

Cholla. Cholla (computational hydrodynamics on parallel archi-
tecture) started as a hydrodynamics code which has since been
developed to include radiative cooling, self-gravity solver, and
particle tracking suitable for astrophysics and cosmology simu-
lations. Cholla was originally written in C++ and CUDA. During
the CAAR program Cholla was ported and optimized to HIP. Cholla
achieved 20X speedups on Frontier from its baseline run on Summit.
About 4-5X of these speedups can be attributed to the intensive
algorithmic optimizations while the rest comes from hardware
improvements from Summit to Frontier.

GESTS. The GESTS (GPUs for Extreme Scale Turbulence Sim-
ulations) project developed a Pseudo-Spectral Direct Numerical
Simulation (PSDNS) algorithm to study fundamental behavior of
turbulent flows across a wide range of scales according to the
Navier-Stokes equations. The GESTS codes are written in Fortran
95 using GPU-Aware MPI for communication and are built around
a custom-designed 3D FFT algorithm that computes the FFTs on the
AMD GPUs with ROCm rocFFT. OpenMP offloading functionality
is used to manage data movement between the host and device,
to enable GPU-Direct MPI communications, and to accelerate a
variety of array operations on the GPUs. The original GPU-enabled
algorithm along with previous results from Summit are presented
in [58] and [11].

The Figure of Merit (FOM) chosen for GESTS is defined as
𝐹𝑂𝑀 = 𝑁 3/𝑡𝑤𝑎𝑙𝑙 where 𝑁 3 is the total number of grid points
in the simulation and 𝑡𝑤𝑎𝑙𝑙 is the average time to compute each
time step. The reference FOM was computed on Summit with a
1D decomposition as part of an INCITE 2019 project. [58] GESTS
exceeds the CAAR project goal of a 4x speedup on Frontier for
both the 1D (5.87x) and 2D (5.06x) decompositions of the domain
with 𝑁 3 = 327683 grid points. These cases are the largest known
DNS computations to date with a point total in excess of 35 trillion
grid points. No other computational resource in the world besides
Frontier has the memory capacity to complete these simulations.

AthenaPK. AthenaPK [26] (Athena-Parthenon-Kokkos) is a gen-
eral purpose astrophysical magnetohydronamics code which serves
as a performance-portable (through use of Kokkos [67]), AMR-
capable (through use of Parthenon [26]) conversion of Athena++ [63].
It implements the hydrodynamics solvers from Athena++ and sup-
plemented them with a divergence cleaning magnetohydrodynam-
ics solver. The code is used for simulations of magnetized galaxy
clusters with feedback from active galactic nuclei, cf., cloud crush-
ing in galactic outflows, and magnetohydrodynamic turbulence.
AthenaPK is available on GitHub [25] with contributions welcome
and encouraged.

Single node and full system experiments were performed using
a 3D linear wave problem sized to use a large portion of the avail-
able high-bandwidth memory on each node. Comparisons evaluate
problem size and raw performance in terms of cell-updates/s. For
single node runs, a Frontier node achieved 1.2x more cell-updates/s
with an 8x larger problem than on a Summit node. When weak-
scaled, 9,200 Frontier nodes achieved 4.6x more cell-updates/s with
an overall 16x larger problem than on 4,600 Summit nodes. Weak-
scaling results were achieved with 96% and 48% parallel efficiency
on Frontier and Summit, respectively. The difference in parallel effi-
ciency is attributed to Frontier’s improved node design, specifically
each GPU having a network interface card connected to it [26].

ECP Application Results

Application Baseline Target Achieved

WarpX (vs. Warp) Cori 50x 500x
ExaSky Theta 50x 234x
EXAALT Mira 50x 398.5x
ExaSMR Titan 50x 70x
WDMApp Titan 50x 150x

Table 6: ECP applications that have exceeded their KPP of
50x over Titan, Sequoia, Cori, Mira, or Theta.

4.4.2 Initial ECP Application Successes.

WarpX. In the US DOE Exascale Computing Project, WarpX is
used to develop the next generation of particle accelerators. In par-
ticular, WarpX is used to further the reach of laser-driven, plasma-
wakefield stages, chained towards the development of compact,
future colliders for high-energy physics exploration [69]. The code
implements advanced algorithms for the electromagnetic and -static
particle-in-cell (PIC) loop, such as embedded boundaries of particle
accelerator structures. The team spear-headed the development of
novel algorithms such as mesh-refinement in electromagnetic PIC,
the Lorentz-boosted frame method, pseudo-spectral field solvers
for long-term stability, among others. Beyond particle acceleration,
the code is actively applied to research in diverse domains such as
modeling in fusion-energy sciences, high-energy-density labora-
tory plasma physics, astrophysical plasmas, and microelectronic
devices.

WarpX was the first application in ECP to achieve the KPP goal
in July 2022 by running on nearly the full size of Frontier. The
development of laser-plasma devices depends critically on high-
performance, high-fidelity modeling to capture the full complex-
ity of acceleration processes that develop over a large range of
space and timescales – and high weak-scaling efficiency at scale
addresses this need. WarpX achieves near-ideal weak-scaling over
multiple orders of magnitude of system utilization and realistic
strong-scaling over an order of magnitude in node-numbers for its
3D, block-structured domain-decomposition.

In 2022, work using WarpX was awarded the ACM Gordon Bell
Prize demonstrating platform-independent scaling to the largest
supercomputers in the world, including Frontier, and researching a
novel particle-beam injection approach for laser-plasma accelera-
tion [16].

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Frontier: Exploring Exascale SC23, November 12–17, 2023, Denver, CO, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

ExaSky. The ExaSky ECP project is focused on simulation de-
velopment intended for investigations of large-scale structure for-
mation of the universe. Provided here are the performance results
from the particle-based solverHACC (Hardware/Hybrid Accelerated
Cosmology Code). Algorithmically, HACC integrates the gravita-
tional Vlasov-Poisson equation using a spectral particle-mesh (PM)
force solver in combination with direct particle interaction kernels
[29]. To model gas physics and its coevolution with dark matter,
HACC includes a modified Smoothed Particle Hydrodynamics (SPH)
routine that utilizes higher-order reproducing kernels for accuracy
[20, 22]. The hybrid software approach was designed to scale perfor-
mantly on all modern supercomputing platforms, evolving trillions
of particles on multi-core CPU and GPU configurations [15, 21, 28].

The performance of HACC on different machines is quantified by
utilizing a figure of merit defined as the geometric mean of running
simulations in gravity-only and hydrodynamic configurations. In
simulations with gas, two fluids are sampled with particles, one
representing dark matter interacting only gravitationally and the
second, baryonic matter interacting both gravitationally and via
gasdynamic forces; both are modeled with the same number of
particles.

To establish a baseline measurement, HACC was run on the
Theta supercomputer [39] using 3072 nodes and 𝑛3𝑝 = 23043 par-
ticles. This measurement was rescaled to correspond to a full ma-
chine (4392 node) baseline. Simulations were run on 4096 nodes
of each machine, and further weak-scaled up to 8192 nodes on
Frontier. The simulation volume was adjusted to maintain consis-
tent mass resolution for each run. One expects roughly a factor of
two hardware single precision performance improvement between
individual Summit and Frontier nodes, which is consistent with
the 4096 node FOM measurements on both systems. Furthermore,
HACC historically achieves near ideal weak-scaling up to millions
of ranks [28], demonstrated here by the consistent timings between
the 4096–8192 node Frontier runs. The target FOM improvement
of 50× is far exceeded by the HACC runs presented.

EXAALT. The EXAALT project seeks to extend accuracy, length,
and time scales of material science simulations using using molec-
ular dynamics (MD) approaches. While EXAALT aims at being
very general, initial targets focus on the simulation of defects in
energy-relevant materials, including the first wall of fusion reac-
tors as well as nuclear fuels. To achieve this goal, it integrates a
replica-based accelerated MD method called Parallel Trajectory
Splicing (ParSplice) [57] with the high-performance MD engine
LAMMPS [65]. ParSplice is a time-wise parallelization technique
that allows for long-timescale simulations on small systems, where
traditional space-wise domain decomposition approaches become
communication bound. The execution of the large number of MD
instances required in ParSplice is orchestrated by a run-time envi-
ronment called EXAALT that manages task execution as well as
data caching, storage, and motion.

The simulations on Frontier used a variant of ParSplice called
Sub-Lattice ParSplice, where domain decomposition is introduced
so that each sub-domain can be accelerated separately. In contrast
to traditional approaches, synchronization between domains is
only needed when a topological transition occurs and not at ev-
ery timestep. The simulation consisted of a surface of tungsten

described by a SNAP (Spectral Neighborhood Analysis Potential)
machine learning potential [66] in LAMMPS using the HIP backend
of the Kokkos performance portability library [67]. The system
contained 100,000 atoms in total, while each ParSplice replica con-
tained 4000 atoms and ran on 4 MI250X GCDs, for a total of 13,856
instances of LAMMPS executing simultaneously on 7000 nodes
(∼75% of full Frontier).

The simulation sustained an extremely high throughput of 3.57×
109 atom timestep/wall-clock second over the course of 1 hour of
runtime. This corresponds to a 398.5x increase over the pre-ECP
baseline obtained on Mira. This increase in performance was en-
abled by a ∼25x performance increase on a single V100 GPU due to
a near complete rewrite of the SNAP kernels and their optimization
for GPUs, as well as by the increase in peak flop rate between Mira
and Frontier. The details of the optimization process are described
in [23, 44, 47].

ExaSMR. The ExaSMR project application combines continuous-
energy Monte Carlo neutronics, including depletion, with compu-
tational fluid dynamics (CFD) to model the behavior of nuclear
reactors. Specifically, a nonlinear Picard iteration scheme is used to
converge the moderator temperature and densities in a coupled neu-
tronics/CFD simulation [60]. The coupled driver uses the Shift [30]
and OpenMC [61] Monte Carlo codes and the NekRS [18] CFD
code, each of which has been optimized to run on multiple GPU
architectures from NVIDIA, AMD, and Intel.

While the Monte Carlo and CFD application codes are general
with respect to different nuclear reactor configurations and de-
signs, the performance of these codes are demonstrated on a chal-
lenge problem that is a representative NuScale Small Modular Re-
actor (SMR) core. The challenge problem features a representative
model of the complete in-vessel coolant loop, uses a Reynolds-
Averaged-Navier-Stokes (RANS) turbulent model with an Large-
Eddy-Simulation (LES) informed-momentum source for treatment
of mixing vanes, and calculates pin-resolved spatial fission power
and reaction rates in depleted fuel in the Monte Carlo simulation.
TheMonte Carlo part of the calculation tallies six different reactions
in 213,860 spatial cells and simulates 51.2B particles per cycle over
40 eigenvalue cycles. The CFD model contained 1.098B unstruc-
tured mesh spatial elements and solved 376B degrees of freedom
(DOF) over 1,500 timesteps.

The performance figure of merit (FOM) for this application is a
harmonic average of the Monte Carlo and CFD work rates, particles
and DOF per second of wall time, respectively. The maximum work
rate of 912M particles/s for Shift was achieved in a non-coupled
version of the challenge problem on 8,192 Frontier nodes with 8
ranks per node distributed across 4 MI250X AMD GPUs (1 rank per
GCD). Shift also attained a weak-scaling efficiency of 97.8% from 1
to 8,192 nodes. The Monte Carlo/CFD coupled problem was run on
6,400 nodes of Frontier and also used 8 ranks per node. The Shift
and NekRS FOMs for this simulation were 54 and 99.6 versus Titan,
respectively, yielding a combined FOM of 70. The total runtime for
the simulation was 2,556s (Shift) and 2,113s (NekRS).

5 FRONTIER AND THE EXASCALE REPORT
Going back to the exascale report [37], how does Frontier measure
up to the authors’ expectations and how well does it address their

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

SC23, November 12–17, 2023, Denver, CO, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

primary concerns? Before we discuss the four challenges, we have
to confront their choice to ignore cost. They rightfully argued that
exascale should not simply mean an exaflop as measured by HPL for
the TOP500. Their expanded definition called for 1,000 times more
resources (e.g., memory capacity and bandwidth, storage capacity
and bandwidth). They then based their models and projections
on such a richly resourced system and that drove many of the
challenges.

While costs per unit have declined for storage in the past 15
years, they have not decreased by 1,000x. Some items have become
more expensive such as memory. Large HPC systems have moved
from DDR memory to much more performant but also much more
expensive HBM. HBM pricing is opaque to the end user. We use
a rule-of-thumb that HBM costs 3-5x more than top-of-the-line
DDR, but that is simply a guess on our part. The cost per 𝑚𝑚2

silicon might actually be increasing given the extraordinary costs
of the latest process nodes. Nor did DOE budgets increase by 1,000x.
The overall budget limit set in the CORAL-2 Request for Proposals
was 400-600 million US$ [13], 4-6x more than the definition of a
supercomputer in 2008. Given this constraint, DOE had to set a
different target for exascale.

In light of the above, DOE chose to focus on real application
speedup. When writing the RFP, the reigning DOE systems were in
the ∼20 PF range and DOE set the target performance to 50x over
those systems. The 50x could mean strong scaling (i.e., solve an
existing problem 50x faster), weak scaling (i.e., solve a 50x larger
problem in the same time), or some combination of the two. Within
ECP, DOE selected 30 applications that represented a broad range
of science domains and algorithms. In addition to the ECP applica-
tions, OLCF selected eight CAAR [55] applications that represented
the large user allocation programs, INCITE and ALCC. These ap-
plications’ speedups are measured against Summit because many
did not exist before Titan and peers were decommissioned.

As discussed in Section 4.4, these applications are exceeding
their target speedups, some significantly. If we measure success
then by real application performance and not the arbitrary 1000x
for all system resources, we argue that Frontier meets the spirit of
the exascale definition.

5.1 Energy and Power
Frontier clearly excels in this area. Frontier debuted on the top of
both the TOP500 and the Green500 on the June 2022 lists. [17, 64]
This was unprecedented to have the largest system on the list also
be the most energy efficient. This is a tribute to the AMD processors
and HPE’s overall design. Frontier’s 1.1 EF using 21.1 MW gives an
impressive 52 GF/watt, exceeding the report’s 50 GF/watt target.

5.2 Memory and Storage
We estimate that memory alone accounts for over 25% of Frontier’s
cost. The storage, both node-local and Lustre, represents another
∼15% of the cost. Together, memory and storage claim at least 40%
of the system cost and place a limit on how much a system can
have. Moving to HBM from DDR addressed the performance and
power concerns of the exascale report. The authors considered flash
media but disregarded it because it was too expensive, required too
much power, and had a limited lifetime. Frontier’s heterogeneous

combination of flash for performance and hard drives for capacity
meet the applications’ needs within a reasonable budget.

5.3 Concurrency and Locality
The report’s authors correctly identified the lack of frequency scal-
ing and that exascale systems would need a vast amount of con-
currency (e.g., 1 billion cores at 1 GHz). They also noted new de-
velopments such as GPUs, although they did not focus on them
as a viable technology. Frontier’s 37,632 MI250X GPUs with 220
Compute Units, with 64 threads each, provide over 500,000 threads
operating close to 1 GHz. Each is able to perform two operations per
cycle, meeting the target performance. GPUs’ simpler consistency
model, SIMD ability, and specialized run-times successfully ad-
dressed the challenge of concurrency while 2.5D packaging helped
address their locality concerns.

5.4 Resiliency
While Frontier fares well in the above three challenges, it struggles
with the resiliency challenge. The exascale report authors projected
a Mean Time To Interrupt (MTTI) of 24 minutes for hardware and
that a factor of 10x improvement in FIT rates would still incur a
failure every four hours. They correctly identified memory and
power supplies as leading contributors as we have seen on Frontier.
Even with lower number of components due to larger processors
configured as fat nodes and with smaller amounts of memory and
storage due to cost, Frontier’s resiliency is not much better than
their projected four-hour target with the 10x improvement. The
level of uncorrectable errors is in line with the rate seen on Summ-
mit’s HBM2, once you scale up based on Frontier’s HBM2e capacity.
Power supplies continue to be a large source of upsets and HPE
has a plan to mitigate this source of upsets. Over time, we expect
Frontier’s resiliency to increase and hopefully reach the levels of the
first terascale systems, with failures on the order of 8-12 hours. [37]

6 CONCLUSION
In this paper, we presented Frontier’s system architecture including
hardware and software, evaluated micro-benchmarks, and demon-
strated real application speedups. We presented this in the context
of the 2008 DARPA report on the four primary exascale challenges.
We do not provide a point-by-point discussion of the very detailed,
exascale report, but two of the 2008 report’s authors provide a very
good analysis of Frontier’s low-level technologies compared to the
2008 report’s projections. [38] In their 2022 paper, they focus on
HPCG as a better metric than HPL. In this paper, we focus on actual
production applications, some dense and some sparse.

We highlighted at a high-level how Frontier’s architecture ad-
dresses (or fails to address) their four critical challenges – en-
ergy/power, memory/storage, concurrency/locality, and resiliency.
Given that a facility cannot ignore cost when deploying this class of
system, we believe that the real application speedups demonstrate
that Frontier’s architecture meets the spirit of the exascale report.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Frontier: Exploring Exascale SC23, November 12–17, 2023, Denver, CO, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

REFERENCES
[1] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey,

and N. R. Tallent. 2010. HPCTOOLKIT: tools for performance analy-
sis of optimized parallel programs. Concurrency and Computation: Prac-
tice and Experience 22, 6 (2010), 685–701. https://doi.org/10.1002/cpe.1553
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.1553

[2] AMD. 2020. Tuning Guide AMD EPYC 7003. https://www.amd.com/system/files/
documents/high-performance-computing-tuning-guide-amd-epyc7003-series-
processors.pdf. [Online; accessed 16-March-2023].

[3] AMD. 2021. CoralGemm - Matrix Multiply Stress Test. https://github.com/AMD-
HPC/CoralGemm. [Online; accessed 30-March-2023].

[4] AMD. 2023. AMD ROCm Open Ecosystem. https://www.amd.com/en/graphics/
servers-solutions-rocm. [Online; accessed 21-March-2023].

[5] AMD. 2023. Fundamentals of HIP Programming. https://www.amd.com/en/
graphics/rocm-learning-center/fundamentals-of-hip-programming. [Online;
accessed 21-March-2023].

[6] Pete Beckman, Ron Brightwell, Maya Gokhale, Bronis R. de Supinski, Steven
Hofmeyr, Sriram Krishnamoorthy, Mike Lang, Barney Maccabe, John Shalf, and
Marc Snir. 2012. Exascale Operating Systems and Runtime Software Report. Tech-
nical Report. DOE ASCR.

[7] OpenMP Architecture Review Board. 2018. OpenMP Application Programming
Interface Version 5.0. Technical Report. OpenMP. https://www.openmp.org/
wp-content/uploads/OpenMP-API-Specification-5.0.pdf, [Online; accessed 21-
March-2023].

[8] OpenMP Architecture Review Board. 2020. OpenMP Application Programming
Interface Version 5.1. Technical Report. OpenMP. https://www.openmp.org/
wp-content/uploads/OpenMP-API-Specification-5-2.pdf, [Online; accessed 21-
March-2023].

[9] OpenMP Architecture Review Board. 2021. OpenMP Application Programming
Interface Version 5.2. Technical Report. OpenMP. https://www.openmp.org/
wp-content/uploads/OpenMP-API-Specification-5-2.pdf, [Online; accessed 21-
March-2023].

[10] M. Bussmann, H. Burau, T. E. Cowan, A. Debus, A. Huebl, G. Juckeland, T.
Kluge, W. E. Nagel, R. Pausch, F. Schmitt, U. Schramm, J. Schuchart, and R.
Widera. 2013. Radiative Signatures of the Relativistic Kelvin-Helmholtz Instability.
In Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis (Denver, Colorado) (SC ’13). Association for
Computing Machinery, New York, NY, USA, Article 5, 12 pages. https://doi.org/
10.1145/2503210.2504564

[11] Barbara Chapman, Buu Pham, Charlene Yang, Christopher Daley, Colleen Bertoni,
Dhruva Kulkarni, Dossay Oryspayev, Ed D’Azevedo, Johannes Doerfert, Keren
Zhou, Kiran Ravikumar, Mark Gordon, Mauro Del Ben, Meifeng Lin, Melisa
Alkan, Michael Kruse, Oscar Hernandez, P. K. Yeung, Paul Lin, Peng Xu, Swaroop
Pophale, Tosaporn Sattasathuchana, Vivek Kale, William Huhn, and Yun (Helen)
He. 2021. Outcomes of OpenMP Hackathon: OpenMP Application Experiences
with the Offloading Model (Part I). In OpenMP: Enabling Massive Node-Level
Parallelism: 17th International Workshop on OpenMP, IWOMP 2021, Bristol, UK,
September 14–16, 2021, Proceedings (Bristol, United Kingdom). Springer-Verlag,
Berlin, Heidelberg, 67–80. https://doi.org/10.1007/978-3-030-85262-7_5

[12] Sudheer Chunduri, Taylor Groves, Peter Mendygral, Brian Austin, Jacob Balma,
Krishna Kandalla, Kalyan Kumaran, Glenn Lockwood, Scott Parker, Steven
Warren, Nathan Wichmann, and Nicholas Wright. 2019. GPCNeT: Design-
ing a Benchmark Suite for Inducing and Measuring Contention in HPC Net-
works. In Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis (Denver, Colorado) (SC ’19). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 42, 33 pages.
https://doi.org/10.1145/3295500.3356215

[13] DOE. 2018. CORAL-2 Request for Proposal (RFP). https://procurement.ornl.gov/
rfp/CORAL2/01_CORAL-2_RFP%20LetterRev8.pdf. [Online; accessed 19-March-
2023].

[14] DOE. 2023. Exascale Compute Project. https://www.exascaleproject.org. [Online;
accessed 16-March-2023].

[15] J. D. Emberson, Nicholas Frontiere, Salman Habib, Katrin Heitmann, Patricia
Larsen, Hal Finkel, and Adrian Pope. 2019. The Borg Cube Simulation: Cosmo-
logical Hydrodynamics with CRK-SPH. The Astrophysical Journal 877, 2 (may
2019), 85. https://doi.org/10.3847/1538-4357/ab1b31

[16] Luca Fedeli, Axel Huebl, France Boillod-Cerneux, Thomas Clark, Kevin Gott,
Conrad Hillairet, Stephan Jaure, Adrien Leblanc, Rémi Lehe, Andrew Myers,
Christelle Piechurski, Mitsuhisa Sato, Neïl Zaim, Weiqun Zhang, Jean-Luc Vay,
and Henri Vincenti. 2022. Pushing the Frontier in the Design of Laser-Based
Electron Accelerators with Groundbreaking Mesh-Refined Particle-In-Cell Sim-
ulations on Exascale-Class Supercomputers. In SC22: International Conference
for High Performance Computing, Networking, Storage and Analysis. Association
for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1109/
SC41404.2022.00008

[17] Wu Feng and Kirk Cameron. 2022. Green500 June 2022 List. https://top500.org/
lists/green500/2022/06/. [Online; accessed 19-March-2023].

[18] Paul Fischer, Stefan Kerkemeier, Misun Min, Yu-Hsiang Lan, Malachi Phillips,
Thilina Rathnayake, Elia Merzari, Ananias Tomboulides, Ali Karakus, Noel
Chalmers, and Tim Warburton. 2022. NekRS, a GPU-Accelerated Spectral
Element Navier–Stokes Solver. Parallel Comput. 114, C (dec 2022), 13 pages.
https://doi.org/10.1016/j.parco.2022.102982

[19] Free Software Foundation. 2023. GCC, the GNU Compiler Collection. https:
//gcc.gnu.org/. [Online; accessed 21-March-2023].

[20] Nicholas Frontiere, J. D. Emberson, Michael Buehlmann, Joseph Adamo, Salman
Habib, Katrin Heitmann, and Claude-André Faucher-Giguère. 2023. Simulating
Hydrodynamics in Cosmology with CRK-HACC. The Astrophysical Journal
Supplement Series 264, 2 (jan 2023), 34. https://doi.org/10.3847/1538-4365/aca58d

[21] Nicholas Frontiere, Katrin Heitmann, Esteban Rangel, Patricia Larsen, Adrian
Pope, Imran Sultan, Thomas Uram, Salman Habib, Silvio Rizzi, and Joe Insley.
2022. Farpoint: A High-resolution Cosmology Simulation at the Gigaparsec
Scale. The Astrophysical Journal Supplement Series 259, 1 (feb 2022), 15. https:
//doi.org/10.3847/1538-4365/ac43b9

[22] Nicholas Frontiere, Cody D Raskin, and J Michael Owen. 2017. CRKSPH – A
Conservative Reproducing Kernel Smoothed Particle Hydrodynamics Scheme. J.
Comput. Phys. 332 (2017), 160–209.

[23] Rahulkumar Gayatri, Stan Moore, Evan Weinberg, Nicholas Lubbers, Sarah An-
derson, Jack Deslippe, Danny Perez, and Aidan P. Thompson. 2020. Rapid Explo-
ration of Optimization Strategies on Advanced Architectures using TestSNAP
and LAMMPS. arXiv:2011.12875 [cs.DC]

[24] Balazs Gerofi, Masamichi Takagi, and Yutaka Ishikawa. 2019. IHK/McKernel. In
Operating Systems for Supercomputers and High Performance Computing. Springer
Singapore, Singapore. https://doi.org/10.1007/978-981-13-6624-6

[25] Philipp Grete. 2022. AthenaPK: a performance portable version of Athena++
built on Parthenon and Kokkos. https://github.com/parthenon-hpc-lab/athenapk.
[Online; accessed 30-March-2023].

[26] Philipp Grete, Joshua C Dolence, Jonah M Miller, Joshua Brown, Ben Ryan,
Andrew Gaspar, Forrest Glines, Sriram Swaminarayan, Jonas Lippuner, Clell J
Solomon, Galen Shipman, Christoph Junghans, Daniel Holladay, James M Stone,
and Luke F Roberts. 0. Parthenon—a performance portable block-structured adap-
tive mesh refinement framework. The International Journal of High Performance
Computing Applications 0, 0 (0), 10943420221143775. https://doi.org/10.1177/
10943420221143775

[27] GWT-TUD GmbH. 2023. Vampir - Performance Optimization. https://vampir.eu/.
[Online; accessed 21-March-2023].

[28] Salman Habib, Vitali Morozov, Nicholas Frontiere, Hal Finkel, Adrian Pope, Katrin
Heitmann, Kalyan Kumaran, Venkatram Vishwanath, Tom Peterka, Joe Insley,
David Daniel, Patricia Fasel, and Zarija Lukić. 2016. HACC: Extreme Scaling and
Performance Across Diverse Architectures. Commun. ACM (Research Highlight)
60, 1 (Dec. 2016), 97–104. https://doi.org/10.1145/3015569 Originally published
in: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, page 6. ACM, 2013..

[29] Salman Habib, Adrian Pope, Hal Finkel, Nicholas Frontiere, Katrin Heitmann,
David Daniel, Patricia Fasel, Vitali Morozov, George Zagaris, Tom Peterka, et al.
2016. HACC: Simulating sky surveys on state-of-the-art supercomputing archi-
tectures. New Astronomy 42 (2016), 49–65.

[30] Steven P. Hamilton and Thomas M. Evans. 2019. Continuous-energy Monte
Carlo neutron transport on GPUs in the Shift code. Annals of Nuclear Energy 128
(2019), 236–247. https://doi.org/10.1016/j.anucene.2019.01.012

[31] Hewlett-Packard Enterprise. 2023. HPE Cray Programming Environment. https:
//www.hpe.com/psnow/doc/a50002303enw. [Online; accessed 21-March-2023].

[32] HPE. 2023. HPE Slingshot interconnect. https://www.hpe.com/us/en/compute/
hpc/slingshot-interconnect.html. [Online; accessed 16-March-2023].

[33] Intel. 2023. oneAPI DPC++ compiler. https://github.com/intel/llvm. [Online;
accessed 21-March-2023].

[34] Wayne Joubert, Deborah Weighill, David Kainer, Sharlee Climer, Amy Justice,
Kjiersten Fagnan, and Daniel Jacobson. 2018. Attacking the Opioid Epidemic:
Determining the Epistatic and Pleiotropic Genetic Architectures for Chronic
Pain and Opioid Addiction. In SC18: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. Association for Computing
Machinery, New York, NY, USA, 717–730. https://doi.org/10.1109/SC.2018.00060

[35] John Kim,Wiliam J Dally, Steve Scott, and Dennis Abts. 2008. Technology-Driven,
Highly-Scalable Dragonfly Topology. ACM SIGARCH Computer Architecture News
36, 3 (2008), 77–88.

[36] Andreas Knüpfer, Christian Rössel, Dieter an Mey, Scott Biersdorff, Kai Diethelm,
Dominic Eschweiler, Markus Geimer, Michael Gerndt, Daniel Lorenz, Allen Mal-
ony, Wolfgang E. Nagel, Yury Oleynik, Peter Philippen, Pavel Saviankou, Dirk
Schmidl, Sameer Shende, Ronny Tschüter, Michael Wagner, Bert Wesarg, and
Felix Wolf. 2012. Score-P: A Joint Performance Measurement Run-Time Infras-
tructure for Periscope,Scalasca, TAU, and Vampir. In Tools for High Performance
Computing 2011, Holger Brunst, Matthias S. Müller, Wolfgang E. Nagel, and
Michael M. Resch (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 79–91.

[37] Peter Kogge, Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson,
William Dally, Monty Denneau, Paul Franzon, William Harrod, Kerry Hill, Jon
Hiller, Sherman Karp, Stephen Keckler, Dean Klein, Robert Lucas, Mark Richards,

11

https://doi.org/10.1002/cpe.1553
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.1553
https://www.amd.com/system/files/documents/high-performance-computing-tuning-guide-amd-epyc7003-series-processors.pdf
https://www.amd.com/system/files/documents/high-performance-computing-tuning-guide-amd-epyc7003-series-processors.pdf
https://www.amd.com/system/files/documents/high-performance-computing-tuning-guide-amd-epyc7003-series-processors.pdf
https://github.com/AMD-HPC/CoralGemm
https://github.com/AMD-HPC/CoralGemm
https://www.amd.com/en/graphics/servers-solutions-rocm
https://www.amd.com/en/graphics/servers-solutions-rocm
https://www.amd.com/en/graphics/rocm-learning-center/fundamentals-of-hip-programming
https://www.amd.com/en/graphics/rocm-learning-center/fundamentals-of-hip-programming
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://doi.org/10.1145/2503210.2504564
https://doi.org/10.1145/2503210.2504564
https://doi.org/10.1007/978-3-030-85262-7_5
https://doi.org/10.1145/3295500.3356215
https://procurement.ornl.gov/rfp/CORAL2/01_CORAL-2_RFP%20LetterRev8.pdf
https://procurement.ornl.gov/rfp/CORAL2/01_CORAL-2_RFP%20LetterRev8.pdf
https://www.exascaleproject.org
https://doi.org/10.3847/1538-4357/ab1b31
https://doi.org/10.1109/SC41404.2022.00008
https://doi.org/10.1109/SC41404.2022.00008
https://top500.org/lists/green500/2022/06/
https://top500.org/lists/green500/2022/06/
https://doi.org/10.1016/j.parco.2022.102982
https://gcc.gnu.org/
https://gcc.gnu.org/
https://doi.org/10.3847/1538-4365/aca58d
https://doi.org/10.3847/1538-4365/ac43b9
https://doi.org/10.3847/1538-4365/ac43b9
https://arxiv.org/abs/2011.12875
https://doi.org/10.1007/978-981-13-6624-6
https://github.com/parthenon-hpc-lab/athenapk
https://doi.org/10.1177/10943420221143775
https://doi.org/10.1177/10943420221143775
https://vampir.eu/
https://doi.org/10.1145/3015569
https://doi.org/10.1016/j.anucene.2019.01.012
https://www.hpe.com/psnow/doc/a50002303enw
https://www.hpe.com/psnow/doc/a50002303enw
https://www.hpe.com/us/en/compute/hpc/slingshot-interconnect.html
https://www.hpe.com/us/en/compute/hpc/slingshot-interconnect.html
https://github.com/intel/llvm
https://doi.org/10.1109/SC.2018.00060

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

SC23, November 12–17, 2023, Denver, CO, USA Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Al Scarpelli, Steven Scott, Allan Snavely, Thomas Sterling, R. Stanley Williams,
and Katherine Yellick. 2008. ExaScale Computing Study: Technology Challenges in
Achieving Exascale Systems. Technical Report. AFRL.

[38] Peter M. Kogge and William J. Dally. 2022. Frontier vs the Exascale Report: Why
so long? and Are We Really There Yet?. In 2022 IEEE/ACM International Workshop
on Performance Modeling, Benchmarking and Simulation of High Performance
Computer Systems (PMBS). IEEE, Piscataway, NJ, USA, 26–35. https://doi.org/10.
1109/PMBS56514.2022.00008

[39] Argonne National Lab. 2017. Theta/ThetaGPU. https://www.alcf.anl.gov/alcf-
resources/theta. [Online; accessed 31-March-2023].

[40] John Lagergren, Mikaela Cashman, Veronica Melesse Vergara, Paul Eller, Joao
Gabriel Felipe Machado Gazolla, Hari Chhetri, Jared Streich, Sharlee Climer,
Peter Thornton, Wayne Joubert, and Daniel Jacobson. 0. Climatic Clustering
and Longitudinal Analysis with Impacts on Food, Bioenergy, and Pandemics.
Phytobiomes Journal 0, ja (0), null. https://doi.org/10.1094/PBIOMES-02-22-0007-
R

[41] Linaro Limited. 2023. Linaro Forge. https://www.linaroforge.com/. [Online;
accessed 21-March-2023].

[42] LLVM. 2023. Flang (a.k.a. "classic" Flang). https://github.com/flang-compiler/
flang. [Online; accessed 21-March-2023].

[43] LLVM. 2023. The LLVM Compiler Infrastructure. https://llvm.org/. [Online;
accessed 21-March-2023].

[44] Susan M Mniszewski, James Belak, Jean-Luc Fattebert, Christian FA Negre, Stu-
art R Slattery, Adetokunbo A Adedoyin, Robert F Bird, Choongseok Chang,
Guangye Chen, Stéphane Ethier, Shane Fogerty, Salman Habib, Christoph Jung-
hans, Damien Lebrun-Grandié, Jamaludin Mohd-Yusof, Stan G Moore, Daniel
Osei-Kuffuor, Steven J Plimpton, Adrian Pope, Samuel Temple Reeve, Lee Rick-
etson, Aaron Scheinberg, Amil Y Sharma, and Michael E Wall. 2021. Enabling
particle applications for exascale computing platforms. The International Journal
of High Performance Computing Applications 35, 6 (2021), 572–597.

[45] A. Moody. 2009. Contention-free Routing for Shift-based Communication in MPI
Applications on Large-scale Infiniband Clusters. https://doi.org/10.2172/967277

[46] Timothy Prickett Morgan. 2022. Cray’S Slingshot Interconnect is at the Heart of
HPE’S HPC and AI Ambitions. https://www.nextplatform.com/2022/01/31/crays-
slingshot-interconnect-is-at-the-heart-of-hpes-hpc-and-ai-ambitions/. [Online;
accessed 16-March-2023].

[47] Kien Nguyen-Cong, Jonathan T. Willman, Stan G. Moore, Anatoly B. Belonoshko,
Rahulkumar Gayatri, EvanWeinberg, Mitchell A. Wood, Aidan P. Thompson, and
Ivan I. Oleynik. 2021. Billion AtomMolecular Dynamics Simulations of Carbon at
Extreme Conditions and Experimental Time and Length Scales. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis (St. Louis, Missouri) (SC ’21). Association for Computing Machinery,
New York, NY, USA, Article 4, 12 pages. https://doi.org/10.1145/3458817.3487400

[48] NVIDIA. 2023. CUDA Toolkit. https://developer.nvidia.com/cuda-toolkit. [On-
line; accessed 21-March-2023].

[49] OpenACC. 2013. The OpenACC Application Programming Interface Version 2.0.
Technical Report. OpenACC-Standard.org. https://www.openacc.org/sites/
default/files/inline-files/OpenACC_2_0_specification.pdf, [Online; accessed 21-
March-2023].

[50] openACC. 2017. The OpenACC Application Programming Interface Version 2.6.
Technical Report. OpenACC-Standard.org. https://www.openacc.org/sites/
default/files/inline-files/OpenACC_2_0_specification.pdf, [Online; accessed 21-
March-2023].

[51] openACC. 2018. The OpenACC Application Programming Interface Version 2.7.
Technical Report. OpenACC-Standard.org. https://www.openacc.org/sites/
default/files/inline-files/OpenACC.2.7.pdf, [Online; accessed 21-March-2023].

[52] openACC. 2021. The OpenACC Application Programming Interface Version 3.2.
Technical Report. OpenACC-Standard.org. https://www.openacc.org/sites/
default/files/inline-images/Specification/OpenACC-3.2-final.pdf, [Online; ac-
cessed 21-March-2023].

[53] OpenACC. 2023. OpenACC. https://www.openacc.org/. [Online; accessed
21-March-2023].

[54] OpenMP. 2023. OpenMP. https://www.openmp.org/. [Online; accessed 21-
March-2023].

[55] ORNL. 2018. Frontier Center for Accelerated Application Readiness (CAAR).
https://www.olcf.ornl.gov/caar/frontier-caar/. [Online; accessed 19-March-2023].

[56] JiannanOuyang, Brian Kocoloski, John R. Lange, and Kevin Pedretti. 2015. Achiev-
ing Performance Isolation with Lightweight Co-Kernels. In Proceedings of the 24th
International Symposium on High-Performance Parallel and Distributed Computing
(Portland, Oregon, USA) (HPDC ’15). Association for Computing Machinery, New
York, NY, USA, 149–160. https://doi.org/10.1145/2749246.2749273

[57] Danny Perez, Ekin D Cubuk, Amos Waterland, Efthimios Kaxiras, and Arthur F
Voter. 2016. Long-time dynamics through parallel trajectory splicing. Journal of
chemical theory and computation 12, 1 (2016), 18–28.

[58] Kiran Ravikumar, David Appelhans, and P. K. Yeung. 2019. GPU Acceleration of
Extreme Scale Pseudo-Spectral Simulations of Turbulence Using Asynchronism.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (Denver, Colorado) (SC ’19). Association for

Computing Machinery, New York, NY, USA, Article 8, 22 pages. https://doi.org/
10.1145/3295500.3356209

[59] Rice University. 2023. HPCToolkit. http://hpctoolkit.org/. [Online; accessed
21-March-2023].

[60] Paul K. Romano, Steven P. Hamilton, Ronald O. Rahaman, April Novak, Elia
Merzari, Sterling M. Harper, Patrick C. Shriwise, and Thomas M. Evans. 2021.
A Code-Agnostic Driver Application for Coupled Neutronics and Thermal-
Hydraulic Simulations. Nuclear Science and Engineering 195, 4 (2021), 391–411.
https://doi.org/10.1080/00295639.2020.1830620

[61] Paul K. Romano, Nicholas E. Horelik, Bryan R. Herman, Adam G. Nelson, Benoit
Forget, and Kord Smith. 2015. OpenMC: A state-of-the-art Monte Carlo code
for research and development. Annals of Nuclear Energy 82 (2015), 90–97.
https://doi.org/10.1016/j.anucene.2014.07.048 Joint International Conference
on Supercomputing in Nuclear Applications and Monte Carlo 2013, SNA + MC
2013. Pluri- and Trans-disciplinarity, Towards New Modeling and Numerical
Simulation Paradigms.

[62] Sameer S. Shende and Allen D. Malony. 2006. The Tau Parallel Perfor-
mance System. The International Journal of High Performance Computing Ap-
plications 20, 2 (2006), 287–311. https://doi.org/10.1177/1094342006064482
arXiv:https://doi.org/10.1177/1094342006064482

[63] James M. Stone, Kengo Tomida, Christopher J. White, and Kyle G. Felker. 2020.
The Athena++ Adaptive Mesh Refinement Framework: Design and Magneto-
hydrodynamic Solvers. The Astrophysical Journal Supplement Series 249, 1 (jun
2020), 4. https://doi.org/10.3847/1538-4365/ab929b

[64] Erich Strohmaier, Jack Dongarra, Horst Simon, and Martin Meuer. 2022. TOP500
June 2022 List. https://top500.org/lists/top500/2022/06/. [Online; accessed 19-
March-2023].

[65] Aidan P Thompson, H Metin Aktulga, Richard Berger, Dan S Bolintineanu,
W Michael Brown, Paul S Crozier, Pieter J in’t Veld, Axel Kohlmeyer, Stan G
Moore, Trung Dac Nguyen, et al. 2022. LAMMPS-a flexible simulation tool for
particle-based materials modeling at the atomic, meso, and continuum scales.
Computer Physics Communications 271 (2022), 108171.

[66] Aidan P Thompson, Laura P Swiler, Christian R Trott, Stephen M Foiles, and
Garritt J Tucker. 2015. Spectral neighbor analysis method for automated gener-
ation of quantum-accurate interatomic potentials. J. Comput. Phys. 285 (2015),
316–330.

[67] Christian R. Trott, Damien Lebrun-Grandié, Daniel Arndt, Jan Ciesko, Vinh Dang,
Nathan Ellingwood, Rahulkumar Gayatri, Evan Harvey, Daisy S. Hollman, Dan
Ibanez, Nevin Liber, Jonathan Madsen, Jeff Miles, David Poliakoff, Amy Powell,
Sivasankaran Rajamanickam, Mikael Simberg, Dan Sunderland, Bruno Turcksin,
and Jeremiah Wilke. 2022. Kokkos 3: Programming Model Extensions for the
Exascale Era. IEEE Transactions on Parallel and Distributed Systems 33, 4 (2022),
805–817. https://doi.org/10.1109/TPDS.2021.3097283

[68] University of Oregon. 2023. Tuning and Analysis Utilities. https://www.cs.
uoregon.edu/research/tau/home.php. [Online; accessed 21-March-2023].

[69] J.-L. Vay, A. Huebl, A. Almgren, L. D. Amorim, J. Bell, L. Fedeli, L. Ge, K. Gott,
D. P. Grote, M. Hogan, R. Jambunathan, R. Lehe, A. Myers, C. Ng, M. Rowan,
O. Shapoval, M. Thévenet, H. Vincenti, E. Yang, N. Zaïm, W. Zhang, Y. Zhao,
and E. Zoni. 2021. Modeling of a chain of three plasma accelerator stages with
the WarpX electromagnetic PIC code on GPUs. Physics of Plasmas 28, 2 (2021),
023105. https://doi.org/10.1063/5.0028512

[70] Sudharshan S. Vazhkudai, Bronis R. de Supinski, Arthur S. Bland, Al Geist,
James Sexton, Jim Kahle, Christopher J. Zimmer, Scott Atchley, Sarp Oral, Don E.
Maxwell, Veronica G. Vergara Larrea, Adam Bertsch, Robin Goldstone, Wayne
Joubert, Chris Chambreau, David Appelhans, Robert Blackmore, Ben Casses,
George Chochia, Gene Davison, Matthew A. Ezell, Tom Gooding, Elsa Gon-
siorowski, Leopold Grinberg, Bill Hanson, Bill Hartner, Ian Karlin, Matthew L.
Leininger, Dustin Leverman, Chris Marroquin, Adam Moody, Martin Ohmacht,
Ramesh Pankajakshan, Fernando Pizzano, James H. Rogers, Bryan Rosenburg,
Drew Schmidt, Mallikarjun Shankar, Feiyi Wang, Py Watson, Bob Walkup,
Lance D. Weems, and Junqi Yin. 2018. The Design, Deployment, and Evalu-
ation of the CORAL Pre-Exascale Systems. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and Analysis
(Dallas, Texas) (SC ’18). IEEE Press, Piscataway, NJ, USA, Article 52, 12 pages.
http://dl.acm.org/citation.cfm?id=3291656.3291726

[71] Virtual Institute - High Productivity Supercomputing. 2023. SCORE-P: Scalable
Performance Measurement Infrastructure for Parallel Codes. https://www.vi-
hps.org/projects/score-p/. [Online; accessed 21-March-2023].

[72] Robert W. Wisniewski, Todd Inglett, Pardo Keppel, Ravi Murty, and Rolf Riesen.
2014. MOS: An Architecture for Extreme-Scale Operating Systems. In Proceedings
of the 4th International Workshop on Runtime and Operating Systems for Super-
computers (Munich, Germany) (ROSS ’14). Association for Computing Machinery,
New York, NY, USA, Article 2, 8 pages. https://doi.org/10.1145/2612262.2612263

[73] Christopher Zimmer, Scott Atchley, Ramesh Pankajakshan, Brian E. Smith, Ian
Karlin, Matthew L. Leininger, Adam Bertsch, Brian S. Ryujin, Jason Burmark,
André Walker-Loud, M. A. Clark, and Olga Pearce. 2019. An Evaluation of the
CORAL Interconnects. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (Denver, Colorado)

12

https://doi.org/10.1109/PMBS56514.2022.00008
https://doi.org/10.1109/PMBS56514.2022.00008
https://www.alcf.anl.gov/alcf-resources/theta
https://www.alcf.anl.gov/alcf-resources/theta
https://doi.org/10.1094/PBIOMES-02-22-0007-R
https://doi.org/10.1094/PBIOMES-02-22-0007-R
https://www.linaroforge.com/
https://github.com/flang-compiler/flang
https://github.com/flang-compiler/flang
https://llvm.org/
https://doi.org/10.2172/967277
https://www.nextplatform.com/2022/01/31/crays-slingshot-interconnect-is-at-the-heart-of-hpes-hpc-and-ai-ambitions/
https://www.nextplatform.com/2022/01/31/crays-slingshot-interconnect-is-at-the-heart-of-hpes-hpc-and-ai-ambitions/
https://doi.org/10.1145/3458817.3487400
https://developer.nvidia.com/cuda-toolkit
https://www.openacc.org/sites/default/files/inline-files/OpenACC_2_0_specification.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC_2_0_specification.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC_2_0_specification.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC_2_0_specification.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC.2.7.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC.2.7.pdf
https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC-3.2-final.pdf
https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC-3.2-final.pdf
https://www.openacc.org/
https://www.openmp.org/
https://www.olcf.ornl.gov/caar/frontier-caar/
https://doi.org/10.1145/2749246.2749273
https://doi.org/10.1145/3295500.3356209
https://doi.org/10.1145/3295500.3356209
http://hpctoolkit.org/
https://doi.org/10.1080/00295639.2020.1830620
https://doi.org/10.1016/j.anucene.2014.07.048
https://doi.org/10.1177/1094342006064482
https://arxiv.org/abs/https://doi.org/10.1177/1094342006064482
https://doi.org/10.3847/1538-4365/ab929b
https://top500.org/lists/top500/2022/06/
https://doi.org/10.1109/TPDS.2021.3097283
https://www.cs.uoregon.edu/research/tau/home.php
https://www.cs.uoregon.edu/research/tau/home.php
https://doi.org/10.1063/5.0028512
http://dl.acm.org/citation.cfm?id=3291656.3291726
https://www.vi-hps.org/projects/score-p/
https://www.vi-hps.org/projects/score-p/
https://doi.org/10.1145/2612262.2612263

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Frontier: Exploring Exascale SC23, November 12–17, 2023, Denver, CO, USA

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

(SC ’19). Association for Computing Machinery, New York, NY, USA, Article 39, 18 pages. https://doi.org/10.1145/3295500.3356166

13

https://doi.org/10.1145/3295500.3356166

	Abstract
	1 Introduction
	2 The Challenges of Exascale
	2.1 The Energy and Power Challenge
	2.2 The Memory and Storage Challenge
	2.3 The Concurrency and Locality Challenge
	2.4 The Resiliency Challenge

	3 Frontier's Architecture
	3.1 Node Design
	3.2 Slingshot Interconnect
	3.3 Storage Subsystem
	3.4 Software Ecosystem

	4 Initial Evaluation
	4.1 Node-Level Performance
	4.2 Interconnect Performance
	4.3 Storage Evaluation
	4.4 Initial CAAR, INCITE, and ECP Application Results

	5 Frontier and the Exascale Report
	5.1 Energy and Power
	5.2 Memory and Storage
	5.3 Concurrency and Locality
	5.4 Resiliency

	6 Conclusion
	References

